

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 / USA *Phone* 610.832.9500 *Fax* 610.832.9666 *Web* www.astm.org

COMMITTEE D02 ON PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: RANDY F JENNINGS, TENNESSEE DEPT OF AGRIC, P O BOX 40627, NASHVILLE, TN 37204, UNITED STATES (615) 837-5327, FAX: (615) 837-5335, E-MAIL: RANDY JENNINGS@TN.GOV
FIRST VICE CHAIRMAN: JAMES J SIMNICK, BP AMERICA, 150 W WARRENVILLE RD, NAPERVILLE, IL 60563, UNITED STATES (630) 420-5936, FAX: (630) 420-4831, E-MAIL: SIMNICIJI@BP.COM
SECOND VICE CHAIRMAN: MICHAEL A COLLIER, PETROLEUM ANALYZER CO LP, 21114 Hwy 113, CUSTER PARK, IL 60481, UNITED STATES (815) 458-0216, FAX: (815) 458-0217, E-MAIL: MICHAEL.COLLIER@PACLP.COM
SECOND SECRETARY: HIND M ABI-AKAR, CATERPILLAR INC, BLDG H3000, OLD GALENA ROAD, MOSSVILLE, IL 61552, UNITED STATES (309) 578-9553, E-MAIL: ABI-AKAR_HIND@CAT.COM
SECRETARY: SCOTT FENWICK, NATIONAL BIODIESEL BOARD, PO BOX 104848, JEFFERSON CITY, MO 65110-4898, UNITED STATES (800) 841-5849, FAX: (537) 635-7913, E-MAIL: SFENWICK@BIODIESEL.ORG
STAFF MANAGER: ALYSON FICK, (610) 832-9681, FAX: (610) 832-9668, E-MAIL: AFICK@ASTM.ORG

Issued: 07.12.2017 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 07.11.2017 Sequence VI Conference Call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 9:05 AM Central Time by Chair Greg Miranda.

<u>Agenda</u>

The Agenda is the included as Attachment 1.

1.0 Roll Call

The Attendance list is Attachment 2. There were no member changes.

- 2.0 Approval of Meeting minutes from 06.20.2017 Seq. VI SP meeting
 - 2.1 Greg Miranda made the motion and Rich Grundza seconded.
 - NOTE: Amol noted that 4.1 had a typo where the oil should be 542-3. Rich will correct this.
 - 2.2 The minutes were approved unanimous with this change.
 - 3.0 Old Business
 - 3.1 Seq. VIE/F Short Block Hardware Task Force Update Adrian Alfonso
 - 3.1.1 Hardware availability update

The industry has concerns about the remaining life of the OHT-2 engines. There are 9 of those left. OHT has worked on re-distribution. Jason noted these would be depleted by the end of August. Dan noted the Kit order for SwRI will be delivered in July.

- 3.1.2 Status of Short block hardware introduction Matrix All tests for 3 labs are reported. The 4th lab has reported one, completed the second, and started the third test in their series. They should complete in early August.
- 3.2 Seq. VIE/F Equivalency Update Intertek discussed the VIF issue of Vi alarms on the second reference test on a stand. The second run tends to be milder. Rich noted this is a concern that was not seen with the first few VIF references. Adrian asked that the Vi alarm limits be reviewed. Dan agreed. Greg made a note to watch for this.

NOTE: Amol asked about the VIE procedure. It has been approved and assigned number D8114. Hap noted it was being processed and would release next week. He sent an email that it was released and available for download. There is an issue with equations, and this will need correction with an information letter.

- 4.0 New Business
 - 4.1 Review of Seq. VIE/F Short Block Hardware Matrix Results

See Attachment 3. Todd presented the slides. The engine hour correction and slope for the equations may need to be modified. The slope will be about ½ the current value. Slide 8 shows the resultant equations for FEI 1. The Stat group does want the data from the 4th lab as there is a concern with loss of separation for FEI 2. This was indicated in earlier test data. Bill noted aging was increased to 125 hours total and this may be a factor. Todd suggested looking at oxidation on reference oils. There was discussion of two references per stand and then 3 candidates [5 runs per engine]. This will provide better severity adjustment values, but will not resolve the FEI 2 severity shift. A Task Force was created for VIE/VIF severity. Dan Worcester will chair. People can volunteer.

5.0 Next Meeting

5.1 The next SP meeting is planned the week of August 07, 2017 at 10:00 Eastern Time.

The meeting adjourned at 10:27 AM.

Sequence VI Surveillance Panel Conference Call Agenda July 11, 2017 @ 10:00-12:00 EST

Audio Connection

Call-in Number: +1-415-655-0001 Conference Code: 193 359 273

Webex Meeting URL:

https://meetings.webex.com/collabs/#/meetings/detail?uuid=MAMHISN3ZSKY7D 0A65UXIYAVFL-20XT&rnd=675234.87742

1. Roll Call (start 10:05 EST)

1.1. SP Membership changes and additions

2. Approval of Meeting minutes from June 20, 2017 Seq. VI SP meeting

3. Old Business

3.1	Seq. VIE/F Short Block Hardware Task Force Update	Adrian Alfonso
	3.1.1 Hardware availability update	
	3.1.2 Status of Short block hardware introduction Matrix	
3.2	Seq. VID-VIF Equivalency Update	

4. New Business

4.1. Review of Seq. VIE/F Short Block Hardware Matrix Results

5. Next Meeting

5.1.TBD

6. Meeting Adjourned

ASTM SEQUENCE	VI
----------------------	----

Name		Company	Attend
A 1 4 A 10		T (1	ATTEND
Adrian Alfonso	Phone: (210) 838-0431	Intertek	ATTEND
Voting Member	Adrian.Alfonso@intertek.com		ATTEND
Jason Bowden	Phone: (440) 354-7007	OHT	ATTEND
Voting Member	jhbowden@ohtech.com		
Amol Savant	acsavant@valvoline.com	Valvoline	ATTEND
Voting Member			ATTEND
Tim Cushing	Phone: (248) 881-3518	General	ATTEND
Voting Member	Timothy.Cushing@gm.com	Motors	
Rich Grundza	Phone: (412) 365-1034	ТМС	ATTEND
Voting Member	reg@astmtmc.cmu.edu		
Jeff Hsu	Phone: (832) 419-3482	Shell	
Voting Member	j.hsu@shell.com		
Teri Kowalski	Phone: (734) 995-4032	Toyota	ATTEND
Voting Member	Teri.Kowalski@tema.toyota.com		
Dan Lanctot	Phone: (210) 690-1958	TEI	ATTEND
Voting Member	dlanctot@tei-net.com		
Greg Miranda	Phone: (440) 347-8516	Lubrizol	ATTEND
Voting Member	Greg.Miranda@Lubrizol.com		
Katerina	Phone:	Afton	ATTEND
Pecinovsky	Katerina.Pecinovsky@AftonChemical.c	com	
Voting Member			
Brianne Pentz	Phone:	BP	
Voting Member	Brianne.Pentz@bp.com		
Andy Ritchie	Phone: (908) 474-2097	Infineum	
Voting Member	Andrew.Ritchie@infineum.com		
Ron Romano	Phone: (313) 845-4068	Ford	
Voting Member	rromano@ford.com		
Clifford Salvesen	Phone: (856) 224-2954	ExxonMobil	ATTEND
Voting Member	Clifford.r.Salvesen@exxonmobil.com		
Kaustav Sinha	Phone: (713) 432-6642	Chevron	
Voting Member	LFNQ@chevron.com	Oronite	
Haiying Tang	Phone: (248) 512-0593	Chrysler	
Voting Member	HT146@Chrysler.com		
Dan Worcester	Phone: (210) 522-2405	SwRI	ATTEND
Voting Member	Dan.Worcester@swri.org		

Name	Email/Phone	Company	Attend
Ed Altman	Ed.Altman@aftonchemical.com	Afton	
Bill Anderson	Bill.anderson@aftonchemical.com	Afton	ATTEND
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	
Lisa Dingwell	Lisa.Dingwell@AftonChemical.com	Afton	
Todd Dvorak	Todd.Dvorak@aftonchemical.com	Afton	ATTEND
Greg Guinther	Greg.Guinther@aftonchemical.com	Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com	Afton	
Christian Porter	Christian.Porter@aftonchemical.com	Afton	
Jeremy Styer	Jeremy.Styer@aftonchemical.com	Afton	
Timothy Caudill	Tlcaudill@valvoline.com	Valvoline	
Tisha Joy	Tisha.Joy@bp.com	BP	
Michael Blumenfeld	Michael.1.Blumenfeld@exxonmobil.co	om EM	
	Phone: (856) 224.2865		
Don Smolenski	Donald.j.Smolenski@Evonik.com	Evonik	
Prasad Tumati	ptumati@jhaltermann.com	Haltermann	ATTEND
Doyle Boese	Doyle.Boese@infineum.com	Infineum	ATTEND
	Phone: (908) 474-3176		
Gordon Farnsworth	Gordon.Farnsworth@infineum.com	Infineum	ATTEND
Charlie Leverett	Charlie.Leverett@yahoo.com	Infineum	ATTEND
	Phone: (210) 414-5448		
Mike McMillan	mmcmillan123@comcast.net	Infineum	
Jordan Pastor	Jordan.Pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
William Buscher	William.Buscher@intertek.com	Intertek	ATTEND
Martin Chadwick	Martin.Chadwick@intertek.com	Intertek	
Al Lopez	Al.Lopez@intertek.com	Intertek	
Addison Schweitzer	Addison.Schweitzer@intertek.com	Intertek	
Bob Olree	olree@netzero.net	Intertek	
Andy Buczynsky	Andrew.Buczynsky@gm.com	GM	
Thomas Hickl	Thomas.Hickl@de.gm.com	GM	
Jeff Kettman	Jeff.Kettman@gm.com	GM	
Jonas Leber	Jonas.Leber@opel.com	GM	
Mike Raney	Michael.P.Raney@gm.com	GM	
	Phone: (248) 408-5384		
Angela Willis	Angela.P.Willis@gm.com	GM	
Scott Rajala	srajala@ILAcorp.com	Idemitsu	
Dave Passmore	dpassmore@imtsind.com	IMTS	
		*	

Name	Email/Phone	Company	
Jerry Brys	Jerome.Brys@lubrizol.com	Lubrizol	ATTEND
	Phone: (440) 347.2631		
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
James Matasik	James.Matasic@lubrizol.com	Lubrizol	
Kevin O'Malley	Kevin.OMalley@lubrizol.com	Lubrizol	ATTEND
-	Phone: (440) 347.4141		
Chris Castanien	Chris.Castanien@neste.com	Neste	
	Phone: (440) 290-9766		
Dwight Bowden	dhbowden@ohtech.com	OHT	
Matt Bowden	mjbowden@ohtech.com	OHT	ATTEND
Ricardo Affinito	affinito@chevron.com	Oronite	ATTEND
	Phone: (510) 242-4625		
Ian Elliot	IanElliott@chevron.com	Oronite	
Jo Martinez	jogm@chevron.com	Oronite	ATTEND
Robert Stockwell	rsto@chevron.com	Oronite	
Christine Eickstead	Christine.Eickstead@swri.org	SwRI	ATTEND
Travis Kostan	Travis.Kostan@swri.org	SwRI	ATTEND
Patrick Lang	Patrick.Lang@swRI.org	SwRI	ATTEND
-	Phone: (210) 522-2820		
Michael Lochte	mlochte@swri.org	SwRI	ATTEND
Karen Haumann	Karen.Haumann@shell.com	Shell	
Scott Stap	Scott.Stap@tgdirect.com	TG Direct	
Clayton Knight	cknight@tei-net.com	TEI	
Zack Bishop	zbishop@tei-net.com	TEI	
	Phone: (210) 877-0223		
Jeff Clark	jac@astmtmc.cmu.edu	TMC	
Hirano Satoshi	Satoshi_Hirano_aa@mail.toyota.co.jp	<u>p</u> Toyota	ATTEND
Jim Linden	lindenjim@jlindenconsulting.com	Toyota	
	Phone: (248) 321-5343		
Mark Adams	mark@tribologytesting.com	Tribology	
		Testing	
Tom Smith		Valvoline	
Hap Thompson	Hapjthom@aol.com	VIx Facilitator	ATTEND
Chris Taylor	Chris.Taylor@vpracingfuels.com	VP Racing	
		Fuels	
Rasad Thompson			

Name	Email/Phone	C	ompany	Attend
Γ			T	
MOTION:				
Adrian Alfonso				
Voting Member				
Jason Bowden				
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing				
Voting Member				
Rich Grundza				
Voting Member				
Jeff Hsu				
Voting Member				
Teri Kowalski				
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda				
Voting Member				
Katerina				
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie				
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member				
Kaustav Sinha				
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester				
Voting Member				
VOTES				

Name	Email/Phone	Company	Attend

Γ	<u></u>	I	[[
MOTION:				
Adrian Alfonso				
Voting Member				
Jason Bowden				
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing				
Voting Member				
D ' 1 C 1				
Rich Grundza				
Voting Member				
Jeff Hsu				
Voting Member				
Teri Kowalski				
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda				
Voting Member				
Katerina				
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie				
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member				
Kaustav Sinha				
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester				
Voting Member				
VOTES				
	<u></u>			

Name	Email/Phone	Company	Attend

Γ	<u></u>	I	[[
MOTION:				
Adrian Alfonso				
Voting Member				
Jason Bowden				
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing				
Voting Member				
D ' 1 C 1				
Rich Grundza				
Voting Member				
Jeff Hsu				
Voting Member				
Teri Kowalski				
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda				
Voting Member				
Katerina				
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie				
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member				
Kaustav Sinha				
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester				
Voting Member				
VOTES				
	<u></u>			

Preliminary VIE Engine Short Block Matrix Analysis

Statistics Group July 11, 2017

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Executive Summary

Concerns/Complications:

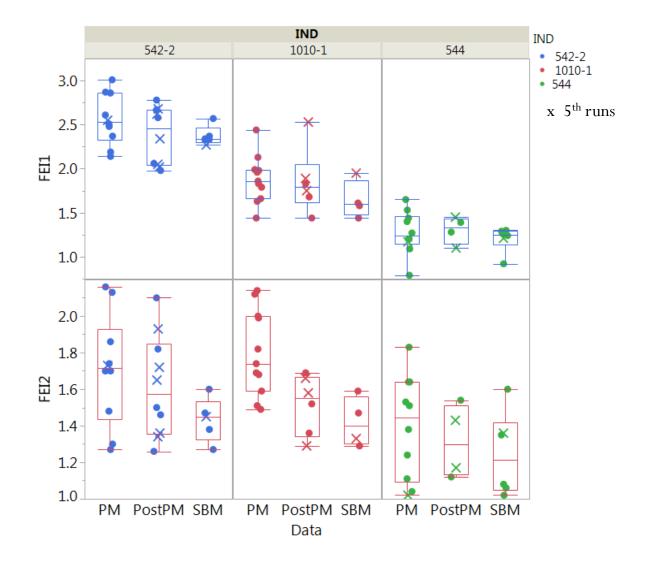
- As presented in February, there is a severity shift Post PM and appears to be the same in SBM
- FEI2 Post PM and SBM oil discrimination is diminished
- Appears that engine hour adjustment between PM and SBM may be different

Next Steps:

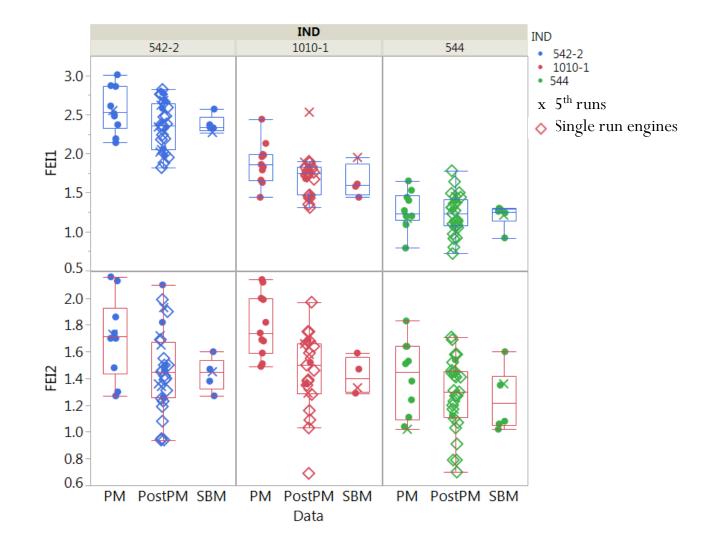
- Wait for 4th engine data
- Analyze data with and without Post PM and SBM 5th runs

<u>Note</u>: SG recommends that the Sequence VI Surveillance Panel investigate the potential root cause(s) of the severity shift and diminished discrimination for FEI2.

Data

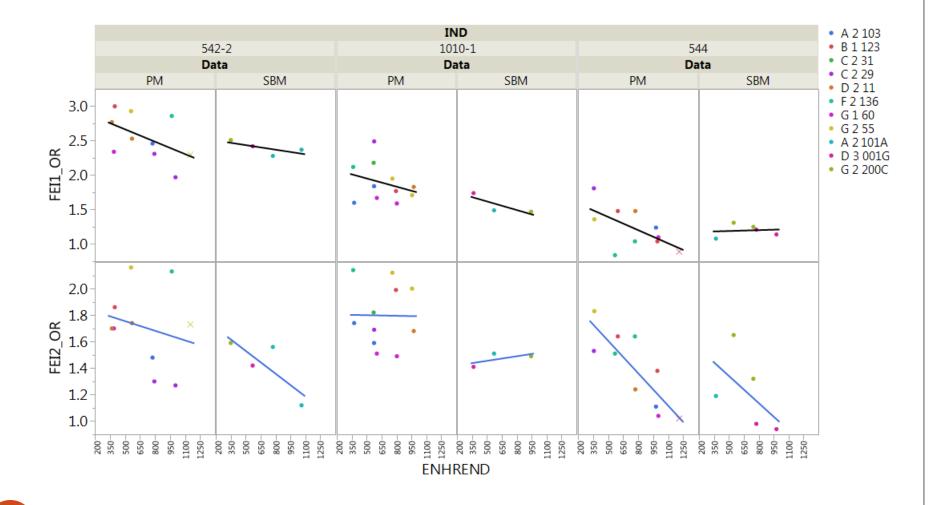

• Short block matrix (with 5th runs)

- 3 Reference Oils {1010-1, 542-2, 544}
- 3 Labs{A, D, G}
- 3 Engines {A2 101A, D3 001G, G2 200C}
- Total number of tests = 15


Precision matrix

- 3 Reference Oils {1010-1, 542-2, 544}
- 6 Labs {A, B, C, D, F, G}
- 8 Engines {A2 103, B1 123, D2 11, F2 136, C2 29, C2 31, G2 55, G1 60}
- Within lab statistical tests 2 Labs each with 2 engines
 - Lab C: 29 vs. 31
 - Lab G: 55 vs. 60
- Total number of tests = $29 (31 \text{ including } 5^{\text{th}} \text{ runs})$
- Post Precision matrix with 5th runs
 - 3 Reference Oils {1010-1, 542-2, 544}
 - 4 Labs {A, C, D, G}
 - 10 Engines {A3 301, A8 262, A10 254, A11 99, D1 112, D2 14, C2 36, G2 222, G4 328, G6 253}
 - Total number of tests = 20
- Post Precision matrix single run engines = 61

Severity Shift



Severity Shift with Single Run Engines

6

PM vs SBM

ANOVA - FEI1

PM

Summary of Fi	t						
RSquare Adj			0.75653	9			
Root Mean Squa	are Error		0.2968	4			
Mean of Respor	ise		1.90724	1			
Observations (o	r Sum Wg	ts)	2	9			
Analysis of Var	iance						
	Su	m of					
Source DF	Squ	ares	Mean Se	quare	F	Ratio	
Model 10	8.547	732	0.854	4773	9.7	7008	
Error 18	1.586	047	0.08	8114	Pro	b > F	
C. Total 28	10.133	779			<.00)01*	
Parameter Esti	mates						
Term			Estimate	Std	Error	t Ratio	Prob> t
Intercept		2.2	802397	0.17	7255	12.86	5 <.0001*
IND[542-2]		0.6	405282	0.08	2937	7.72	2 <.0001
IND[1010-1]		-0.	018512	0.0	8079	-0.23	0.8214
LabStandEngine	[A 2 103]	-0.	140736	0.14	2729	-0.99	0.3372
LabStandEngine	[B 1 123]	0.0	579996	0.14	5523	0.40	0.6949
LabStandEngine	[C 2 29]	0.	.058389	0.14	5562	0.40	0.6930
LabStandEngine		0.2	135041	0.27	3982	0.78	3 0.4460
LabStandEngine		0.0	599326	0.14	5465	0.41	L 0.6852
LabStandEngine			064132		5432		1 0.6645
LabStandEngine	[G 1 60]		238434		2959		0.1126
ENHREND		-0.	000518	0.00	0249	-2.08	3 0.0522
Effect Tests							
			-	um of			
Source	Nparm	DF		quares		Ratio	Prob > F
IND	2	2		84985		9822	<.0001*
LabStandEngine		7		15268		6559	0.7056
ENHREND	1	1	0.380	9584	4.	3235	0.0522

SBM

Summary of Fit	
RSquare	0.964464
RSquare Adj	0.944721
Root Mean Square Error	0.126616
Mean of Response	1.66
Observations (or Sum Wgts)	15
Analysis of Variance	
_	-

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	5	3.9159155	0.783183	48.8524
Error	9	0.1442845	0.016032	Prob > F
C. Total	14	4.0602000		<.0001*

Parameter Estimates

- arameter Estin									
Term			Estimate	St	d Error	t Ra	atio	Prob>	t
Intercept		1.	8816119	0.0	91464	20	.57	<.0001	L*
IND[542-2]		0.	6509407	0.04	47689	13	.65	<.0001	L*
IND[1010-1]		-0	.113692	0.0	05059	-2	.25	0.0512	2
LabStandEngine[A 2 101A	A] -C	.077116	0.04	46723	-1	.65	0.1332	2
LabStandEngine[D 3 001G]		G] 0.0	0814858	0.04	47686	1	.71	0.1217	7
ENHREND		-0	0.000249	0.0	00011	-2	.27	0.049	7*
Effect Tests									
			Sui	m of					
Source	Nparm	DF	Squ	ares	FR	atio	P	rob > F	
IND	2	2	3.8122	200	118.8	970	<	.0001*	
LabStandEngine	2	2	0.0599	488	1.8	697	0.	2094	
ENHREND	1	1	0.0822	949	5.1	333	0.	.0497*	

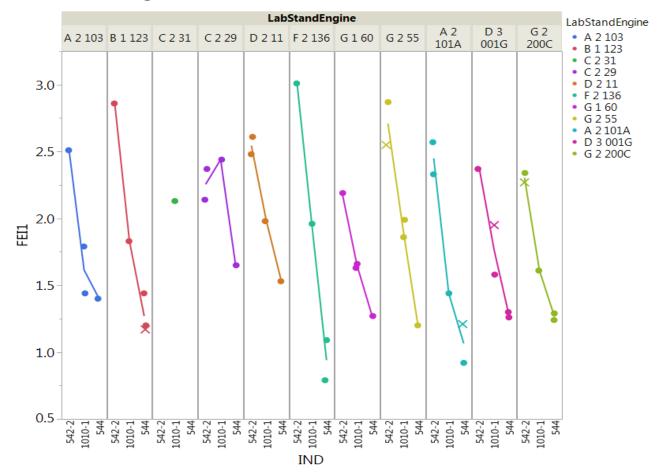
FEI1 Engine Hours Adjustment: $FEI1_{PM} = FEI1_{OR} + 0.000518*(ENHREND - 675)$ $FEI1_{SBM} = FEI1_{OR} + 0.000249*(ENHREND - 776)$

Oil Discrimination – FEI1

PM and SBM discriminate oils similarly:

- All oil contrasts are significantly different
- 544 < 1010-1 < 542-2

PM


Least So	uares Means	Table	
Level	Least Sq Mean		
542-2	2.57		
1010-1	1.91		
544	1.31		
LS Mear	ns Plot		
2.5 Heil-OK LS Means 2.1 - OK LS Means 1.5 - 1 1.5			
	542-2	1010-1 IND	544

SBM

Least Squ	uares Means	Table	
Level	Least Sq Mean		
542-2	2.34		
1010-1	1.57		
544	1.15		
LS Means	s Plot		
FEI1_OR LS Means 1.1-08 7.1-1-08 7.1-1-10 7.1-1-10 7.1-100	4	4	4
0.8-	542-2	1010-1 IND	544

FEI1 Adjusted Oil Discrimination

• Oil discrimination consistent among Short Block engines (last three engines)

ANOVA – FEI2

PM

ENHREND

Summary	of Fit								
RSquare				0.89778	1				
RSquare A	dj			0.84099	3				
Root Mean		re Error		0.12153	6				
Mean of Response				1.65620	7				
Observatio	ts)	2	9						
Analysis o	Analysis of Variance								
		Su	m of						
Source	DF	•	ares		•		Ratio		
Model	10	2.3352			3520		3093		
Error	18	0.2658			4771		b > F		
C. Total	28	2.6010	828			<.00)01*		
Parameter	r <mark>Estin</mark>	nates							
Term				Estimate	Std	Error	t Rat	io	Prob> t
Intercept			1.8	8995313	0.07	2574	26.1	7	<.0001*
IND[542-2	2]		0.0	807964	0.03	3957	2.3	8	0.0286*
IND[1010-	-1]		0.1	611275	0.03	3078	4.8	37	0.0001*
LabStandE	ngine[/	A 2 103]	-0	.202744	0.05	8438	-3.4	7	0.0027*
LabStandE				.431304		9582			0.0273*
LabStandE				.023739		2178			0.8348
LabStandE				.212307		9598			0.0022*
LabStandE			-	.074183		9558		-	0.2289
LabStandE				698796		9545			0.0003*
LabStandE	ngine[G 1 60]		.238705		8532		-	0.0007*
ENHREND			-0	.000381	0.00	0102	-3.7	3	0.0015*
Effect Tes	ts								
				-	um of				
Source		Nparm	D		quares		Ratio		Prob > F
IND		2	2				6439		<.0001*
LabStandE	ngine	7	7	1.394	2379	13.	4843	<	<.0001*

1 0.2056602 13.9232

SBM

Summary of Fit					
RSquare	0.735237				
RSquare Adj	0.588147				
Root Mean Square Error	0.144153				
Mean of Response	1.315333				
Observations (or Sum Wgts)	15				

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	5	0.51935215	0.103870	4.9985
Error	9	0.18702119	0.020780	Prob > F
C. Total	14	0.70637333		0.0182*

Parameter Estimates

Term			Estimate	Std	Error	t Rati	o Prob> t
Intercept			6162251	0.10	4133	15.5	2 <.0001
IND[542-2]).034529	0.05	4294	0.64	4 0.5406
IND[1010-1]			0903553	0.05	7597	1.5	7 0.1511
LabStandEngine[A 2 101A] 0.	0040343	0.05	3194	0.0	8 0.9412
LabStandEngine[D 3 001G]		6] -().145466	0.05	4291	-2.6	8 0.0252 ³
ENHREND		-(0.000369	0.00	0125	-2.9	5 0.0163 [°]
Effect Tests							
			Sur	n of			
Source	Nparm	DF	Squ	ares	FR	atio	Prob > F
IND	2	2	0.12866	290	3.09	958	0.0948
LabStandEngine	2	2	0.19604	551	4.7	171	0.0397*
ENHREND	1	1	0.18069	690	8.69	957	0.0163*

FEI2 Engine Hours Adjustment: $FEI2_{PM} = FEI1_OR + 0.000381*(ENHREND - 675)$ $FEI2_{SBM} = FEI1_OR + 0.000369*(ENHREND - 776)$

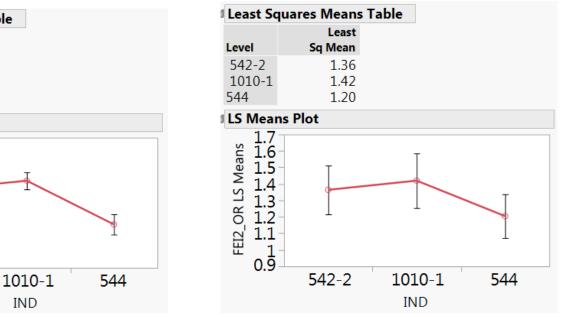
0.0015*

Oil Discrimination – FEI2

Oils significantly differ for PM but *not* for SBM:

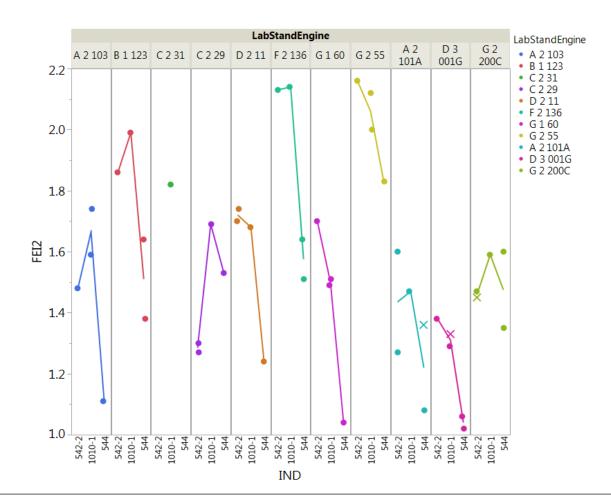
- PM: 544 < {1010-1 & 542-2}
- SBM: 544 < 1010-1 (p-value=0.11)

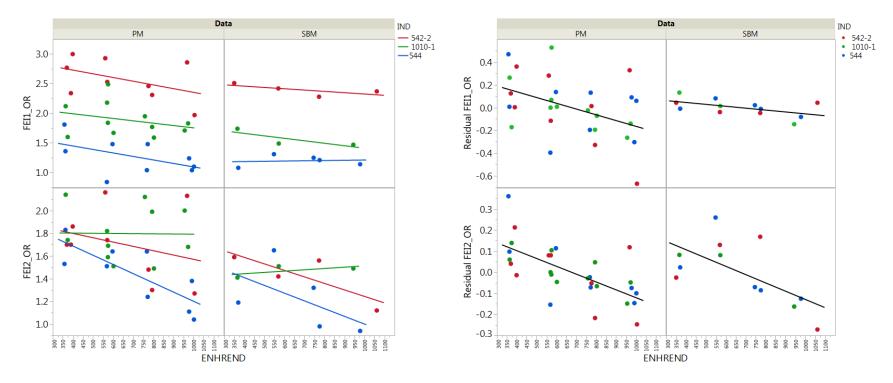
PM


FEI2_OR LS Means

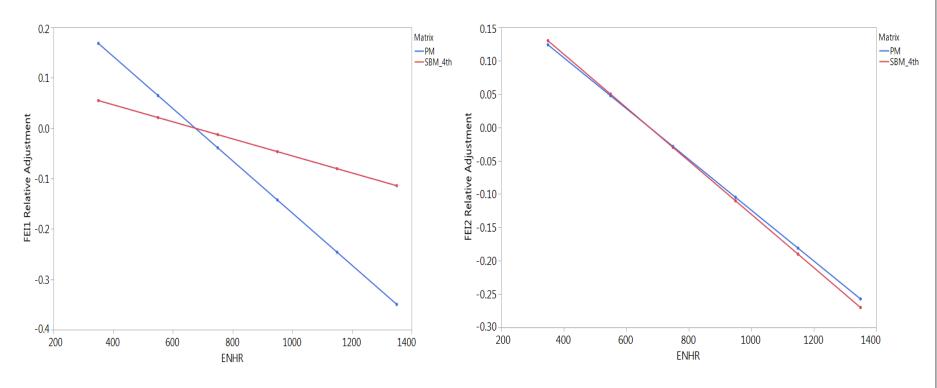
2 1.8 1.6 1.4 1.2 1

Least Squares Means Table						
Level	Least Sg Mean					
542-2	1.72					
1010-1	1.80					
544	1.40					
LS Means Plot						
22						


542-2


FEI2 Adjusted Oil Discrimination

- Oil discrimination *not* consistent among Short Block engines (last three engines)
- Engine D3 001G is significantly milder than engine G 2 200C


13

Evaluating Engine Hour Adjustment

- Appears that engine hour adjustment between PM and SBM may be different
- FEI2 appears to show higher 2nd runs than 1st runs, a phenomenon seen in VIF FEI1

FEI Relative Adjustment

Engine Hours Adjustment:

 $FEI1_{PM} = FEI1_OR + 0.000518*(ENHREND - 675)$ $FEI1_{SBM} = FEI1_OR + 0.000249*(ENHREND - 675)$ $FEI2_{PM} = FEI1_OR + 0.000381*(ENHREND - 675)$ $FEI2_{SBM} = FEI1_OR + 0.000369*(ENHREND - 675)$

Appendix

Short Block Matrix Design

Task Force Request

The availability of current OEM built VIE/F engines is expected to be depleted by 3Q2017. The Task Force for introducing the new lab built engines is requesting the stats group to provide input on the best manner to introduce the new lab built engines to the system by May 31st, 2017. Please consider the questions below when providing your recommendations.

- <u>Can the lab built engines be introduced through the normal referencing system?</u> If lab built engines are introduced through the normal referencing system there will be no data to determine if the engine hour adjustment has changed for the new engines as references are conducted on the first run only in most cases. If the SP believes the new engines may exhibit a different engine hour adjustment a matrix of tests across the life of the engines is required.
- <u>How should the VIE and VIF be incorporated into the introduction?</u> A decision about the VIF should be made after VIE data is available.
- <u>Do we need to reevaluate the engine hour adjustment?</u>

This cannot be answered without producing the data to determine if a significant difference is present. If there is a belief in the SP that it could change based on the technical understanding of the process then data should be produced to evaluate the difference.

If a matrix or donated tests are determined to be necessary we expect four labs with one stand in each to be available.

VIE Matrix Design

Objectives:

- 1. Address the introduction of new engines
- 2. Confirm oil discrimination and appropriateness of engine hour adjustment
- 3. Address uniform reference oil selection for each row

Run Order	Engine/Lab 1	Engine/Lab 2	Engine/Lab 3	Engine/Lab 4
1	542-2	544	1010-1	542-2
2	544	1010-1	542-2	1010-1
3	544	542-2	544	1010-1
4	1010-1	542-2	544	544
5	542-2	544	1010-1	542-2

Notes:

- 1: Consider using only stands from the VIE precision matrix.
- 2: Determine VIF design depending on VIE matrix results.
- 3: If this matrix proves the test is different additional data may be required.