Report of Meeting L-60-1 Surveillance Panel Feb. 13th, 2025

Attendees:

SwRI - **Mueller,** Wright

Lubrizol - **Schaup**, Ariemma, Gingerich Afton - **Sangpeal**, Bell, Campbell, Zyski

Intertek - Lange, Portell TMC - Beck, Venhoff

BASF - **Goyal,** Margret, Mosher

Dana - Gibson

Cummins-Meritor - Carowick, Catania
Army - Sattler, Comfort

AAM - **Muransky**International Motors - Morris
Fuchs - Bender

Oronite- Warden, Jackson, DeLaFuente

Shell- Jordan, Schweitzer, Uy

Exxon- Banas, **Jetter**Daimler Truck NA- Fry, Vanderwal
Richful Lube Additives- **McCullum**

Voting Members in **BOLD**

1.0 Membership Review

Added Clarence McCullum from Richful Lube Additive as a voting member.

Changed Voting member from Amy Zyski to Trevor Gibson.

Changed Voting member from Rob Banas to Steve Jetter.

2.0 Meeting minutes Approval

November 13th, 2024, ASTM Meeting #215

Motion #1 \rightarrow Carowick 1st /2nd Muransky approve the meeting minutes from the November 13th, 2024, ASTM Meeting. Motion passed unanimously, 11-0-0 (Yes-No-Abstain).

3.0 Action Item Review

Previous Action Items:

- Labs to complete tests on 145 candidate reference oil before February meeting.
- Lab engineers to review data for 145 candidate reference oil.
 - o At TMC's request this was sent to stats group for recommendation.
- Nick Schaup to "get the ball rolling with OGT"
 - o OGT was bought out twice, a person that had been employed by OGT at the time told Nick that they would no longer be able to facilitate the previous arrangement.
 - o Boston Gear is no longer willing to work with 11L17 steel and will only work with their standard 1117CD steel that does not contain any lead.

4.0 L-60-1 Candidate Oil Target Recommendation by the stats group

• Stats group recommended the following targets for the Candidate reference oil 145

Oil	Targets	VISI	PEN	TOL	ACV	ASL
RO145	mean	70.225	1.198	1.217	6.329	8.575
	standard deviation	5.099	0.249	0.409	0.747	0.648

• MOTION #1: Reference oil was approved and target recommendation was accepted Unanimously 12-0-0. Effective Immediately (2/12/25).

5.0 Bar Stock procurement

- Boston Gear is unwilling to work with anything other that the standard 1117CD steel.
- As a short term stop gap T.Muransky is looking into getting 11L17 steel and cutting "clones" of the current test gears.
- As an experiment Lubrizol is to procure 16 "off the shelf" gears from Boston Gear and distribute them to all the labs so that each lab can run 2 tests on each approved reference Oil. This is to be completed before May. If results are available before May lab engineers are to meet and review data.

6.0 Sierra Side Trak Replacement

- It was reported that some components of the currently required Sierra model are obsolete and no longer readily available.
- It was decided that Wes Venhoff will investigate similar controller requirements in different test methods and come up with some verbiage to suggest at the next meeting.
- It was also noted that if this change was made that the calibration requirements will also need to be looked at.

7.0 Old Business 8.0 New Business 9.0 Adjourn

Motion #3 \rightarrow Lange 1st /2nd Mueller to adjourn. Motion passed unanimously, 11-0-0 (Yes-No-Abstain).

Respectfully submitted,

Nicholas Schaup L-60-1 Surveillance Panel Chairman

L-60-1 Surveillance Panel Meeting

02/12/2025

Nick Schaup

Agenda

- Call to Order/Agenda review
- Membership review
- Meeting Minute Approvals
 - Nov 13th 2024, Surveillance panel meeting
- Action Item Review
- Stats Recommendation(s)
- Hardware order update
- Sierra Side Trak or equivalent discussion
- Old Business?
- New business
- Adjournment

Membership Review

Allen Comfort	US Army					
Amy Zyski Trevor Gibson	Dana					
Arjun Goyal	BASF					
Anthony Lange	Intertek					
Jessica Carowick	Cummins					
Wes Venhoff	ТМС					
Nick Schaup	Lubrizol					
Matt Sangpeal	Afton					
Caroline Mueller	SwRI					
Reb Banas Steve Jetter	ExxonMobi					
Troy Muransky	AAM					
Rebecca Warden	Oronite					

Meeting Minutes Approval

- Nov 13th, 2024, Surveillance Panel Mtg

Action Item Review

- Labs to complete tests on new discrimination oil before February Meeting
 - Done
- Panel Will review 148-1 candidate for reference oil
 - At TMCs request, this was sent to the stats group for review
 - Results from that request will be discussed later
- Nick Schaup to get ball rolling with OGT
 - OGT has been bought and exchanged hands several times
 - Is no longer capable of fulfilling this request
 - Boston Gear is not willing to work with anything other than 1117CD steel

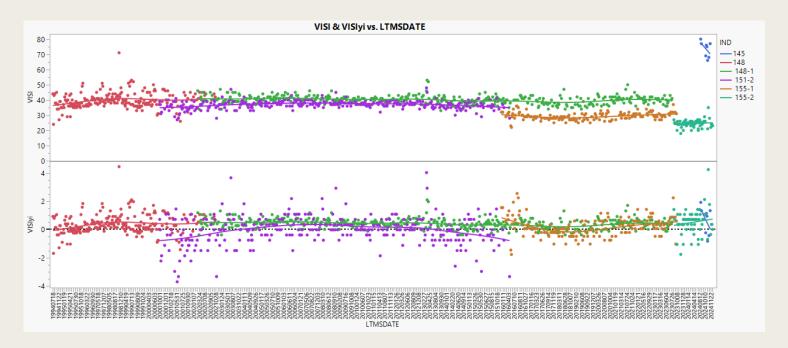
L60-1 R0145 TARGETS

Statistics Group Jan. 20, 2025

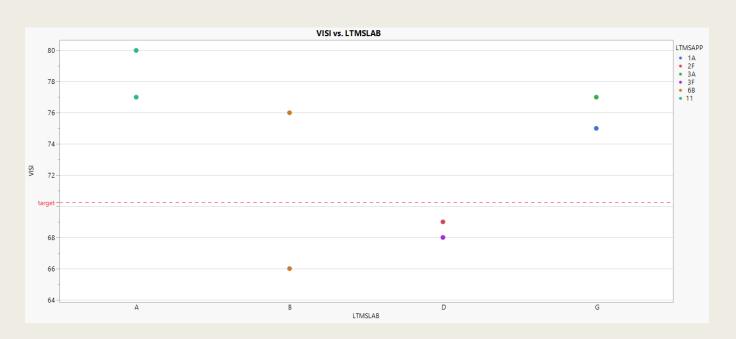
Statistics Group

- Amanda Stone, Afton/New Market
- Dylan Beck, TMC
- Jo Martinez, Chevron Oronite
- Martin Chadwick, Intertek
- Travis Kostan, SwRI

Reference Oil 145 Targets

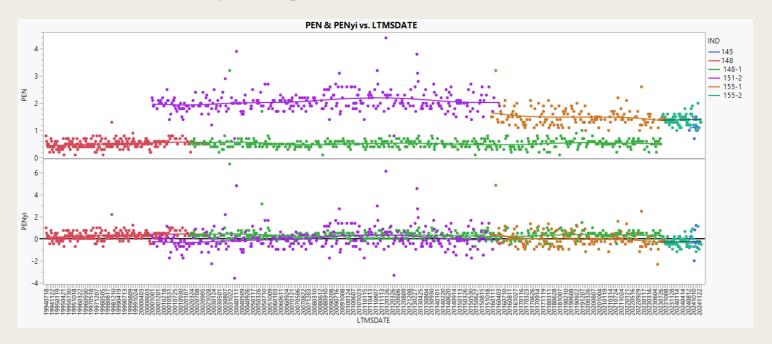

- Total of 8 tests
 - 2 tests per lab
 - 4 labs
 - 6 stands
- Recommend RO 145 targets below

Oil	Targets	VISI	PEN	TOL	ACV	ASL
RO145	mean	70.225 1.198		1.217	6.329	8.575
	standard deviation	5.099	0.249	0.409	0.747	0.648
TMC 148-1	mean	36.966	0.387	0.257	8.306	9.532
	standard deviation	7.659	0.413	0.249	0.511	0.106

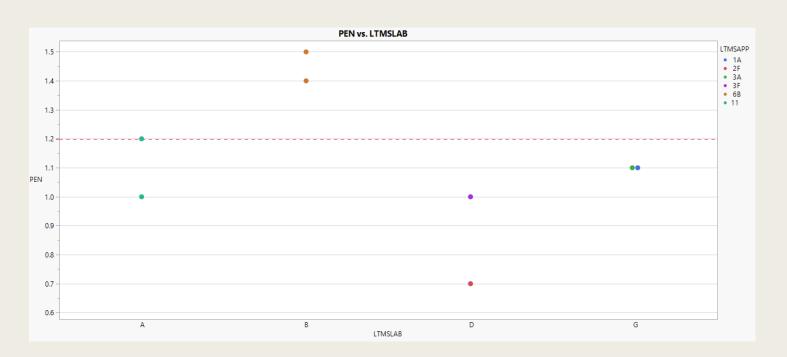

- mean is model prediction adjusted by deviation of RO 155-2 prediction versus target
- standard deviation is the raw standard deviation

VISI

- 155-2 is off target by +0.3s
- to adjust for this severity the target mean for RO 145 should be 70.225

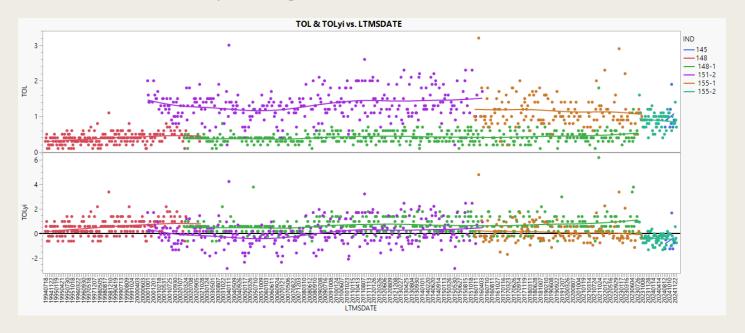


VISI mean=70.225 s=5.099

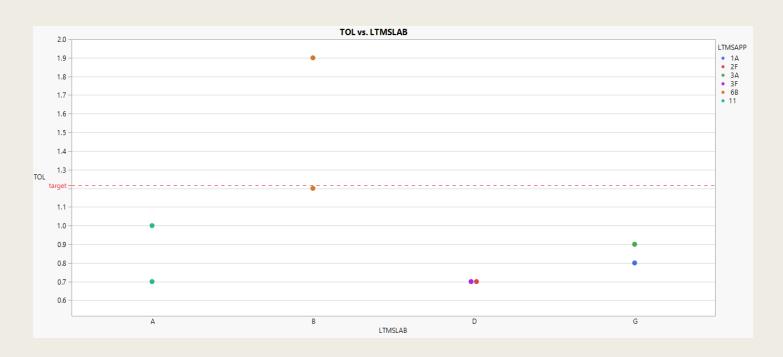


PEN

- 155-2 is off target by -0.4s
- to adjust for this severity the target mean for RO 145 should be 1.198

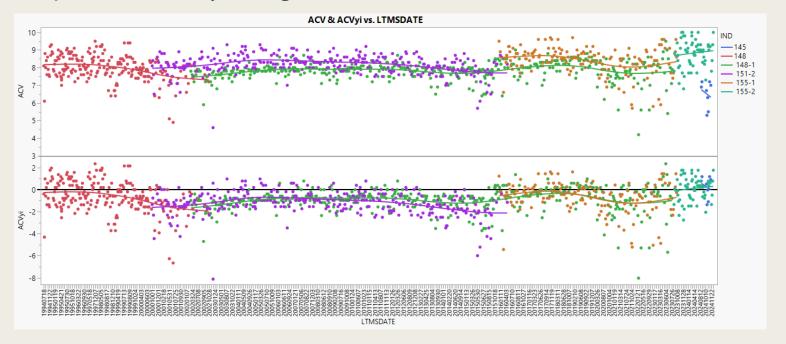


PEN mean=1.198 s=0.249

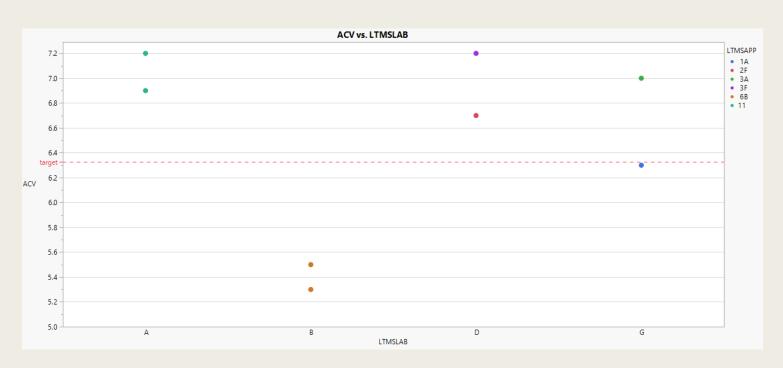


TOL

- 155-2 is off target by -0.5s
- to adjust for this severity the target mean for RO 145 should be 1.217

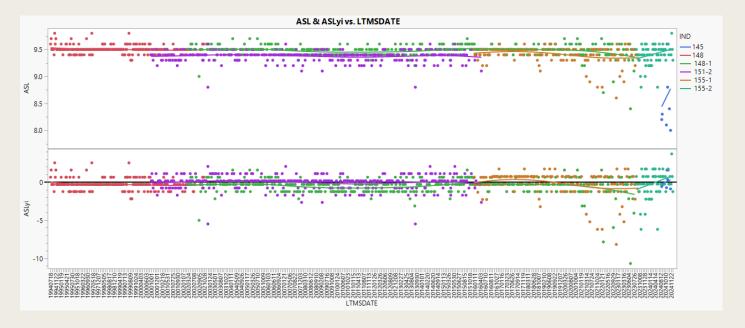


TOL mean=1.217 s=0.409

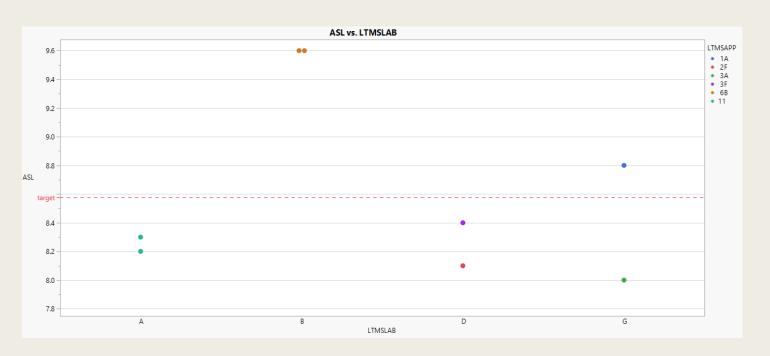


ACV

- 155-2 is off target by +0.04s
- to adjust for this severity the target mean for RO 145 should be 6.329



ACV mean=6.329 s=0.747



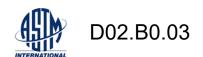
ASL

- 155-2 is off target by +0.2s
- to adjust for this severity the target mean for RO 145 should be 8.575

ASL mean=8.575 s=0.648

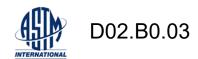
Prediction models

VISI							PEN								TOL							
Term	Estimate Prob> t		155-2	151-2	148-1	145	Term	Estimate	Prob> t	155-2	151-2	148-1		145	Term	Estimate	Prob> t		155-2	151-2	148-1	145
Intercept	40.41289 < .0001		1	1	. 1	1	Intercept	1.176779	<.0001		1	1	1	1	Intercept	0.836712	<.0001		1	. 1	1	1
IND[145]	32.61943 < .0001					1	IND[145]	-0.10607	0.1599					1	IND[145]	0.070895	0.3957					1
IND[148]	0.454639 0.2169)					IND[148]	-0.57558	<.0001						IND[148]	-0.3409	<.0001					
IND[148-1]	-1.06 <.0001				1		IND[148-1]	-0.67695	<.0001				1		IND[148-1]	-0.45989	<.0001				1	
IND[151-2]	-4.18334 <.0001			1			IND[151-2]	0.88567	<.0001			1			IND[151-2]	0.496307	<.0001			1		
IND[155-1]	-11.3375 <.0001						IND[155-1]	0.300603	<.0001						IND[155-1]	0.243162	<.0001					
155-2	-16.4933		1				155-2	0.172322			1				155-2	-0.00958			1			
LTMSLAB[A]	-0.49345 0.0172	2	0.25	0.25	0.25	0.25	LTMSLAB[A]	-0.10964	<.0001	0.2	25 0.	25 0.2	25	0.25	LTMSLAB[A]	-0.08836	<.0001		0.25	0.25	0.25	0.25
LTMSLAB[B]	-1.32774 <.0001		0.25	0.25	0.25	0.25	LTMSLAB[B]	-0.04547	0.0725	0.2	25 0.	25 0.2	25	0.25	LTMSLAB[B]	-0.04271	0.1273		0.25	0.25	0.25	0.25
LTMSLAB[D]	0.819914 < .0001		0.25	0.25	0.25	0.25	LTMSLAB[D]	0.106236	<.0001	0.2	25 0.	25 0.2	25	0.25	LTMSLAB[D]	0.074658	0.0001		0.25	0.25	0.25	0.25
G	1.00127		0.25	0.25	0.25	0.25	G	0.048873		0.2	25 0.	25 0.2	25	0.25	G	0.056416			0.25	0.25	0.25	0.25
		prediction	23.920	36.230	39.353	73.032			predicti	on 1.34	19 2.0	62 0.50	00 1	.071				prediction	0.827	1.333	0.377	0.908
		target	23	37.07	36.966	73.5			target	1.50	9 2.0	64 0.38	37 1	.125				target	1.109	1.329	0.257	0.988
		delta/s	0.920	-0.840	2.387	-0.468			delta/s	-0.16	-0.0	02 0.13	13 -0	.054				delta/s	-0.282	0.004	0.120	-0.080
		S	2.832	2.717	7.659	7.315			S	0.43	34 0.3	80 0.43	13 0	.262				s	0.53	0.394	0.249	0.514
		delta/s	0.32	-0.31	0.31	-0.06			delta/s	-0.3	37 0.	00 0.2	27 -	0.21				delta/s	-0.53	0.01	0.48	-0.16
						Target							Targ	get								Target
		target/pred	0.962		ratio*pred	70.225			target/p	red 1.11	.9	ratio*pr	ed 1	.198				target/pred	1.341		ratio*pred	1.217


ACV								ASL							
Term	Estimate	Prob> t		155-2	151-2	148-1	145	Term	Estimate	Prob> t	1	55-2	151-2	148-1	145
Intercept	7.89403	<.0001		1	l 1	. 1	1	Intercept	9.278193	<.0001		1	1	. 1	1
IND[145]	-1.54232	<.0001					1	IND[145]	-0.68483	<.0001					1
IND[148]	0.004539	0.9511						IND[148]	0.177841	<.0001					
IND[148-1]	-0.09076	0.0686				1		IND[148-1]	0.167209	<.0001				1	
IND[151-2]	0.273908	<.0001			1			IND[151-2]	0.069919	<.0001			1	L	
IND[155-1]	0.457331	<.0001						IND[155-1]	0.101939	<.0001					
155-2	0.897296			1	L			155-2	0.167919			1			
LTMSLAB[A]	0.157502	0.0002		0.25	0.25	0.25	0.25	LTMSLAB[A]	0.034238	<.0001		0.25	0.25	0.25	0.25
LTMSLAB[B]	-0.27004	<.0001		0.25	0.25	0.25	0.25	LTMSLAB[B]	0.073927	<.0001		0.25	0.25	0.25	0.25
LTMSLAB[D]	0.212018	<.0001		0.25	0.25	0.25	0.25	LTMSLAB[D]	0.045288	<.0001		0.25	0.25	0.25	0.25
G	-0.09948			0.25	0.25	0.25	0.25	G	-0.15345			0.25	0.25	0.25	0.25
			prediction	8.791	8.168	7.803	6.352			pi	rediction	9.446	9.348	9.445	8.593
			target	8.76	8.801	8.306	6.513			ta	arget	9.426	9.382	9.532	8.625
			delta/s	0.033	-0.633	-0.503	-0.161			de	elta/s	0.020	-0.034	-0.087	-0.032
			s	0.708	0.517	0.511	0.979			s		0.101	0.106	0.106	0.634
			delta/s	0.04	1 -1.22	-0.98	-0.16			de	elta/s	0.20	-0.32	-0.82	-0.05
							Target								Target
			target/pre	0.996	3	ratio*pred	6.329			ta	arget/pre	0.998		ratio*pred	8.575

estimates of standard deviation

raw	lab stand model RMSE	random ef	fects mode							
		VISI	Random Ef	Var Ratio	Var Compo	Std Error	95% Lowe	95% Uppe	Wald p-Va	Pct of Total
		5.371563	LTMSLAB	1.170575	28.85369	19.61982	-9.60045	67.30783	0.1414	53.929
			LTMSAPP[-0.94901	-23.3924	21.90435	-66.3241	19.53935	0.2856	0
		4.964792	Residual		24.64916	21.87128	7.391623	499.2818		46.071
5.09902	5.220153	7.314564	Total		53.50285	36.04392	19.91205	381.9608		100
		PEN	Random Ef	Var Ratio	Var Compo	Std Error	95% Lowe	95% Uppe	Wald p-Va	Pct of Total
		0.214209	LTMSLAB	3.713746	0.045886	0.053003	-0.058	0.14977	0.3866	66.611
			LTMSAPP[0.861524	0.010645	0.026438	-0.04117	0.062463	0.6872	15.453
		0.111156	Residual		0.012356	0.012208	0.003384	0.452708		17.936
0.249285	0.111803		Total							100
		TOL	Random Ef	Var Ratio	Var Compo	Std Error	95% Lowe	95% Uppe	Wald p-Va	Pct of Total
		#NUM!	LTMSLAB	-0.58987	-0.07884	0.254094	-0.57685	0.419175	0.7564	0
			LTMSAPP[0.973128	0.130064	0.18052	-0.22375	0.483876	0.4712	49.319
		0.365589	Residual		0.133655	0.185504	0.027062	106.5438		50.681
0.408613	0.380789	0.513535	Total		0.263719	0.366024	0.053397	210.2246		100
		ACV	Random Ef	Var Ratio	Var Compo	Std Error	95% Lowe	95% Uppe	Wald p-Va	Pct of Total
		#NUM!	LTMSLAB	-13.3446	-0.42244	0.469798	-1.34323	0.498349	0.3686	0
			LTMSAPP[29.26621	0.926452	0.828241	-0.69687	2.549774	0.2633	96.696
		0.177921	Residual		0.031656	0.030859	0.008771	1.068846		3.304
0.747257	0.180278	0.97883	Total		0.958108	0.829342	0.293234	17.23347		100
		ASL	Random Ef	Var Ratio	Var Compo	Std Error	95% Lowe	95% Uppe	Wald p-Va	Pct of Total
		0.422664	LTMSLAB	71.60284	0.178645	0.463587	-0.72997	1.087258	0.7	44.492
			LTMSAPP[88.33196	0.220383	0.294908	-0.35763	0.798391	0.4549	54.887
		0.049949	Residual		0.002495	0.00249	0.000678	0.097299		0.621
0.647523	0.05		Total			0.317093	0.132323	4.88156		100


Hardware order update

- Ohio Gear and Transmission is no longer, they were bought out several times and cannot source 11L17 steel.
- Boston Gear is not willing to work with 11L17 steel (even if we procure it ourselves) and is only willing to produce GA-34 and GA-50 in 1117CD steel.

Sierra Sidetrack 840 or Equivalent

- Some Sierra components are not available anymore
- Requirement comes from 8.10.1
- This would alter calibration requirements as well

Old Business

New Business

Adjournment