

100 Barr Harbor Drive PO Box C700 West Conshohocken, PA 19428-2959 USA tell +1.610.832.9500 fax +1.610.832.9666 www.astm.org

COMMITTEE D02 on PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: Scott Fenwick, National Biodiesel Board, PO Box 104848, Jefferson City, MO 65110-4898, United States (800) 841-5849, Fax: (537) 635-7913, e-mail: sfenwick@biodiesel.org
FIRST VICE CHAIRMAN: Gregory C Miller, Tannas Co, 4800 James Savage Rd, Midland, MI 48642, United States (989) 496-2309, Fax: (989) 496-3438, e-mail: gmiiller@savantgroup.com
SECOND VICE CHAIRMAN: James J Simnick, Bp Global Fuels Technology, 150 Warrenville Rd, BP Technology Center Mail Stop 603-2W, Naperville, IL 60563, United States (331) 702-4071, Fax: (630) 420-4831, e-mail: simnicjj@bp.com
MEMBERSHIP SECRETARY: Ian P Mylrea, Stanhope-Seta, 70 Bramley Drive, Hampshire, RG27 8ZF, United Kingdom (193) 2 5-4589, e-mail: im@stanhope-seta.co.uk

STAFF MANAGER: Alyson Fick, (610) 832-9710, e-mail: afick@astm.org

Issued: 05.05.2020 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 04.30.2020 Sequence VI Conference Call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 1:02 PM Central Time by Chair Andrew Stevens.

- 1.0 The Agenda is Attachment 1.
- 2.0 Roll Call. Attendance is Attachment 2. There were no member changes.

- 3.0 Old Business
- MOTION: Approve minutes from the 04.23.2020 conference call. Rich, Jeff second. There was unanimous approval of the minutes.
 - 3.1 The 04.23.2020 minutes are posted at:

http://www.astmtmc.cmu.edu/ftp/docs/gas/sequencevi/minutes/VIMinutes20200423ConferenceCall.pdf

- 4.0 New Business
 - 4.1 There is an e-ballot for alternate fuel supplier procedure.
 - 4.2 GM voted negative. This meeting was called to discuss the points for the negative.

There was discussion on the steps considered for the negative vote. See Attachment 3 for the GM steps to consider. The FEI2 Severity Task Force Report is included as Attachment 4. This was discussed as Todd did an analysis of fuel response for the VIE test in particular comparing the Michigan to the Texas versions. There was a comment that engine differences override any differences in fuel batches.

There was further discussion of analysis of the fuel related to Item #1. DHA was discussed in detail.

Item #2 covered a desire for a history of fuel analysis. SwRI has records of DHA over the last few years. A discussion took place on comparing fuel economy not FEI response. Reference data only would be used. A motion was made to this effect:

MOTION: Review data to compare BL for different fuel batches.

Discussion on this motion indicated it might not resolve a difference as all data to be reviewed would be the same supplier. There was no further action, and the motion did not receive a second. Discussion moved to Item #3. Unwashed gums should be performed on the fuel over a period of time.

MOTION: Monitor unwashed gums for VIE fuel. Tim, Robert second.

This should be done before fuel ships. It was confirmed that when the large batch was made, the additive treatment was done as part of that batch, not as the truck leaves for delivery. There is a new specification being developed by the TGC Fuels Task Force.

It was noted the contract for the current fuel batch includes unwashed gums be done every quarter. Haltermann will review the contract and report back with that data.

There were still several items to cover, so the meeting adjourned and another will be scheduled to continue discussion of the items.

The meeting adjourned at 2:30 PM Central time.

Sequence VI Surveillance Panel Call Meeting Agenda April 30, 2020 @ 2:00-3:30 EST

Webex Meeting Details Below Agenda

1. Roll Call (start 2:05 EST)

1.1. SP Membership changes and additions

2. Old Business

2.1	Approve meeting minutes from 4/23/20 call	Andrew Stevens

3. New Business

3.1 GM Concerns with Alternative Fuel Supplier Proposal	Panel
---	-------

4. Next Meeting

4.1. SP Meeting: TBD

5. Meeting Adjourned

ASTM SEQUENCE VI			
Name	Email	Company	Attend

VOTING MEMBERS

Ben Maddock	Ben.Maddock@AftonChemical.com	Afton	ATTEND
Brianne Hockkeppel	Brianne.Hockkeppel@bp.com	BP	
Kevin Brodwater	KBrodwater@chevron.com	Chevron	ROBERT
Haiying Tang	HT146@Chrysler.com	Chrysler	ATTEND
Tracey King	TKing@h-c-s-group.com	CS Group	ATTEND
Ron Romano	rromano@ford.com	Ford	ATTEND
Paul Rubis	paul.j.rubas@exxonmobil.com	ExxonMobil	ATTEND
Jim Carter	jcarter@gageproducts.com	Gage	ATTEND
Aleise Gauer	aleise.gauer@gm.com	GM	ATTEND
Prasad Tumati	ptumati@jhaltermann.com	Haltermann	ATTEND
Andy Ritchie	Andrew.Ritchie@infineum.com	Infineum	ATTEND
Adrian Alfonso	Adrian.Alfonso@intertek.com	Intertek	ATTEND
Andrew Stevens	andrew.stevens@Lubrizol.com	Lubrizol	ATTEND
Jason Bowden	jhbowden@ohtech.com	OHT	ATTEND
Jeff Hsu	j.hsu@shell.com	Shell	ATTEND
Dan Worcester	Dan.Worcester@swri.org	SwRI	ATTEND
Dan Lanctot	dlanctot@tei-net.com	TEI	ATTEND
Rich Grundza	reg@astmtmc.cmu.edu	TMC	ATTEND
Teri Kowalski	Teri.Kowalski@tema.toyota.com	Toyota	
Amol Savant	acsavant@valvoline.com	Valvoline	ATTEND

ASTM SEQUENCE VI

Name	Email	Company	Attend
Ed Altman	Ed.Altman@aftonchemical.com	Afton	
Bill Anderson	Bill.anderson@aftonchemical.com	Afton	
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	ATTEND
Lisa Dingwell	Lisa.Dingwell@AftonChemical.com	Afton	
Todd Dvorak	Todd.Dvorak@aftonchemical.com	Afton	ATTEND
Terry Hoffman	Terry.Hoffman@aftonchemical.com	Afton	
Christian Porter	Christian.Porter@aftonchemical.com	Afton	
Jeremy Styer	Jeremy.Styer@aftonchemical.com	Afton	
Clifford Salvesen	Clifford.R.Salvesen@exxonmobil.com	EM	
Jonathan VanScoyoc		CPChem	ATTEND
Mike Deegan	mdeegan@ford.com	Ford	ATTEND
Bob Patzelt	bpatzelt@gageproducts.com	Gage	ATTEND
Tim Cushing	timothy.cushing@gm.com	GM	ATTEND
Meryn Hopp	Meryn.Hopp@GM.com	GM	
Michael Raney	Michael.p.Raney@gm.com	GM	
Charles VanCamp	charles.vancamp@gm.com	GM	ATTEND
Ed Hennessy	ehennessy@jhaltermann.com	Haltermann	ATTEND
Indresh Mathur	imathur@jhaltermann.com	Haltermann	ATTEND
Doyle Boese	Doyle.Boese@infineum.com	Infineum	
Charlie Leverett	Charlie.Leverett@yahoo.com	Infineum	
William Buscher	William.Buscher@intertek.com	Intertek	
Martin Chadwick	Martin.Chadwick@intertek.com	Intertek	
Al Lopez	Al.Lopez@intertek.com	Intertek	
Scott Rajala	srajala@ILAcorp.com	Idemitsu	
Dave Passmore	dpassmore@imtsind.com	IMTS	
Stuart Bartley	stuart.bartley@lubrizol.com	Lubrizol	
Jerry Brys	Jerome.Brys@lubrizol.com	Lubrizol	
Tony Jang	Tony Jang@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	ATTEND
James Matasik	James.Matasic@lubrizol.com	Lubrizol	
Will O'Ryan	William.ORyan@Lubrizol.com	Lubrizol	ATTEND
Chris Castanien	Chris.Castanien@neste.com	Neste	
Dwight Bowden	dhbowden@ohtech.com	OHT	
Matt Bowden	mjbowden@ohtech.com	OHT	
Ricardo Affinito	affinito@chevron.com	Oronite	
Ian Elliot	IanElliott@chevron.com	Oronite	
Jo Martinez	jogm@chevron.com	Oronite	
Robert Stockwell	rsto@chevron.com	Oronite	ATTEND
Dan Engstrom	daniel.engstrom@swRI.org	SwRI	ATTEND
Travis Kostan	Travis.Kostan@swRI.org	SwRI	ATTEND

ASTM SEQUENCE VI

Name	Email	Company	Attend
Patrick Lang	Patrick.Lang@swRI.org	SwRI	ATTEND
Michael Lochte	mlochte@swri.org	SwRI	ATTEND
Karen Haumann	Karen.Haumann@shell.com	Shell	
Charles VanCamp	charles.vancamp@gm.com	CPW	ATTEND
Jeff Clark	jac@astmtmc.cmu.edu	ТМС	
Hirano Satoshi	Satoshi_Hirano_aa@mail.toyota.co.jp	Toyota	
Mark Adams	mark@tribologytesting.com	Tribology	
		Testing	
Timothy Caudill	Tlcaudill@valvoline.com	Valvoline	
Chris Taylor	Chris.Taylor@vpracingfuels.com	VP Racing	
		Fuels	

MOTION:		
Ben Maddock		
Brianne Hockkeppel		
Kevin Brodwater		
Haiying Tang		
Tracey King		
Ron Romano		
Clifford Salvesen		
Jim Carter		
Aleise Gauer		
Prasad Tumati		
Andy Ritchie		
Adrian Alfonso		
Andrew Stevens		
Jason Bowden		

ASTM SEQUENCE VI

Name	Email	Company	Attend
Jeff Hsu			
Dan Worcester			
Dan Lanctot			
Rich Grundza			
Teri Kowalski			
Amol Savant			

MOTION:		
Ben Maddock		
Brianne Hockkeppel		
Kevin Brodwater		
Haiying Tang		
Tracey King		
Ron Romano		
Clifford Salvesen		
Jim Carter		
Aleise Gauer		
Prasad Tumati		
Andy Ritchie		
Adrian Alfonso		
Andrew Stevens		
Jason Bowden		
Jeff Hsu		
Dan Worcester		
Dan Lanctot		
Rich Grundza		
Teri Kowalski		
Amol Savant		

April 30, 2020

30003 Fisher Brothers Road Warren, MI 48093

- If the test is run against reference and there is no prohibition or limitations on changing fuels from a reference run to a candidate run, then the precision matrices for the test should have incorporated this variable (two fuels at the ends of largest DHA fuel property spec range(s)). There is no way to know what impact changing fuel has without this analysis. There is no way to know how this potential change in fuels will impact stand severity either without data.
- 2. If a fuel parameter data collection process was instituted at the onset of the new Seq VI test, we would have the ability right now to utilize that information today to: 1.) better determine what parameters do/do not contribute to test variation, 2.) validate the fuel deliveries are meeting the requirements (trust but verify). In the highlighted section below: what were the findings of this? Was it blowby and response or was it fuel?
 - 3.2 Seq. VIE Severity Task Force Update Dan Worcester See Attachment 4. There was a lot of discussion on this presentation. FEI 2 has shifted severe, but Lab F is on target. There were slides on possible fuel factors. The two San Antonio labs use fuel from Nixon, Texas. All others are supplied by the Michigan facility. Todd provided and discussed several of the slides. There may also be blowby and viscosity response especially for 542-2. There will be further discussion in the Task Force. Travis had some slides that indicated FEI 2 severity shift took place at the end of the Precision Matrix. See Attachment 5.

Action Item #2 – Haltermann to report to the Sequence VI surveillance panel the process for building the Texas and Michigan Lube Cert EEE fuel batches and for additizing the SEQ VI-E + DCA fuel. Include details on component sourcing for the Texas and Michigan locations (i.e. are the components for both locations obtained from the same source and from the same component batches, etc.). Include details on the additizing process for the Texas and Michigan locations (i.e. are the additions details on the additizing process for the Texas and Michigan locations (i.e. are the additives for both locations obtained from the same source and from

3. VIE development suffered from fuel related deposits issues. Is there any data supporting deposit variation with current modified test fuel? Deposit control additive which was added to solve deposit issues has not been measured since VIE inception and needs to be understood before entertaining an alternate fuel. The unwashed gums test should be performed on the test fuel for a period of time in order to understand its stability in the test labs fuel storage systems. Previous studies of ASTM Sequence III piston deposit composition have indicated the test fuel as the major contributor. Industry standard deposit tests Sequence

GENERAL MOTORS

III and GMOD should be conducted with Sequence VI altered fuels to assess the deposit forming tendencies of the current and proposed test fuels.

- 4. According to Annex A18.8, you can mix up to 10% of one fuel into another fuel. 90/10 was recently implemented and there is not any data on this blending practice. There should be statistical analysis performed before this blending ratio is implemented.
- 5. Test standard deviation in the VIE is higher than it is in VID. VID was based on 100s of hours of actual vehicle fuel efficiency analysis. Adding additional variation in fuel pushes the test even further away from its intent in vehicle correlation.
- 6. In section A18.4 of the latest ballot stating "A18.4 If the criteria in both A18.3.1 and A18.3.2 are not satisfied for both FEI1 and FEI2, then conduct an additional four tests on another engine, followed by another ANOVA model. Continue this process until both criteria have been satisfied for both parameters." What was the criteria?
- 7. Section A18.7 of the ballot it states, "Each laboratory can choose which approved fuel to use for individual stands." What is the criteria for MTAC?
- 8. Section A18.5 of the ballot states "Run all tests on the same fuel used to calibrate the stand." Once a 90/10 mix of fuel is mixed there should be a calibration done with the mixture. Once that mixture runs out another calibration should be performed using the new batch of fuel.
- 9. Replicating the fuel economy (FE) performance of an internal combustion engine (ICE) measured in a given lab to any other lab equipped with another engine of the same design is as you know an incredibly difficult task. The many interactions of the engine hardware, state of the engine (tolerances, wear, metallurgy, etc...), combustion and crankcase ventilation gases, test fluids, lab operation and measurement variability, to name a few, all interact to impact the empirical measurements. Therefore, by definition, controlling as many of these variables is necessary for precise measurements. And while the proposed "A18 Alternate Fuel Approval Requirements" try to minimize the test measurement variability at the time of testing, adding additional approved test fuel sources will likely increase the test variation over time. Here are a couple practical issues with approving second sources of test fuels in D8114-2019b.
 - a. Test fuels inherently age over time and change their response in tests; they oxidize, they weather (lose volatile hydrocarbons), they change on the molecular level depending on how they are stored. What is approved today, will be different tomorrow. If anti-oxidants are added to control oxidation during storage stability, small differences in type and concentration from one formulation to another will impact the engine test differently.
 - b. Test fuels are purchased with a Certificate of Analysis to assure some level of blending repeatability, however unfortunately there is no known correlation between any known CofA test and the measurement of FE in an engine. There are many first order relationships, such as a fuel's energy content to ICE engine heat release that correlate to FE, but none of these have the precision necessary to qualify small lubricant formulation differences.
 - c. Seemingly small changes from one test fuel supplier recipe to the next can impact the lubricant response, potentially unintentionally biasing the result. This is true of basefuel hydrocarbon components, oxygenates, and additives. Even if two test fuels pass the proposed Fuel Approval Requirements, the interaction of the detailed lubricant chemistry with multiple fuel chemistries is

likely to be different. For example, one fuel chemistry may favor one type of lubricant oxidation inhibitor, while another test fuel would favor another type.

Test fuel batches made to the same blending recipe are known to potentially have different responses in test engines. For this reason and those outlined above keeping a single source of test fuel, common to all lubricant FE qualification tests, has been and shall be the best practice.

- 10. Upon completion of an alternate fuel supplier's successful prove out testing statistical data analysis, ASTM needs to provide documentation to support the ILSAC / EPA guidance letter.
- 11. GM disagrees with the proposal of adding an alternate fuel supplier without going through the necessary steps of verifying the fuel to see if it's suitable for VIE. We wouldn't have a choice but to take appropriate steps to protect ourselves if this proposal passes.

Sequence VIE FEI 2 Response Shift Task Force

Southwest Research Institute®

WINTER 2017

FUELS & LUBRICANTS RESEARCH

©SOUTHWEST RESEARCH INSTITUTE

swri.org

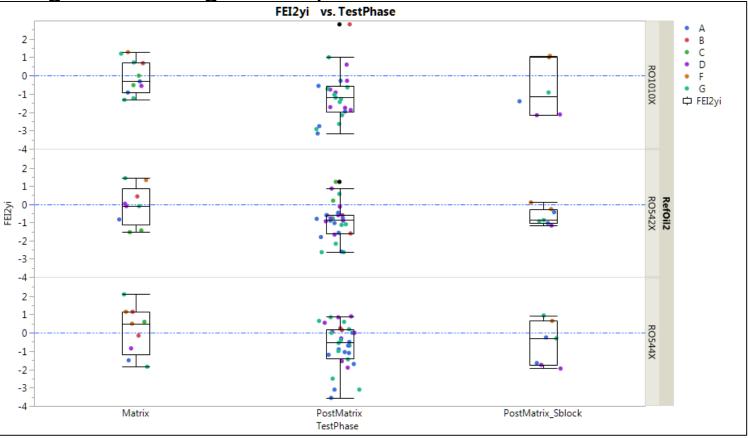
Task Force Members

Adrian Alfonso Jerry Brys **Bill Buscher** Todd Dvorak **Rich** Grundza Charlie Leverett Katerina Pecinovsky **Cliff Salvesen** Andrew Stevens **Amol Savant** Dan Worcester

Intertek Lubrizol Intertek Afton TMC Infineum Afton ExxonMobil Lubrizol Valvoline SwRI

FUELS & LUBRICANTS RESEARCH

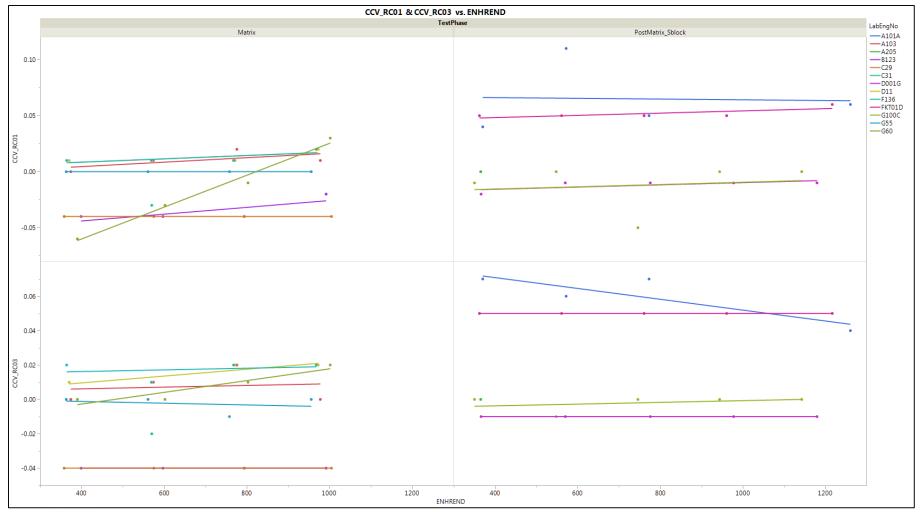
Task Force Scope


The Task Force will review data, chemical analysis for the 109 hour aging, and other factors for the VIE test looking for a root cause for a response shift affecting FEI 2.

FUELS & LUBRICANTS RESEARCH

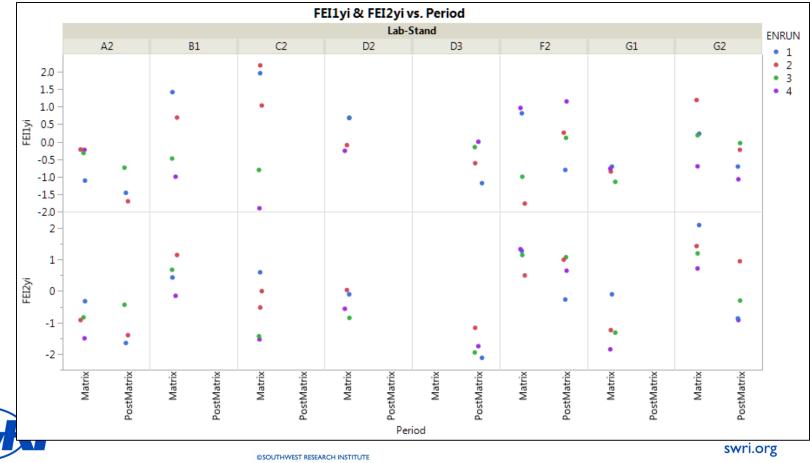
Review of VIE Data

- Plot of VIE FEI2Y_i Chart provided by Todd Dvorak
 - Data suggests that the FEI2Y_i performance has shifted severe of target following the VIE precision matrix.

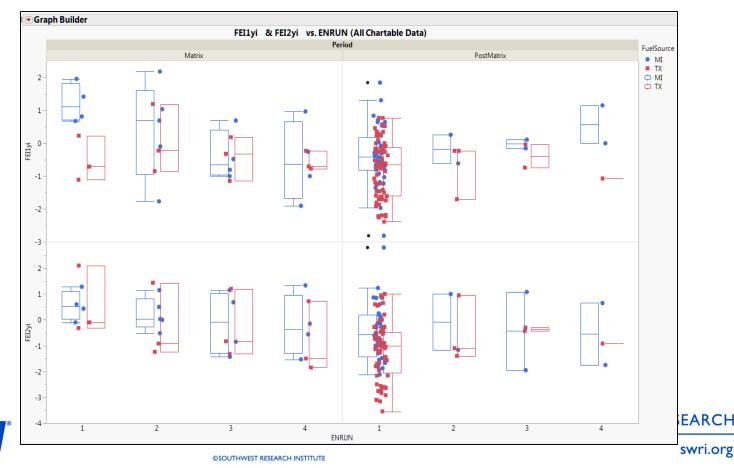


Review of VIE Data

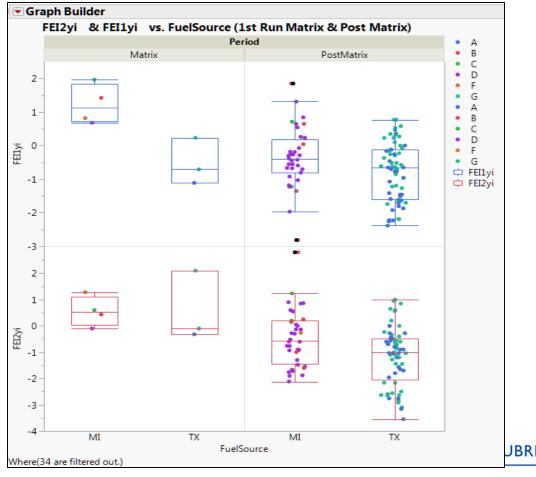
Crankcase pressure is higher with PostMatrix SBEngines



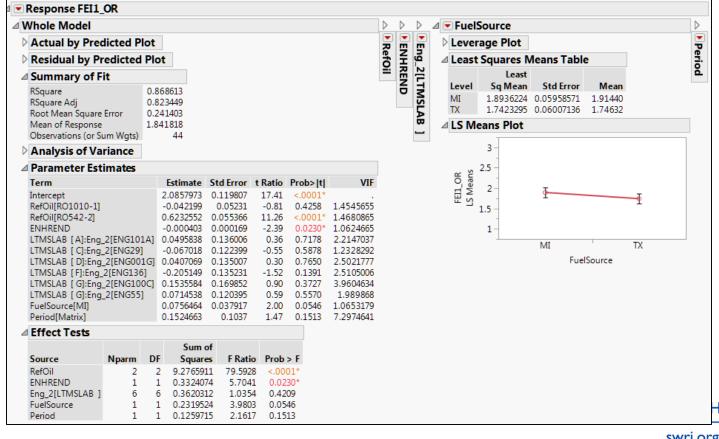
FUELS & LUBRICANTS RESEARCH



Lab-Stand Comparison of PM and PPM Test Severity


- Plot of Precision Matrix and Short Block Post Matrix data by Lab-Stand combination
 - General trend of test being more severe during PostMatrix

- Plot of all chartable FEI_Yi data by test run, period (Matrix vs. PostMatrix) and fuel source (Texas vs. Michigan)
 - Plot may suggest difference in FEI2_Yi during PostMatrix)



 Plot of all chartable FEI_Yi Ist run data by Fuel Source and Period

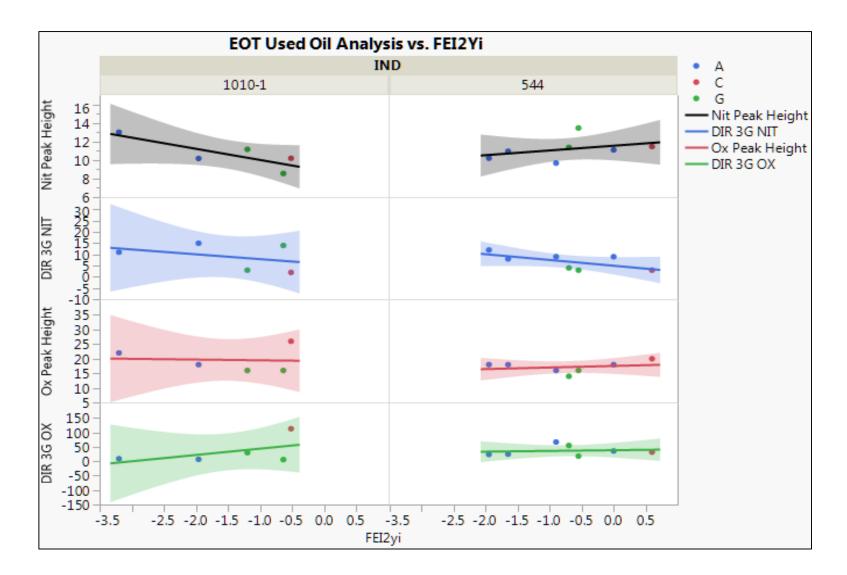
- Analysis of FEII chartable PM and SBM data
 - Analysis suggests fuel source is significant.
 - Fuel source confounded with test laboratory

- Analysis of FEI2 chartable PM and SBM data
 - Analysis suggests fuel source is not significant.

Response FEI2	OR													
Whole Model								-	\triangleright	🛛 💌 Fuel	Source			
Actual by Pred	dicted P	lot	1						.	Leve	rage Plot			
Residual by Pr	redicted	Plo	t					RefOil	ENHREND	⊿ Least	Squares M	/leans Tabl	e	
✓ Summary of F	it							Ĩ.	B 2		Least			
RSquare RSquare Adj Root Mean Square	Error	0.5	34647 09057 23663						Eng_2[LTMSLAB	Level MI TX		Std Error 0.05520690 0.05565686	Mean 1.61520 1.58316	
Mean of Response		1.6	01364						B	⊿ LS M	eans Plot			
Observations (or S			44								2.2			
Analysis of Va											2 -			
Parameter Est	imates									a s	1.8 -	т		
Term			Estimate	Std Error	t Ratio	Prob> t	VIF			FEI2_OR .S Means	1.6 -	· · · · · · · · · · · · · · · · · · ·		J
Intercept RefOil[RO1010-1] RefOil[RO542-2] ENHREND			1.7865754 0.1591073 0.0498451 -0.000311	0.048466 0.051298 0.000156	16.09 3.28 0.97 -1.99	0.3385 0.0555	1.4545655 1.4680865 1.0624665			FEI LS N	1.4 - 1.2 - 1 -	-		1
LTMSLAB [A]:Eng. LTMSLAB [C]:Eng. LTMSLAB [D]:Eng. LTMSLAB [F]:Eng. LTMSLAB [G]:Eng.	2[ENG29] 2[ENG00 2[ENG136	 1G] 5]	-0.200763 -0.071605 -0.043949	0.113404 0.125086	0.71 -1.77 -0.57 -0.35 0.24	0.4845 0.0862 0.5710 0.7281 0.8092	2.2147037 1.2328292 2.5021777 2.5105006 3.9604634					MI Fue	ISource	TX
LTMSLAB [G]:Eng FuelSource[MI] Period[Matrix]	_2[ENG55]		0.2709102 0.0347819 0.0971397	0.111548 0.03513 0.09608	2.43 0.99 1.01	0.0210* 0.3296 0.3196	1.989868 1.0653179 7.2974641							
Effect Tests														
			Sum											
Source	Nparm	DF			o Prob>									
RefOil ENHREND Eng_2[LTMSLAB]	2 1 6	2 1 6	0.19761	36 3.950 28 3.145	3 0.055 5 0.015	i5 i4*								
FuelSource Period	1	1 1	0.04903											

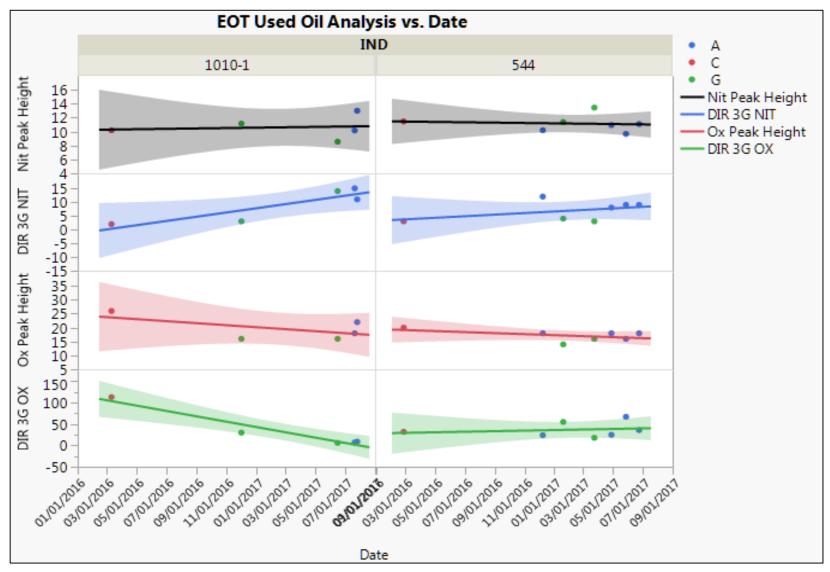
Review of VIE Data

Analysis of VIE Reference Oil Viscosity Data


KV40 EOT Oil Analysis (PM n = 28¹ & n = 16 SBM)

 Analysis suggests significant increase in KV40 EOT viscosity between the 2 test phases (PM-EOT-KV40 < SBM-EOT-KV40)

Response							TestPhase2			
Whole Mo						ÞI	.everage Plot			
Actual b	w Pre	dicted P	lot				-			
Effect Su	imma	ry 🛛				4	cast Squares	Mcans Tab	ble	
Residual	l by P	redicted	Plot					Least		
4 Summar	ry of F	ilt				Ш.	evel	Sg Mean	Std Error	Mean
RSquare			0.922925							
RSquare Ac		_	0.902523				Aatrix		0.19680592	46.3550
Root Mean Mean of Re			1.008013 46.99795			P	ostMatnx_5block	47.839677	0.28854523	48.1231
Observation						41	S Means Plot	•		
Analysis							54	•		
		Sum	4				24			
Source	DI	Square	s MeanSo	uare II	atio		12 52 -			
Model	- 9	413,6/9	45 45	3644 45	2356		n l			
Erve	34	34,547		0161 Pro			8 50 B			
C. Total	43	448.220	2	<.0	0011		V1 40		-	
4 Paramet	ter Est	timates					ST 48-		1	
Tenn		Etim	ite Std Erro	e - t Ratio	Probo [4]		G 46-			
Interript			023 0.4817		<.0001*		φ. · ·			
I TWSI AEJA I TWSI AEJE			139 - 0.34069 136 - 0.46140		<.0001* 0.6577		> 44-			
I TWSI ARD			0.4180							
ITMSLART			43 0.1400	2 -2.52	0.01551		42	Aatrix	PostMatrix	Shlock
ITMSLARI			43 0.0603		0.1876					Solo State
	-		23. 0.17548 85. 0.2140		0.0037* 4.0001*			TestP	hase2	
BHOLKON	-		02 0.02076							
UNLISHED		0.002	405 CLORO	M 30N	0,0027*					
a Effect To	ests									
			Sum of				Note 1: One	obconuntion	missing DL	
Source	Npa		Squares		Prob > F		Note 1: One	observation	missing PM	EOT viscosity
TEMSLAR TemPhone2		1 1	41.88179 9.89202	8,2443	<.0001* 0.0087*			D	1 1	511
BefOil		5 5	316,06649		4.00015			A.S.S	SION TO	r Soluti
INUBIND		i i		10.6476	0.0023*			(PION	2000 10	, Journa



FEI 2 Yi CHEM DATA

EOT CHEM DATA by OIL

FUELS & LUBRICANTS RESEARCH

Engines

- OHT-1 engines were used for the Precision Matrix.
- Labs moved to OHT-2 engines in 2016.
- GM Short Block Kit engines are approved, and labs are running.
- All Labs will switch over this Fall.

Fuel Batches

Haltermann to report to the Sequence VI surveillance panel the process for building the Texas and Michigan Lube Cert EEE fuel batches and for additizing the SEQ VI-E + DCA fuel. Include details on component sourcing for the Texas and Michigan locations (i.e. are the components for both locations obtained from the same source and from the same component batches, etc.). Include details on the additizing process for the Texas and Michigan locations (i.e. are the additives for both locations obtained from the same source and from the same batches, when is the Lube Cert EEE additized, etc.).

FUELS & LUBRICANTS RESEARCH

Fuel Batches

EEE Lube Cert blending

The components used in the EEE Lube Cert blending process (at both the Nixon and Sterling locations) are sourced from the same suppliers. This has been our standard practice since we place the Nixon tanks into service.

Seq.VI DCA additive

Original MOC for this additive was created on 09/03/2013. HS purchased 2 drums of this material in 2013 to start the project. HS purchased an additional 7 drums in 2014 and four more drums in 2016.

The additive used when producing the Seq.VI fuel, HF-2003, has been and continues to be sourced from the same supplier.

The HF-2003 is additized at the rack at both locations.

FUELS & LUBRICANTS RESEARCH

Action

- Amol has created Power Points comparing a pass and a fail engine.
- Those are posted at:
 - <u>http://www.astmtmc.cmu.edu/ft</u> <u>p/refdata/gas/VIE/plots/</u>

FUELS & LUBRICANTS RESEARCH

APPENDIX

PHOTOS

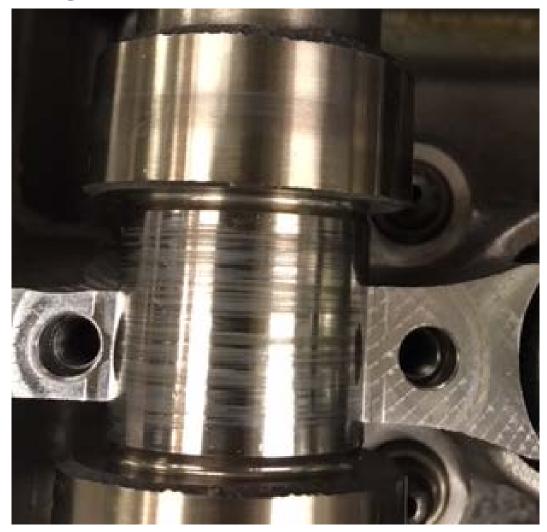
FUELS & LUBRICANTS RESEARCH

©SOUTHWEST RESEARCH INSTITUTE

swri.org

VIE SwRI Valves

FUELS & LUBRICANTS RESEARCH


VIE IAR Piston Deposits

FUELS & LUBRICANTS RESEARCH


VIE Afton Journal Wear

FUELS & LUBRICANTS RESEARCH

VIE Valvoline Bore Polish

FUELS & LUBRICANTS RESEARCH