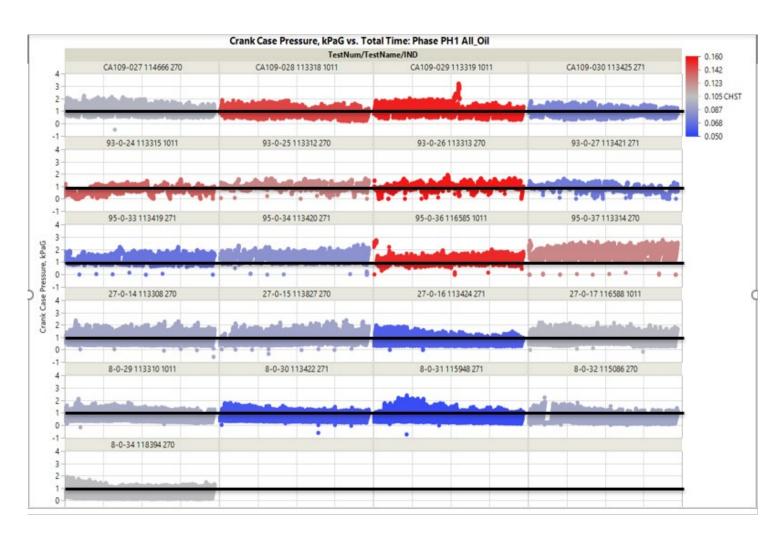
Sequence X ASTM D8729

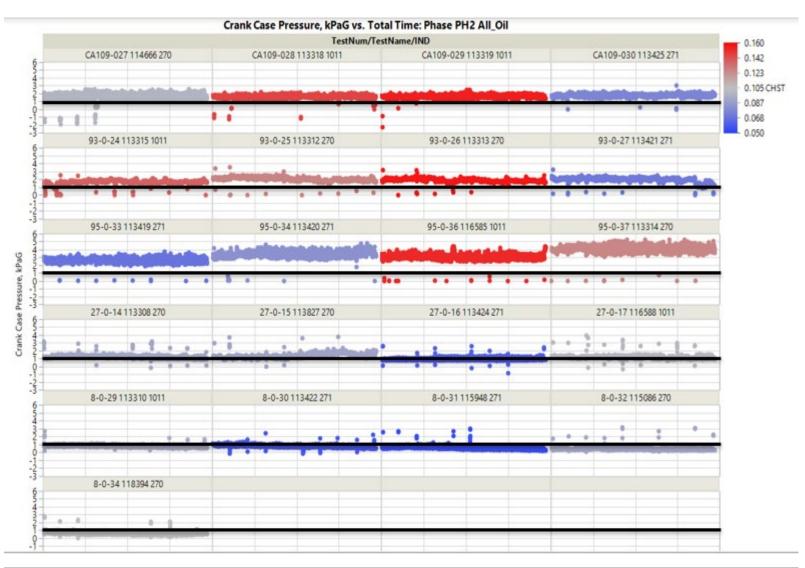
Ford Chain Wear Test Surveillance Panel Meeting

December 3rd, 2020

Prepared By: Alfonso Lopez, S.P. Chairman


Meeting Minutes

- Attendance roster attached below
- Meeting minutes from 06/35/20 were approved
- Fuel COA was approved. See slide 15. No discussion or negative votes cast. Current fuel COA to be removed from the test procedure. New COA common to Seq IX, X, and IIIH
- Rich gave his TMC report (attached). The test has been in alarm for mild CHST for about a year.


Meeting Minutes Continued

- Test update
 - Task force for mild severity was formed in June and met in August. Meeting minutes posted on TMC website. Review of lab data and hardware yielded no smoking gun to explain the mild trends at 3 of the 4 labs.
 - Pre-meeting discussion with Ron on the 2nd on December Jason at Intertek discovered a correlation between crank case pressure and severity. The Surveillance Panel was informed and discussion with the group further strengthened our suspicion of CC pressure correlation
 - George at Lubrizol pointed out that his last reference test had a very high CC pressure and resulted in on target results. TMC data shows this test as severe of target.
 This test was one of only two this past 6 months that were not mild.
 - The mechanism for CC pressure and severity was discussed.
 - High CC pressure maintains blowby gasses in the crankcase longer.
 - Low cc pressure is an indication of vacating the crankcase of gasses and may produce mild results.
 - High crankcase pressure was being caused by fouled oil separator screens. These screens were not being cleaned on a regular basis at Intertek. Ultimately the high cc pressure lead to excessive oil consumption. At that point, a filter cleaning procedure was initiated and the test began trending mild from that point. Jason observed the cc pressure of those time periods and found correlation to the mild shift.
 - Ron pulled up operational plots from the precision matrix. Slides 3 and 4.
 - The panel agreed to continue with Task Force meetings to discuss crankcase pressure and control.
 - Labs to retrieve reference test cc pressure data for review. This parameter was only recently added to the TMC data base.
 - A meeting of the task force was scheduled.
- Jason informed the panel that Intertek is running low on the 2016 crank gears. The 2018 version that is replacing them does not use the diamond washer. Ron to investigate the print. Labs to review at the task force meeting.

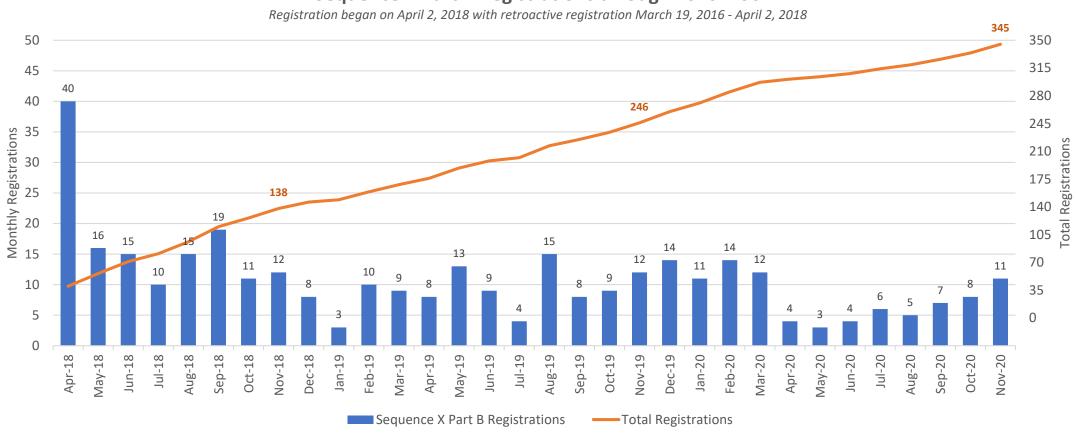
Sequence X Precision Matrix CC Pressure Stage 1

Sequence X Precision Matrix CC Pressure Stage 2

Sequence X SP Meeting Agenda 12/03/20

- ➤ Attendance Roster attached
- >Approval of the minutes of SP meeting 06/25/20
 - >XMinutes20200625ConferenceCall.pdf
- ➤ Candidate Testing
- ➤TMC Report
- ➤ New Items
 - ➤ Fuel COA
- ➤ Test Update
- ➤ Hardware Status

Sequence X Test Update


- Test continues in industry alarm for mild Chain Wear. Action items from last SP meeting.
 - Labs to confirm BC pistons and rings
 - Todd data plots review by panel
 - Jason to report on crank gear and washer
 - Hardware Task Force Formed Meeting Minutes posted
 - Sequence X Hardware Task Force 20200813.pdf
 - Seq X Hardware Purchase Summary 2020.xlsx
- Test Hardware availability
 - Projected outages
 - engine wire harness, DU5Z-12A581-U.

Motion List 12/3/20

- Motion 1 Approval of the SP Meeting minutes from 01/27/20
 - Motioned: Rich Grundza
 - Second: Bob Campbell
 - Passed unanimous
- Motion 2 Approval of fuel COA: The Sequence X Surveillance panel adopts the EEE Lube Cert specification as proposed by the TGC Fuels Task force. The COA will be posted on the TMC website. The current fuel specification will be removed from the test procedure.
 - Motioned: Al Lopez
 - Second: Ron Romano
 - Passed -Unanimous

Sequence X S.P. Report Candidate Test Activity

Sequence X Part B Registrations through 20201130

Sequence X TMC Activity

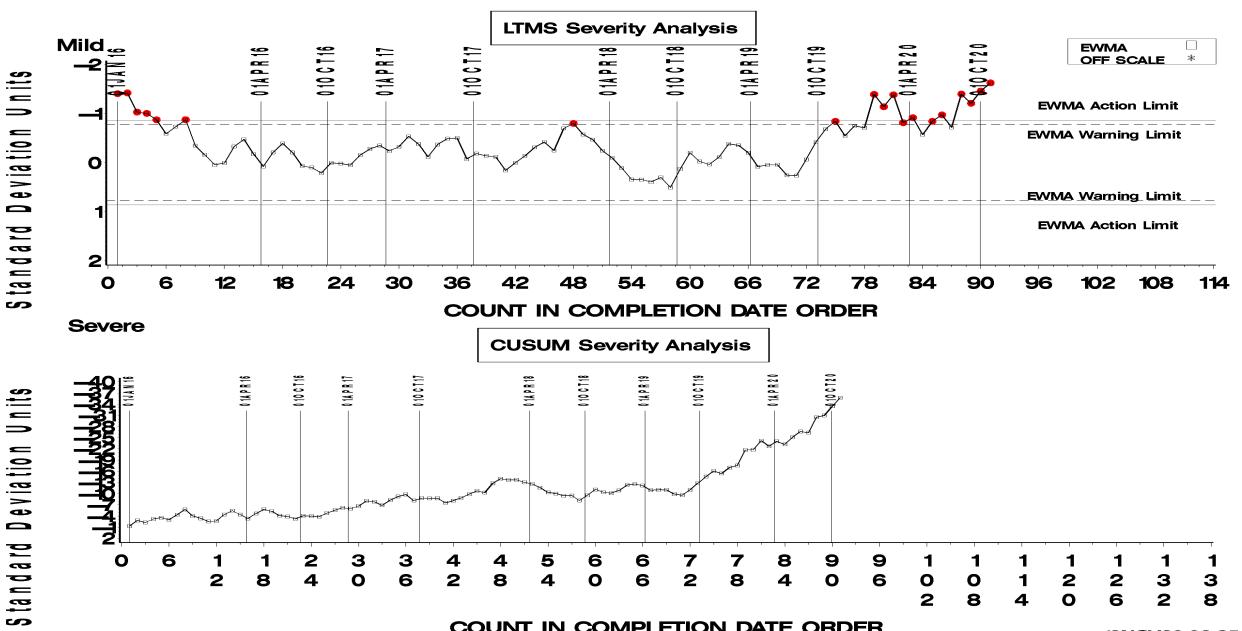
April 2020 to October 2020

Sequence X Activity

Test Status	Validity Code	#
Acceptable Calibration Test	AC	6
Statistically Unacceptable Calibration Test	OC	1
Operationally Invalid Calibration Test (Lab determination)	LC	1
Aborted Calibration Test	XC	1
Total Number of Tests		9

Sequence X - Failed Tests

Test Status	Number of Tests
CHST Ei Level 3 alarm	1
Total	1

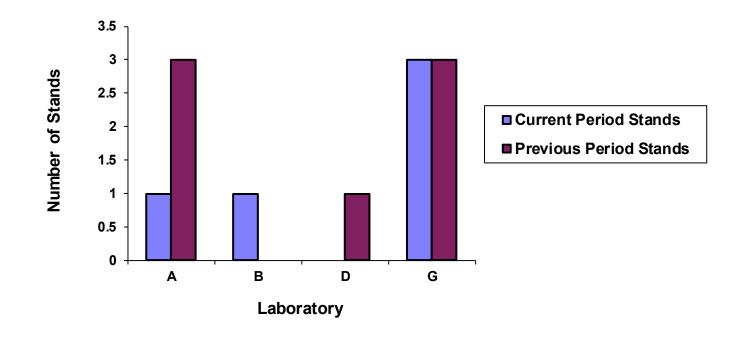

Sequence X - Lost Tests*

Test Status	Cause	#
Invalid	Computer Issues	1
Aborted	Engine mount failure	1
Totals		2

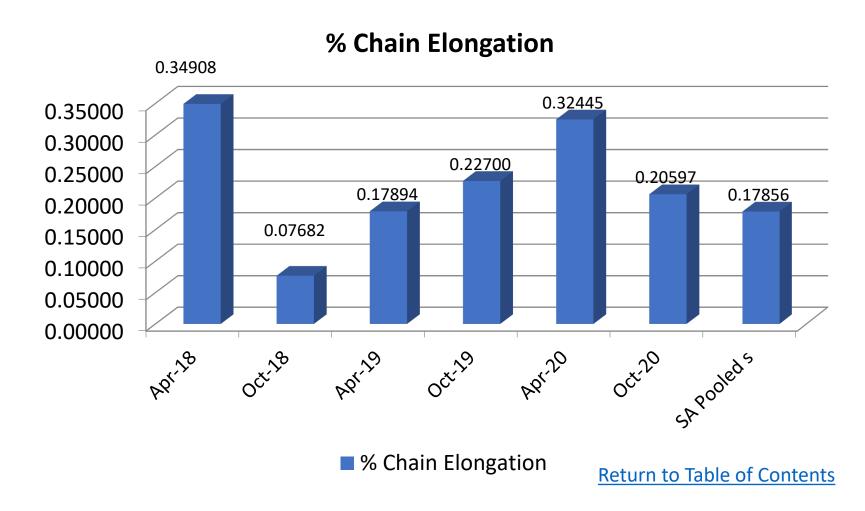
^{*}Invalid and aborted tests

SEQUENCE X INDUSTRY OPERATIONALLY VALID DATA

END OF TEST CHAIN WEAR FINAL RESULT



COUNT IN COMPLETION DATE ORDER


Sequence X S.P. Report LTMS Laboratory/Stand Distribution

	Reporting Data	Calibrated as of 9/30/20
Number of Laboratories	4	4
Number of Stands	7	6

Laboratory/Stand Distribution

Sequence X Precision Estimates

Sequence X S.P. Report Reference Oils Status

• 271 SAE 5W-30 passing reference oil (5yr)

• 1011 SAE 0W-16 (<1yr) Limited to lab inventories. Reblend (1011-1) available

270 SAE 5W-30 failing reference oil (5yr)

Fuel Report

	Seq III, IX, and X Lube Cert Gasoline				29-Oct-20
TEST	METHOD	UNITS		Seq. III Specs	
			MIN	TARGET	MAX
Distillation - IBP	ASTM D86	°C	23.9		35.0
5%	1	°C			
10%		°C	48.9		57.2
20%		°C			
30%		°C			
40%		°C			
50%		°C	93.3		110.0
60%		°C			
70%		°C			
80%		°C			
90%		°C	151.7		162.8
95%		°C			102.0
Distillation - EP		°C			212.8
Recovery		vol %		Report	2.2.0
Residue		vol %		Report	
Loss		vol %		Report	
Gravity @ 60°F/60°F	ASTM D4052	°API	58.7	Report	61.2
Density @ 15° C	ASTM D4052 ASTM D4052	kg/l	0.734	-	0.744
	ASTM D4052 ASTM D5191	kPa	60.1		63.4
Dry Vapor Pressure Equivalent Carbon	ASTM D5191 ASTM D3343	kPa wt %	60.1	Report	63.4
				-	
Carbon	ASTM D5291	mass % mass %		Report	
Hydrogen	ASTM D5291			Report	
Hydrogen/Carbon ratio	ASTM D5291	mole/mole		Report	
Oxygen¹	ASTM D4815	wt %			0.2
Oxygenates Ethanol	ASTM D4815	%		Report	
MTBE		%		Report	
ETBE		%		Report	
Methanol		%		Report	
Sulfur	ASTM D5453	mg/kg	3		15
Composition, aromatics	ASTM D5769 ³	vol %	31.0		34.0
C6 aromatics (benzene)	ASTM D5769	vol %			1.0
C7 aromatics (toluene)	ASTM D5769	vol %		Report	
C8 aromatics	ASTM D5769	vol %		Report	
C9 aromatics	ASTM D5769	vol %		Report	
C10+ aromatics	ASTM D5769	vol %		Report	
Composition, olefins	ASTM D6550 ³	wt%			2.0
Lead¹	ASTM D3237	mg/l			2.6
Manganese¹	ASTM D3831	g/gal			0.01
Phosphorus ¹	ASTM D3231	mg/l			1.3
Silicon ¹	ICP method	mg/kg			4
Particulate matter	ASTM D5452	mg/l			1
Oxidation Stability	ASTM D525	minutes	1000		
Copper Corrosion	ASTM D130				1
Gum content, washed	ASTM D381	mg/100mls			5.0
Gum content, unwashed	ASTM D381	mg/100mls			10.0
Research Octane Number	ASTM D2699		96.0		
Motor Octane Number	ASTM D2700			Report	
R+M/2	D2699/2700			Report	
Sensitivity			7.5		
Net Heating Value, btu/lb	ASTM D3338	btu/lb		Report	
Gross Heating Value, btu/lb	ASTM D240	btu/lb		Report	
Net Heating Value, btu/lb	ASTM D240	btu/lb		Report	
Water and Sediment	ASTM D2709	vol%			0.01
Color ²	VISUAL	1.75 ptb		Red	
¹no intentional addition of these					

- TGC Fuel Task Force adopted EEE **Lube Cert specification**
 - Aromatics by D5769
 - Composition aromatic window 31.0 - 34.0
- Remove fuel specification from Sequence X D8279 ASTM procedure
- Fuel specification will be posted on TMC website
- Motion to accept

Sequence X Hardware Status

- 6-7 Year inventory of test engines with BC pistons
 - Non-critical parts are being purchased from the dealerships
 - Industry order planned for non-critical parts
- 2017 Ring Batch EJ7Z6148A
- 6 tests per engine
- 1100 tests at independent labs (as of 11/01/19)
- Survey sent to labs for hardware needs

Sequence X History

Sequence X Milestones		
1/1/2012	Start of Chain Wear Test Development	
12/7/2017	AOAP Approval for GF6	
4/2/2018	Live Registration (03/19/16 Retro - Registration)	
2/20/2019	Surveillance Panel Procedure Acceptance Vote	
4/4/2019	Subcommittee B Ballot	
6/16/2019	Main Committee D02 Ballot - ASTM Procedure D8279	
	Memorandum 19-043 Use of Calibrated Sequence X Stands to	
11/7/2019	Generate Used Oil Samples for Seq IX (LSPI)	
11/20/2020	Information Letter 20-1 Procedure Edits / Drive Shaft Spec	
	Information Letter 20-2 Criteria for Multiple Test Type	
1/27/2020	Calibration	
9/11/2020	Information Letter 20-3 Correction to Table 12	
	Information Letter 20-4 (1) Correcting PCV Flow Meters	
10/14/2020	(2) Correction to Section 12.1.1	

Attendance List

Co. A1.C42guance V Curucillance Danel Maching		
Se+A1:C43quence X Surveillance Panel Meeting		
December 3, 2020		
	Attendance	Voting Member
Porter, Christian < Christian.Porter@AftonChemical.com>		Afton
Todd Dvorak <todd.dvorak@aftonchemical.com></todd.dvorak@aftonchemical.com>	х	
Martin Chadwick Intertek <martin.chadwick@intertek.com></martin.chadwick@intertek.com>		
Dan Lanctot <dlanctot@tei-net.com></dlanctot@tei-net.com>	х	TEI
Romano, Ron (R.) <rromano@ford.com></rromano@ford.com>	х	Ford
Jason Bowden <jhbowden@ohtech.com></jhbowden@ohtech.com>	х	OHT
'Rich Grundza' (reg@astmtmc.cmu.edu)	х	TMC
Jason Soto Intertek < jason.soto@intertek.com>		
doyle.boese@infineum.com	х	
Martinez, Jo G. (jogm) <jomartinez@chevron.com></jomartinez@chevron.com>		Chevron
J.Hsu@shell.com	x	Shell
Gleason, Joseph < Joseph. Gleason@lubrizol.com>	х	
Kostan, Travis G. <travis.kostan@swri.org></travis.kostan@swri.org>	х	
ptumati@jhaltermann.com	х	Haltermann
George Szappanos		
Khaled , Zreik Khaled.zreik@gm.com		GM
Chiappelli, Maria <maria.chiappelli@infineum.com></maria.chiappelli@infineum.com>		Infineum
Montufar, Ashley <ashley.montufar@exxonmobil.com></ashley.montufar@exxonmobil.com>		ExxonMobil
Charlie Leverett <charlie.leverett@yahoo.com></charlie.leverett@yahoo.com>		
Amol C Savant <acsavant@valvoline.com></acsavant@valvoline.com>		Valvoline
Eickstead, Christine M. <christine.eickstead@swri.org></christine.eickstead@swri.org>	x	SWRI
Brys, Jerome <jerome.brys@lubrizol.com></jerome.brys@lubrizol.com>		Lubrizol
'Bob.Campbell@aftonchemical.com'		
Patrick M. Lang <patrick.lang@swri.org></patrick.lang@swri.org>	x	SWRI
Stockwell, Robert T (Robert.Stockwell@chevron.com)	x	Chevron
Bill Buscher Intertek <william.buscher@intertek.com></william.buscher@intertek.com>		
Ritchie, Andrew <andrew.ritchie@infineum.com></andrew.ritchie@infineum.com>		
Rais, Khaled <khaled.rais@swri.org></khaled.rais@swri.org>		
Stevens, Andrew <andrew.stevens@lubrizol.com></andrew.stevens@lubrizol.com>		
Matthews, Tim <tim.matthews@uk.bp.com></tim.matthews@uk.bp.com>		ВР
Lopez, Alfonso <al.lopez@intertek.com></al.lopez@intertek.com>		Intertek
Deegan, Michael (M.D.) <mdeegan@ford.com></mdeegan@ford.com>	х	Ford
Lochte, Michael D. <michael.lochte@swri.org></michael.lochte@swri.org>	x	
joshua cooley valvoline		
George Szappanos	x	LZ
Khaled , Zreik Khaled.zreik@gm.com		
Timothy Cushing <timothy.cushing@gm.com></timothy.cushing@gm.com>		GM
Wingert, Dean (D.) <dwingert@ford.com></dwingert@ford.com>		
Michael Luhard	x	Afton
Ben Maddock	x	Afton