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The meeting was called to order at 1:04 PM Central Time by Chair Andrew Stevens.   
Agenda  

1.0 Roll Call: The Attendance list is Attachment 1. 

1.1 There were no membership changes. 
1.2 The Agenda is Attachment 2. 
1.3 The minutes for the 03.22.2019 call were not reviewed. 
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2.0 Old Business 
2.1 There was an issue with wording on Break-In hours. The wording was 

slightly different in the VIE and VIF procedures.  
2.2 This issue was resolved with the release of Information Letter 19.2. 

 
3.0 New Business 

3.1 Discussion about standards for introducing a new fuel supplier. 
3.1.1 Prasad presented some options to consider. His presentations are 

included as Attachments 3 and 4. Doyle brought up that there 
might be a response difference for FEI1 and FEI2. Tracey noted 
there currently is no additional testing as new batches are 
produced. There was a lot of discussion on the level of testing 
needed. 

Bob: The candidates should be run the same as the reference if a particular fuel is 
used for that reference test. 

Rich: Would both fuels be available? There are procedures on how to move to 
different fuels. For the VH, a new fuel can be added to 10% of the previous 
batch. 

Bob: The alternate supplier should provide some data for comparison. He also asked 
if there was a cost benefit for an alternate supplier. 

Jim C: 2-4 tests would begin the review process. 
Mike: Noted the T13 bearings were a different supplier and material and approved for 

use with 2 tests. 
 

3.1.2 What is the process to approve another fuel supplier? 

Adrian: Any testing should compare back to the Precision Matrix. 
Mike:  Asked whether a matrix was required? 
Jeff:  Suggested an ABBA matrix on one stand as a minimum. 
Bob:  The Surveillance Panel should provide the number of tests needed. 
Pat:  He noted this option may set a pattern moving forward for alternate suppliers.
  This is a recommendation for the TGC. The Stats Group would be involved. 
Travis: There should be different matrices for different options.  
Andrew: A Fuel Task Force will be created. He will send recommendations and start 

calls. There would be representatives for Stats and Test Engineers. 



 
ACTION: Create a Task Force. The goals would be to define single or multiple suppliers, 

how to determine equivalence, and whether tests would be on first runs only, 
or engines could be calibrate on the second run, and the first run count as part 
of the matrix data. 

 
 

The meeting adjourned at 2:20 PM Central Time 
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Adrian Alfonso 
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Phone: (908) 474-3176 
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Gordon Farnsworth Gordon.Farnsworth@infineum.com Infineum  

Charlie Leverett Charlie.Leverett@yahoo.com 
Phone: (210) 414-5448 
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Mike McMillan mmcmillan123@comcast.net  Infineum  

Jordan Pastor Jordan.Pastor@Infineum.com 
Phone: (313) 348-3120 

Infineum  

William Buscher William.Buscher@intertek.com Intertek  

Martin Chadwick Martin.Chadwick@intertek.com Intertek  

Al Lopez Al.Lopez@intertek.com Intertek  

Mike Noriega Mike.Noriega@intertek.com Intertek  
Addison Schweitzer Addison.Schweitzer@intertek.com Intertek  

Scott Rajala srajala@ILAcorp.com Idemitsu  

Dave Passmore dpassmore@imtsind.com IMTS  

Jerry Brys Jerome.Brys@lubrizol.com 
Phone: (440) 347.2631 

Lubrizol  

Tony Jang Tony Jang@Lubrizol.com Lubrizol  

Joe Gleason Jog1@lubrizol.com Lubrizol  

James Matasik James.Matasic@lubrizol.com Lubrizol  

Greg Miranda Greg.Miranda@Lubrizol.com Lubrizol  
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Matt Bowden mjbowden@ohtech.com OHT  
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Jo Martinez jogm@chevron.com Oronite ATTEND 

Robert Stockwell rsto@chevron.com Oronite ATTEND 

Don Smolenski Donald.Smolenski@gmail.com Strategic  

Dan Engstrom daniel.engstrom@swRI.org 
Phone: (210) 522-3472 

SwRI ATTEND 

Travis Kostan Travis.Kostan@swRI.org 
Phone: (210) 522-2407 

SwRI ATTEND 

Patrick Lang Patrick.Lang@swRI.org 
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SwRI ATTEND 

Khalid Rais Khalid.Rais @swri.org SwRI  
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Scott Stap Scott.Stap@tgdirect.com TG Direct  
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Hirano Satoshi Satoshi_Hirano_aa@mail.toyota.co.jp Toyota  

Jim Linden lindenjim@jlindenconsulting.com 
Phone: (248) 321-5343 

Consultant  

Mark Adams mark@tribologytesting.com Tribology 
Testing 

 

Timothy Caudill Tlcaudill@valvoline.com Valvoline  

Thom Smith trsmith@valvoline.com Valvoline  
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Chris Taylor Chris.Taylor@vpracingfuels.com 
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Fuels 
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Sequence VI Surveillance Panel Call Meeting Agenda 

April 17, 2019 @ 2:00-3:30 EST 
 
Webex Meeting Details Below Agenda 
 
1. Roll Call (start 2:05 EST) 

 
1.1. SP Membership changes and additions 

 
2. Old Business 
 

2.1 Update on Breakin hours wording: VIE vs VIF 
 

- Wording is not consistent and potentially 
confers different meaning. References via a 
note from Rich Grundza in Appendix A1 

Rich Grundza 

 
 
3. New Business 

 
3.1 Discussion about standards for introducing a new fuel 

supplier 
 

Panel 

 
 
4. Next Meeting 

 
4.1. SP Meeting: TBD 

 
 
5. Meeting Adjourned 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 
A1 
 
Note from Rich Grundza regarding breakin wording: 
 
There are some inconsistencies in the wording of the requirements for additional breakin on 
failing references. 
 
Specifically, section 10.1.1.8 of test method D 8114 reads "A laboratory must run a minimum of 
an additional 50 h of break-in, following an unacceptable reference test, in order for to be 
considered a new engine for calibration purposes."  
 
Section 10.1.1.8 of D8226 states "For a new engine to be considered for calibration purposes, a 
lab must run a minimum of an additional 50 h of break-in, following an unacceptable reference 
test.", which is not consistent. 
 
I believe the wording in D8114 is correct, save a grammatical error i.e it should read “A 
laboratory must run a minimum of an additional 50 h of break-in, following an unacceptable 
reference test, in order to be considered a new engine for calibration purposes.” 
 
I can address the grammatical error in D8114 considering this change as editorial. We 
could discuss this change to D8226 further as given the ltms requirements for the VIF, 
this may never be pursued. As a minimum, two tests are necessary to calibrate a new 
stand engine and running the additional break in and calling it a new engine would not 
allow sufficient engine hours left to conduct non-reference oil tests. 
 



Equivalency Testing of Two Fuels (A D.O.E method) 
 
Since this program involves two fuels (Current fuel and the candidate fuel A&B), three types of 
oil (Reference oil and two candidate oils, X, Y and Z) and four labs (LA, LB, LC, and LD). The 
design will be a 2 x 3 x 4 factorial (i.e., all 3 factors crossed) with factor F (fuel) with 2 levels (A 
and B), factor O (oil) with 3 levels (X, Y and Z), and factor L (labs) with 4 levels (LA, LB, LC, 
LD). The response (dependent) variable is the fuel economy (FE) of the two fuels. This design 
allows for the estimation of main effects and interaction effects. With 24 (2 times 3 times 4) 
treatment group combinations and one replicate per combination, it is possible to estimate all the 
main effects and two-way interactions. The three-way interaction provides an estimate of the 
experimental error (assuming there in no three-way interaction). To avoid assuming there is no 
three-way interaction, the 24 combinations could be replicated, e.g., two replicates per 
combination would result in 48 runs, three replicates would result in 72 runs and so forth. The 
larger the number of replicates the more sensitive the comparison (i.e., smaller differences 
between fuels could be detected). An optimal number of replicates can be established if the 
(approximate) experimental error for the observation is known by determining the expected 
confidence interval width. 
 
The analysis of the resulting data would be modeled using a linear model1. Because all three 
explanatory variables F, O and L are categorical, this linear model is often referred to as an 
Analysis of Variance or ANOVA. Because there are three crossed factors, this would be referred 
to as a three-way ANOVA. The comparison of the two fuels is straight forward if there are no (or 
very small) interaction effects. If there are interaction effects, then the interpretation is more 
complicated depending on the nature of the interactions.2 The usual way to provide estimates of 
effects is to provide the point estimates along with the corresponding 95% confidence intervals. 
Models with and without various interaction effects would be compared using the Akaike 
Information Criterion (AIC) and the model with the smallest AIC would be selected as the most 
representative. 
 
If the goal is to establish that the fuels are equivalent, then conventional statistical hypothesis 
testing cannot be used.3 Instead, equivalence hypothesis testing is required (Munk, 2004; Wellak, 
2010). The mathematics behind equivalence testing is more complicated than conventional 
hypothesis testing, but the application of equivalence testing is, in practice, quite simple. It 
requires, however, that the experimenters must establish the range for a difference that is 
considered negligible. If the confidence interval for the difference falls entirely within the 
interval that describes equivalence, then the hypothesis of equivalence is supported. (On the 
other hand, if the confidence interval falls entirely outside the negligible interval then one of the 
fuels would be shown to be superior and the other inferior. If the confidence interval is only 

                                                 
1 The “linear” in “linear model” means that the statistical estimates for the effects are linear functions of the 

observed data values. 
2 ANOVA main effects estimates are ignored if there are non-negligible interaction effects. In this case, the main 

effects are arbitrary. When there are interaction effects, one approach is to analyze the experiment as a one-way 
ANOVA. 

3 Conventional hypothesis testing either rejects the null hypothesis (e.g., of no effect or difference) or fails to 
reject the null hypothesis. Failure to reject does not mean the null hypothesis is accepted. This means that 
conventional hypothesis testing cannot be used to establish equivalency. 



partly inside the negligible interval, then the results are indeterminant.) Setting the limits for a 
negligible difference requires expert judgement from test engineers. 

Bibliography 
ac053390m.pdf. (n.d.). Retrieved from https://pubs.acs.org/doi/pdf/10.1021/ac053390m. ). This 

web page illustrates the concept of equivalence testing. 
 
Munk, A. (2004). Testing Statistical Hypotheses of Equivalence. Taylor & Francis. 
 
Wellek, S. (2010). Testing Statistical Hypotheses of Equivalence and Noninferiority. Chapman 

and Hall/CRC. 
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the t-Test:
Statistical Equivalence Testing

BEYOND

One of the most common questions considered by ana-
lytical chemists is whether replicate measurements are
the same or significantly different from each other. The

determination of significantly different results can be used to
argue that a phenomenon is novel or to justify a claim of a sig-
nificant improvement in a technique, process,
or product. Science and technology are also
driven by determinations of sameness, such as
equivalence, control, or ruggedness.

Given the variability inherent to most in-
strument systems, the question of whether a
measurable difference is “real” can be difficult
to answer. In some cases, intuition, experi-
ence, and knowledge of the practical context

of the data can be used to inspect or “eyeball” the data to as-
sess whether a true difference exists. For example, most of us
would agree that a difference of 100% in a measurement that
typically exhibits a precision of 1% is a real difference, and we
would also agree that a difference of 0.01% is not significant for

the same measurement. But what about less
clear-cut cases in which the difference be-
tween two sets of data is similar to the pre-
cision? How much difference is “too
much”? Not only does simple inspection fail
in these circumstances, but a subjective
process can be biased, is difficult to justify,
and, most importantly, can lead to the
wrong conclusion.

Giselle B. Limentani

Moira C. Ringo

Feng Ye

Mandy L. Bergquist

Ellen O. MCSorley

GlaxoSmithKline

Statistical equivalence

testing can be used to

make better technical

and business decisions

from analytical data.
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Statistical hypothesis testing
offers a rigorous, objective ap-
proach to distinguishing truly
significant differences in mea-
surements from noise. Although
many tests exist that are suitable
for different situations, the sta-
tistical test that is most familiar
is the simple-to-perform two-
sample t-test (t is a probability
distribution that is closely relat-
ed to the standard normal distri-
bution). However, the t-test has
several limitations and may not
be the most appropriate tech-
nique when the objective is to
show equivalence between two
data sets. We will demonstrate
that the two one-sided t-test
(TOST) is a better option in
many cases. The two-sample t-test and TOST are distinct ap-
proaches for assessing a difference or equivalence in data; which
test is used can have a significant impact on the outcome of the
comparison as well as on the scientific and business decisions
made as a result.

The basics
Most analytical scientists are familiar with the mean and standard
deviation and how these measurements are used to make simple
data comparisons. However, the calculated mean and standard
deviation values, y– and s respectively, are merely estimates of the
real mean and standard deviation values for a population of pos-
sible measurements. For example, for a sample data set of n in-
dependent measurements, y– and s can be calculated. These values
are estimates of the mean and standard deviation of the entire
population of measurements from which the sample was taken.
A more informative description of the population mean is the
range of probable “true” values, or confidence interval, for the
mean, which is

(1)

for a two-sided 100(1 – �)% confidence interval.
Note that the width of the confidence interval increases as s

increases and n decreases. In other words, a data set for which s
is large (noisy data) or n is small (few measurements) results in a
wider confidence interval. (A narrow interval is more desirable.)
The width of the confidence interval is also determined by the
Student’s t-value, known as t, for a given n and a given signifi-
cance level �, which is related to the probability that the confi-
dence interval includes the true mean. For most analytical appli-
cations, � is typically set at 0.05, producing a 95% confidence
interval. Student’s t-values may be obtained from published ta-
bles or by using the TINV(�, n – 1) function in Excel. (Note
that for some versions of Excel, it is necessary to use 2� in place
of � for this function.)

The mean is not the only pa-
rameter that is estimated with
error. The estimated s, or mea-
surement precision, can vary
with the number of measure-
ments that are made, the sam-
ple that is measured, and the
manner in which the data are
collected. With a 95% confi-
dence limit and the assumption
that the data follow a normal
distribution, the true standard
deviation for n = 10 can be as
high as 1.8� the measured s,
and this error increases to 6.3�
the measured s for n = 3 (1).
Moreover, the measurement re-
peatability (among measure-
ments taken by a single analyst
in a single laboratory) can differ

significantly from the measurement reproducibility, which is a
broader estimate of precision based on measurements by multi-
ple analysts in multiple laboratories. In one study of several
methods from a compendium for pharmaceuticals, the mean an-
alytical repeatability was 1.5% RSD, while reproducibility was
estimated at nearly double that amount (2). In the absence of a
considerable amount of experience with the measurement under
a range of conditions, it may be necessary to use a statistical pro-
cedure for estimating the measurement precision.

To conduct a statistical analysis, the analyst must consider the
experimental objective and decide upon a null hypothesis for the
test. An appropriate statistical test must then be chosen to prove
that the null hypothesis is false. If sufficient evidence does not
exist to prove falseness, the test defaults to the conclusion that
the null hypothesis is correct but does not actually prove that it
is correct. It is therefore critical to choose a null hypothesis that
is the reverse of the statement the analyst wishes to prove. For
example, if the analyst wishes to prove that the means from two
groups of data are not equal, he or she should choose a null hy-
pothesis in which the means are equal and then perform a test to
demonstrate that this hypothesis is false. In addition, the analyst
must determine how much risk of error is acceptable. In gener-
al, when a statistical test is conducted, two types of potential
error can occur. The probability of a type 1 error, or �, represents
the risk of rejecting the null hypothesis when it is true. A type 2
error, of probability �, occurs when the experimenter fails to re-
ject the null hypothesis when it is false. Typical � values are
5–10%, and typical � values are 5–20%.

After the analyst has determined the appropriate error risk, it
is usually necessary to estimate the sample size required for the
data comparison. The procedure for estimating the necessary n
depends on several factors. If s is large (poor measurement preci-
sion) and � and � are small (low risk of error is desired), the nec-
essary n can be prohibitively large. In these cases, it may be nec-
essary to refine the measurement system or revise the study
design before proceeding. On the other hand, a small s can result

y st+  (1 –  �/2, n – 1) √n•

( )

( )

( )

( )

( )

(a)

(b)

(c)

(d)

(e)

–� �0

y1 y2

FIGURE 1. Comparison of two-sample t-test and TOST in terms of
confidence intervals.

The conclusions for each scenario with a t-test and TOST, respectively,
would be (a) equal and equivalent, (b, c) equal but not equivalent, (d) not
equal but equivalent, (e) not equal and not equivalent.
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in a calculated required n of 2 or 3. Although these values may
result from statistically valid calculations, the accuracy of the ex-
perimentally determined y– and s values is often very poor with
small n values, and the test may result in an incorrect conclusion.
It may be useful to examine risks of errors that are achievable
with different n values and precisions so that the analyst can
make the most informed compromise between risk and labora-
tory efficiency. Once valid data have been obtained, the experi-
menter has several choices on how to proceed with the data eval-
uation, depending on the research objective.

Two-sample t-test
The two-sample t-test allows comparison of the mean values of
two data sets by the calculation of the test statistic

(2)

in which y–1 and y–2 are the mean values from groups 1 and 2, sp
is an estimate of the pooled s of the measurements, and n1 and
n2 are the number of observations for each group. The sp of
replicate sets of measurements is

(3)

in which s1 and s2 are the estimated s values for each set of mea-
surements. The absolute value of the calculated T-value is then
compared with the critical t-value for the selected significance
level � (obtained from statistics tables or by using TINV in
Excel). If the absolute value of the calculated T-value is greater
than or equal to the critical t-value, then the data sets are de-
clared statistically different. This test can also be performed by
constructing a 100(1 – �)% confidence interval for the difference
between two means using

(4)

and determining whether the resulting confidence interval con-
tains 0. If the confidence interval does not contain 0, then the
means are declared not equal.

The null hypothesis of the two-sample t-test is that the mean
values of the two data sets are equal; this places the burden on
the analyst to prove that the mean values are in fact different. Al-
though it is an appropriate test for proving that two data sets are
different, problems arise when the two-sample t-test is used to
show equivalence. First, the traditional two-sample t-test can re-
ward the analyst for having poor precision and/or a small n.
Equation 2 indicates that an increase in sp or a decrease in n re-
sults in a smaller calculated T-value, which makes it more diffi-
cult to declare that the mean values are not equal. In the absence
of substantial evidence to conclude that the mean values are dif-
ferent, the analyst can mistakenly default to the hypothesis that
they are equal. Another problem associated with the use of the
two-sample t-test is that it may lead the analyst to conclude that
a statistically significant difference exists between the mean val-

ues when the magnitude of the difference is of no practical im-
portance. This is a particular problem when the precision of the
measurement is very good; a post hoc explanation of statistical
significance may be required when the difference is of no practi-
cal importance. Therefore, the two-sample t-test is not well suit-
ed for showing the equivalence of mean values from two groups.

Equivalence test
An alternative to the two-sample t-test is TOST, designed specif-
ically for bioequivalence testing of pharmaceutical products
(3–6). It has recently been expanded into broader applications in
pharmaceutical science (1, 7–10), process engineering (11, 12),
psychology (13), medicine (14), chemistry (15), and environ-
mental science (16). TOST begins with a null hypothesis that the
two mean values are not equivalent, then attempts to demon-
strate that they are equivalent within a practical, preset limit; this
is conceptually opposite to the two-sample t-test procedure. Un-
like the two-sample t-test, TOST appropriately penalizes poor
precision and/or small n values and places the burden on the an-
alyst to prove that the data sets are equivalent.

The design of an equivalence test can be challenging because
the analyst must define an acceptance criterion on the basis of
prior knowledge of the
measurement as well as its
intended application. This
acceptance criterion � is the
limit outside which the dif-
ference in mean values
should be considered prac-
tically and statistically sig-
nificant. The analyst then
constructs a 100(1–2�)%
confidence interval for the
difference between the two
mean values and compares
it with �. If the confidence interval is completely contained with-
in the interval [–�, �], the mean values of the two data sets are
equivalent. The use of � establishes a priori what level of differ-
ence is acceptable.

Figure 1 displays five data comparisons and illustrates the dif-
ferent outcomes that arise from using the traditional two-sample
t-test and TOST. The center of each confidence interval is the
difference between the observed y– values. The width of the in-
terval, which depends on the measurement precision, represents
the range of plausible true differences in mean values between
the data sets. If these intervals were created with the traditional
two-sample t-test, for Figures 1a–c the analyst would conclude
that there is no difference between the mean values because the
confidence interval includes a difference of 0. The confidence in-
tervals in Figures 1d and 1e do not include a difference of 0;
therefore, the mean values would be declared different.

By contrast, if these intervals were created with TOST, the
mean values of the two data sets would be declared equivalent
only for Figures 1a and 1d because these confidence intervals are
completely contained within the range from –� to �. The mean
values for Figure 1d are declared equivalent even though the
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confidence interval does not include 0, because the bias
represented by the difference in means is small and with-
in the interval [–�, �]. The confidence intervals in Figures
1b and 1c are too wide for the mean values of the data sets
to be declared equivalent.

Making it easy
What is an acceptable difference between the mean values
of two data sets? Choosing an appropriate � can be a chal-
lenge. It must be greater than , lest the test fail sim-
ply because of imprecision rather than because of a true
difference. However, � must also be less than any specifica-
tions or standards that the testing is designed to challenge,
or the test becomes too easy and will not adequately dis-
criminate. Although some statistical software packages in-
clude TOST (17), our discussion provides a step-by-step process
for performing equivalence testing with a preset � with Excel or
other commonly available computational software packages.

The first parameter that must be specified before an analyst per-
forms statistical testing is �, the absolute value of the true differ-
ence between the groups’ mean values; � is a hypothetical value
such that if the absolute value of the observed difference is no

more than �, there is a
strong probability of con-
cluding that the two data
sets represent equivalent re-
sults. An acceptable level of
bias can be considered and
included in �; however, the
choice of a nonzero � can
decrease the ability of the
test to distinguish a small
but important difference be-
tween data sets. In addition,
in the absence of extensive

data, no objective basis exists for choosing a nonzero �. Therefore,
the most conservative approach is to assign a value of 0 to �.

The second step is determining the n value needed for the
test. Because the required n for TOST is related to � and to other
parameters discussed earlier, it may be helpful at this early stage
to assume a range of potential � values as a fraction of the speci-
fication or standard that the test is designed to challenge or as a
multiple of s ; � can be refined later. Then, with this series of po-
tential � values, along with values for �, �, �, and s, the relation-
ship between these variables may be solved iteratively to yield an
appropriate n. Although many approaches exist for determining
n (1, 10, 11, 18, 19), Excel and the following equation (20) can
be used to easily calculate a simplified approximation of the re-
quired n for each group:

(5)

in which the z values are the percentiles of the standard normal
distribution, which are available in statistics tables or from the
NORMSINV(�) function in Excel.

It may be helpful to compile a table of n and � values for var-
ious combinations of �, �, �, and s to assess the trade-offs be-
tween n and acceptable levels of risk that the test will lead to the
wrong conclusion. Table 1 shows the acceptance criteria � that
are achievable for different combinations of s and n, with � = 0
and type 1 and 2 error rates of 5% (� = � = 0.05). As expected,
a smaller n increases the acceptance criterion within which the
data would be considered equivalent, essentially making the test
easier to pass but less scientifically defensible. As with any form
of statistical testing, scientific and practical judgment is the key to
proper implementation. Consider a situation in which � is ini-
tially set at 0.9%; n = 10 would be adequate for s values ≤0.5%
because � is ≤0.9%. If s is 1.0%, n ≥ 30 is necessary to use
� = 0.9%.

After the appropriate sample size n is chosen, the third step is
to take the first set of replicate measurements and estimate s. For
better estimates of measurement precision, some approaches to
equivalence testing have included multiple analysts and multiple
days in data comparison studies (1). However, because of con-
straints on sample size, time, or resources, it is fairly common to
use independent, replicate measurements from a single analyst or
a single laboratory to estimate the precision of a measurement.
Although this approach can lead to an underestimate of preci-
sion, it is a pragmatic compromise between appropriate statisti-
cal application and real-world constraints on resources.

To ensure that s adequately represents the true measurement
precision, it is recommended that an upper confidence limit
(e.g., the upper limit from a one-sided 80% confidence interval)
be used as an estimate of measurement precision. The upper
100(1 – �)% confidence limit s* for s may be calculated as

(6)

in which �
2
(�, n – 1) is the (100�)th percentile of a distribution

with n – 1 degrees of freedom (21, 22). The �2 is available in sta-
tistics reference tables (22) or from the CHIINV(1 – �, n – 1)
function in Excel. This accommodation for error in the s estimate
essentially enables a second lab or method to produce data with
less precision, provided that the precision of the data is still
equivalent to that from the original lab or method. Next, with
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Table 1. � for various n and upper limit of method
precision s*.
(� = � = 0.05, � = 0)

s* � for n = 5 � for n = 10 � for n = 12 � for n = 30

0.5 1.3 0.9 0.8 0.5

1.0 2.6 1.7 1.5 0.9

1.5 4.0 2.6 2.3 1.4

2.0 5.3 3.4 3.1 1.9

2.5 6.6 4.3 3.9 2.4

3.0 7.9 5.1 4.6 2.8
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the desired �, �, n (for each group), �, and s* values, � can be
calculated by

(7)

For example, suppose a researcher wishes to set an acceptance
criterion for an assay that compares the content of a sample
measured at two different laboratories, and the data are ex-
pressed as a percentage of the labeled content. If � = � = 0.05,
� = 0, and a predetermined n = 10 sample preparations exist for
each site, statistically appropriate values for the acceptance crite-
rion can be calculated for different levels of precision (Table 1).
In all cases, the calculated � value should be critically examined
to determine whether it has practical relevance for the test that is
performed (i.e., is not too small) yet is scientifically defensible for
the intended application (i.e., is not too large).

After an appropriate acceptance criterion is chosen, the sec-
ond set of measurements is taken and a slightly modified version
of Equation 4 is used to calculate the confidence interval for the
difference in mean values. Note that it is necessary to use � in-
stead of �/2 for the equivalence test.

(8)

Alternatively, the Excel Analysis ToolPak can be used to simplify
this procedure (12). Finally, this confidence interval is compared
with the � determined in the previous step. If the confidence in-
terval for the difference in mean values is completely contained
within [–�, �], the mean values are considered equivalent. If the
confidence interval contains some values outside [–�, �], the test

has not provided sufficient evidence that the mean values are
equivalent.

It is possible to declare the mean values equivalent if the con-
fidence interval for the difference in mean values does not in-
clude 0, provided that the interval does not include any values
outside [–�, �]. A confidence interval that does not include 0
suggests bias in the measurements, which may need to be exam-
ined further; however, the TOST conclusion that the mean val-
ues are equivalent says that the bias is less than the acceptable �.
Note that for Equation 8 to be valid, the s values of the two data
sets should be similar. An appropriate variance test, such as Lev-
ene’s (23), should be used to further evaluate significant differ-
ences in measurement precision.

Practical differences vs statistical significance
One of the more common criticisms of the traditional t-test is
that it cannot distinguish between statistically significant and
“scientifically relevant” differences. To evaluate how equivalence
testing works in practice, a series of data comparison studies
known as method transfers were conducted. In each of these
studies, the analysis of a pharmaceutical product by a second lab-
oratory was compared with the analysis by the original laborato-
ry to assess whether the second laboratory applied the method in
an equivalent manner.

Table 2 shows the data for the dissolution analysis of a tablet
product from the development laboratory and the manufactur-
ing QC laboratory. From data from the development lab, s was
estimated at 1.9%. With the 80% upper confidence limit for this
s, � = 0, and � = � = 0.05, � is calculated with Equation 7 to be
3.7% dissolved. Then, with the data in Table 2 and Equation 8,
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Table 3. Comparison of the effect of poor
precision on the outcome of TOST vs a two-
sample t-test.
(� calculated on the basis of the development laboratory s* from previ-
ous experiments of 1.5%, with � = � = 0.05, � = 0, n = 6)

% Label strength dissolved
Tablet number Development lab Contract lab

1 82 74

2 92 70

3 78 84

4 85 76

5 77 90

6 79 77
––y 82 79

s 5.6 7.3

% RSD 6.9 9.2

Difference between ––y values 3

TOST: 90% confidence interval
for difference (� = 3.5%) (–3.1, 10.5)

Two-sample t-test p-value 0.35

Table 2. Statistical significance vs practical
relevance in the transfer of a dissolution
method.
(� calculated on the basis of the development laboratory s of 1.9%, with 
� = � = 0.05, � = 0, n = 12)

% Label strength dissolved
Tablet number Development lab Manufacturing QC lab

1 90.8 86.2

2 88.0 87.4

3 90.5 88.2

4 90.0 89.7

5 91.0 87.3

6 86.0 87.6

7 88.3 88.0

8 89.3 86.5

9 88.9 89.6

10 91.1 89.1

11 86.2 86.1

12 91.3 86.2
––y 89.3 87.7

s 1.9 1.3

% RSD 2.1 1.5

TOST: 90% confidence interval
for difference (� = 3.7%) (0.5, 2.7)

Two-sample t-test p-value 0.02
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a 90% confidence interval for the difference
between the laboratory mean values is calcu-
lated to be 0.5–2.7%. Because the difference
between the means is less than the required
3.7%, the null hypothesis that the mean values
are not equivalent is disproved, and the labo-
ratory methods are declared equivalent.
Thus, the method is successfully transferred
to the manufacturing QC laboratory.

When a traditional two-sample t-test with
� = 0.05 is used to compare the data in Table
2, sufficient evidence exists (p-value = 0.02)
for the analyst to conclude that the laborato-
ry means are not equal. In this case, the p-
value is the probability of observing a T-value
that is more extreme than the observed T-
value when the means are equal. The conclu-
sion reached with the traditional two-sample
t-test is problematic, because the difference in
y– values (1.6%) is a scientifically acceptable
difference for this test. This example high-
lights a key advantage of TOST over a two-
sample t-test for showing equivalence—
TOST allows small, scientifically irrelevant differences to exist
without leading to the conclusion that the laboratory means are
not equivalent.

Consequences of poor precision
Table 3 is an example of a tablet dissolution method that was
transferred from a development laboratory to a contract labora-
tory during the early stages of product development. In this study,
n = 6 for each laboratory because of limited sample availability.
With an initial s* estimate of 1.5% from previous analyses, � was
calculated at 3.5%, which would generally be considered accept-
able for a method of this type. Notice that the actual s from each
laboratory was much larger than the initial estimate of 1.5%. This
was determined to be the result of poor sample homogeneity
caused by degradation during storage. When the data are com-
pared via an equivalence test with � = 3.5%, sufficient evidence
does not exist to declare the laboratories’ methods equivalent.
Moreover, when the upper limit of the experimentally observed s
of 5.6% is used to calculate the minimum achievable � for the test,
� = 19%, which is considerably larger than would be acceptable for
a dissolution test. Even without performing the second set of
measurements, the analyst can see that the method precision and
study design are insufficient to meet the objective, and it is ap-
propriate to conclude that the method transfer is a failure.

If the laboratory mean values had been compared with a two-
sample t-test (� = 0.05), the p-value of 0.35 indicates that the
data would not have provided sufficient evidence to conclude that
the laboratories were different. In other words, the laboratory
mean values would have been declared equal and the method
transfer would have been deemed a success. In this case, the tra-
ditional two-sample t-test would not have rejected the hypothesis
that the data sets are equal, because s was too large relative to the
difference between the y– values. This example highlights another

key advantage of TOST over a two-sample t-
test—TOST appropriately penalizes the analyst
if the observed variance is too large.
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