

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 | USA Phone 610.832.9500 Fax 610.832.9666 Web www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: KENNETH O. HENDERSON, Cannon Instrument Co., 2139 High Tech Road, State College, PA 16803, (814) 353-8000, Fax: (814) 353-8007, e-mail: kenohenderson@worldnet.att.net First Vice-Chairman: BEN R. BONAZZA, 3457 WOODVALLEY DRIVE, LAPEER, MI 48446 (810) 664-6769 e-mail: bbonazza@charter.net Second Vice-Chairman: JANET L. LANE, ExxonMobil Research & Engrg., 600 Billingsport Rd, Paulsboro, NJ 08066-0480 (856) 224-3302, Fax: (856) 224-3616, e-mail: janet.l.lane@exxonmobil.com First Secretary: RALPH A. CHERRILLO, Shell Global Solutions (US) Inc., Westhollow Tech Ctr., 3333 Highway 6 South, Houston, TX 77082 (281) 544-8789, Fax: (281) 544-8150, e-mail: ralph.cherrillo@shell.com Second Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co. LP, PO Box 206, Wilmington, IL 60481, (815) 458-0216, Fax: (815) 458-0217, e-mail: Michael.collier@paclp.com Staff Manager: DAVID R. BRADLEY, (610) 832-96681, Fax: (610) 832-9668, e-mail: dbradley@astm.org

August 3rd, 2016

Reply to: Matt Umerley The Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 (440) 347-4589 (440) 347-2377 (FAX) mtue@lubrizol.com

ASTM D02.B0.03 L-37-1 Surveillance Panel Members and Guests:

Attached for your review and comment are the unconfirmed minutes of the:

• May 11th 2016, Surveillance Panel Meeting in Troy, MI

Please direct any corrections or comments to my attention.

Sincerely,

Matt Umerley, Chairman L-37-1 Hardware Taskforce Chairman

Report of Meeting L-37-1 Surveillance Panel Meeting May 11th, 2016 Meeting

Attendees:

Voting Members in **BOLD** Bell, Don – Afton Bubonic, Brad – Lubrizol **Comfort**, Allen – US Army Dharte, John – AAM Dennis, Mike – Gleason Dononan, Eric – Afton Dwornick, Bridget – US Army Goyal, Arjun – BASF Marsic, Vera – Lubrizol Milner, Jeff – Tianhe Chemical Muransky, Troy – Meritor Parke, Scott – ASTM TMC Reardon, Art – Gleason Smith, Dale – Intertek Trader, Angela - Intertek **Umerley, Matt – Lubrizol** Venhoff, Wes – Lubrizol Warden, Rebecca – SwRI

1.0 Call to Order

2.0 Membership Review

T. Muransky to replace B. McGlone

3.0 Approval of Meeting Minutes

L371

R. Warden – Motion D. Smith – 2^{nd}

4.0 L-37-1 Statistical Analysis

Presentation attached

5.0 L-37-1 Next Steps

Gleason to analyze gears from Afton and Intertek R. Warden to use Gleason analysis results to create test matrix

6.0 New Business

A.Goyal Motion to adjourn E.Donovan 2nd

Respectfully Submitted Matt Umerley

L-37-1

May 11th 2016 Automation Alley, MI

© 2015 The Lubrizol Corporation

Agenda

- Membership Review
- Meeting Minutes
- L-37-1 Statistical Analysis
- L-37-1 Next Steps
- New Business

Membership Review – Voting Members

- Rob Banas ExxonMobil
- Allen Comfort US Army
- John Dharte AAM
- Eric Donovan Afton
- Arjun Goyal BASF
- Joe Guzikowski Dana
- Donna Mosher Eaton

- Troy Muransky Meritor
- Scott Parke TMC
- Dale Smith Intertek
- Matt Umerley Lubrizol
- Rebecca Warden SwRI
- Khaled Zreik GM

Meeting Minutes

- L-37-1
 - 20151104
 - 20151208
 - 20160111
 - 20160210
 - 20160328
- L-37
 - 20151027
 - 20160125
 - 20160210
 - 20160318

L-37 Gleason Hardware Analysis

Pete Sherick

May 2016

Overview

Mech Test requested an analysis of recent L-37-1 testing with Gleason hardware. The data consists of 5 oils, tested at 4 different labs from the past year and a half. Wear, Ridging and Rippling were analyzed, but it was not possible to explain many of the poor results.

It is suspected that parts batches and test procedure differences are playing a significant role.

	LTMS Targets								
	Pinion								
	Wear	Rippling	Ridging	Pitt/Spall	Scoring				
TMC134	4 - 8	6 - 10	3 - 9	1 - 7	10				
TMC152-2	6 - 8	7 - 10	7 - 10	7 - 10	10				
TMC155	6 - 8	6 - 10	7 - 10	5 - 10	10				

Ring+Pinion Wear Model

LABEL	ACTIVITY	EFFECT MEAN	DATA MIN	DATA MAX	# NON-ZERO
	PROB				
CANADIAN PROC	0.16	-0.044	0	1	9
HIGH LOAD	0.11	0.014	0	1	43
ABS(CASEDIFF)*	0.36	-13.417	0	0.033	60
ABS(HARDDIFF)*	0.12	-0.011	0	2	52
SBTFAXTN*	0.51	0.011	0	65.08	43
LAB B	0.98	1.525	0	1	17
LAB D	0.84	-0.815	0	1	15
LAB G	0.85	0.999	0	1	14
OIL 117	1.00	0.292	0	1	15
OIL 155	1.00	0.196	0	1	19
OIL IND	1.00	-0.848	0	1	9
INTERCEPT (LAB A, OIL 152)		15.234			

Model primarily suggests large lab differences and some test/parts

discrepancies.

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity

= 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

being essentia^{*}To retain data, missing values were set to zero for these terms.

Pinion Wear Model

LABEL	ACTIVITY	EFFECT	DATA	DATA	# NON-
	PROB	MEAN	MIN	MAX	ZERO
CANADIAN PROC	0.16	-0.022	0	1	9
HIGH LOAD	0.15	0.015	0	1	43
ABS(CASEDIFF)*	0.18	-1.553	0	0.033	60
ABS(HARDDIFF)*	0.15	-0.012	0	2	52
SBTFAXTN*	0.63	0.009	0	65.08	43
LAB B	0.92	0.709	0	1	17
LAB D	0.44	-0.166	0	1	15
LAB G	0.72	0.415	0	1	14
OIL 117	1.00	0.205	0	1	15
OIL 155	1.00	0.051	0	1	19
OIL IND	1.00	-0.363	0	1	9
INTERCEPT (LAB A, OIL 152)		7.180			

Fairly similar to Pinion+Ring Wear model.

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity

= 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

being essentia^{*} To retain data, missing values were set to zero for these terms.

Ring+Pinion Wear Model

being essential

9

SUCCESS TOGETHER

Pinion Wear Model

Ring+Pinion Ridging Model

LABEL	ACTIVITY	EFFECT	DATA	DATA	# NON-
	PROB	MEAN	MIN	MAX	ZERO
CANADIAN PROC	0.16	-0.044	0	1	9
HIGH LOAD	0.30	-0.186	0	1	43
ABS(CASEDIFF)*	0.76	-45.944	0	0.033	60
ABS(HARDDIFF)*	0.13	-0.031	0	2	52
SBTFAXTN*	0.13	-0.001	0	65.08	43
LAB B	0.58	0.481	0	1	17
LAB D	0.27	-0.172	0	1	15
LAB G	0.17	0.026	0	1	14
OIL 117	1.00	-0.668	0	1	15
OIL 155	1.00	0.672	0	1	19
OIL IND	1.00	-0.386	0	1	9
INTERCEPT (LAB A, OIL 152)		19.055			

Ring/Pinion Batches seem to have an effect. Lowering load slightly helpful.

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity = 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

*To retain data, missing values were set to zero for these terms.

Pinion Ridging Model

LABEL	ΑCTIVITY	EFFECT	DATA	DATA	# NON-
	PROB	MEAN	MIN	MAX	ZERO
CANADIAN PROC	0.14	-0.015	0	1	9
HIGH LOAD	0.51	-0.241	0	1	43
ABS(CASEDIFF)*	0.62	-18.233	0	0.033	60
ABS(HARDDIFF)*	0.13	-0.009	0	2	52
SBTFAXTN*	0.13	0.000	0	65.08	43
LAB B	0.75	0.478	0	1	17
LAB D	0.39	-0.217	0	1	15
LAB G	0.24	0.085	0	1	14
OIL 117	1.00	-0.457	0	1	15
OIL 155	1.00	0.364	0	1	19
OIL IND	1.00	-0.199	0	1	9
INTERCEPT (LAB A, OIL 152)		9.312			

Ring/Pinion Batches seem to have an effect. Lowering load slightly helpful.

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity = 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

*To retain data, missing values were set to zero for these terms.

Ring+Pinion Ridging Model

being essential

Pinion Ridging Model

being essential

14

© 2015 The Lubrizol Corporation

Ring+Pinion Ripple Model

LABEL	ACTIVITY	EFFECT	DATA	DATA	# NON-
	PROB	MEAN	MIN	MAX	ZERO
CANADIAN PROC	0.14	0.026	0	1	9
HIGH LOAD	0.13	-0.006	0	1	43
ABS(CASEDIFF)*	0.14	0.561	0	0.033	60
ABS(HARDDIFF)*	0.17	0.055	0	2	52
SBTFAXTN*	0.15	0.001	0	65.08	43
LAB B	0.94	1.533	0	1	17
LAB D	0.53	0.602	0	1	15
LAB G	0.50	0.575	0	1	14
OIL 117	1	-0.190	0	1	15
OIL 155	1	0.277	0	1	19
OIL IND	1	-1.106	0	1	9
INTERCEPT (LAB A, OIL 152)		17.906			

Very little going on except for lab differences

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity

= 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

being essentia^{*} To retain data, missing values were set to zero for these terms.

Pinion Ripple Model

LABEL	ΑCTIVITY	EFFECT MEAN	DATA MIN	DATA MAX	# NON-ZERO
	PROB				
CANADIAN PROC	0.15	0.027	0	1	9
HIGH LOAD	0.12	-0.013	0	1	43
ABS(CASEDIFF)*	0.15	-0.329	0	0.033	60
ABS(HARDDIFF)*	0.13	0.013	0	2	52
SBTFAXTN*	0.15	0.001	0	65.08	43
LAB B	0.92	1.396	0	1	17
LAB D	0.54	0.578	0	1	15
LAB G	0.64	0.735	0	1	14
OIL 117	1.00	-0.167	0	1	15
OIL 155	1.00	0.144	0	1	19
OILIND	1.00	-0.977	0	1	9
INTERCEPT (LAB A, OIL 152)		8.169			

Very little going on except for lab differences

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity

= 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

being essentia^{*} To retain data, missing values were set to zero for these terms.

Ring+Pinion Ripple Model

Model does not predict well, questionable parameter repeatability

SUCCESS TOGETHER

17

Pinion Ripple Model

Model does not predict well, questionable parameter repeatability

- b

Ring+Pinion Wear+Ridging+Ripple Model

NAME	ΑCTIVITY	EFFECT MEAN	DATA MIN	DATA MAX	# NON-ZERO
	PROB				
CANADIAN PROC	0.15	-0.166	0	1	9
HIGH LOAD	0.12	-0.060	0	1	43
ABS(CASEDIFF)*	0.46	-50.444	0	0.033	60
ABS(HARDDIFF)*	0.12	0.026	0	2	52
SBTFAXTN*	0.14	0.003	0	65.08	43
LAB B	1.00	4.455	0	1	17
LAB D	0.14	-0.032	0	1	15
LAB G	0.70	2.027	0	1	14
OIL 117	1.00	-0.939	0	1	15
OIL 155	1.00	1.229	0	1	19
OIL IND	1.00	-2.091	0	1	9
INTERCEPT (LAB A, OIL 152)		51.788			

Lab and Parts playing a role

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity

= 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler.

Oil 134 excluded from model (too dissimilar from pass oils).

being essential To retain data, missing values were set to zero for these terms.

Pinion Wear+Ridging+Ripple Model

NAME	ACTIVITY	EFFECT	DATA	DATA	# NON-
	PROB	MEAN	MIN	MAX	ZERO
CANADIAN PROC	0.12	-0.023	0	1	9
HIGH LOAD	0.12	-0.034	0	1	43
ABS(CASEDIFF)*	0.16	-4.345	0	0.033	60
ABS(HARDDIFF)*	0.11	-0.004	0	2	52
SBTFAXTN*	0.13	0.001	0	65.08	43
LAB B	1.00	3.294	0	1	17
LAB D	0.15	0.034	0	1	15
LAB G	0.91	1.917	0	1	14
OIL 117	1.00	-0.573	0	1	15
OIL 155	1.00	0.620	0	1	19
OILIND	1.00	-1.690	0	1	9
INTERCEPT (LAB A, OIL 152)		24.225			

Lab effects nearly as large as Ring+Pinion model, parts effects diminished

Robust Bayesian Model Averaging Analysis

Activity Probability gives indication of effect's importance with values closer to 1 more likely to have an effect (>0.35 rule of thumb). OIL terms are forced so always have activity = 1. Effect mean is the average coefficient over many iterations of model fitting via Gibbs sampler. Oil 134 excluded from model (too dissimilar from pass oils).

*To retain data, missing values were set to zero for these terms.

Ring+Pinion Wear+Ridging+Ripple Model

being essential

© 2015 The Lubrizol Corporation

SUCCESS TOGETHER

Pinion Wear+Ridging+Ripple Model

Model predicts ok, poor high-load results unexplained

SUCCESS TOGETHER

Working together, achieving great things

When your company and ours combine energies, great things can happen. You bring ideas, challenges and opportunities. We'll bring powerful additive and market expertise, unmatched testing capabilities, integrated global supply and an independent approach to help you differentiate and succeed.

Next Steps

- Run variety of gear batches
 - See if we can predict failures based on gear batch
- Order more gears

New Business?

Thanks!

