

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 / USA *Phone* 610.832.9500 *Fax* 610.832.9666 *Web* www.astm.org

COMMITTEE D02 ON PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: RANDY F JENNINGS, TENNESSEE DEPT OF AGRIC, P O BOX 40627, NASHVILLE, TN 37204, UNITED STATES (615) 837-5327, FAX: (615) 837-5335, E-MAIL: RANDY.JENNINGS@TN.GOV
 FIRST VICE CHAIRMAN: JAMES J SIMNICK, BP AMERICA, 150 W WARRENVILLE RD, NAPERVILLE, IL 60563, UNITED STATES (630) 420-5936, FAX: (630) 420-4831, E-MAIL: SIMNICJJ@BP.COM
 SECOND VICE CHAIRMAN: MICHAEL A COLLIER, PETROLEUM ANALYZER CO LP, 21114 Hwy 113, CUSTER PARK, IL 60481, UNITED STATES (815) 458-0216, FAX: (815) 458-0217, E-MAIL: MICHAEL.COLLIER@PACLP.COM
 SECOND SECRETARY: HIND M ABI-AKAR, CATERPILLAR INC, BLDG H3000, OLD GALENA ROAD, MOSSVILLE, IL 61552, UNITED STATES (309) 578-9553, E-MAIL: ABI-AKAR_HIND@CAT.COM
 SECRETARY: SCOTT FENWICK, NATIONAL BIODIESEL BOARD, PO BOX 104848, JEFFERSON CITY, MO 65110-4898, UNITED STATES (800) 841-5849, FAX: (537) 635-7913, E-MAIL: SFENWICK@BIODIESEL.ORG
 STAFF MANAGER: ALYSON FICK, (610) 832-9681, FAX: (610) 832-9668, E-MAIL: AFICK@ASTM.ORG

Issued: 08.11.2017 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 08.09.2017 Sequence VI Conference Call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 9:05 AM Central Time by Chair Greg Miranda.

<u>Agenda</u>

The Agenda is the included as Attachment 1.

1.0 Roll Call

The Attendance list is Attachment 2. There were no member changes.

2.0 Approval of Meeting minutes from 07.11.2017 Seq. VI SP meeting

2.1 Greg Miranda made the motion and Jason Bowden seconded.

2.2 The minutes were approved unanimously.

- 3.0 Old Business
 - 3.1 Seq. VIE/F Short Block Hardware Task Force Update Adrian Alfonso
 - 3.1.1 Hardware availability update Most labs have received 50% of their orders.
 - 3.1.2 Status of Short block hardware introduction Matrix All tests for 3 labs are reported. The 4th lab is running the final test for the matrix. It will be reported in August. There are 7 OHT-2 engines remaining with OHT. Those are allocated, but a lab needing more engines can contact OHT for possible redistribution. Current testing levels estimate the industry will switch to GM Kit engines in October.
 - 3.2 Seq. VIE Severity Task Force Update Dan Worcester The Task Force is getting approval for analysis of reference oils. One oil is waiting for supplier response. At the next meeting a Scope and plan moving forward will be provided.
 - 3.3 Seq. VIF Procedure: Preparing for Ballot This is in process. No completion date has been provided.
 - Update on Reference Oil Blend 542-3
 See Attachment 3. Andy asked if there was a difference in chemical analysis. They are similar. Labs have remaining 542-2 for VIF tests. 542-2 targets are being used for 542-3. Data will be reviewed on an on-going basis. 5 results for 4 labs have been reported. This oil will also be introduced for VIF references later.
 - 3.5 Seq. VIE Procedure Revisions

See Attachment 4. The oil filter housing in Section 6.6.5.7 is no longer available. The new version is OHT6A-012-5 which has the 28 micron filter screen. Oil circulation pump in Section 6.5.5.2, Viking 4125 has been replaced with model G4124A. The recommendation was to add each as alternates. Amol also noted that the procedure is not clear that BLB 3 should be used for FEI calculations when those stages are run. Some of these changes will also be needed on the VIF procedure.

- MOTION #1: Recommend to the Surveillance Panel the procedure be modified with an information letter to include the new oil filter housing and circulation pump numbers. Greg Miranda, Jason Bowden, second. 12 yes, 0 no, 1 waive. Motion passes.
- MOTION #2: Recommend to the Surveillance Panel to revise equations 15.2 and 15.3 to include a note to indicate when BLB3 is required, substitute BLB3 for BLB2 and revise baseline calculations in A16.8 to include a note and additional equations to reflect the use of BLB3 in the calculations when a BLB3 is required to be run.
 Rich Grundza, Amol Savant, second. 11 yes, 0 no, 1 waive. Motion passes.

4.0 New Business

4.1 VIF Post PM Vi Limit Review | Calibration of VIF engines | VID-VIF Equivalency Greg Miranda/ Stats Group

See Attachment 5. The recommendation on Slide 3 is to increase R for FEI 1 from 0.95 to 1.00 and for FEI 2 from 0.63 to 0.95. The upper Vi limit for FEI 1 would increase to 4.64 from 2.6. FEI 2 Vi would be unchanged. These changes would be temporary and need review later. There is a bias indicated, but that will remain unchanged for now. SwRI will run a 5th run on engine 206 after candidate tests complete. Data will be reviewed when this run is completed. Martin recommended reference oil 1011 not be used as the first oil on a new engine.

- MOTION #3:Recommend to the Surveillance Panel effective from 07.16.2017, the EOT date of the last
reference on one stand at Intertek the R values of 1.00 for FEI 1 and 0.95 for FEI 2 and Vi
value of 4.64 for FEI 1 will be applied to VIF reference tests.
Martin Chadwick, Adrian Alphonso, second.9 yes, 0 no, 4 waive. Motion passes.
 - 4.2 Seq. VIE Appendix K items
 - 4.2.1 Short block build workshop
 - A second build workshop may be scheduled for ½ day at the same time as the VH workshop to minimize travel.
 - 4.2.2 VIE/VIF Research Report A Volunteer will be needed. This will be decided at next call.
- 5.0 Next Meeting
 - 5.1 The next SP meeting is planned in 3-4 weeks.

The meeting adjourned at 11:09 AM.

Sequence VI Surveillance Panel Conference Call Agenda August 09, 2017 @ 10:00-11:30 EST

Audio Connection

Call-in Number: +1-415-655-0001 Conference Code: 197 726 952

Webex Meeting URL:

https://meetings.webex.com/collabs/#/meetings/detail?uuid=MEE4SII6O0XZW1S 1ACIP4FPJ8J-20XT&rnd=167634.43528

1. Roll Call (start 10:05 EST)

1.1. SP Membership changes and additions

2. Approval of Meeting minutes from July 11, 2017 Seq. VI SP meeting

3. Old Business

3.1	Seq. VIE/F Short Block Hardware Task Force Update	Adrian Alfonso
	3.1.1 Hardware availability update	
	3.1.2 Status of Short block hardware introduction Matrix (i.e. status of fourth engine)	
3.2	Seq. VIE Severity Task Force Update	Dan Worcester
3.3	Seq. VIF Procedure: Preparing for Ballot	Greg Miranda
3.4	Update on TMC 542-3 introduction	Rich Grundza
3.5	Seq. VIE Procedure Revisions	All

4. New Business

- 4.1. VIF Post PM Vi Limit Review | Calibration of VIF engines | VID-VIF Equivalency – Greg Miranda/ Stats Group
- 4.2. Seq. VIE Appendix K items
 - 4.2.1. Short block build workshop
 - 4.2.2. VIE/VIF Research Report

5. Next Meeting

5.1.TBD

6. Meeting Adjourned

ASTM SEQUENCE V	
-----------------	--

Name		Company	Attend
A driver Alfondo	DL ange: (210) 929 0421	Intertal	ATTEND
Adrian Alfonso	Phone: (210) 838-0431	Intertek	
Voting Member	Adrian.Alfonso@intertek.com		ATTEND
Jason Bowden	Phone: (440) 354-7007	OHT	ATTEND
Voting Member	jhbowden@ohtech.com	X7 1 11 m m	ATTEND
Amol Savant	acsavant@valvoline.com	Valvoline	ATTEND
Voting Member			ATTEND
Tim Cushing	Phone: (248) 881-3518	General	
Voting Member	Timothy.Cushing@gm.com	Motors	
Rich Grundza	Phone: (412) 365-1034	ТМС	ATTEND
Voting Member	reg@astmtmc.cmu.edu		
Jeff Hsu	Phone: (832) 419-3482	Shell	ATTEND
Voting Member	j.hsu@shell.com		
Teri Kowalski	Phone: (734) 995-4032	Toyota	ATTEND
Voting Member	Teri.Kowalski@tema.toyota.com		
Dan Lanctot	Phone: (210) 690-1958	TEI	ATTEND
Voting Member	dlanctot@tei-net.com		
Greg Miranda	Phone: (440) 347-8516	Lubrizol	ATTEND
Voting Member	Greg.Miranda@Lubrizol.com		
Katerina	Phone:	Afton	ATTEND
Pecinovsky	Katerina.Pecinovsky@AftonChemical.c		
Voting Member			
Brianne Pentz	Phone:	BP	
Voting Member	Brianne.Pentz@bp.com		
Andy Ritchie	Phone: (908) 474-2097	Infineum	ATTEND
Voting Member	Andrew.Ritchie@infineum.com		
			+
Ron Romano	Phone: (313) 845-4068	Ford	
Voting Member	rromano@ford.com		
Clifford Salvesen	Phone: (856) 224-2954	ExxonMobil	
Voting Member	Clifford.r.Salvesen@exxonmobil.com		
Kaustav Sinha	Phone: (713) 432-6642	Chevron	
Voting Member	LFNQ@chevron.com	Oronite	
Haiying Tang	Phone: (248) 512-0593	Chrysler	
Voting Member	HT146@Chrysler.com		
Dan Worcester	Phone: (210) 522-2405	SwRI	ATTEND
Voting Member	Dan.Worcester@swri.org		

Name	Email/Phone	Company	Attend
Ed Altman	Ed.Altman@aftonchemical.com	Afton	
Bill Anderson	Bill.anderson@aftonchemical.com	Afton	ATTEND
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	
Lisa Dingwell	Lisa.Dingwell@AftonChemical.com	Afton	
Todd Dvorak	Todd.Dvorak@aftonchemical.com	Afton	ATTEND
Greg Guinther	Greg.Guinther@aftonchemical.com	Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com	Afton	
Christian Porter	Christian.Porter@aftonchemical.com	Afton	
Jeremy Styer	Jeremy.Styer@aftonchemical.com	Afton	
Timothy Caudill	Tlcaudill@valvoline.com	Valvoline	
Tisha Joy	Tisha.Joy@bp.com	BP	
Michael Blumenfeld	Michael.1.Blumenfeld@exxonmobil.co	om EM	
	Phone: (856) 224.2865		
Don Smolenski	Donald.j.Smolenski@Evonik.com	Evonik	
Prasad Tumati	ptumati@jhaltermann.com	Haltermann	
Doyle Boese	Doyle.Boese@infineum.com	Infineum	ATTEND
	Phone: (908) 474-3176		
Gordon Farnsworth	Gordon.Farnsworth@infineum.com	Infineum	ATTEND
Charlie Leverett	Charlie.Leverett@yahoo.com	Infineum	ATTEND
	Phone: (210) 414-5448		
Mike McMillan	mmcmillan123@comcast.net	Infineum	
Jordan Pastor	Jordan.Pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
William Buscher	William.Buscher@intertek.com	Intertek	ATTEND
Martin Chadwick	Martin.Chadwick@intertek.com	Intertek	ATTEND
Al Lopez	Al.Lopez@intertek.com	Intertek	
Addison Schweitzer	Addison.Schweitzer@intertek.com	Intertek	
Bob Olree	olree@netzero.net	Intertek	
Andy Buczynsky	Andrew.Buczynsky@gm.com	GM	
Thomas Hickl	Thomas.Hickl@de.gm.com	GM	
Jeff Kettman	Jeff.Kettman@gm.com	GM	
Jonas Leber	Jonas.Leber@opel.com	GM	
Mike Raney	Michael.P.Raney@gm.com	GM	
	Phone: (248) 408-5384		
Angela Willis	Angela.P.Willis@gm.com	GM	
Scott Rajala	srajala@ILAcorp.com	Idemitsu	
Dave Passmore	dpassmore@imtsind.com	IMTS	
			•

Name	Email/Phone	Company	Attend
Jerry Brys	Jerome.Brys@lubrizol.com	Lubrizol	ATTEND
	Phone: (440) 347.2631		
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
James Matasik	James.Matasic@lubrizol.com	Lubrizol	
Kevin O'Malley	Kevin.OMalley@lubrizol.com	Lubrizol	
	Phone: (440) 347.4141		
Chris Castanien	Chris.Castanien@neste.com	Neste	
	Phone: (440) 290-9766		
Dwight Bowden	dhbowden@ohtech.com	OHT	
Matt Bowden	mjbowden@ohtech.com	OHT	
Ricardo Affinito	affinito@chevron.com	Oronite	ATTEND
	Phone: (510) 242-4625		
Ian Elliot	IanElliott@chevron.com	Oronite	
Jo Martinez	jogm@chevron.com	Oronite	ATTEND
Robert Stockwell	rsto@chevron.com	Oronite	ATTEND
Christine Eickstead	Christine.Eickstead@swri.org	SwRI	
Travis Kostan	Travis.Kostan@swri.org	SwRI	
Patrick Lang	Patrick.Lang@swRI.org	SwRI	
_	Phone: (210) 522-2820		
Michael Lochte	mlochte@swri.org	SwRI	
Karen Haumann	Karen.Haumann@shell.com	Shell	
Scott Stap	Scott.Stap@tgdirect.com	TG Direct	
Clayton Knight	cknight@tei-net.com	TEI	
Zack Bishop	zbishop@tei-net.com	TEI	
	Phone: (210) 877-0223		
Jeff Clark	jac@astmtmc.cmu.edu	TMC	
Hirano Satoshi	Satoshi_Hirano_aa@mail.toyota.co.jp	<u>p</u> Toyota	ATTEND
Jim Linden	lindenjim@jlindenconsulting.com	Toyota	ATTEND
	Phone: (248) 321-5343		
Mark Adams	mark@tribologytesting.com	Tribology	
		Testing	
Tom Smith		Valvoline	
Hap Thompson	Hapjthom@aol.com	VIx Facilitator	ATTEND
Chris Taylor	Chris.Taylor@vpracingfuels.com	VP Racing	
-		Fuels	

Name	Email/Phone		Company	Attend
MOTION:	OIL FILTER	BLB 3	VIF Vi	
Adrian Alfonso	YES	YES	YES	
Voting Member	125			
Jason Bowden	YES	YES	WAIVE	
Voting Member				
Amol Savant	YES	YES	WAIVE	
Voting Member				
Tim Cushing	YES	YES	YES	
Voting Member				
Dish Crew day	VEC		VEC	
Rich Grundza	YES	YES	YES	
Voting Member Jeff Hsu	YES		WAIVE	
	I ES		WAIVE	
Voting Member Teri Kowalski	YES	YES	YES	
	115	1125	1 2.5	
Voting Member Dan Lanctot	WAIVE	WAIVE	WAIVE	
Voting Member	WAIVE		WAIVE	
Greg Miranda	YES	YES	YES	
Voting Member	1LS	12.5	1120	
Katerina	YES	YES	YES	
Pecinovsky	125			
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie	YES	YES	YES	
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member	VEG		VEC	
Kaustav Sinha	YES	YES	YES	
Voting Member	STOCKWELL	STOCKWELL	STOCKWELL	
Haiying Tang				
Voting Member	VEG		VEC	
Dan Worcester	YES	YES	YES	
Voting Member				
VOTES	12 Y, O N, 1 W	11 Y, O N, 1 W	9 Y, O N, 1 W	

Name	Email/Phone	Company	Attend

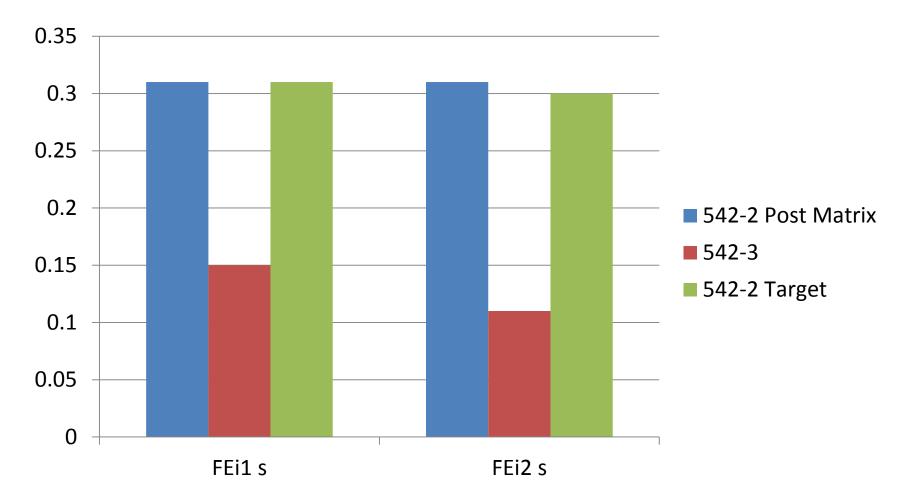
Γ	T	Г	[[]
MOTION:				
Adrian Alfonso				
Voting Member				
Jason Bowden				
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing				
Voting Member				
Dist Curved as				
Rich Grundza				
Voting Member				
Jeff Hsu				
Voting Member				
Teri Kowalski				
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda				
Voting Member				
Katerina				
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie				
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member				
Kaustav Sinha				
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester				
Voting Member				
VOTES				
	<u></u>	1		

Name	Email/Phone	Company	Attend

Γ	r	Г	[,
MOTION:				
Adrian Alfonso				
Voting Member				
Jason Bowden				
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing				
Voting Member				
_				
Rich Grundza				
Voting Member				
Jeff Hsu				
Voting Member	ļ			
Teri Kowalski				
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda				
Voting Member				
Katerina				
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie				
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member				
Kaustav Sinha				
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester				
Voting Member				
VOTES				
	<u>I</u>		1	


Introduction of 542-3

8/9/17 Sequence VI Conference Call


Introduction of 542-3

- 5 tests reported from 4 labs
- All attempts resulted in calibration.

Means of 542-3 Compared to Historic 542-2 performance

Standard deviations of 542-3 Compared to Historic 542-2 performance

Sequence VIE Procedure Revisions

7/6/2017

JAHAI

Oil Filter Housing:

Procedure:

OHT6A-012-2 with a stainless steel screen having a rating of 60 µm, Part No. OHT6A-013-3 (see X1.20). Locate the filter between the engine oil pump and where the oil enters the engine oil 6.6.5.7 Install one oil filter (FIL-1 in Fig. A5.6) in the external oil system. The filter specified is gallery.

*The Filter Housing specified as OHT6A-012-2 is no longer a manufactured part. The current filter housing is an OHT6A-012-5 and the procedure needs to be edited to reflect this change.

Oil Circulation Pump:

Procedure:

electric drive motor of 1140 r/min to 1150 r/min with a minimum power of 0.56 kW. Voltage and 6.6.5.2 Use a positive displacement oil circulation pump. A Viking Series 4125, Model G4125, no relief valve, basemounted is specified (see X1.15). The pump shall have a V-belt or direct drive phase are optional.

NOTE 1-lf using a V-belt drive, use a 1.1 pulley ratio so that the final speed of the pump is a nominal 1150 r/min.

specifications for the Viking G4125 and Viking G4124A are highlighted in the following two documents manufactured part. An appropriate replacement pump is a Viking Series 4124A, Model G4124A. The *The Oil Circulation Pump is specified to be a Viking Series 4125, Model G4125 and is no longer a

	41 VIKING® HE 41.2 SERIES 125 AND 4125
--	--

50

duty pumping jobs without problems of end play and This series of heavy-duty pumps is available either seal with carbon rotating and Ni-Resist stationary faces. The integral thrust bearing is designed to handle heavydistortion. For increased versatility of installation and complete selection of ports, many of the pump casings are designed so they can be rotated on the bracket to any Available with packed stuffing box or Buna-N mechanical unmounted or mounted as shown on following pages.

some sizes are available with jacketed head plate. For relief valve on head is standard for this series. To permit 45° or 90° angle from that shown in the illustrations. See revolvable casing feature on Page 141.1. Overpressure use of this type pump in a greater range of applications, heavy-duty pumps with jacketed bracket and head, see Catalog Section 142.

Dimensions for Unmounted Pumps—See Page 141.8.

Seal	ket	ez	0
ice.	Bracket	@ Bronze	@ Bronze
Bushings Mechanical Seal		Carbon Graphite	Carbon Graphite
sked	Bracket	Bronze	Bronze
Pac	ldler.	Bronze	Bronze
Rotor Shaft And	Idler Pin	Steel	Steel
killer		lron	@ Iron
Rotor		(Dan	Steel
Bracket		lion	hon
Head		Iron	Iron
Casing		Iron	Iron
Pump Construction		Standard Construction	Steel Fitted
	Rotor Shaft Packed	Casing Head Bracket Rotor kuller Idler Pin Keler Bracket Idle	Casing Head Bracket Rotor Iden Park Packed I Inon Iron Iron Ø Iron Ø Iron Ø Iron Steel Bronze Carb

CONSTRUCTION — SERIES 125 AND @ 4125 ("G" THROUGH "M" SIZES)

Internal ressure Relief Vatve

5 2 <u>5</u>

@ Bronze

Carbon Graphite

Bronze

Bronze

Steel

Bronze

Bronze

5

Iron

Lol

Bronze
 Fitted

ļ FILL CALL 1077 e 1

SPEC	SPECIFICATIONS	SERIE	S 12	5 AN	D @ 41	25 UNMO	SERIES 125 AND © 4125 UNMOUNTED PUMPS	S				
2				© Nominal		Maximum	Steel Fitted Construction	Maximum Recommended Discharge Pressure When	6 Mar Recomi	© Maximum Recommended	Approximate Shipping	dmøte ping
_	Model Numbers	Port Size		Pump Rating	.	Hydrostatic Pressure	Recommended Above This Viscosity	Handling 100 SSU Liqued At Nominal Rated Speeds	Temperature for Cataloged Pump °F. (°C.	Temperature for loged Pump "F. ("C.)	Weight With Valve	ght /allve
Packed	000 Mech. Seal	Inches	GPM (GPM (m ^a lhr)	RPM	PSIG (BAR)	SSU (cSt)	DISA	Packed	Mech. Seal	Pounds (KG)	s (KG)
G125	⊢		80	3	1800	400 (28)	@ 7,500 (1,650)	200	300 (149)	225 (107)	22	(10)
H125		11/2	15	6	1800	400 (28)	25,000 (5,500)	200	300 (149)	225 (107)	38	(17)
HL125	5 HL4125	1%	30	e	1800	400 (28)	7,500 (1,650)	200	300 (149)	225 (107)	4	(18)
AK125		2	20	(1)	1200	400 (28)	@ 25,000 (5,500)	150	300 (149)	225 (107)	78	(35)
AL125		~	75	Ē	1200	400 (28)	@ 25,000 (5,500)	150	300 (149)	225 (107)	81	(37)
K125	K41	2	75	(17)	780	400 (28)	25,000 (5,500)	200	300 (149)	225 (107)	105	(48)
KK125	KK41	~	10 10	(23)	780	400 (28)	25,000 (5,500)	200	300 (149)	225 (107)	110	(500
L125	5 L4125	7	135	(31)	640	400 (28)	25,000 (5,500)	200	300 (149)	225 (107)	155	(0 <u>/</u>
LQ125	5 LQ4125	@ 2 ¹ /2	135	(31)	640	400 (28)	25,000 (5,500)	200	300 (149)	225 (107)	175	(79)
LL125	5 LL4125	© 3	140	(32)	520	400 (28)	2,500 (550)	200	300 (149)	225 (107)	185	<u>(</u>
LS125	5 LS4125	63	200	(45)	640	400 (28)	75,000 (15,500)	150	300 (149)	225 (107)	190	(86)
Q125	041	@ 4	300	(68)	520	400 (28)	7,500 (1,650)	150	300 (149)	225 (107)	440	(200)
QS125	5 QS4125	9 ()	80	(114)	520	400 (28)	75,000 (16,500)	150	300 (149)	225 (107)	540	(245)
M125	5 M4125	@4	420	(35)	420	400 (28)	25,000 (5,500)	150	300 (149)	225 (107)	600	(272)
Ð	 Buna-N elastomer used i 	her used in mechanical seal of Series 4125 pumps. Viton	al seal (of Serie	is 4125 pun	nps. Viton ^e ,	and/or othe	and/or other speeds, see performance curves, which can be electronically	curves, which	can be elect	onically	
Z	Neoprene, and PTFE me	PTFE mechanical seals also available.	als also) availat	ble.			generated with the Viking Pump Selector Program, located on www.vikingpump.	or Program, k	ocated on www	w.viking	dump.
₽ L © (2 "G", "Q", and "QS" sizes !	have steel is	dler whe	en steel	fitted cons	Ss sizes have steel Idler when steel fifted construction is required.		com. Performance curves also snow preferred constructions, it suction pressure	ererred consu	ructions. It su	cition pre	sesure
∟ £)	rol mechanical seal pumps on applications with (3 300 cSt) provide details for recommendation.	ils for recon	umenda	tion.		scal pullips on applications with viscounce above 10,000 000 vide details for recommendation.	6	Check factory before using bronze rotors at viscosities normally requiring steel-	rs at viscositie	es normally re	quiring	steel
9	(a) Ports are suitable for use with 125# ANSI cast iron or 150# ANSI steel companion	with 125#	ANSI C8	st iron	or 150# AN	SI steel compar	•	fitted construction. "G". "AK". "AL". "LS". and "QS" sizes not available in bronze-	", and "OS" siz	ces not availa	ole in br	onze-
		a fuita a future of a star second for standard along		for sheet	dard nine			n untion				

uitable for use with 125# ANSI cast iron or 150# ANSI steel companion ilanges or flanged fittings. All others tapped for standard pipe. Orts are
 Orts are
 Orts
 Orts

Standard seal can be used from -20°F, to +225°F. With special construction. 0

temperatures from -60°F. to +650°F. can be handled with this series pumps. (a) Nominal rating based on handling thin liquids. (b) *AK", *AL", *KK", *LS", and *QS" sizes have ductile fron rotor. (c) For maximum recommended discharge pressures when handling other viscosities

nts and rounded to the nearest whole num ed an US me are bes

Mat

Viton[®] — Registered trademark of DuPont Performance Elastomers

VIKING PUMP • A Unit of IDEX Corporation • Cedar Falls, IA @2010

VIKING UNIVERSAL SEAL PUMPS

224AE, 4224AE, 324A, and 4324A (Cast Iron) 126A, 4126A, 226A and 4226A (Ductile Iron) 123A, 4123A, 223A and 4223A, 323A, 4323A (Steel Externals) 127A, 4127A, 227A and 4227A, 327A, 4327A (Stainless Steel) 124A, 4124A, 124AE, 4124AE, 224A, 4224A, SERIES

630	000	630.9	a
Saction		Page	lssue

Specifications (U.S. Units) – Non-Jacketed Pumps

Wode	Model Number	Standard Port Size	Nominal Pump Rating (100 SSU and below)	inal Rating and below)	Maximum Hydrostatic Pressure	① Maximum Discharge Pressure for 100 SSU liquid at rated speed	© Ma Recom Temper Standard	© Maximum Recommended Temperature for Standard Pump (°F)	Steel Fitted Recommended Above	Approximate Shipping Weight with Valve
Packed	Stuffing Box Seal	Inches	GPM	RPM	PSIG	PSIG	Packed	Mech Seal	SSU	Pounds
G124A	G4124A	01	8	1750	400	200	450	225	7,500	25
H124A	H4124A	@1 ½	15	1750						38
H126A	H4126A	@1 ½	<u>1</u>	1750	400	200	450	¢77	000,62	8
H123A	H4123A	©1 ½ ©1 ½	<u>0</u>	1/50		150	375	375	A/A	48
H12/A	HI 412/A	@ 1%	308	1750						40
HI 126A	HI 4126A	@1%	30	1750		200	450	225	7,500	40
HL123A	HL4123A	©1 ½	ŝ	1750	400					45
HL127A	HL4127A	@1 ½	20	1150		150	375	375	N/A	50
AK124A	AK4124A	0 2	67	1450	400	200	450	225	25,000	82
AL124A	AL4124A	@2	80	1450	400	200	450	225	25,000	85
K124A	K4124A	3 2	8	780				1		105
K126A	K4126A	@2	80	780	400	500	450	225	25,000	105
K123A	K4123A	©2	8	780			4	010	4114	120
K127A	K4127A	62	50	520		150	350	350	N/A	125
KK124A	KK4124A	© 2	100	780						110
KK126A	KK4126A	3 2	100	780	400	200	450	225	75,000	110
KK123A	KK4123A	62	100	780						125
KK127A	KK4127A	62	65	520		150	350	350	N/A	130
L124A/AE	L4124A/AE	<u>0</u> 2	135	640	001	000	ARO	225	25,000	155
L126A	L4126A	02	135	640	100	200	274	242	202523	155
LQ124A/AE	LQ4124A/AE	@2 ½	135	640						175
LQ126A	LQ4126A	©2 ½	135	640	007	200	450	225	25,000	175
L0123A	LQ4123A	@2 ½	135	640	201					185
LQ127A	LQ4127A	62 1/2	06	420		150	350	350	N/A	205
LL124A/AE	LL4124A/AE	0 3	140	520						185
LL126A	LL4126A	63	140	520	400	200	450	225	2,500	185
LL123A	LL4123A	63	140	520						195
LL127A	LL4127A	63	110	420		150	350	350	N/A	240
LS124A	LS4124A	® 3	200	640						190
LS126A	LS4126A	63	200	640	400	200	450	225	75,000	190
LS123A	LS4123A	63	200	640						200
LS127A	LS4127A	63	160	520		125	325	325	N/A	220
Q124A	Q4124A	04	300	520				:		440
Q126A	Q4126A	64	300	520	400	200	450	225	7,500	440
Q123A	Q4123A	64	300	520		3				450
Q127A	Q4127A	64	200	350		125	250	250	N/A	460
QS124A	QS4124A	@e	500	520						240
QS126A	QS4126A	66	500	520	400	200	450	225	000'9/	240
QS123A	QS4123A	66	500	520						220
QS127A	QS4127A	@e	320	350	007	125	7200	702	DIA DIA	000
M124A	M4124A	()4	420	420	400	2002	2	252	20100	810
N324A	N4324A	9.9 8	000	350	400	200	450	225	75,000	810
No20N	N4222M	90	ROO BOO	350	2	200	250	250	N/A	810
Dapad	DA924A	80	1100	280						1435
R323A	R4323A	88	1100	280	400	200	450	22s	25,500	1435
R327A	R4327A	68	1100	280		175	175	175	N/A	1435
RS324A	RS4324A	@10	1600	280		105	450	305	75,000	2000
RS323A	RS4323A	©10	1600	280	400		P F	244	22212	2500
RS327A	RS4327A	©10	1600	280		125	175	175	NA	2500
① For maximum recomm		ended discharge pressures at different viscosities,	sures at diffe	srent viscositi	es,	 Ports are tapped for standard (NPT) pipe. 	for standard	I (NPT) pipe.	Other thread standards available.	dards available.
see perform	see performance curves, which can be electronically generated with the	I can be elect	nonically gen	lerated with t	he	O Ports are suitable for use with Class 125 ANSI cast iron companion flanges	for use with	h Class 125/	ANSI cast iron corr	ipanion flanges
Viking Pump Selector	Viking Pump Selector Program, located on www.vikingpump.com. If sucuoi 	Program, located on www.vikingpump.com. If suction DetC	www.vikingpu Histor proce	Imp.com. IT S The possible	ucaon s with		ě			
pressure ex factiony ann	pressure exceeds ou hord, consumation defails. factions approval based on application defails.	irsuit ractory. Iration details	הושוושו לי			Ports are suitable	for Class 1	50 ANSI ster	Ports are suitable for Class 150 ANSI steel or stainless steel companion	l companion
S Extra clear	lactory approvanuased on appr Extra clearances are required :	above 225°F.	Higher temp	equired above 225°F. Higher temperatures can be	be	flanges or flanged fittings.	hungs.			

VIKING PUMP • A Unit of IDEX Corporation • Cedar Falls, IA ©2017 see performance curves, which can be electronically generated with the Viking Pump Selector Program, located on www.vikingpump.com. If suction pressure exceeds 50 PSIG, consult factory. Higher pressures possible with factory approval based on application details.
© Extra clearances are required above 225°F. Higher temperatures can be handled with special construction, consult factory.

VIF Post PM Vi Limit Review

Statistics Group August 1, 2017

Statistics Group

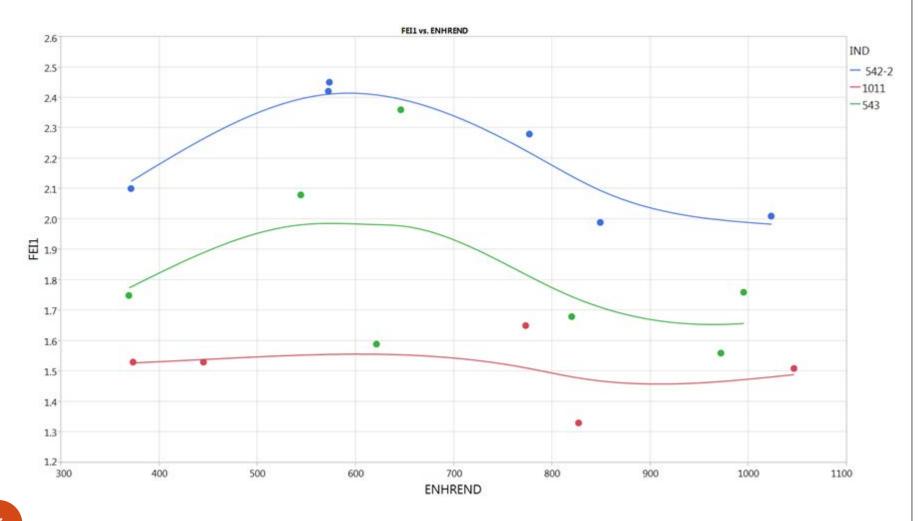
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Recommendation

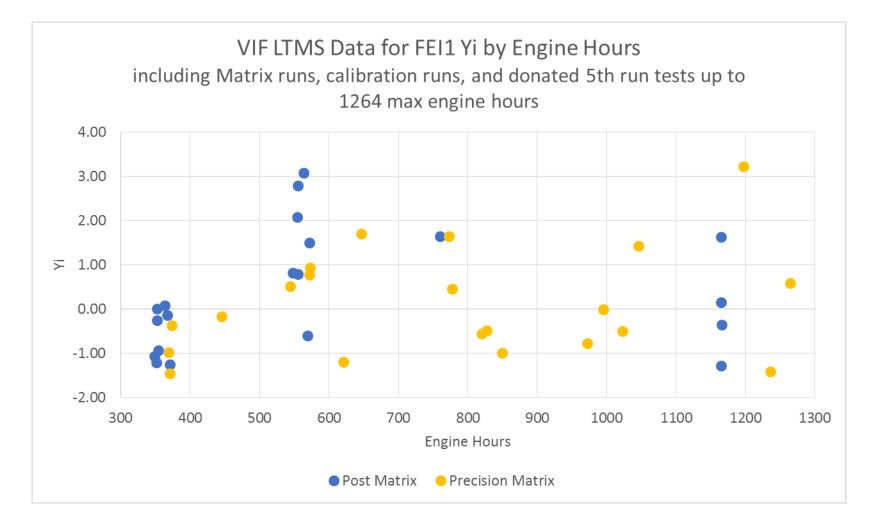
- Revise the constant R used in the Repeatability Check calculation (Vi) to reflect the current ratio of variability in the full model and the oil only model for 1st and 2nd run reference oil pairs.
 - FEI1 New R = 1.00 (was 0.95)
 - FEI2 New R = 0.95 (was 0.63)
- Revise the Upper Vi Limit for FEI1 to account for the current average Yi difference in 1st and 2nd run reference oil pairs.
 - FEI1 Upper Vi limit = 4.64 (was 2.8)
- These updates should be considered temporary and a full review of the LTMS and engine hour adjustments should be conducted once all 5th run data is available.
- <u>Interpretation of candidate FEI data may change after the full</u> <u>review is completed</u>

Data

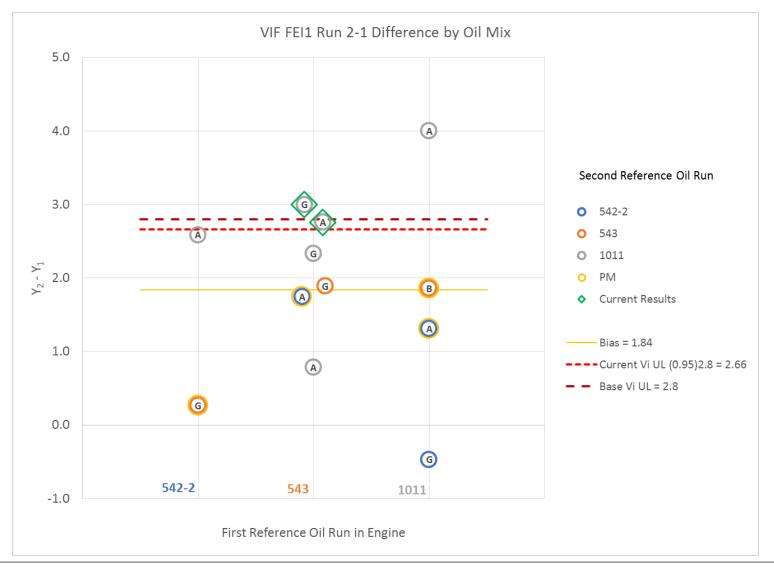
- Precision Matrix:
 - 3 Reference Oils {1011, 542-2, 543}
 - 3 Labs {A, G, B}
 - 5 Engines {A 2 122, A 1 144, G 1 58, G 2 96,, B 1 306}
 - Total number of tests = 18
- Post Precision Matrix:
 - 3 Reference Oils {1011, 542-2, 543}
 - 3 Labs {A, G}
 - 8 Engines {A 1 206, A 1 286, A 4 229, A 4 289, G 1 203, G 1 276, G 3 238, G 4 295}
 - Total number of tests = 16

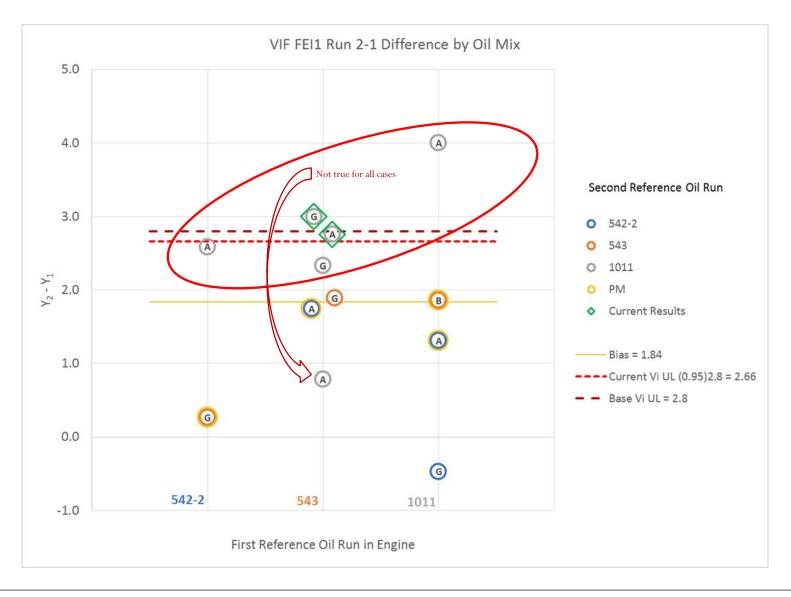

Issues

- Stand calibration limits do not seem to properly account for a bias in FEI1 results from engine run one to run two.
- Stand calibration limits for FEI2 may inflate the repeatability calculation larger than the current data set indicates is necessary.
- RO targets and engine hour adjustments may not be representative of test performance due to the small data set used at test start.
- Is enough information available to determine if 5th run candidates are reasonable or not.

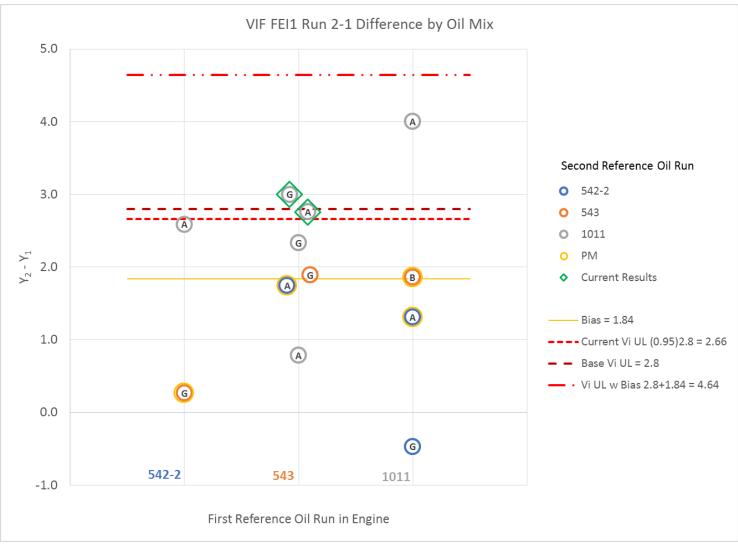

FEI1 Run 1 to 2 Bias

Current data reinforces the existence of the bias observed in the precision matrix. An interim LTMS solution is available until a full LTMS revision can be evaluated.


FEI1 performance during the matrix indicated a possible increase in results from run one to run two. There were no 1011 second run results available to help confirm this. The stats group requested additional second run 1011 data in the first five references conducted after the matrix to evaluate this.

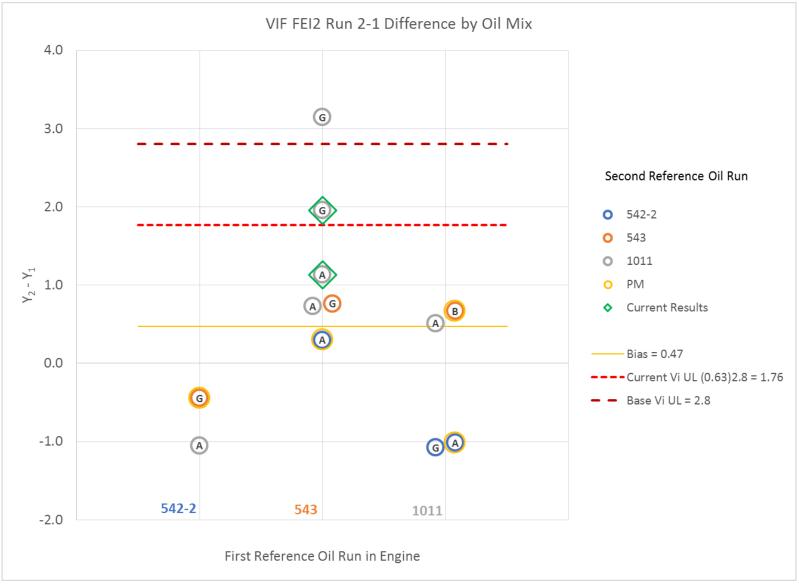

FEI1 Yi performance indicates run one and two may be biased in a manner the current LTMS and engine hour adjustment do not account for. Results available beyond the second run do not indicate a problem.

When focusing on runs 1 and 2 only there are 12 engines that have produced both 1^{st} and 2^{nd} run results (note one had an invalid attempt between the results). There is some evidence that RO assignment may influence the size of the shift from run one to two.


The largest differences between run one and two are consistently RO combinations that run 1011 second. This could be related to the PM data set that did not have a 2nd run 1011 result and not due to oil performance.

Models using only the 24 RO pairs of 1^{st} and 2^{nd} run data indicate the IND only RMSE (0.23) is smaller than the full model RMSE (0.27). This indicates the current R value (0.95) used in the Vi calculation should be 1.0.

General Linear Model: FE	1 vers	sus LTMSL	AB, LTMSAPP,	ENGNO, IND	General Linear Model: FEI1 versus IND			
Method					Method			
Factor coding (-1, 0, 4	1)				Factor coding $(-1, 0, +1)$			
Factor Information	f (-1, 0, +1) Factor coding (-1, 0, +1) nation Type Levels Values Fixed 3 A, B, G (AB) Factor Information AB) Fixed 6 1(A), 2(A), 4(A), 1(G), 3(G), 4(G) Factor Type Levels Values IND AB) Fixed 6 1(A), 2(A), 4(A), 1(G), 3(G), 4(G) Factor Type Levels Values IND AB) Fixed 3 1011, 542-2, 543 Factor Type Levels Values IND Fixed 3 1011, 542-2, 543 Analysis of Variance Variance Source DF Adj SS Adj MS Yariance IND 2 1.178 0.58896 11.12 0.001 Yariance Source DF Adj SS Adj MS F-Value P-Value IND 2 1.178 0.58896 11.12 0.001 ISLAB) 4 0.05887 0.01472 0.20 0.935 Total 23 2.290 ISLAB 4 0.05887 0.01472 0.20 0.935 Model Summary							
Factor LTMSLAB LTMSAPP(LTMSLAB) ENGNO(LTMSLAB, LTMSAPP)	Type Levels Values Fixed 3 A, B, G Fixed 6 1(A), 2(A), 4(A), 1(G), 3(G), 4(G) PP) Fixed 6 144(A, 1), 206(A, 1), 286(A, 1), 229(A, 4), 289(A, 4), 58(G, 1), 203(G, 1), 276(G, 1) Fixed 3 1011, 542-2, 543 PP) Fixed 3 1011, 542-2, 543 PP Fixed 3 1011, 542-2, 543 PP Fixed 3 1011, 542-2, 543 PP Adj SS Adj MS F-Value P-Value 2 0.09450 0.04725 2 1.18758 0.59379 4 0.05887 0.01472 4 0.05887 0.04725 5 0.24404 0.04881 0.65 0.669							
IND	Fixed	d 3	6 1(A), 2(A), 4(A), 1(G), 3(G), 4(G) 8 144(A, 1), 206(A, 1), 286(A, 1), 229(A, 4), 289(A, 4), 58(G, 1), 203(G, 1), 276(G, 1) 3 1011, 542-2, 543 Analysis of Variance 6 Source DF Adj SS Adj MS F-Value P-Value 09450 0.04725 0.63 0.553 Error 21 1.113 0.05298					
Analysis of Variance	Ilysis of Variance Source DF Adj SS Adj MS F-Value P-Value Irce DF Adj SS Adj MS F-Value P-Value IND 2 1.178 0.58896 11.12 0.001 ITMSLAB 2 0.09450 0.04725 0.63 0.553 Error 21 1.113 0.05298							
Source LTMSLAB IND LTMSAPP(LTMSLAB) ENGNO(LTMSLAB, LTMSAPP	2 2 4) 5	0.09450 1.18758 0.05887 0.24404	0.04725 0 0.59379 7 0.01472 0 0.04881 0	0.63 0.553 7.89 0.009 0.20 0.935	Error 21 1.113 0.05298			
Error Lack-of-Fit Pure Error	8	0.46564	0.05820 0	0.41 0.853	Source DF Adj SS Adj MS F-Value P-Value IND 2 1.178 0.58896 11.12 0.001 Error 21 1.113 0.05298 Total 23 2.290			
Total			0.11313					
Model Summary								


S R-sq R-sq(adj) R-sq(pred) 0.274315 67.15% 24.44% 0.00% When taking into account a new R value of 1.0 and the average bias that exists between the 1st and 2nd run results due to the increase in run two FEI1 a new upper Vi limit of 4.64 is recommended as a potential interim measure. New RO targets or LTMS approaches could be more appropriate.

FEI2 Repeatability Vi Limits

Current data used for reference acceptance indicates the repeatability inflation factor (R) used in the Vi calculation may be over stating the differences between two tests in the same engine.

FEI2 does not show the large bias between results in an engine that was observed in FEI1. There is still some indication of oil order bias but it is not as clear as FEI1.

Models using only the 24 RO pairs of 1st and 2nd run data indicate the IND only RMSE (0.26) is 0.95 of the full model RMSE (0.25). This indicates the current R value (0.63) used in the Vi calculation should be 0.95.

General Linear Model: FEI2 versus LTMSLAB, LTMSAPP, ENGNO, IND

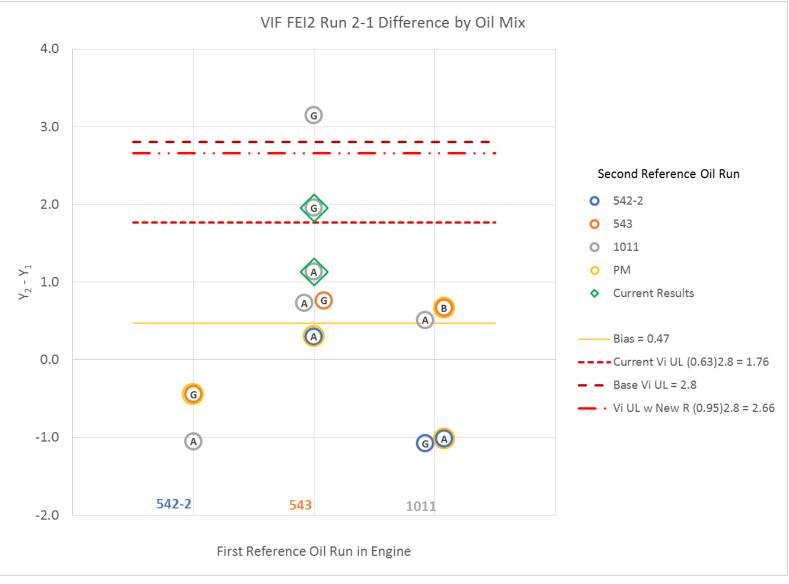
General Linear Model: FEI2 versus IND

Method

Factor coding (-1, 0, +1)

Factor Information

Factor Information


Factor coding (-1, 0, +1)

Method

Factor LTMSLAB LTMSAPP(LTMSLAB) ENGNO(LTMSLAB, LTMSAPP)	Type Fixed Fixed Fixed	6	A, B, G 1(A), 2(A), 4(A) 144(A, 1), 206(A	, 1(G), 3(G), 4(G) , 1), 286(A, 1), 229(A, 4), 1), 203(G, 1), 276(G, 1)	Factor Type Levels Values IND Fixed 3 1011, 542-2, 543
IND	Fixed	3	1011, 542-2, 543		Analysis of Variance
Analysis of Variance					Source DF Adj SS Adj MS F-Value P-Value IND 2 1.358 0.67903 10.18 0.001
Source	DF	Adj SS	Adj MS F-Value	P-Value	Error 21 1.400 0.06667
LTMSLAB	2	0.17643	0.08822 1.46	0.277	Total 23 2.758
IND	2	0.56566	0.28283 4.69	0.037	
LTMSAPP (LTMSLAB)	4	0.39715	0.09929 1.64	0.238	
ENGNO(LTMSLAB, LTMSAPP) 5	0.16636	0.03327 0.55	0.735	Model Summary
Error	10	0.60358	0.06036		-
Lack-of-Fit	8	0.54978	0.06872 2.55	0.312	S R-sq R-sq(adj) R-sq(pred)
Pure Error	2	0.05380	0.02690		0.258206 49.24% 44.40% 34.86%
Total	23	2.75813			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.245679 78.12% 49.67% 0.00% Recommend adopting the new R value of 0.95 but not including the bias as the evidence at this time does not indicate it is related to 2^{nd} run bias or oil order. In either case one lab G run is outside the limit.

Additional Testing Progress

Planned reference testing (below) was requested at the end of the precision matrix to validate the potential FEI1 run 1 to 2 bias and 5th run opportunities. The original run with 1011 for run 1 and 2 (Engine5) was not acceptable so no 5th run data was generated. In order to obtain another 5th run data point the group requests "A 1 206" replace Engine 5 and conduct a 5th run reference after the upcoming testing completes. The stats group will then pursue a full review of the VIF data and provide new recommendations for the LTMS and engine hour adjustments.

Run Number	A 4 289	G 3 238	A 1 286	G 4 295	A 1 206	Engine5					
1	543	1011	542-2	543	543	1011					
2	1011	542-2	1011	543	1011	1011					
3			Non Pofor	onco Tosts							
4		Non-Reference Tests									
5	543	1011	542-2	543	1011	1011					

Notes:

1. Engine4 and Engine5 run order should be assigned to different labs.

2. Determine next set of testing after analysis of these additional data.

Final Recommendations

- Revise the constant R used in the Repeatability Check calculation (Vi) to reflect the current ratio of variability in the full model and the oil only model for 1st and 2nd run reference oil pairs.
 - FEI1 New R = 1.00 (was 0.95)
 - FEI2 New R = 0.95 (was 0.63)
- Revise the Upper Vi Limit for FEI1 to account for the current average Yi difference in 1st and 2nd run reference oil pairs.
 - FEI1 Upper Vi limit = 4.64 (was 2.8)
- These updates should be considered temporary and a full review of the LTMS and engine hour adjustments should be conducted once all 5th run data is available.
- <u>Interpretation of candidate FEI data may change after the full</u> <u>review is completed</u>