

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 | USA

Phone 610.832.9500 Fax 610.832.9666 Web www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: KENNETH O. HENDERSON, Cannon Instrument Co., 2139 High Tech Road, State College, PA 16803, (814) 353-8000, Fax: (814) 353-8007, e-mail: kenohenderson@worldnet.att.net First Vice-Chairman: BEN R. BONAZZA, 3457 WOODVALLEY DRIVE, LAPEER, MI 48446 (810) 664-6769 e-mail: bbonazza@charter.net Second Vice-Chairman: JANET L. LANE, ExxonMobil Research & Engrg., 600 Billingsport Rd, Paulsboro, NJ 08066-0480 (856) 224-3302, Fax: (856) 224-3616, e-mail: janet.l.lane@exxonmobil.com First Secretary: RALPH A. CHERRILLO, Shell Global Solutions (ÚS) Inc., Westhollow Tech Ctr., 3333 Highway 6 South, Houston, TX 77082 (281) 544-8789, Fax: (281) 544-8150, e-mail: ralph.cherrillo@shell.com Second Secretary : MICHAEL A. COLLIER, Petroleum Analyzer Co. LP, PO Box 206, Wilmington, IL 60481, (815) 458-0216, Fax: (815) 458-0217, e-mail: Michael.collier@paclp.com Staff Manager: DAVID R. BRADLEY, (610) 832-9681, Fax: (610) 832-9668, e-mail: dbradley@astm.org

February 18th, 2011

Reply to: Galen Greene The Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 (440) 347-2394 (440) 347-2878 (FAX) ggre@lubrizol.com

ASTM D02.B0.03 L-37 Surveillance Panel Members and Guests:

Attached for your review and comment are the unconfirmed minutes of the:

February 9th, 2011 L-37 Surveillance Panel Meeting •

Please direct any corrections or comments to my attention.

Sincerely,

Galen Greene, Chairman L-37 Surveillance Panel

Report of Meeting L-37 Surveillance Panel Meeting PRI Headquarters – Warrendale, PA

February 9th, 2011

Attendees:

SwRI -	Koehler
Lubrizol -	Greene, Gropp, Venhoff, Graziano
Afton -	Koglin (TC), Bell
Intertek-Parc -	Smith
TMC -	Parke, Clark
US Army -	Comfort, Dwornick
Arvin Meritor -	McGlone
AAM -	Dharte
ExxonMobil -	Eliot, Kanga
Chevron -	Zakarian

Voting Members in **BOLD** TC = Teleconference

The meeting was called to order at 3:00 pm EST.

1.0 Approval of Minutes:

• November 3rd, 2010 Surveillance Panel Meeting (Warren, MI)

Motion # 1 \rightarrow Mr. Smith / 2nd Mr. Zakarian to approve the minutes as presented. Motion for approval was passed with a vote of 8-Yes, 0-No, and 0-Abstentions.

2.0 Summary of Meeting Discussions

2.1 Hardware Update

The pilot gear sets have been manufactured and 12 sets were in the process of being Lubrited. Once complete these gear sets are going to be shipped to Maumee for retrofit into the existing 2006 housings. No representative from Dana was present so a further update was not provided.

The labs reviewed the agreed upon matrix and selected labs to run each test. The oils will be run as follows:

Oil	Conditions	Both ring and pinion	lah
	Conditions	Labilita	SwRI
	STD	3	Afton
150			Lubrizol
192			Intertek
	CAN	3	SwRI
			Afton
			Lubrizol
155	STD	3	Intertek
			SwRI
13/	STD	2	Afton
134	510	2	Lubrizol

Since only 11 tests were originally scheduled, Intertek will receive an extra axle which will likely be run at a later date. After these 12 tests are complete, the labs will review the data and decide on next steps.

2.2 Broken Teeth Definition

At the recent rating calibration workshop, the group discussed how to interpret broken teeth on L-37 gears. The group did a survey on several photos of gears. The results showed that there was quite a difference in interpretation. The surveillance panel discussed the issue.

One area that the panel felt needed clarification was section 12.7. There was some confusion on the use of the word "breakage" versus "broken." While the difference was strictly grammatical, the following motion was made to make the interpretation of 12.7 easier:

Motion # 2 \rightarrow Mr. Koglin / 2nd Mr. Smith – Motion to change 12.7 to read (changes in red): "Consider as non-interpretable any reference or non-reference oil test that has one or more broken pinion or ring gear teeth. Note any broken teeth in the comment section of the rating form." The motion passed with a vote of Yes-8, No-0, Abstensions-1.

The group also discussed a definition of the term "broken teeth." After discussion the following motion was proposed:

Motion # 3 \rightarrow Mr. Greene / 2nd Mr. Zakarian – Motion to have the TMC discuss the following broken tooth definition with the rating group:

Broken Tooth – Removal of metal including and beyond the drive side onto the top land, toe, heel, or coast side of a tooth. This is a condition more extensive than chipping.

The TMC is to try to report back to the surveillance panel at the May 2011 meeting. The motion passed with a vote of Yes-9, No-0, Abstensions-0.

2.3 L37RC Targets

The TMC presented the updated L37RC targets for approval. The panel reviewed and the following motion was made.

Motion # 4 \rightarrow Mr. Smith / 2nd Mr. Koehler – Motion to approve the L37RC targets as presented. The motion passed with a vote of Yes-9, No-0, Abstensions-0.

3.0 Adjournment

Motion to Adjourn, Meeting Adjourned at 5:00 pm EST

Respectfully submitted,

Galen Greene L-37 Surveillance Panel Chairman

ASTM L-37 Surveillance Panel Membership/Mailing List

Z/9/2011 Meeting Date: November 3rd 2010

Ini	itials*	Name	Voting Status	Company Name & Address		Phone/Email Info
ţ	>B	Bell, Don	Non Voting	Afton Chemical 500 Spring Street Richmond, VA 23219	Phone: Fax: E-Mail:	804-788-6332 804-788-6243 don.bell@aftonchemical.com
	_	Bryson, Tom	Voting	Mack Trucks 13302 Pennsylvania Avenue Hagerstown, Maryland 21740	Phone: Fax: E-Mail:	301-790-6744 301-790-5605 thomas.bryson@volvo.com
A	.C.	Comfort, Allen	Voting	US Army RDECOM/TARDEC 6501 East 11 Mile road Warren, MI 48397-5000	Phone: Fax: E-Mail:	586-282-4225 586-282-4244 allen.s.confort@us.army.mil
Φ	J	Dharte, John	Voting	American Axle & Manufacturing 1 Dauch Drive Detroit, MI 48211	Phone: Fax: E-Mail:	313-758-4687 313-758-4237 Dhartej@aam.com
B	D	Dwornick, Bridget	Non-Voting	RDTA-DP/MS110 US ARMY RDECOM/TARDEC 6501 East 11 Mile road Warren, MI 48397-5000	Phone: Fax: E-Mail:	586-282-4221 586-282-4244 bridget.dwornick@us.army.mil
X	WZ.	Eliot, Stephen	Non Voting	ExxonMobil Lubricants & Specialties 18486 Lanier Island Sq. Leesburg, Virgina 20176	Phone: Fax: E-Mail:	703-669-9916 703-669-9917 stephen.w.eliot@exxonmobil.com
Z	SUR	CIGYK; Jeff Farbor, Frank	Non Voting	ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, Pennsylvania 15206	Phone: Fax: E-Mail: کُ	412-365-1030 1032 412-365-1047 fm@astmtmc.cmu.edu
		Foeking, Brian	Non Voting	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: Fax: E-Mail:	440-347-2130 440-347-9011 brian.foeking@lubrizol.com
		Gao, Hong	Non-Voting	Conoco Phillips 100 s Pine St. Ponca City, OK 74602	Phone: Fax: E-Mail:	580-767-2126 580-767-4534 hong.gao@conocophillips.com
P	рb	Graziano, Rick	Non-Voting	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: Fax: E-Mail:	440-347-2058 440-347-2878 rick.graziano@lubrizol.com
		Greene, Galen	Voting/Chair	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: Fax: E-Mail:	440-347-2394 440-347-2878 galen.greene@lubrizol.com

* Initial to indicate attendance at subject meeting

ASTM L-37 Surveillance Panel Membership/Mailing List 2/9/2011 Meeting Date: November 3rd 2010

	Initials*	Name	Voting Status	Company Name & Address		Phone/Email Info
	212	Gropp, Jerry	Non Voting	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: Fax: E-Mail:	440-347-1223 440-347-1555 jerrold.gropp@lubrizol.com
\frown		Guzikowski, Joe	Voting	Dana Corporation Maumee, IN	Phone: Fax: E-Mail:	joe.guzikowski@dana.com
retire	$() \leftarrow$	Haire, Mike	Voting	Chevron Global Lubricants 100 Chevron Way, Rm 71 7302 Richmond, California 94802	Phone: Fax: E-Mail:	510-242-2740 510-242-3758 mhaire@chevron.com
		Higuchi, Sam	Non Voting	Afton Chemical 500 Spring Street Richmond, VA 23218	Phone: Fax: E-Mail:	804-788-5375 804-788-6358 samuel.higuchi@aftonchemical.com
		Huron, John	Non Voting	Chevron Oronite Company LLC Suite 210 San Antonio, Texas 78228-1374	Phone: Fax: E-Mail:	210-731-5609 210 731 5699 huro@chevrontexaco.com
		Jackson, Matt	Non Voting	Southwest Research Institute PO Drawer 28510 San Antono, Texas 78228-0510	Phone: Fax: E-Mail:	210-522-6981 210-522-6858 matt.jackson@swri.org
	pris	Kanga, Percy	Non Voting	ExxonMobil Research & Engineering 600 Billingsport Road Paulsboro, New Jersey 08066	Phone: Fax: E-Mail:	856-224-2094 856-224-3613 percy.r.kanga@exxonmobil.com
		Kearney, Bill	Non Voting	Afton Southfield, MI	Phone: Fax: E-Mail:	
	M	Koehler, Brian	Voting	Southwest Research Institute PO Drawer 28510 San Antono, Texas 78228-0510	Phone: Fax: E-Mail:	210-522-3588 210-684-7523 bkoehler@swri.org
		Koglin, Cory	Voting	Afton Chemical 500 Spring Street Richmond, VA 23219	Phone: Fax: E-Mail:	804-788-5305 804-788-6358 CoryKoglin@aftonchemical.com
		Kozlowski, Ralph	Non Voting	PARC Technical Services, Inc. 100 William Pitt Way Pittsburg, PA 15238	Phone: Fax: E-Mail:	412-826-5044 412-826-5443 ralph.kozlowski@intertek.com

* Initial to indicate attendance at subject meeting

ASTM L-37 Surveillance Panel Membership/Mailing List Z/9/Zoli Meeting Date: November 3rd 2010

Meeting Date: November

Initials*	Name	Voting Status	Company Name & Address	Phone/Email Info
	Lind, Don	Non Voing	ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, Pennsylvania 15206	Phone: 412-365-1034 Fax: 412-365-1047 E-Mail: dml@astmtmc.cmu.edu
	Lochte, Michael	Non Voting	Southwest Research Institute PO Drawer 28510 San Antono, Texas 78228-0510	Phone: 210-522-5430 Fax: 210-684-7523 E-Mail: Mlochte@swri.org
	Marougy, Thelma	Voting	Eaton Corporation 26201 Northwestern Highway Southfiled, MI 48034	Phone: 248-226-6985 Fax: 248-226-2739 E-Mail: thelmaemarougy@eaton.com
	Martin, Dan	Non Voting	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: 440-347-4723 Fax: 440-347-2878 E-Mail: dan.martin@lubrizol.com
BM	McGlone, Bruce	Voting	Meritor Automotive 2135 West Maple Troy, Michigan 48084	Phone: 248-435-9929 Fax: 248-435-1411 E-Mail: Bruce.McGlone@ArvinMeritor.com
-01-(Pappademos, Lou	Non Voting	Dana Corporation Fort Wayne, IN	Phone: Fax: E-Mail: lou.pappademos@dana.com
A	Parke, Scott	Voting	ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, Pennsylvania 15206	Phone: 412-365-1036 Fax: E-Mail: sdp@astmtmc.cmu.edu
	Radonich, Peter	Non Voting	The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, Ohio 44092	Phone: 440-347-2184 Fax: 440-347-9011 E-Mail: peter.radonich@lubrizol.com
	Sanchez, Art	Non Voting	Southwest Research Institute PO Drawer 28510 San Antono, Texas 78228-0510	Phone: 210-522-3445 Fax: 210-680-1777 E-Mail: asanchez@swri.org
12	Smith, Dale	Voting	Intertek - PARC Technical Services, Inc. 100 William Pitt Way Pittsburgh, PA 15238	Phone: 412-423-1120 , ext 403 Fax: 412-826-5443 E-Mail: Dale.Smith@intertek.com
	Song, HaiQing	Non Voting	Research Institue of Petroleum Processing No. 18, XueYan Road, PO Box 914-19 Beijing 10083 P.R. China	Phone: 011-86-10-8236-8182 Fax: 011-86-10-6231-1290 E-Mail: songhq@ripp-sinopec.com

* Initial to indicate attendance at subject meeting

ASTM L-37 Surveillance Panel Membership/Mailing List Z/9/Z011 Meeting Date: November 3rd-2010

Initials*	Name	Voting Status	Company Name & Address	Phone/Email Info
	Sullivan, Bill	Non Voting	William T. Sullivan, Inc. 5 Scheiber Drive Brick, NJ 08723	Phone: 908-930-3512 Fax: 267-220-7750 E-Mail: wtsullivan@comcast.net
	Xie, JingChun	Non Voting	Lanzhou Lube Oil R&D Institute No. 369 Yumen Streat, XiGu District Lanshou 730060, GanSu Province P.R. China	Phone: 011-86-931-793-3713 Fax: 011-86-139-9319-2560 E-Mail: xiejingchun_rhy@petrochina.com.cn
JA2	Zakarian, Jack	Non Voting	Chevron Products 100 Chevron Way Richmond, CA 94802	Phone: 510-242-3595 Fax: 510-242-3758 E-Mail: jaza@chevron.com
w	VENHOFF, WES	NON	LZ	Phone: 440 347 4879 Fax: E-Mail: wvEE LUBRIZOL.COM
				Phone: Fax: E-Mail:

Updated L37RC Targets

		Cu	rrent Tartget	t	N	ew Targets	
Pinion #	Distress	MEAN	Std Dev	N Size	MEAN	Std Dev	N Size
1	Wear	5.90	1.000	9	5.80	0.420	33
	Rippling	7 80	0.890	-	7 50	0.800	
	Ridaina	5.40	0.670		5.80	0.670	
	Spitting	0.40	0.070		0.00	0.070	
	Spitting	9.91	0.100		9.90	0.024	
2	Wear	5.90	1.010	19	5.90	0.280	36
	Rippling	8.00	1.120		7.90	0.720	
	Ridging	8.60	0.670		8.50	0.510	
	Spitting	9.60	0.224		9.59	0.185	
3	Wear	5.90	1.010	23	6.00	0.170	34
	Rippling	6.80	0.890		6.90	0.600	
	Ridging	8.40	0.670		8.30	0.590	
	Spitting	9.88	0.089		9.88	0.041	
	Opitting	0.00	0.000		5.00	0.041	
6	Wear	5.80	0.890	18	5.80	0.360	33
	Rippling	7.20	0.890		7.20	0.570	
	Ridaina	6.30	0.780		6.40	0.490	
	Spitting	9.91	0 101		9.91	0.024	
	Opitting	0.01	0.101		0.01	0.024	
7	Wear	7.80	0.890	9	6.40	0.600	36
	Rippling	8.60	0.670		8.80	0.620	
	Ridaina	9.20	0.890		9.00	0.240	
	Spitting	9.87	0.078		9.89	0.023	
	0.00	0.01	0.010		0.00	0.010	
8	Wear	7.00	0.600	27	6.90	0.350	33
	Rippling	7 80	0.890		7 80	0 710	
	Ridaina	7 70	0 780		7 70	0.630	
	Spitting	0.00	0.000		0.00	0.000	
	Spitting	9.90	0.090		9.90	0.017	
10	Wear	5.60	0.670	18	5.60	0.500	34
	Rippling	6.20	0.890		6.40	0.650	
	Ridaina	8 40	0.670		8 40	0.600	
	Spitting	9.86	0.067		9.87	0.670	
	Opitting	0.00	0.001		0.07	0.070	
11	Wear	6.10	1.010	15	6.20	0.440	37
	Rippling	6.40	0.670		6.50	0.610	
	Ridaina	8.50	0.560		8.60	0.490	
	Spitting	9.60	0 1 1 2		9 59	0 172	
	opiuiig	0.00	01112		0.00	02	
13	Wear	7.50	0.600	20	7.50	0.640	40
	Rippling	9.60	0.670		9.70	0.460	
	Ridging	9.50	0.560		9.50	0.500	
	Spitting	9.92	0.089		9.91	0.033	
	שיייין-						
14	Wear	5.90	1.010	28	6.00	0.290	37
	Rippling	8.50	0.560		8.50	0.560	
	Ridging	6.50	0.560		6.40	0.870	
	Spitting	9.88	0.089		9.88	0.042	

		С	urrent Tartg	et		New Targets	
Pinion #	Distress	MEAN	Std Dev	N Size	MEAN	Std Dev	N Size
15	Wear	5.40	0.670	9	5.60	0.500	40
	Rippling	8.60	0.670		8.60	0.680	
	Ridaina	5.60	0.670		5.60	0.700	
	Spitting	7 56	0.622		7 63	0 490	
	opitting	1.00	0.022		1.00	01100	
17	Wear	5.70	0.780	23	5.90	0.520	39
	Rippling	9.00	1.110		8.90	0.500	
	Ridging	8.10	1.000		8.00	0.610	
	Spitting	6.10	1.000		6.10	0.394	
18	Wear	5.60	0.670	28	5.60	0.490	34
	Rippling	9.10	1.000		9.10	0.650	
	Ridging	4.90	1.000		4.90	0.640	
	Spitting	9.87	0.078		9.87	0.046	
19	Wear	6.10	0.560	20	6.10	0.340	34
	Rippling	9.30	0.780		9.20	0.430	
	Ridging	7.50	0.560		7.40	0.500	
	Spitting	9.90	0.056		9.90	0.017	
21	Wear	5.60	0.670	22	5.60	0.500	35
	Rippling	8.80	0.890		8.80	0.000	00
	Ridging	8.40	0.670		8.30	0.530	
	Spitting	8 10	1.010		8.10	0.330	
	Spitting	0.10	1.010		0.10	0.200	
22	Wear	6.40	0.670	17	6.40	0.500	34
	Rippling	8.90	1.010		9.20	0.590	
	Ridging	9.10	1.010		9.10	0.420	
	Spitting	9.88	0.089		9.88	0.039	
25	Wear	6 70	0 780	Q	6.00	0.280	38
20	Rippling	7.60	0.700	5	7 10	0.200	50
	Ridging	9.10	1.000		7.10	0.010	
	Spitting	0.10	0.111		7.00	0.000	
	Spitting	9.90	0.111		9.00	0.047	
26	Wear	8.80	0.890	9	8.30	0.500	38
	Rippling	9.30	0.780		9.40	0.540	
	Ridging	9.80	0.890		9.60	0.500	
	Spitting	9.98	0.089		9.92	0.039	
27	Wear	5.60	0.670	21	5.60	0.550	38
	Rippling	8.40	0.670		8.70	0.660	
	Ridging	5.30	0.780		5.60	0.650	
	Spitting	9.66	0.200		9.76	0.141	
29	Wear	6 50	0.560	22	6.50	0 670	33
_0	Rippling	9.50	0.560		9.70	0 480	
	Ridaina	9.60	0.670		9 60	0.500	
	Spitting	9.91	0 101		Q Q1	0.042	
	opining	0.01	0.101		0.01	0.072	
30	Wear	6.10	1.010	22	6.00	0.240	35
	Rippling	4.60	0.670		4.50	0.610	
	Ridging	9.10	1.010		9.20	0.380	
	Spitting	9.89	0.101		9.89	0.028	

		С	urrent Tartge	et		New Targets	
Pinion #	Distress	MEAN	Std Dev	N Size	MEAN	Std Dev	N Size
31	Wear	6.80	0.890	6	7.20	0.620	35
	Rippling	9.20	0.890		9.30	0.440	
	Ridaina	9 50	0 560		9 20	0 490	
	Spitting	9.91	0 100		9.20	0.045	
	Opitting	5.51	0.100		5.50	0.040	
32	Wear	7.40	0.670	22	7.40	0.550	35
	Rippling	8.90	1.010		8.90	0.340	
	Ridging	9.50	0.560		9.50	0.510	
	Spitting	9.89	0.101		9.90	0.017	
33	Wear	6.30	0.780	6	6.00	0.420	40
	Rippling	9.20	0.890		9.10	0.390	
	Ridging	9.00	1.100		9.10	0.390	
	Spitting	2.33	0.744		2.30	0.550	
	1						
34	Wear	6.40	0.670	22	6.40	0.500	39
	Rippling	6.70	0.780		6.80	0.660	
	Ridging	7.50	0.560		7.50	0.760	
	Spitting	9.90	0.056		9.90	0.016	
35	Wear	6 70	0 780	23	6.60	0 550	36
00	Rippling	4.80	0.890	20	4.80	0.000	00
	Pidaina	7.70	0.780		7.60	0.030	
	Ridging	7.70	0.760		7.00	0.730	
	Spitting	9.90	0.056		9.90	0.017	
36	Wear	6.10	1.010	6	6.20	0.450	35
	Rippling	9.40	0.670		9.40	0.490	
	Ridaina	9.10	1.010		9.10	0.280	
	Spitting	9.91	0.101		9.91	0.032	
37	Wear	7.70	0.780	20	7.70	0.580	37
	Rippling	9.20	0.890		9.10	0.430	
	Ridging	9.40	0.670		9.20	0.530	
	Spitting	9.91	0.056		9.91	0.023	
38	Wear	6.40	0.670	15	6.40	0.500	35
	Rippling	9.10	1.010		9.10	0.420	
	Ridaina	7.10	1.010		7.20	0.620	
	Spitting	9.91	0.101		9.91	0.024	
00	Mass	0.00	0.000	0	0.40	0.500	20
39	vvear	6.80	0.890	6	6.40	0.500	38
	Rippling	8.50	0.820		9.00	0.370	
	Ridging	8.70	0.780		8.70	0.460	
	Spitting	9.92	0.089		9.90	0.010	
40	Wear	6.20	0.890	28	6.20	0.430	35
	Ripplina	8.90	1.010		8.90	0.420	
	Ridging	5 80	0.890		5 70	0.680	
	Spittina	9.89	0.101		9.89	0.028	
	9				0.00		
41	Wear	6.80	0.890	6	7.20	0.580	36
	Rippling	9.30	0.780		9.30	0.530	
	Ridging	9.30	0.780		9.20	0.450	
	Spitting	9.92	0.089		9.91	0.033	

		С	urrent Tartg	et		I	New Targets	
Pinion #	Distress	MEAN	Std Dev	N Size	I	MEAN	Std Dev	N Size
42	Wear	6.00	1.100	6		6.00	0.150	45
	Rippling	6.80	0.890			7.40	0.710	
	Ridaina	8 80	0 890			8 60	0.500	
	Spitting	9.80	0.222			9.81	0.106	
	Opitting	5.00	0.222			5.01	0.100	
43	Wear	6.80	0.890	22		6.80	0.600	35
	Rippling	9.30	0.780			9.40	0.500	
	Ridging	9.00	0.560			9.00	0.170	
	Spitting	9.90	0.056			9.90	0.010	
44	Wear	5.80	0.890	6		6.20	0.430	35
	Rippling	9.30	0.780			8.80	0.660	
	Ridaina	4.80	0.890			5.30	0.700	
	Spitting	9.90	0 1 1 1			9.89	0.047	
	Opitting	0.00	0.111			0.00	0.0 11	
45	Wear	6.30	0.780	6		6.40	0.500	30
	Rippling	8.50	0.560			8.30	0.660	
	Ridging	5.50	0.560			5.90	0.870	
	Spitting	9.92	0.137			9.88	0.079	
16	Weer	6.40	0.670	77		6 50	0.510	27
40	Dinalian	0.40	0.070	21		0.50	0.510	37
	Rippling	4.80	0.890			4.80	0.730	
	Ridging	9.10	1.010			9.10	0.420	
	Spitting	9.92	0.089			9.92	0.044	
47	Wear	6.20	0.890	20		6.10	0.320	35
	Rippling	8.70	0.780			8.80	0.510	
	Ridaina	5.00	1.120			5.10	0.730	
	Spitting	9.88	0.089			9.89	0.036	
10				0				
48	wear	6.50	0.560	6		6.50	0.610	35
	Rippling	9.20	0.890			9.10	0.450	
	Ridging	9.70	0.780			9.30	0.520	
	Spitting	9.88	0.089			9.89	0.024	
50	Wear	6.60	0.670	21		6.50	0.510	33
	Rippling	9.60	0.670			9.50	0.510	
	Ridaina	8.40	0.670			8.20	0.830	
	Spitting	9.91	0.101			9.91	0.024	
F 4	Mag	740	4.040	00		7.40	0.050	22
51	vvear	7.10	1.010	22		7.10	0.350	32
	Rippling	8.70	0.780			8.60	0.500	
	Ridging	9.70	0.780			9.70	0.480	
	Spitting	9.90	0.110			9.90	0.018	
52	Wear	6.10	1.010	20		6.20	0.370	32
	Ripplina	8.80	0.890			8.70	0.460	
	Ridging	5 40	0 670			5.30	0.750	
	Spitting	9.90	0 1 1 0			9.90	0.010	
	opicing	0.00	0.110			5.00	0.010	
53	Wear	6.80	0.920	6		6.90	0.610	30
	Rippling	8.30	1.050			8.80	0.460	
	Ridging	9.20	0.920			9.20	0.480	
	Spitting	9.90	0.111			9.90	0.018	
	· -							

		Cu	urrent Tartge	et		New Targets	i
Pinion #	Distress	MEAN	Std Dev	N Size	MEAN	Std Dev	N Size
54	Wear Rippling Ridging Spitting	6.80 9.20 8.80 9.90	0.890 0.890 0.890 0.056	24	6.70 9.20 8.70 9.90	0.680 0.460 0.590 0.170	33
55	Wear Rippling Ridging Spitting	7.00 9.20 8.70 9.90	1.000 0.920 0.740 0.111	6	6.90 9.10 8.80 9.90	0.470 0.470 0.540 0.031	32
56	Wear Rippling Ridging Spitting	7.20 8.90 8.60 9.88	0.890 1.000 0.670 0.056	20	7.30 9.00 8.50 9.89	0.670 0.580 0.560 0.069	34
57	Wear Rippling Ridging Spitting	5.90 8.20 8.80 9.61	0.320 0.890 0.890 0.100	10	5.90 8.60 8.90 9.60	0.300 0.620 0.340 0.106	32
59	Wear Rippling Ridging Spitting	NEW NEW NEW	NEW NEW NEW NEW		5.70 5.70 8.20 8.66	0.450 0.750 0.610 0.525	40
60	Wear Rippling Ridging Spitting	NEW NEW NEW	NEW NEW NEW NEW		7.80 8.90 9.10 9.90	0.420 0.520 0.350 0.017	33

A Program of ASTM International

Rater:_____

Gear Number	Broken	Not Broken	Not Sure
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25	P 0 00	and the second second	1.1
26	Mr ASS		2702710
27	ON NO	1141 1116	
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			

Gear							
Numb	er Bro	ken	Not Br	oken	Not S	Sure	
1	••••	4	•••	3	• 1		
2	•••••	7	•	1			
3	•••••	6	••	2			
4	•••••	7	•	1			
5	•••••	6	••	2			
6	•	1	•••••	7			
7	•••	3	••••	4	• 1		
8	••••	4	••••	4			
9	••••	4		3	• 1		
10	•	1	•••••	6	• 1		
11	••	2	•••••	6			
12			•••••	8			
13	•	1	•••••	7			
14	••	2	•••••	6			
15		5	••	2	• 1		
16	••	2		5	• 1		
17	••	2		6			
18		6	••	2			
19	••	2		6			
20		5	••	2	• 1		
21	•••••	5	••	2	• 1		
22		8					
23		7	•	1			
24	••••	4	••	2	•• 2		
25	•••	3		4	• 1		
26		5	•••	3			
27		4	•••	3	• 1		
28	••	2	•••••	6			
29	••••	4	••••	4			
30	••••	5	••	2	• 1		
31	••••	4	••••	4			
32	•••••	7	•	1			
33	••	2	••••	5	• 1		
34	•••	3	••••	4	• 1		
35	•••••	8					
36	•••	3	••••	4	• 1		
37	••••	5	•••	3			

Gear							
Number	Broke	en	Not Bro	ken	Not	Sure	
22	•••••	8					
35	•••••	8					
2	•••••	7	•	1			
4	•••••	7	•	1			
23	•••••	7	•	1			
32	•••••	7	•	1			
3	•••••	6	••	2			
5	•••••	6	••	2			
18	•••••	6	••	2			
15		5	••	2	•	1	
20	•••••	5	••	2	•	1	
21	•••••	5	••	2	•	1	
30		5	••	2	•	1	
26	••••	5	•••	3			
37	•••••	5	•••	3			
24	••••	4	••	2	••	2	
1	••••	4	•••	3	•	1	
9	••••	4		3	•	1	
27	••••	4	•••	3	•	1	
8		4	••••	4			
29		4	••••	4			
31		4	••••	4			
7	•••	3		4	•	1	
25	•••	3	••••	4	•	1	
34	•••	3		4	•	1	
36	•••	3	••••	4	•	14 0 0 1 4	
16	••	2		5	•	1	
33	••	2	••••	5	•	1	
11	••	2	•••••	6			
14	••	2	•••••	6			
17	••	2	•••••	6			
19	••	2	•••••	6			
28	••	2	•••••	6			
10	•	1	•••••	6	•	1	
6	•	1	•••••	7			
13	•	1	•••••	7			
12			•••••	8			

Gear						
Number	Broke	en	Not Bro	ken	No	ot Sure
22	•••••	8				
35	•••••	8				
2	•••••	7	•	1		
4	•••••	7	•	1		
23	•••••	7	•	1		
32	•••••	7	•	1		
3	•••••	6	••	2		
5	•••••	6	••	2		
18		6	••	2		
15		5	••	2	-	1
20		5	••	2	•	1
21		5	••	2	•	1
30		5	••	2	•	1
26	••••	5	•••	3		
37	•••••	5	•••	3		
24	••••	4	••	2	••	2
1	••••	4	•••	3	•	1
9	••••	4	•••	3	•	1
27	••••	4	•••	3	•	1
8	••••	4	••••	4		
29	••••	4	••••	4		
31		4	••••	4		
7	•••	3	••••	4	•	1
25	•••	3	••••	4	•	1
34	•••	3		4	•	1
36	•••	3	••••	4	•	
16	••	2	••••	5	•	1
33	••	2	••••	5	•	1
11	••	2	••••	6		
14	••	2	•••••	6		
17	••	2	••••	6		
19	••	2	•••••	6		
28	••	2	•••••	6		
10	•	1	•••••	6	•	1
6	•	1	•••••	7		
13	•	1	•••••	7		
12				8		

Definition Developed by raters at last rating workshop

Distinct from chipping (defined elsewhere), **tooth breakage** is characterized by distinct sharp edges or pieces broken from or displaced from any single gear tooth in any one location larger than 1 mm^2 on the drive side, coast side, or top land.

A **broken tooth** is characterized by removal of or displacement of the gear tooth due to stress sufficient to push the gear beyond its yield point causing failure of material in excess of one third of the rated contact area.

Breakage: > 1mm² and < 1/3 of the entire tooth

Broken tooth: > 1/3 of the rated contact area.

A Program of ASTM International

12.7 Consider as non-interpretable any reference or non-reference oil test that has one or more broken pinions or ring gear teeth. Note any tooth breakage in the comment section of the test report.

12.8 Rate only the corrosion on the contact surface of the drive side of any pinion or ring gear tooth. Enter the corrosion rating in the rating section of the rating form. Note any corrosion on the pinion and ring in a non-contact surface area in the comment section of the rating form.

12.9 Round test results according to Practice E29.

13. Report

13.1 For reference oil tests, the standardized report form set and data dictionary for reporting the test results and for summarizing the operational data are required. The report forms and data dictionary are available on the ASTM Test Monitoring Center web page at http://www.astmtmc.cmu.edu/, or they can be obtained in hardcopy format from the TMC.

13.2 Attach the temperature recording trace for the test as part of the report.

13.3 When reporting reference oil test results to the TMC, transmit by facsimile the complete report form package (see Annex A7) within five days of test completion. Within 30 days of test completion, mail a copy of the final test report to the ASTM Test Monitoring Center.² Electronic transfer of test results (see 13.5) is also permitted for approved laboratories.

13.4 Deviations from Test Operational Limits—Report all deviations from specified test operational limits on Form 4 (Annex A7) under Other Comments.

13.5 *Electronic Transmission of Test Results*—Electronic transfer of reference and non-reference oil test report data can be done utilizing the Flat File Transmission Format contained in Section 2 of the ASTM Data Communications Committee Test Report Transmission Model, available from the ASTM TMC.

14. Precision and Bias

14.1 *Precision*—Test precision is established on the basis of reference oil test results (for operationally valid tests) moni-

tored by the ASTM TMC. The data are reviewed semiannually by the L-37 Surveillance Panel. Contact the ASTM TMC for current industry data. Table 1 summarizes reference oil precision of the test as of March 29, 2005.

14.1.1 *Intermediate Precision Conditions*—Conditions where test results are obtained with the same test method by the same laboratory, with the same gear batch using the same test oil, with changing conditions such as operators, measuring equipment, test stands, test engines, and time.

NOTE 6—"Intermediate precision" is the appropriate term for this test method, instead of "repeatability," which defines more rigorous withinlaboratory conditions.

14.1.1.1 Intermediate Precision Limit (i.p.)—The difference between two results obtained under intermediate precision conditions that would, in the long run, in the normal and correct conduct of the test method, exceed the values shown in Table 1 in only one case in twenty. When only a single test result is available, the Intermediate Precision Limit can be used to calculate a range (test result \pm Intermediate Precision Limit) outside of which a second test result would be expected to fall about one time in twenty.

14.1.2 *Reproducibility Conditions*—Conditions where test results are obtained with the same test method using the same gear batch on the same test oil in different laboratories with different operators using different equipment.

14.1.2.1 *Reproducibility Limit* (R)—The difference between two results obtained under reproducibility conditions that would, in the long run, in the normal and correct conduct of the test method, exceed the values shown in Table 1 in only one case in twenty. When only a single test result is available, the Reproducibility Limit can be used to calculate a range (test result \pm Reproducibility Limit) outside of which a second test result would be expected to fall about one time in twenty.

14.2 *Bias*—No estimate of bias for this test method is possible because the performance results for an oil are determined only under specific conditions of the test and no absolute standards exist.

TABLE 1 Reference Oil Test Precision Data—Transformed Units

NOTE—These statistics are based on the L-37 Standard version test results obtained on Test Monitoring Center Reference Oils 151–2, 151–3, 152, and 153 as of March 29, 2005. There are no statistics for the Canadian version test at this time.

Legend:

 $S_{i.p.}$ = intermediate precision standard deviation,

i.p. = intermediate precision,

 S_R = reproducibility standard deviation, and

R = reproducibility.

Hardware Type	Variable	S _{i.p.}	i.p. ^A	S _R	R ^A
Lubrited	Pinion ridging, ^B -In(10.5-merit)	0.2612	0.7314	0.2719	0.7613
	Pinion rippling, ^B -In(10.5-merit)	0.2341	0.6555	0.2341	0.6555
	Pinion wear, merit	0.548	1.534	0.589	1.649
	Pinion pitting/spalling, ^B -In(10.5-merit)	0.4038	1.1306	0.4095	1.1466
Non-lubrited	Pinion ridging, ^B -In(10.5-merit)	0.5323	1.4904	0.5323	1.4904
	Pinion rippling, ^B -In(10.5-merit)	0.3480	0.9744	0.3480	0.9744
	Pinion wear, merit	0.694	1.943	0.694	1.943
	Pinion pitting/spalling, ^B -ln(10.5-merit)	0.4603	1.2888	0.4603	1.2888

^AThis value is obtained by multiplying the standard deviation by 2.8.

^B This parameter is transformed using a natural log. When comparing two test results on this parameter, first apply this transformation to each test result. Compare the absolute difference between the transformed results with the appropriate (intermediate precision or reproducibility) precision limit.

This section contains photographs representing classic cases of the different types of gear tooth distress. These photographs can be used as a guide to rate gear tooth condition.

In addition to using the rating terminology in this Manual for gear tooth condition, the terms used to indicate the severity level of deposits and/or distress are defined as:

None – Absence of distress. Trace – Barely discernible, magnification (10x maximum) recommended. Light – Discernible without magnification. Medium – Easily discernible, midway between light and heavy. Heavy – Intense or severe. Catastrophic – Not ratable.

Scoring should be further classified by assigning a numerical percentage of the tooth area covered by the scored surface.

These definitions, along with their severity levels, will allow an individual to determine gear tooth condition using a common terminology.

Numerical Value	Level of Distress		
10	None		
9	Trace		
8	Trace-Light		
7	Light		
6	Light-Medium		
5	Medium		
4	Medium-Heavy		
3	Heavy		
2	Heavy to Catastrophic (Up to 50% of		
	the Gear Tooth Surface not Ratable)		
1	Heavy to Catastrophic (Greater than		
	50% and less than 100% of the Gear		
house of	Tooth Surface not Ratable)		
0	Catastrophic (100% of the Gear		
	Tooth Surface not Ratable)		

Numerical Distress Rating Scales for Gears

This scale is intended to be used as a continuous scale with values in tenth-number increments.