ASTM INTERNATIONAL Helping our world work better

100 Barr Harbor Drive PO Box C700 West Conshohocken, PA 19428-2959 USA tel +1.610.832.9500 fax +1.610.832.9666 www.astm.org

COMMITTEE D02 on PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIR:	Scott Fenwick, Clean Fuels Alliance America, PO Box 104848, Jefferson City, MO 65110-4898, (800) 841-5849, e-mail: sfenwick@CleanFuels.org
FIRST VICE CHAIR:	Gregory C Miiller, Tannas Co, 4800 James Savage Rd, Midland, MI 48642, United States (989) 496-2309, Fax: (989) 496-3438, e-mail: gmiiller@savantgroup.com
SECOND VICE CHAIR:	James J Simnick, Ph.D, Simnick Consulting LLC, 1424 Brush Hill Circle, Naperville, IL 60540, (630) 269-8662, e-mail: jim.simnick@gmail.com
FIRST SECRETARY:	Ian P Mylrea, Stanhope-Seta, 70 Bramley Drive, Hampshire, RG27 8ZF, United Kingdom (44) 1932 574589, e-mail: im@stanhope-seta.co.uk
SECOND SECRETARY:	Barbara E. Goodrich, John Deere Product Engineering, 1017 Washington St., Cedar Falls, IA 50613, (319) 464-4417, email: goodrichbarbarae@johndeere.com
STAFF MANAGER:	Alyson Fick, ASTM International, (610) 832-9710, e-mail: afick@astm.org

Sequence VIII Surveillance Panel Meeting Minutes Thursday, September 28, 2023 Teams Meeting (Virtual) 9:00 - 10:00 AM CDT

Minutes recorded by Patrick Lang Direct any comments or corrections to: <u>patrick.lang@swri.org</u>

The attendance list can be found as Attachment #1.

There were no membership changes brought to the attention of the panel.

Agenda:

The agenda can be found as Attachment #2.

In the spirit of saving time, we went directly into the discussion on the industry correction factor.

Pat Lang gave a brief overview of the discussion that took place on the last call. He advised that we had quite a bit of deliberation on the two industry correction factor options, and we really needed more time for the panel members to review. At the end of the call Travis mentioned that there was an additional data point that was available and could be considered in the assessment. The stats group would look at that and consider if it would be added to the data set.

At this point, Travis explained the executive summary changes on the original presentation from the last call (Attachment #3) due to the additional data point. The stats group was recommending to only change the standard deviation on the bearing weight loss, instead of changing the ICF since we can't be sure if the severity bias is from the new bearings, stand bias, or blend batch.

Andy Ritchie asked if the test stand that produced the high BWL result would be calibrated. Rich advised that that stand would trip a precision alarm in many of the scenarios in LTMS.

Travis advised that the standard deviation change of the new blend makes sense relative to other reference oils, since we would expect the standard deviation would increase as the bearing weight loss average increases.

Amol asked if 1009 was a previous reference oil in the Sequence VIII. Rich explained that 1009 was a reference oil for a few years and it drifted severe. Since it had a target similar to 1006-2, the panel decided to stop using the oil. Andy explained that 1009-1 was rebled, blended for the VH test but was not accepted due to a severity difference which in hindsight was probably due to a fuel batch difference. The oil has been sitting for years at the TMC, and given the demise of 704-1, and 1006-2, it made sense to bring in 1009-1.

Amol asked if 1009-1 would be the only oil. Andy said that 1009-1 will be the only oil for the time being, but the panel is looking for an oil around the pass/fail limit.

Rich brought up that oil 705, (results around 21 mg) was offered to the Sequence VIII Panel years ago but it was not pursued at the time. He has a drum of it at the TMC and just wanted the panel to know. Since this is a very old oil (several categories oil), he's not sure if it is a worthwhile candidate. Pat advised that we should be looking for a newer oil. Andy Ritchie recommended that the panel consider one of the current Sequence IX Aged Oil reference oils as another reference oil for the Sequence VIII. Rich cautioned that those oils are in limited quantities but reblends are in process.

At this point, Pat showed the summary of the two ICF options that were documented in the 9-21-23 minutes. He asked if there were any questions or further discussion needed.

Andy Ritchie stated he would like to make a motion to implement Option #2; Mike Deegan from Ford agreed to second the following motion:

Motion #1: (Andy Ritchie/Mike Deegan)

The Sequence VIII panel approves the reintroduction of the Sequence VIII test as a calibrated test with the use of an industry correction factor (ICF) of -3.6 mg and the reblend of 1009-1 with an LTMS mean of 16.2 mg/std dev 3.48 mg.

Reference oil 1009-1 is approved for use as the sole reference oil for the Sequence VIII test (oils 1006-2 and 704-1 will no longer be assigned for calibration purposes). The 03-22 bearing are approved for use.

The panel will revisit ICF and reference oil target upon completion of four valid and chartable calibration tests. Effective October 5, 2023.

Discussion:

Bob Campbell expressed concern that we are not choosing the correct option with the proposed motion. He pointed out that there are three data points on 1009-1 on the new bearing batch that are more severe than the current 06-16 bearing batch and only one result showing there to be no batch influence. This suggest that the new bearing batch is performing different and that we should be choosing Option #1 in the proposal which would give a larger ICF.

The group advised that they are leaning towards the smaller ICF since it is the more conservative approach. Robert Stockwell stated that Brad from GM and and Mike from Ford were leaning toward option 2. Since the OEM's were leaning toward option 2, most people agreed with that choice.

Bob advised he wasn't looking to stop the current motion from moving forward, he just wanted the panel to reconsider what the data is really telling us. Essentially, we are putting a stake in the ground with this decision, and we don't want to have to move it.

Travis stated that if we look at additional results within a short period of time, then we can agree as a group we can move the stake in the ground if we didn't get it right the first time.

Amol asked if the more conservative approach is actually more severe for referencing. Travis stated that the approach will not be more severe since the ICF and target updates will bring industry to center, on either approach.

As a way to help address Bob's concern, it was agreed that we would review the ICF's after four valid and chartable calibration tests are reported to the TMC (wording to this end shown in the motion above).

The motion passed: Vote: 11/3/0 (approve/waive/negative)

A second motion was entertained to address the stripped viscosity:

Motion #2: (Andy Ritchie/Mike Deegan)

The Sequence VIII Surveillance Panel also approves the use of an industry correction factor (ICF) of -0.14 cSt on stripped viscosity for reference oil 1009-1 and an LTMS mean of 9.73 cSt with a std dev of 0.07 cSt.

The panel will revisit ICF and reference oil target upon completion of four valid and chartable calibration tests. Effective October 5, 2023.

Vote: 12/1/0 (approve/waive/negative) (one voting member left call for this last motion so total vote count is less 1).

Adjournment:

The meeting was adjourned at approximately 10:05 AM CDT.

Next Meeting:

The next meeting will be scheduled as needed.

Attachment #1

Attendance List

V=present

ASTM SEQUENCE VIII SURVEILLANCE PANEL VOTING MEMBERSHIP ATTENDANCE RECORD

9-28-23 Virtual MTG

Name	ne Address Attendance				
Alfanso, Adrian	Intertek		-4/	#2	
	5404 Bandera Road San Antonio, TX 78238 Phone:210-647-9429 adrian.alfonso@intertek.com		A	A	
Bowden, Jason	OH Technologies, Inc. P.O. Box 5039 Mentor, OH 44061-5039 Phone: 440-354-7007 dhbowden@ohtech.com		W	w	
Savant, Amol	Valvoline 21st and Front Streets Ashland, KY 41101 Phone: 606-585-8982 acsavant@valvolineglobal.com	V	W	A	
Maddock, Ben	Afton Chemical 500 Spring Street P.O. Box 2158 Richmond, VA 23218 Ben.Maddock@aftonchemical.com		W	A	
Grundza, Rich	ASTM/TMC Phone: 412-365-1031 reg@astmtmc.org		A	A	
Hsu, Jeff	Shell Projects and Technology-USA 3333 Hwy 6 Houston, TX 77082 Phone:281-544-8619 J.Hsu@shell.com		A	A	
Hairston, William	Haltermann Solutions 15600 W. Hardy Road Houston, TX 77060 Phone No: 832-647-9264 whhairston@haltermann.com				
Riou, Joseph	Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228-0510 Phone: 210-522-6266 jriou@swri.org	\bigvee	A	A	

ASTM SEQUENCE VIII SURVEILLANCE PANEL VOTING MEMBERSHIP ATTENDANCE RECORD

Name	Address	Attendance		1 111
			VHe 1	Voted
Lanctot, Dan	Test Engineering Inc. 12718 Cimarron Path San Antonio, TX 78249-34 Phone: 210-690-1958 dlanctot@tei-net.com	423	A	_
Kowalski, Teri	Toyota Motor North Americ 1555 Woodridge Ann Arbor, Mi 48105 Phone: 734-995-4032 Cell: 734-355-8082 teri.kowalski@tema.toyota	ca, Inc.		
Cosgrove, Bradley	GM Global Propulsion Sys Phone: 313-590-2186 Bradley.Cosgrove@gm.co	om	Å	A
Rubas, Paul	ExxonMobil Research and Company 600 Billingsport Rd. Paulsboro, NJ 08066 Email: paul.j.rubas@exxor	I Engineering	A	A
Талg, Haiying	Stellantis Phone: 248-512-0593 haiying.tang@stellantis.co	om		
Stockwell, Robert	Chevron Oronite Company 4502 Centerview Drive Su San Antonio, TX 78228 Phone: 210-232-3188 Robert.stockwell@chevron	y LLC nite 210	A	A
Agudelo, Jorge	BP Lubricants USA 1500 Valley Rd Wayne, NJ 07470 Jorge.Agudelo@BP.com			

ASTM SEQUENCE VIII SURVEILLANCE PANEL VOTING MEMBERSHIP ATTENDANCE RECORD

Name	Address	Attendance		lato
Deegan, Mike	Ford Motor Company 17228 Federal Drive Allen Park, MI 48101 Phone: 313-805-8942 mdeegan@ford.com		A	A
Ritchie, Andy	Infineum P.O. Box 735 1900 East Linden Ave. Linden, NJ 07036-0735 Phone: 908-474-2097 andrew.ritchie@infineum.com		A	A
Szappanos, George	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone: 440-347-2631 George.szappanos@lubrizol.com		A	A

13 (14) 18 Voting members

11 A 3 W D N

ASTM SEQUENCE VIII SURVEILLANCE PANEL NON- VOTING MEMBERSHIP and GUESTS ATTENDANCE RECORD

Name	Address	Phone/Fax/Email	Attendance
Amanda Stone	Afton	V	
Ricardo Affinito	Ormite	V	
Todd Dvorak	Infineum		
Jo Martinez	Ormite		
Travis Kosta	SWRI	2	
Seth Pemel	shell	V	
Manindra	Infineum		
Bub Campbell	After		

Attachment #2

Agenda

- 1. Welcome
- 2. Attendance
- 3. Approval of the minutes from the September 21, 2023, virtual meeting. Minutes posted to TMC website.
- 4. Review of the matrix data.
 - a. Second review of stats group recommendation for the industry correction factor (ICF) presented at the 9-21-23 virtual meeting (Travis Kostan)
- 5. Next Meeting will be at call of the chair
- 6. Adjournment

Attachment # 3

Stats Group ICF Matrix Recommendation (rev 1)

Sequence VIII Correction Factor Matrix, RO 1009-1 Intro, and Bearing Batch Intro

STATS GROUP SEPTEMBER 2023

Stats Group

- Amanda Stone, Afton
- Amy Ross, Valvoline
- Ricardo Affinito, Chevron Oronite
- Jo Martinez, Chevron Oronite
- Todd Dvorak, Infineum
- Martin Chadwick, Intertek
- Phil Scinto, Lubrizol
- Seth Demel, Shell
- Travis Kostan, SwRI
- Richard Grundza, TMC

Executive Summary

Based on raw standard deviation, including the latest 25.7 mg result on 1009-1 with the new bearings (result not added to ICF estimation based on statisticians' recommendation).

General Comments:

- The new bearing batch can be accepted.
- A lot of assumptions have been made with little data. We should re-evaluate soon once additional data becomes available. <u>Bearing Weight Loss:</u>
- Option #1:
 - Apply an industry correction factor of -4.9 mg for tests moving forward.
 - 1009-1 will have an LTMS mean of 14.9 mg and a standard deviation of 3.01 3.48 mg.
 - This is the option to choose if you think the bearings might be more severe and we should only consider a re-blend difference on the same hardware.
- Option #2:
 - Apply an industry correction factor of -3.6 mg for tests moving forward.
 - 1009-1 will have an LTMS mean of 16.2 mg and a standard deviation of 3.01 3.48 mg.
 - This is the option to choose if you believe the new bearings are the same and we can use all data to estimate the difference due to the oil re-blend.
- Based on the methodology used, with both options there is some evidence that this may slightly over correct candidates < 10 mg and may under correct candidates > 20 mg (no candidate data offered > 20 mg to study).
- Severity adjustment standard deviation should be updated from 4.8 to 3.0.

Stripped Viscosity:

- It is recommended to apply and industry correction factor of -0.14 cSt for tests moving forward.
- 1009-1 is recommended to have an LTMS mean of 9.73 cSt and a standard deviation of 0.07 cSt.

Bearing Weight Loss (BWL)

BWL Since 2018

The dashed lines are the oil targets, and all data is shown for operationally valid tests only.

A3-5

Timeline

- <u>December 2022 January 2023:</u>
 - Both labs starting producing 1006-2 results > 25.
- January 2023 April 2023:
 - More than 20 experimental runs in total were conducted between the two labs varying parts, fuel, and oil retains on 1006-2 to try to return severity to a normal level with no success (both labs averaged slightly over 30 mg.
 - Two tests on 1009-1 resulted in 17.4 mg and 18.7 mg and one test on 704-1 of 12.5 suggested that the test was indeed severe but not as bad for oils with a lower target performance.
- <u>May 2023:</u>
 - With 704-1 nearly depleted, SP agreed to run two 1009 tests to determined the feasibility of introducing 1009-1 as a reference oil moving forward. (results were 18.3 and 16.4).
- <u>June 2023:</u>
 - SP agrees to run the rest of the stats group matrix (an additional 8 runs), which is shown on the following slide.

TOTAL BEARING WEIGHT LOSS Unit of Measure: mg CRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation
704-1	8.3	2.32
1006	15.9	4.85
1006-2	17.5	4.23

Sequence VIII Reference Oil Targets							
		Effectiv	e Dates	TB	WL		
Oil	n	From ¹	To ²	$\overline{\mathbf{X}}$	s		
1009	5	1-7-03	1-23-05	12.8	2.00		
	11	1-24-05	5-21-21	13.8	2.14		

Test Matrix

The matrix below was the recommended matrix. The data generated from these tests, and possibly including some of the previously generated data, could be used to:

- 1. Estimate an industry correction factor.
- 2. Introduce 1009-1 as the sole reference oil moving forward (704-1 supply depleted).
- 3. Prove-out the 03-22 bearing batch.

A1	A2	B1	B2
<mark>1009</mark>	<mark>704-1</mark>	<mark>1009</mark>	<mark>1009-1</mark>
<mark>704-1</mark>	<mark>1009-1</mark>	<mark>704-1</mark>	<mark>704-1</mark>
<mark>1009-1</mark>	<mark>1009-1</mark>	<mark>1009-1</mark>	<mark>1009-1</mark>

- Yellow highlighted = 06-16 (current) bearing batch
- Green highlighted = 03-22 (new) bearing batch

Test Matrix

During the test matrix, there was a higher than normal result on the second run in stand B1 producing 16.5 mg BWL. Following this test, clear mechanical wear was seen on the third run in the stand. A couple of additional runs were made on the stand which also exhibited mechanical wear, and the lab has requested to have the analysis completed without the final data point from this stand.

A1	A2	B1	B2
1009 🗸	<mark>704-1</mark> 🗸	<mark>1009</mark> 🗸	<mark>1009-1</mark> 🗸
<mark>704-1</mark> 🗸	<mark>1009-1</mark> 🗸	704-1 ?	<mark>704-1</mark> 🗸
1009-1 🗸	1009-1 🗸	1009-1 X	1009-1 ✓
Other recent data			
A1	A2	B1	B2
<mark>1009-1</mark>		<mark>1009-1</mark>	<mark>704-1</mark>

Requested Matrix

- Yellow highlighted = 06-16 (current) bearing batch
- Green highlighted = 03-22
 (new) bearing batch

Bearing Batch

It is unclear if the new bearing batch is different at this time, but the current estimated difference is 3.1 mg. It is not recommended to add in this difference at this time as an additional contribution to the ICF.

1009-1 vs. 1009

Using data generated only on identical hardware for the estimated re-blend difference results in a target update to 14.9 mg. Using all data on 1009-1 results in a target update of 16.2.

Correction Factor Using 16.2 Target for 1009-1

To estimate an ICF we consider all data and 1009-1 only. It is recommended to use the 1009-1 only difference of 3.6 mg as the ICF. Though 1009-1 is further from target than 704-1, it is less than the difference seen in 1006-2. This suggests we might slightly over correct candidates < 10 mg (solid passes anyway), but may potentially under correct candidates > 20 mg.

1009-1 Data After Correction Factor of -3.6 mg

The graph below shows the data after the -3.6 mg correction factor, along with the Shewhart severity upper and lower limits.

Correction Factor Using 14.9 Target for 1009-1

To estimate an ICF we again consider all data and 1009-1 only. It is recommended to use the 1009-1 only difference of 4.9 mg as the ICF.

1009-1 Data After Correction Factor of -4.9 mg

The graph below shows the data after the -4.9 mg correction factor, along with the Shewhart severity upper and lower limits.

Additional BWL Analyses

Model Predictions

VIF . 2.5 2.7

1.2 1.1 1.6 1.1

y of Fi dj o Square esponse ins (or S of Va DF 6	e Error Sum Wgts) riance Sum o Square	0.096019 0.796039 2.282551 16.43846 13 f s Mean S				
dj Square esponse ons (or S of Va DF 6	e Error Sum Wgts) riance Sum o Square 275 2705	0.796039 2.282551 16.43846 13 f s Mean S	_			
dj square esponse ons (or S of Va DF 6	e Error Sum Wgts) riance Sum o Square	0.796039 2.282551 16.43846 13 f s Mean S	_			
n Square esponse ins (or S of Va DF 6	e Error Sum Wgts) riance Sum o Square 275 2705	2.282551 16.43846 13 f s Mean S	_			
esponse ons (or S of Va DF 6	e Sum Wgts) riance Sum o Square 275 2705	16.43846 13 f s Mean !	_			
ons (or S of Va DF 6	ium Wgts) riance Sum o Square	13 f s Mean S	_			
of Va	riance Sum o Square	f s Mean S	_			
DF 6	Sum o Square	f s Mean S	_			
DF 6	Square	s Mean S	-			
6	275 2705		Square	e F Rat	io	
	CI J.CI UJ.	5 4	5.878	4 8.80	58	
6	31.2602	2	5.2100	Prob >	F	
12	306.5307	7		0.009	0*	
er Est	imates					
		Estim	ate S	itd Error	t Ratio	Prob> t
		15.8212	271	0.737952	21.44	<.0001*
a –		-6.428	374	74 1.124845		0.0012*
		2.3765	474	1.41269	1.68	0.1435
41		-0.677	796	0.684935	-0.99	0.3606
I TMSI ABIA1:I TMSAPPI41		-0.231	432	0.909695	-0.25	0.8077
31:LTMS	APP[3A]	1.4642	058	1.192468	1.23	0.2655
-11:BEAF	RBATI 06-1	61 -1.398	098	0.909695	-1.54	0.1752
	12 er Est]]]]:LTMS]:LTMS]:LTMS]:LTMS]:LTMS	2 306.5307 er Estimates]]];[TMSAPP[4]];[TMSAPP[3A] 1];BEARBAT[06-1; sts	Estimates 12 306.53077 er Estimates 15.821. 1 -6.428 2.3765. -0.677 13:LTMSAPP[4] -0.231. 19:LTMSAPP[4] -0.311. 19:LTMSAPP[4] -1.398. sts sts	Init Source Distribution 12 306.53077 er Estimates Estimate 15.821271 15.821271 1 -6.428374 2.3765474 -0.677796 1):LTMSAPP[4] -0.231432 1):LTMSAPP[3] 1.4642058 11:BEFARBAT[06-16] -1.398098	Estimate State 0.009 er Estimates Estimate Std Error 15.821271 0.737952 -6.428374 1.124845 2.3765474 1.124845 -6.428374 1.124845 3.12TMSAPP[4] -0.231432 0.909695 -0.31432 0.909695 1,EEARAT[06-16] -1.398098 0.909695 sts -0.31432 0.909695	Estimates Estimate Std Error t Ratio 12 306.53077 0.0090* er Estimates 5.81271 0.737952 21.44 15.821271 0.737952 21.44 2.3765474 1.124845 -5.71 2.3765474 1.41269 1.68 1.9 -0.677796 0.684935 -0.99 1.51MSAPP[4] -0.231432 0.909695 -0.25 1.51MSAPP[3A] 1.4642058 1.192468 1.23 1.8EARBAT[06-16] -1.398098 0.909695 -1.54 sts 5 5 5 5

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
IND	2	2	260.05529	24.9571	0.0012*
LTMSLAB	1	1	5.10200	0.9793	0.3606
LTMSAPP[LTMSLAB]	2	2	7.89162	0.7573	0.5090
BEARBAT[IND]	1	1	12.30622	2.3620	0.1752

Least Squares Means Table											
Level		Lea Sq Mea	st an Lower	9 5%	Upp	oer 95%					
[704-1]06-1	6	9	.4	6.2		12.5					
[1009] 06-16		18	.2	13.8		22.6					
[1009-1] 06-	-16	18	.5	15.7		21.3					
[1009-1] 03-	-22	21	.3	17.8		24.7					
			-						_	-	_
Level	- Lev	el	Difference	Std Er	r Dif	Lower CL	Upper CL	p-Value	-5	0	
[1009-1] 03-22	[704	-1] 06-16	11.87830	1.76	0790	5.78296	17.97364	0.0021*			
[1009-1]06-16	[704	-1] 06-16	9.08210	1.72	0614	3.12584	15.03836	0.0075*			
[1009] 06-16	[704	-1] 06-16	8.80492	2.38	4935	0.54898	17.06087	0.0384*		F	
[1009-1] 03-22	[1009	9] 06-16	3.07338	2.42	8521	-5.33345	11.48020	0.6134	-		•
[1009-1] 03-22	[100	9-1] 06-16	2.79620	1.81	9390	-3.50200	9.09439	0.4739	H		•
[1009-1] 06-16	[1009	9] 06-16	0.27718	2.13	2058	-7.10338	7.65774	0.9991			

🛛 💌 Contrast			
⊿ Test Detail			
[704-1] 06-16	0		
[1009] 06-16	0.5		
[1009-1] 06-16	0.5		
[1009-1] 03-22	-1		
Estimate	-2.935		
Std Error	1.8621		
t Ratio	-1.576		
Prob> t	0.1661		
SS	12.941		
Lower 95%	-7.491		
Upper 95%	1.6217		
SS NumDF	DenDF	F Ratio	Prob > F
12.94 1	6	2.4839	0.1661

Current 1009 target: 13.8

Difference between 1009 and 1009-1 for 06-16 bearing batch = 0.3 1009-1 new target: 14.1

Difference between 1009 06-16 and current target: -4.4

Difference between 06-16 and 03-22 batch: -2.9

ICF = -7.3

10 15

Model Predictions

BWL (VIII) Correction/Targets Evaluation

Prediction Profiler

 Data Used: All 1009 & 1009-1 Data (Matrix) + 2 Tests 1009-1 					
resulted in 17.4 mg and 18.7 mg (01/23 – 04/23)					
 Model Used: BWL ~ IND + BEARBAT[IND] 					
 1009 LSMeans = Mean = 17.4 mg, SD (assume 1009 = 	= 1009-1) = 2.6 mg				
 ICF (based on 1009) = 13.8 mg - 17.4 mg = -3.6 mg 					
 1009-1 LSMeans = 20.0 mg = 17.4 mg + 2.6 mg 	(unadjusted)				
 1009-1 After ICF = 20.0 mg - 3.6 mg = 16.4 mg 	(unadjusted)				

• ICF = -3.6 mg, 1009-1 LTMS mean = 16.4 mg, SD = 2.6

Option	Oil	Data Used	LTMS Mean	Std. Dev.	Bootstrap Est. of LTMS Mean	95% LTMS Mean Bootstrap LCB	95% LTMS Mean Bootstrap UCB	Bootstrap Est. of Std.Dev.	95% Bootstrap Est. of Std.Dev. LCB	95% Bootstrap Est. of Std.Dev. UCB
	1009	LTMS Target	13.8	2.14						
2	1009-1	All Data (n=7)	13.8+ <mark>2.4</mark> = 16.2	3.01	16.21	14.24	18.26	2.74	1.42	3.50
1	1009-1	06-16 Only (n=4)	13.8+ <mark>1.1</mark> = 14.9	2.77 (pooled)	15.02	13.85	16.97	2.51	1.45	3.20

Bootstrap Simulation was done use 10000 iterations.

Bootstrap estimates seem to algin with estimates given by the data

LTMS Mean has a strange distribution due to the nature of only having 4 observations to begin with. Note some iterations do not have enough data to estimate this.

Confidence intervals definitely support our unease around the uncertainty

Distribution of StdDev of 1009-1 All Data (n=7)

N = 9752 Bandwidth = 0.06052

0.3

0.2

<u>0</u>

0.0

-8

-6

-4

N = 9976 Bandwidth = 0.1254

-2

-2.0

-2.5

N = 10000 Bandwidth = 1.891e-16

-6.87

-3.10

Density 1.0e+15

5.0e+14

0.0e+00

-3.5

-3.0

-4.78

1

10 Hour Stripped Viscosity

SVIS Since 2018

10-HOUR STRIPPED VISCOSITY Unit of Measure: centistokes NONCRITICAL PARAMETER

Reference Oil	Mean	Standard Deviation
704-1	10.27	0.11
1006	9.00	0.17
1006-2	9.37	0.07
1009	9.51	0.10

10.6 IND • 704-1 10.4 • 1006-2 10.2 10.0 SVIS 9.8 9.6 9.4 9.2 **LTMSDATE**

SVIS also increased at the same time as bearing weight loss with 1006-2.

1009-1 vs. 1009

Consider the difference of the re-blend first. The re-blend data on both bearing batches is similar and shows an average difference from the original blend of 0.22 cSt, resulting in a target of 9.73 cSt.

Correction Factor

Modeling lab and stand differences seems inappropriate on the current data set. To estimate an ICF for the 06-16 bearings, we can take the average difference from target of all 6 results (recommended), or we can take an average of the two average differences.

1009-1 Data After Correction Factor of -0.14 cSt

The graph below shows the data after the -0.14 cSt correction factor, along with the Shewhart severity upper and lower limits.

Additional 10 Hour Stripped Viscosity Analyses

Model Predictions

VIF 2.3 2.7

1.1 1.1 1.4

1.1

⊿	Summ	ary of I	Fit								
	RSquare			0.976	565						
	RSquare	Adj		0.948	444						
	Root Me	an Squar	e Error	0.066	237						
	Mean of	Respons	e	9.973	333						
	Observat	tions (or	Sum Wgts)		12						
⊿	Analys	is of Va	ariance								
			Sum o	f							
	Source	DF	Square	s Me	an Squa	are	F Rat	io			
	Model	6	0.9141302	1	0.1523	355	34.72	64			
	Error	5	0.0219364	6	0.0043	387 F	rob >	F			
	C. Total	11	0.9360666	7			0.000	6*			
⊿	Param	eter Es	timates								
	Term			Es	timate	Std	Error	t Rat	io	Prob> t	I
	Intercept	:		9.9	717535	0.02	22449	444.	19	<.0001	*
	IND[704	-1]		0.4	268924	0.03	34267	12.	46	<.0001	*
	IND[100	9]		-0.	318628	0.04	11136	-7.	75	0.0006	*
	LTMSLA	B[A]		0.0	279688	0.0	2056	1.3	36	0.2318	
	LTMSLA	B[A]:LTM	SAPP[4]	0.0	298438	0	.0264	1.1	13	0.3096	
	LTMSLA	LTMSLAB[B]:LTMSAPP[3A]			460937	60937 0.03529		1.3	1.31 0.2		
	IND[100	9-1]:BEA	RBAT[03-2	2] -0	.00151	0	.0264	-0.	06	0.9566	
⊿	Effect	Tests									
					S	um of					
	Source		Nparm	n DF	Sq	uares	E F F	Ratio	Pr	ob > F	
	IND		2	2 2	0.706	55393	80.	5228	0	.0002*	

.east So	quare	es M	leans T	Table			
			Least	t			
evel		S	q Mean	Lowe	r 95%	Upper	95%
704-1] 0	6-16		10.40)	10.29	1	0.50
1009] 06	-16		9.65		9.52		9.79
1009-1]	06-16		9.87	,	9.78		9.95
1009-1]	03-22		9.86	5	9.76		9.97
evel	- Level		Difference	Std Frr Dif	Lower Cl	Unner Cl	n-Value
704-1106-16	[1009] 06	5-16	0.7455208	0.0705791	0.485083	1.005959	0.0005*
704-1] 06-16	[1009-1]	03-22	0.5366667	0.0540820	0.337103	0.736230	0.0007*
704-1] 06-16	[1009-1]	06-16	0.5336458	0.0527992	0.338816	0.728476	0.0006*
1009-1] 06-16	[1009] 06	5-16	0.2118750	0.0619587	-0.016754	0.440504	0.0656
1009-1] 03-22	[1009] 06	5-16	0.2088542	0.0705791	-0.051584	0.469292	0.1061
1009-1] 06-16	[1009-1]	03-22	0.0030208	0.0527992	-0.191809	0.197851	0.9999
 Contra 	st						
Test De	etail						
[704-1](06-16		0				
[1009] 06	5-16	0.	.5				
[1009-1]	06-16	0.	.5				
[1009-1]	03-22	-	1				
Estimate		-0.10	3				
Std Error		0.054	1				
t Ratio		-1 90	3				
Prohalt		0 1 1 5	1				
cc		0.115	-				
55	0/	0.015	2				
Lower 95	%	-0.24	2				
Upper 95	%	0.036	n l				
SS Nu	umDF	DenD	F F Rat	tio Prob	> F		
0.016	1		5 3.62	13 0.11	154		

Current 1009 target: 9.51

Difference between 1009 and 1009-1 for 06-16 bearing batch = 0.21 1009-1 new target: 9.72

Difference between 1009 06-16 and current target: -0.14

Difference between 06-16 and 03-22 batch: -0.10

ICF = -0.24

0.2 0.4 0.6 0.8

Model Predictions

SVIS (VIII) Correction/Targets Evaluation

• Data Used: All 1009 & 1009-1 Data (Matrix) + 2 Tests	1009-1				
resulted in 9.81 cSt and 9.88 cSt (01/23 – 04/23)					
 Model Used: SVIS ~ IND + BEARBAT[IND] 					
• 1009 LSMeans = Mean = 9.65 cSt, SD (assume 1009 = 2	1009-1) = 0.07 cSt				
• ICF (based on 1009) = 9.51 cSt – 9.65 cSt = -0.14 cSt	t				
 1009-1 LSMeans = 9.88 cSt = 9.65 cSt + 0.23 cSt 	(unadjusted)				
 1009-1 After ICF = 9.88 cSt – 0.14 cSt = 9.74 cSt 	(unadjusted)				
• ICF = -0.14 cSt, 1009-1 LTMS mean = 9.74 cSt, SD =	0.07 cSt				