

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 / USA *Phone* 610.832.9500 *Fax* 610.832.9666 *Web* www.astm.org

COMMITTEE D02 ON PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: RANDY F JENNINGS, TENNESSEE DEPT OF AGRIC, P O BOX 40627, NASHVILLE, TN 37204, UNITED STATES (615) 837-5327, FAX: (615) 837-5335, E-MAIL: RANDY.JENNINGS@TN.GOV
 FIRST VICE CHAIRMAN: JAMES J SIMNICK, BP AMERICA, 150 W WARRENVILLE RD, NAPERVILLE, IL 60563, UNITED STATES (630) 420-5936, FAX: (630) 420-4831, E-MAIL: SIMNICJJ@BP.COM
 SECOND VICE CHAIRMAN: MICHAEL A COLLIER, PETROLEUM ANALYZER CO LP, 21114 Hwy 113, CUSTER PARK, IL 60481, UNITED STATES (815) 458-0216, FAX: (815) 458-0217, E-MAIL: MICHAEL.COLLIER@PACLP.COM
 SECOND SECRETARY: HIND M ABI-AKAR, CATERPILLAR INC, BLDG H3000, OLD GALENA ROAD, MOSSVILLE, IL 61552, UNITED STATES (309) 578-9553, E-MAIL: ABI-AKAR_HIND@CAT.COM
 SECRETARY: SCOTT FENWICK, NATIONAL BIODIESEL BOARD, PO BOX 104848, JEFFERSON CITY, MO 65110-4898, UNITED STATES (800) 841-5849, FAX: (537) 635-7913, E-MAIL: SFENWICK@BIODIESEL.ORG
 STAFF MANAGER: ALYSON FICK, (610) 832-9681, FAX: (610) 832-9668, E-MAIL: AFICK@ASTM.ORG

Issued: 02.28.2017 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 02.23.2017 Sequence VI Meeting.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 8:30 AM Central Time by Chair Greg Miranda.

Agenda

The Agenda is the included as Attachment 1.

1.0 Roll Call

The Attendance list is Attachment 2.

2. Approval of Meeting minutes from 02.16.2017 Seq. VI SP conference call.

Approve the Surveillance Panel minutes.

- 2.1 Greg made the motion and Rich seconded.
- 2.2 The vote received unanimous approval.

3. Old Business and Update Item Review

3.1 VIE/F Hardware taskforce update

One dependent lab has a calibrated VID stand. The VID test is unavailable at the two independent labs. This will make oils provisional. The industry will need to run the VIE to VID equivalency matrix. Jim Linden noted the 0W-16 is also provisional and Charlie commented that the API should send a memo related to the VID test no longer being available.

3.2 Industry Update

Greg Miranda

The GM Kit order letter has gone to labs. Labs would need to provide space to run a matrix to prove out the engine response. The Stat group will provide a matrix and the recommendation on when to move forward with testing. Current plans are for all labs to switch to kit engines the summer of 2017.

Action 1: Stat Group will provide VIE short block testing matrix.

- 3.3 Seq. VIF PM Analysis & LTMS Discussions All
 - 3.3.1 Review updated Seq. VIF Precision Matrix analysis
 The presentation is included as Attachment 3. The Stat Group did a review for 5 tests per engine from the Precision Matrix, and 4 tests run by a dependent lab.
 Reference Oil 543 does not show an engine hour correction response. Changing to 5 tests does modify the engine hour equations, and those are now:

FEI1 = 0.000252*(ENHREND -776) + FEI1_Original

 $FEI2 = 0.000135*(ENHREND - 776) + FEI2_Original$

3.3.2 Review Seq. VIF LTMS Requirements

Kevin recommended the VIE format will be followed for test hours and engine life. There was discussion on 6 runs per engine. Labs need to continue to gather data and run a 5th donated test on each engine as is being done on the VIE. Runs may focus on 543 and 1011 to gather more data. The 1st, 2nd and 5th runs on engines will provide additional data. **Motion 1:** Next three Seq. VIF engines at each lab will conduct a 5th run reference test with analysis to be completed after the 5th reference test is reported. TMC will not assign Seq. VIF reference oils for a new engine on the same stand until the 5th test is reported to the TMC on the prior engine, unless a documented reason is provided for not conducting that 5th run test. Stats group will provide guidance to TMC on selection of reference oil assignment.

Robert Stockwell, Second: Jim Linden Result: 13-0-0 Motion Passes

- 3.3.2 Review Seq. VIF LTMS Requirements The presentation is included as Attachment 4. There was discussion on more focus on 1011, but the consensus was to use 3 oils in random assignments. There was also discussion on how to introduce a new lab. This will be more critical on the VIF as only 2 labs participated in the Precision Matrix. Motion #4 covers this issue, and a lab would donate testing. There should be back to back valid acceptable reference oil passes. Effective date would be two weeks from this meeting.
- Action 2: Stats group will recommend to TMC testing for next 3 VIF engines in each lab
- **Motion 2:** That the SP accepts the four test LTMS requirements presented on 2/23/17 for the Seq. VIF procedure (VIF-LTMS-02-21-17-4-OR-5-Run-LTMS.pdf). Seq. VIF calibration period will adopt the same method as the Seq. VIE procedure.

Charlie Leverett, Second Rich Grundza Result: 13-0-0 Motion Passes

Motion 3: Set the Sequence VIF reference oil assignment protocol at equal proportion with random assignment for all three reference oils (1011, 542-2, 543).

Rich Grundza, Second Robert Stockwell Result: 13-0-0 Motion Passes

Motion 4: For a new lab (defined as a lab that did not participate in the precision matrix) to be calibrated, the lab must run four operationally valid tests on multiple reference oils, to be assigned by the TMC, in a single engine and stand combination, with at least one replicated reference oil, and with a minimum of two consecutive results that meet the acceptance criteria of the defined LTMS.

Rich Grundza, Robert Stockwell

Result: 10-0-3 Motion Passes

3.3.3 Finalize Seq. VIF LTMS Requirements

Adoption of weighting factors & SAs Acceptance limits LS means, standard deviations for calculated Yi, and pooled standard deviations for SAs

Motion 5:Official Sequence VIF calibration will start on 3/9/2017 for stand-engine
combinations that have completed calibration testing following criteria established
in the Sequence VIF LTMS document and using the Sequence VIF current test
procedure and associated surveillance panel meeting minutes.

Greg Miranda, Second: Adrian Alfonso Result: 13-0-0 Motion Passes

There will need to be work on the VIF procedure. Dan Worcester will be the Task Force Leader to update using the VIE version currently out for ballot. TMC will also need to add the VIF to the main LTMS document. There was also discussion that the VIE calibration requirements in the procedure need to be modified. This will be with an Information Letter. There was also discussion on whether a lab could run an additional 50 hours of break in and start a new reference as if it were a new engine. A stand will usually be calibrated as either a VIE or VIF due to the referencing and hours requirements on an engine.

3.3.4	Additional Seq. VIF Items Establish date of stand/engine calibration RO selection		
Action 3:	Update VIF LTMS requirements document - TMC		
Action 4:	Incorporate changes into VIF procedure; Task force – Led by Dan Worcester		
	Hap will be the facilitator for the VIF procedure.		
Action 5:	Rich & Greg will issue information letter to correct VIE calibration requirement		
Motion 6:	A lab may run a minimum of an additional 50 hours of break-in to reset engine- stand calibration, effectively voiding prior tests on that engine-stand combination in calibration determination.		
Adrian Alfons	so, Second: Rich Grundza Result: 13-0-0 Motion Passes		
Motion 7:	Sequence VIF LTMS industry control charts will consist of EWMA of the Yi		

Motion 7: Sequence VIF LTMS industry control charts will consist of EWMA of the Yi results, using Lambda of 0.2 and level 1 alarm at +/- 0.859 with an action for the TMC to inform the surveillance panel that the limit has been exceeded, and the surveillance panel then investigates and pursues resolution of the alarm. Zo for the industry charts will be the average of the first three valid tests.

Dan Worcester, Second: Jim Linden Result: 13-0-0 Motion Passes

Discussion was on how to include MTAC [multiple test acceptance criteria]. This was done on the VIE but is actually a Class Panel action.

- **Motion 8:** The Sequence VI surveillance panel recommends to the PCEOCP that MTAC would be appropriate to handle replicate candidate tests in the Sequence VIF.
- Jo Martinez; Second: Doyle Boese Results: 13-0-0 Motion Passes
- **Motion 9:** The Sequence VI surveillance panel, having established severity and precision control charting via an LTMS system, having established test stand/engine calibration and reference periods, having secured sources for test parts, fuel and reference oils, having identified parameters that may be used for pass-fail criteria, having an up-to-date test procedure (in progress) and having established continuous surveillance as noted in the Scope and Objectives of the Sequence VI surveillance panel, hereby wishes to inform the Passenger Car Engine Oil Classification Panel, the Auto Oil Advisory Panel and the American Chemistry Council PAPTG, that the Sequence VIF test is ready for inclusion in ILSAC oil category GF-6B.

Greg Miranda; Second: Rich Grundza	Result: 13-0-0 Motion Passes.
------------------------------------	-------------------------------

- Action 6: Add VIF to Seq VI Surveillance Panel scope and objectives Greg
 - 3.3.5 Appendix K Template Review The group went through Appendix K and updated responses.

4. New Business

4.1 Sequence VIE Test Severity Review

See Attachment 5. Some recent VIE tests have had the engine abandoned. This data is not included in TMC file, but is included in the presentation. There has been a response shift since the Precision Matrix, especially for FEI 2. No root cause has been found at this point. Oil 1010-1 is more severe than the other two reference oils. There has not been a reference run above the target zero line [mild]. All labs have shifted but some more severely than others. The offset is about 0.2. Discrimination has been lost, especially for FEI 2. There may be some client input on test response for candidate oils.

Action 7: Test sponsors to provide data/feeling regarding VIE severity

4.2 Approval of BL-5

We will need to run the matrix to compare BL-2 to BL-5. Rich has sent BL-2 to Intertek and SwRI for this testing. There is a stash of BL-4 and BL-5 at TMC.

Action 7: Rich survey labs for status of current VIE calibrated stands for BL5

4.3 Approval of 542 Re-blend

There are 80 gallons of 542-2 remaining. TMC would need to issue 542-3 for references at labs.

5.0 Next Meeting.

5.1 The next meeting will be a conference call in 3 weeks. Greg will send an agenda.

The meetings adjourned at 3:32 PM.

Sequence VI Surveillance Panel Face-To-Face Meeting Agenda February 23, 2017 @ 08:00-17:00 CST

Meeting Location

Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238

Audio Connection

Call-in Number: +1-415-655-0001 Conference Code: 198 127 665

Webex Meeting URL:

https://meetings.webex.com/collabs/#/meetings/detail?uuid=MAMABN539PV9O5U3JP KQPSQXZF-20XT&rnd=891359.45502

1. Roll Call (08:30 – 08:40)

1.1. SP Membership changes and additions

2. Approval of Meeting minutes from February 16, 2017 Seq. VI SP meeting

3. Old Business

3.1	08:45 – 09:00	VIE/F Hardware taskforce update	Adrian Alfonso
3.2	09:00 – 09:15	 <u>Industry Update</u> Efforts to extend life of VID procedure VID calibrated Status at dependent lab Test Unavailable at independent labs 	Greg Miranda
3.3		Seq. VIF PM Analysis & LTMS Discussions	All
3.3.1	09:15 – 10:00	Review updated Seq. VIF Precision Matrix analysis	
3.3.2	10:00 – 10:30	Review Seq. VIF LTMS Requirements	
	10:30 – 10:45	**************************************	
3.3.3	10:45 – 12:00	 <u>Finalize Seq. VIF LTMS Requirements</u> Adoption of weighting factors & SAs acceptance limits LS means, standard deviations for calculated Yi, and pooled standard deviations for SAs 	

		Stand/engine calibration requirements	
		• etc.	
	12:00 -	**************************************	
	13:00		
3.3.4	13:00 -	Finalize Seq. VIF LTMS Requirements:	
	14:00		
		Continued	
3.3.5	14:00 -	Additional Seq. VIF Items	
	15:00	• Establish date of stand/engine calibration	
		RO selection	
		• etc.	
	15:00 -	**************************************	
	15:15		
3.3.6	15:15 –	Appendix K Template Review	TBD
	16:30		
3.3.7	16:30 -	Seq. VIF Procedural Document Discussion and plan for	
	16:45	update and finalization	

4. New Business Items (Time Permitting)

4.1. Sequence VIE Test Severity Review

5. Next Meeting

5.1. TBD

6. Meeting Adjourned

Motion 1: Next three Seq. VIF engines at each lab will conduct a 5^{th} run reference test with analysis to be completed after the 5^{th} reference test is reported. TMC will not assign Seq. VIF reference oils for a new engine on the same stand until the 5^{th} test is reported to the TMC on the prior engine, unless a documented reason is provided for not conducting that 5^{th} run test. Stats group will provide guidance to TMC on selection of reference oil assignment.

Robert Stockwell, Second: Jim Linden

Result: 13-0-0 Motion Passes

Motion 2: That the SP accepts the four test LTMS requirements presented on 2/23/17 for the Seq. VIF procedure (VIF-LTMS-02-21-17-4-OR-5-Run-LTMS.pdf). Seq. VIF calibration period will adopt the same method as the Seq. VIE procedure.

Charlie Leverett, Second Rich Grundza

Result: 13-0-0 Motion Passes

<u>Motion 3:</u> Set the Sequence VIF reference oil assignment protocol at equal proportion with random assignment for all three reference oils (1011, 542-2, 543).

Rich Grundza, Second Robert Stockwell

Result: 13-0-0 Motion Passes

Motion 4: For a new lab (defined as a lab that did not participate in the precision matrix) to be calibrated, the lab must run four operationally valid tests on multiple reference oils, to be assigned by the TMC, in a single engine and stand combination, with at least one replicated reference oil, and with a minimum of two consecutive results that meet the acceptance criteria of the defined LTMS.

Rich Grundza, Robert Stockwell

Result: 10-0-3 Motion Passes

Motion 5: Official Sequence VIF calibration will start on 3/9/2017 for stand-engine combinations that have completed calibration testing following criteria established in the Sequence VIF LTMS document and using the Sequence VIF current test procedure and associated surveillance panel meeting minutes.

Greg Miranda, Second: Adrian Alfonso Result: 13-0-0 Motion Passes

Motion 6: A lab may run a minimum of an additional 50 hours of break-in to reset engine-stand calibration, effectively voiding prior tests on that engine-stand combination in calibration determination.

Adrian Alfonso, Second: Rich Grundza

Result: 13-0-0 Motion Passes

Motion 7: Sequence VIF LTMS industry control charts will consist of EWMA of the Yi results, using Lambda of 0.2 and level 1 alarm at +/- 0.859 with an action for the TMC to inform the surveillance panel that the limit has been exceeded, and the surveillance panel then investigates and pursues resolution of the alarm. Zo for the industry charts will be the average of the first three valid tests.

Dan Worcester, Second: Jim Linden

Result: 13-0-0 Motion Passes

Motion 8: The Sequence VI surveillance panel recommends to the PCEOCP that MTAC would be appropriate to handle replicate candidate tests in the Sequence VIF.

Jo Martinez; Second: Doyle Boese

Results: 13-0-0 Motion Passes

Motion 9: The Sequence VI surveillance panel, having established severity and precision control charting via an LTMS system, having established test stand/engine calibration and reference periods, having secured sources for test parts, fuel and reference oils, having identified parameters that may be used for pass-fail criteria, having an up-to-date test procedure (in progress) and having established continuous surveillance as noted in the Scope and Objectives of the Sequence VI surveillance panel, hereby wishes to inform the Passenger Car Engine Oil Classification Panel, the Auto Oil Advisory Panel and the American Chemistry Council PAPTG, that the Sequence VIF test is ready for inclusion in ILSAC oil category GF-6B.

Greg Miranda; Second: Rich Grundza

Result: 13-0-0 Motion Passes.

ASTM SEQUENCE	VI
----------------------	----

Name	Email/Phone C	Company	Attend
	1		
Adrian Alfonso	Phone: (210) 838-0431	Intertek	ATTEND
Voting Member	Adrian.Alfonso@intertek.com		
Jason Bowden	Phone: (440) 354-7007	OHT	ATTEND
Voting Member	jhbowden@ohtech.com		
Amol Savant	acsavant@valvoline.com	Valvoline	ATTEND
Voting Member			
Tim Cushing	Phone: (248) 881-3518	General	ATTEND
Voting Member	Timothy.Cushing@gm.com	Motors	
Rich Grundza	Phone: (412) 365-1034	ТМС	ATTEND
Voting Member	reg@astmtmc.cmu.edu		
Jeff Hsu	Phone: (832) 419-3482	Shell	ATTEND
Voting Member	j.hsu@shell.com		
Teri Kowalski	Phone: (734) 995-4032	Toyota	
Voting Member	Teri.Kowalski@tema.toyota.com		
Dan Lanctot	Phone: (210) 690-1958	TEI	
Voting Member	dlanctot@tei-net.com		
Greg Miranda	Phone: (440) 347-8516	Lubrizol	ATTEND
Voting Member	Greg.Miranda@Lubrizol.com		
Katerina	Phone:	Afton	ATTEND
Pecinovsky	Katerina.Pecinovsky@AftonChemical.	com	
Voting Member			
Brianne Pentz	Phone:	BP	
Voting Member	Brianne.Pentz@bp.com		
Andy Ritchie	Phone: (908) 474-2097	Infineum	
Voting Member	Andrew.Ritchie@infineum.com		
Ron Romano	Phone: (313) 845-4068	Ford	
Voting Member	rromano@ford.com	1 014	
Clifford Salvesen	Phone: (856) 224-2954	ExxonMobil	ATTEND
Voting Member	Clifford.r.Salvesen@exxonmobil.com		
Kaustav Sinha	Phone: (713) 432-6642	Chevron	
Voting Member	LFNQ@chevron.com	Oronite	
Haiying Tang	Phone: (248) 512-0593	Chrysler	
Voting Member	HT146@Chrysler.com		
Dan Worcester	Phone: (210) 522-2405	SwRI	ATTEND
Voting Member	Dan.Worcester@swri.org		

ASTM SEQUENCE VI

Name	Email/Phone	Company	Attend
Ed Altman	Ed.Altman@aftonchemical.com	Afton	
Bill Anderson	Bill.anderson@aftonchemical.com	Afton	ATTEND
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	ATTEND
Lisa Dingwell	Lisa.Dingwell@AftonChemical.com	Afton	
Todd Dvorak	Todd.Dvorak@aftonchemical.com	Afton	ATTEND
Greg Guinther	Greg.Guinther@aftonchemical.com	Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com	Afton	
Christian Porter	Christian.Porter@aftonchemical.com	Afton	
Jeremy Styer	Jeremy.Styer@aftonchemical.com	Afton	
Timothy Caudill	Tlcaudill@valvoline.com	Valvoline	
Tisha Joy	Tisha.Joy@bp.com	BP	
Michael Blumenfeld	Michael.1.Blumenfeld@exxonmobil.c	om EM	
	Phone: (856) 224.2865		
Don Smolenski	Donald.j.Smolenski@Evonik.com	Evonik	
Doyle Boese	Doyle.Boese@infineum.com	Infineum	ATTEND
	Phone: (908) 474-3176		
Gordon Farnsworth	Gordon.Farnsworth@infineum.com	Infineum	
Charlie Leverett	Charlie.Leverett@yahoo.com	Infineum	ATTEND
	Phone: (210) 414-5448		
Mike McMillan	mmcmillan123@comcast.net	Infineum	ATTEND
Jordan Pastor	Jordan.Pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
William Buscher	William.Buscher@intertek.com	Intertek	ATTEND
Martin Chadwick	Martin.Chadwick@intertek.com	Intertek	ATTEND
Al Lopez	Al.Lopez@intertek.com	Intertek	ATTEND
Addison Schweitzer	Addison.Schweitzer@intertek.com	Intertek	
Bob Olree	olree@netzero.net	Intertek	
Andy Buczynsky	Andrew.Buczynsky@gm.com	GM	
Thomas Hickl	Thomas.Hickl@de.gm.com	GM	
Jeff Kettman	Jeff.Kettman@gm.com	GM	
Jonas Leber	Jonas.Leber@opel.com	GM	
Mike Raney	Michael.P.Raney@gm.com	GM	ATTEND
	Phone: (248) 408-5384		
Angela Willis	Angela.P.Willis@gm.com	GM	
Jerry Brys	Jerome.Brys@lubrizol.com	Lubrizol	
	Phone: (440) 347.2631		
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
James Matasik	James.Matasic@lubrizol.com	Lubrizol	
Kevin O'Malley	Kevin.OMalley@lubrizol.com	Lubrizol	ATTEND
	Phone: (440) 347,4141		

ASTM SEQUENCE VI

Name	Email/Phone	Company	Attend	
Γ	1			
Saott Daiala	araiala@U.A.com.com	Idamitar		
Dovo Dogomoro	stajata@ILACOFP.com			
Dave Passmore	<u>upassinore@imtsind.com</u>	IIVI I S Nesta		
Chris Castanien	Dhono: (440) 200 0766	INESTE		
Dwight Powdon	chouden@obtach.com	ОШТ		
Matt Rowdon	mibowden@obtech.com			
Digordo Affinito	affinite@abayren.com	Oronita		
Kicardo Allinto	<u>Ammto@cnevron.com</u> Dhono: (510) 242 4625	Oronne		
Ion Elliot	Infiliett@ehouron.com	Oronita		
Iall Elliot	iam@ahayran.com	Oronita	ATTEND	
Jo Martinez	jogm@cnevron.com	Oronite		
Christing Fislets 1	Istowcnevron.com			
Trovia Vastar	<u>Unristine.Elckstead@swri.org</u>			
Travis Kostan	<u>Iravis.Kostan@swri.org</u>	SWRI		
Patrick Lang	Patrick.Lang@SWRI.org	SWRI		
	Phone: (210) 522-2820	CD_I		
Michael Lochte	Miochte@Swri.org	SWRI Staall		
Karen Haumann	Karen.Haumann@shell.com	Shell		
Scott Stap	Scott.Stap@tgdirect.com	IG Direct		
Clayton Knight	<u>cknight@tei-net.com</u>			
Zack Bishop	Zbishop@tei-net.com	TEI		
	Phone: (210) 877-0223			
Jeff Clark	Jac@astmtmc.cmu.edu			
Hirano Satoshi	Satoshi_Hirano_aa@mail.toyota.co.jj	<u>p</u> Toyota		
Jim Linden	lindenjim@jlindenconsulting.com	Toyota	ATTEND	
	Phone: (248) 321-5343	T '1 1		
Mark Adams	mark@tribologytesting.com	Tribology		
T 0 11		l esting		
Tom Smith		Valvoline		
Hap Thompson	Hapjthom@aol.com	VIX Facilitator		
Chris Taylor	Cnris. Laylor@vpracingfuels.com	VP Kacing		
		Fuels		

Name	Email/Phone	Company	Attend

MOTION:	#1 5 Run Review	#2 VIF LTMS	#3 Oils	#4 New Lab
Adrian Alfonso	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Jason Bowden	APPROVE	APPROVE	APPROVE	WAIVE
Voting Member				
Amol Savant	APPROVE	APPROVE	APPROVE	WAIVE
Voting Member				
Tim Cushing	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Rich Grundza	APPROVE	APPROVE	APPROVE	WAIVE
Voting Member				
Jeff Hsu	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Teri Kowalski [JL]	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Katerina	APPROVE	APPROVE	APPROVE	APPROVE
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie [CL]	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Kaustav Sinha	APPROVE	APPKOVE	APPROVE	APPROVE
[RS] Voting				
Member				
Haiying Tang				
Voting Member				
Dan Worcester	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
VOTES	13-0-0	13-0-0	13-0-0	10-0-3

ASTM SEQUENCE VI			
Name	Email/Phone	Company	Attend

MOTION:	#5 VIF Start	#6 Break In 50	#7 EWMA	#8 MTAC
Adrian Alfonso	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Jason Bowden	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Amol Savant	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Tim Cushing	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Rich Grundza	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Jeff Hsu	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Teri Kowalski	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Dan Lanctot				
Voting Member				
Greg Miranda	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Katerina	APPROVE	APPROVE	APPROVE	APPROVE
Pecinovsky				
Voting Member				
Brianne Pentz				
Voting Member				
Andy Ritchie	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Kaustav Sinha	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
Haiying Tang				
Voting Member				
Dan Worcester	APPROVE	APPROVE	APPROVE	APPROVE
Voting Member				
VOTES	13-0-0	13-0-0	13-0-0	13-0-0

ASTM SEQUENCE VI			
Name	Email/Phone	Company	Attend

MOTION:	#9 PCEOCP		
Adrian Alfonso	APPROVE		
Voting Member			
Jason Bowden	APPROVE		
Voting Member			
Amol Savant	APPROVE		
Voting Member			
Tim Cushing	APPROVE		
Voting Member			
Rich Grundza	APPROVE		
Voting Member			
Jeff Hsu	APPROVE		
Voting Member			
Teri Kowalski	APPROVE		
Voting Member			
Dan Lanctot			
Voting Member			
Greg Miranda	APPROVE		
Voting Member			
Katerina	APPROVE		
Pecinovsky			
Voting Member			
Brianne Pentz			
Voting Member			
Andy Ritchie	APPROVE		
Voting Member			
Ron Romano			
Voting Member			
Clifford Salvesen	APPROVE		
Voting Member			
Kaustav Sinha	APPROVE		
Voting Member			
Haiying Tang			
Voting Member			
Dan Worcester	APPROVE		
Voting Member			
VOTES	13-0-0		

VIF Precision Matrix Analysis (with 5th runs, n=21)

Statistics Group Date: February 23, 2017

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Data for Analysis

- 21 tests considered
- Analysis includes 3 tests in addition to the tests included in *VIF Precision Matrix Statistical Analysis n=18 2-16-17.pptx*

• Testkeys: 113231, 117508, 117512

Run	EOT Engine	SwR	81 #1	SI	wRI #2		AR #1		IAR #2		
Order	Hours									L	Z
1	350		543 112952-VIF		1011 112953-VIF		542-2 112957-VIF		1011 112955-VIF Baseline Shift		1011 118268-VIF
2	550		542-2 112951-VIF		542-2 116037-VIF		543 112958-VIF		543 113824-VIF		543
3	750		542-2 113818-VIF	Stage 2	1011 112954-VIF	Stage 1	543 113823-VIF	Stage 2	1011 112956-VIF	Additional	118267-VIF
4	950	Stage 1 Sense Check	543 113819-VIF	Sense Check	543 113820-VIF	Sense Check	542-2 113822-VIF EBP Calibration Shift	Sense Check	542-2 116030-VIF	resting	542-2 119631-VIF 1011 119628-VIF
							542-2 113231-VIF				
5	1150	10 11750	11 08-VIF	113 Worn Thr 117	543 3821-VIF ottle Controller 543 7512-VIF	11	1011 6832-VIF	: Bi	542-2 116031-VIF aseline Shift		
6	1350	54 11762	43 26-VIF	117	1011 7509- <u>V</u> IF	11	543 3825-VIF	1	1011 117495-VIF		
7	1550	54 11603	2-2 38-VIF EX	clud	ed Fro		Analy	sis	543 117494-VIF		
8	1750	10 11751	11 10-VIF			11	542-2 7493-VIF				
Test	Reported	Under Rev	iew	Inva	lid						
2											

• Table is from Frank Faber's 6-21-16 matrix update plus 4 additional tests

Data for AnalysisFEI1_OR and FEI2_OR:

Data for AnalysisFEI1_OR and FEI2_OR:

Assess Engine Life Based on Oil Discrimination n = 32 FEI1 (Using A 144 as an example)

Lab Stand Engine = A 1 144

6

Assess Engine Life Based on Oil Discrimination n = 18 FEI1 (Using A 144 as an example)

Given the change in the estimated slopes by oil in the reduced dataset, oil discrimination can be evaluated by applying the estimated error from the prediction model with n=32to the estimated slopes in the reduced dataset.

-542-2 -543

Utilized a confidence interval half width of 0.2 to enable contrast with full dataset plot.

Refer to VIF Engine Life Analysis 11-29-16.pdf for more detail.

Assess Engine Life Based on Oil Discrimination n = 21 FEI1 (Using A 144 as an example)

542-2 543

-1011

Given the change in the estimated slopes by oil in the reduced dataset, oil discrimination can be evaluated by applying the estimated error from the prediction model with n=32to the estimated slopes in the reduced dataset.

Utilized a confidence interval half width of 0.2 to enable contrast with full dataset plot.

Refer to VIF Engine Life Analysis 11-29-16.pdf for more detail.

Executive Summary

• Comparison of N=18 and N=21 Analyses:

	N=18	N=21
Engine Hours		
Transformation	None	None
	FEI1: 542-2 > 543 > 1011	FEI1: 542-2 > 543 > 1011
Oil Discrimination	FEI2: 543 > (542-2 & 1011)	FEI2: 543 > (542-2 & 1011)
	No significant Difference	No significant Difference
Lab differences	(marginal for FEI2)	(marginal for FEI2)
Engine Differences	FEI2: G58 < G96	FEI2: G58 < G96; A122 < A144
	FEI1 = FEI1_OR + 0.000403*(ENHREND - 700)	FEI1 = FEI1_OR + 0.000252*(ENHREND - 776)
Engine Hours Adjustment	FEI2 = FEI2_OR + 0.000293*(ENHREND - 700)	FEI2 = FEI2_OR + 0.000135*(ENHREND - 776)
Estimated within engine		
test precision	FEI1 = 0.21; FEI2 = 0.19	FEI1 s: 0.21; FEI2 s: 0.18
Estimated test precision		
across labs and engines	FEI1 = 0.22; FEI2 = 0.30	FEI1 s: 0.22; FEI2 s: 0.29

Executive Summary

- Comparison of N=18 and N=21 Analyses:
 - Oil targets, oil standard deviations, and test precision estimates:

• N=18

1. 10			Standard					
	Targ	get	Dev	iation	S _{repea}	atability	S _{reprod}	ucibility
Oil	FEI1	FEI2	FEI1	FEI2	FEI1	FEI2	FEI1	FEI2
542-2 (n=6)	2.23	1.52	0.18	0.13	0.21	0.19	0.22	0.30
1011 (n=5)	1.45	1.41	0.14	0.39	0.21	0.19	0.22	0.30
543 (n=7)	1.88	2.25	0.27	0.34	0.21	0.19	0.22	0.30

• N=21

	Tar	get	Standard Deviation		Standard et Deviation S _{repeatability}		atability	S _{reproducibility}	
Oil	FEI1	FEI2	FEI1	FEI2	FEI1	FEI2	FEI1	FEI2	
542-2 (n=7)	2.18	1.49	0.20	0.18	0.21	0.18	0.22	0.29	
1011 (n=6)	1.50	1.47	0.17	0.36	0.21	0.18	0.22	0.29	
543 (n=8)	1.85	2.23	0.26	0.32	0.21	0.18	0.22	0.29	

Appendix 1

VIF Analysis Details (N=21)

Review Data for Analysis

- Data summary:
 - 3 Labs {A, G, B}
 - 3 Reference Oils {1011, 542-2, 543}
 - 5 Engines {58 & 96 at Lab G; 122 & 144 at Lab A; 306 at Lab B}
- 36 tests were considered; 21 were included in this analysis
 - These 21 valid tests have ENHREND < 1300

Data for Analysis

- Average engine hour age¹:
 - Average EngHrs = 776

LTMSLAB	ENGNO	Average ENHREND	Max ENHREND
А	122	791	1264
А	144	782	1197
G	58	762	1236
G	96	798	1023
В	306	747	1046

¹For reference:VID $Ln(EngHrs) = 7.37 (e^{7.37} = 1598 hours)$ VIE ENHREND = 675 Hours

BL SHIFT % DELTA, BLB1 VS BLB2

	Quant				
	100.0%	maximum		0.54	
	99.5%			0.54	
	97.5%			0.54	
	90.0%			0.39	
	75.0%	quartile		0.32	
	50.0%	median		0.24	
	25.0%	quartile		0.15	
	10.0%		(0.084	
	2.5%			-0.09	
	0.5%			-0.09	
	0.0%	minimum		-0.09	
⊿	💌 Sun	nmary S	tatistics		
	Mean		0.23		
	Std Dev		0.1330413		
	Std Err N	/lean	0.029032		
	Upper 9	5% Mean	0.2905597		
	Lower 9	5% Mean	0.1694403		
	N		21		

BL SHIFT % DELTA, BLB2 VS BLA

Lower 95% Mean

Ν

-0.265299 21

15

Evaluating Baseline Weight Scenarios

- Excel Program developed to evaluate 10,000 different weight combinations of BLB1, BLB2, and BLA
- Excel based prediction model for precision (RMSE) included Lab, Eng(Lab), Oil, and EngHr factors
- All BL weight combinations summed to a value of 1.0
- For those runs that included a BLB3, BL weights were applied to BLB2 & BLB3 in lieu of BLB1 & BLB2
- Results are shown on the following slides

Evaluating Baseline Weight Scenarios

• Plot of RMSE vs. baseline (BL) weight combinations for FEI1 shown below:

- RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
- VID & VIE FEI1 Baseline weights are 80% & 20% (shown in red circle)

Evaluating Baseline Weight Scenarios

- Plot of RMSE vs. baseline weight combinations for FEI2 shown below
 - RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
 - VID & VIE FEI2 Baseline weights are 10% & 90% (shown in red circle)

Agenda

• Evaluating Engine Hour Adjustment

- Analyzing Data
 - FEI1
 - FEI2
 - Comparing VIF Precision and Oil Discrimination with other Tests
Evaluating Engine Hour Adjustment

- Analyses of FEI1 and FEI2 model *residuals* were explored to identify the best method for Engine Hour Adjustment
 - The residuals were based on a model fit with LTMSLAB, IND, and ENGNO(LTMSLAB) factors
- A linear adjustment was selected to be consistent with the VIE approach

Agenda

- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing Data
 - **FEI1**
 - FEI2
 - Comparing VIF Precision and Oil Discrimination with other Tests

• Plot of FEI1_OR

- Overall ANOVA Summary of FEI1 data:
 - Oils significantly differ
 - Test Precision: 0.22 (contrast w/VID PM test precision of 0.12; VIE is 0.30)

Summ	ary of F	it			
RSquare			0.715969		
RSquare	Adi		0.56303		
Root Me	an Square	Error	0.216846		
Mean of	Response	2	1.85	•	
Observa	tions (or S	Sum Wgts)	21		
Analys	sis of Va	ariance			
		Sum of			
Source	DF	Squares	Mean So	uare	F Ratio
Model	7	1.5409090	0.22	20130	4.6814
Error	13	0.6112910	0.04	47022	Prob > F
C. Total	20	2.1522000			0.0081*

FEI1 Engine Hours Adjustment: $FEI1 = FEI1_OR + 0.000252*(ENHREND - 776)$

Parameter Estimates						
Term		Estimate	Prob> t			
Intercept		2.0384021	<.0001*			
LTMSLAB[A]		0.0499342	0.4540			
LTMSLAB[B]		0.0835183	0.3341			
LTMSLAB[A]:ENGN	IO[122] -0.021784	0.7599			
LTMSLAB[G]:ENGN	IO[58]	-0.10287	0.2477			
IND[542-2]		0.3358206	0.0003*			
IND[1011]		-0.344997	0.0005*			
ENHREND		-0.000252	0.1617			
Effect Tests						
Source	DF	Prob > F				
LTMSLAB	2	0.2111				
ENGNO[LTMSLAB]	2	0.4717				
IND	2	0.0006*				
ENHREND	1	0.1617				

- Oils significantly differ:
 - All pairwise oil comparisons are significantly different
 - 1011 < 543 < 542-2

	Least
Level	Sq Mean
542-2	2.1786515
1011	1.4978340
543	1.8520072

	VID FEI1	VIE FEI1
Ref Oil	Target	Target
542	1.49	2.56

- FEI1 Oil Discrimination by Engine
 - Contrast below plot with oil ranking of {1011 < 543 < 542-2}
 - Engines do not appear to separate oils the same way, but caution should be used when basing conclusions on limited data.

These residuals are based on a model fit with LTMSLAB, ENGNO(LTMSLAB), and ENHREND

• The difference between labs is not statistically significant

Effect Tests						
Source	DF	Prob > F				
LTMSLAB	2	0.2111				
ENGNO[LTMSLAB]	2	0.4717				
IND	2	0.0006*				
ENHREND	1	0.1617				

Level	- Level	Difference	p-Value
В	G	0.2169707	0.3091
Α	G	0.1833867	0.2473
В	Α	0.0335840	0.9643

- Engine differences within the same Lab:
 - Comparisons: {A-144 vs. A-122} & {G-58 vs. G-96}
 - Conclusion: the differences between the engines are not statistically significant

I araniecer Ese		2		
Term		Estimat	e	Prob> t
Intercept		2.038402	21	<.0001
LTMSLAB[A]		0.049934	12	0.4540
LTMSLAB[B]		0.083518	33	0.3341
LTMSLAB[A]:ENGN	10[122] -0.0217	34	0.7599
LTMSLAB[G]:ENGN	IO[58]	-0.1028	37	0.2477
IND[542-2]		0.335820)6	0.0003
IND[1011]		-0.3449	97	0.0005
ENHREND		-0.0002	52	0.1617
Effect Tests				
Source	DF	Prob > F		
LTMSLAB	2	0.2111		
ENGNO[LTMSLAB]	2	0.4717		
IND	2	0.0006*		
ENHREND	1	0.1617		

Parameter Estimates

- Matrix Plot of FEI1 residuals vs. some other related test variables
 - No observable trends that correlate with FEI1 residuals

FEI1 Precision

Model: FEI1 Engine hours adjusted vs. Oil, Lab, Engine(Lab)

Model RMSE

- s = 0.21
- VIE Precision Matrix s=0.29
- VID Precision Matrix s=0.14
- VID LTMS s=0.12

Repeatability

- s = 0.21
- r = 0.58

Model: FEI1 Engine hours adjusted vs. Oil

Reproducibility

• s = 0.22

•
$$R = 0.61$$

FEI1 Precision

Based upon the Seq. VIF and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI1 result¹ of 1.42 – 2.00 for the VIF and 1.61 – 2.00 for the VID.

Note 1: An FEI1 of 2.0 was arbitrarily selected in the calculations as the upper pass/fail limit.

Agenda

• Evaluating Engine Hour Adjustment

• Analyzing Data

- FEI1
- FEI2
- Comparing VIF Precision and Oil Discrimination with other Tests

• Plot of FEI2_OR

- Overall ANOVA Summary of FEI2 data:
 - Oil and engines within lab effects are statistically significant
 - Labs marginally differ
 - Test Precision: 0.19 (contrast w/VID PM test precision of 0.14; VIE is 0.12)

Summ	ary of F	it			
RSquare			0.877983		
RSquare	Adj		0.812282		
Root Me	an Square	e Error	0.190319		
Mean of	Response	2	1.714286		
Observations (or Sum Wgts)			21		
Analysis of Variance					
Sum of					
Source	DF	Squares	Mean Squa	are	F Rati
Model	7	3.3882383	0.4840	034	13.363
Error	13	0.4708760	0.0362	221	Prob >
C. Total	20	3.8591143			<.0001

FEI2 Engine Hours Adjustment: FEI2 = FEI2_OR + 0.000135*(ENHREND - 776)

Parameter Esti	Parameter Estimates						
Term		Estimate	Prob> t				
Intercept		1.8322014	<.0001*				
LTMSLAB[A]		-0.074617	0.2115				
LTMSLAB[B]		0.1719895	0.0350*				
LTMSLAB[A]:ENGN	IO[122]	-0.161278	0.0207*				
LTMSLAB[G]:ENGN	IO[58]	-0.296248	0.0016*				
IND[542-2]		-0.232462	0.0022*				
IND[1011]		-0.263603	0.0016*				
ENHREND		-0.000135	0.3817				
Effect Tests							
Source	DF	Prob > F					
LTMSLAB	2	0.0995					
ENGNO[LTMSLAB]	2	0.0012					
IND	2	<.0001					
ENHREND	1	0.3817					

- Oils significantly differ:
 - $543 > \{1011 \& 542-2\}$

	Least				
Level	Sq Mean				
542-2	1.4949854				
1011	1.4638444				
543	2.2235130				
LS Me	ans Plot				
2.6 2.2 2.2 1.8 1.8 1.4 1.4 1.2 1.2 1.0 8.0	542-2	2	1011 IND	-	543
			1110		
		muter.			

Level	- Level	Difference	p-Value
543	1011	0.7596686	<.0001*
543	542-2	0.7285275	<.0001*
542-2	1011	0.0311411	0.9595

	VID FEI2	VIE FEI2
Ref Oil	Target	Target
542	0.8	1.73

- FEI2 Oil Discrimination by Engine
 - Contrast below plot with oil ranking: $543 \ge \{1011 \& 542-2\}$
 - Oil ranking is generally consistent across engines. There is less of a difference in oils in engine 58. Caution should be used when basing conclusions on limited data.

These residuals are based on a model fit with LTMSLAB, ENGNO(LTMSLAB), and ENHREND

- Labs marginally differ
 - Lab B tends to be higher than both A and G

Effect Tests		
Source	DF	Prob > F
LTMSLAB	2	0.0995
ENGNO[LTMSLAB]	2	0.0012*
IND	2	<.0001*
ENHREND	1	0.3817

- Engine differences within the same Lab:
 - Comparisons: {A-144 vs. A-122} & {G-58 vs. G-96}
 - Conclusion: Engines within labs A & G significantly differ from one another

Parameter Estimates				
Term		Estimate	Prob>	
Intercept		1.8322014	<.0001	
LTMSLAB[A]		-0.074617	0.2115	
LTMSLAB[B]		0.1719895	0.0350	
LTMSLAB[A]:ENGN	0[122]	-0.161278	0.0207	
LTMSLAB[G]:ENGN	0[58]	-0.296248	0.0016	
IND[542-2]		-0.232462	0.0022	
IND[1011]		-0.263603	0.0016	
ENHREND		-0.000135	0.3817	
Effect Tests				
Source	DF	Prob > F		
LTMSLAB	2	0.0995		
ENGNO[LTMSLAB]	2	0.0012*		
IND	2	<.0001*		
ENHREND	1	0.3817		

- Matrix Plot of FEI2 residuals vs. some other related test variables
 - Data suggest higher FEI2 when BLB2 vs. BLA is higher

FEI2 Precision

Model: FEI2 Engine hours adjusted vs. Oil, Lab, Engine(Lab)

Model: FEI2 Engine hours adjusted vs. Oil

Model RMSE

- s = 0.18
- VIE Precision Matrix s=0.12
- VID Precision Matrix s=0.16
- VID LTMS s=0.14

Repeatability

•
$$s = 0.18$$

•
$$r = 0.50$$

Reproducibility

•
$$s = 0.29$$

•
$$R = 0.80$$

FEI2 Precision

Based upon the Seq. VIF and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI2 result¹ of 1.00 – 1.50 for the VIF and 1.06 – 1.50 for the VID.

Note 1: An FEI2 of 1.5 was arbitrarily selected in the calculations as the upper pass/fail limit.

Agenda

- Evaluating Engine Hour Adjustment
- Analyzing Data
 - FEI1
 - **FEI2**
 - Comparing VIF Precision and Oil Discrimination with other Tests

Comparing VIF Precision and Oil Discrimination with other Tests

Sequence V	ID FEI1			
Oil		Target (LTMS)	Method Standard Deviation	0.13
540 (GF5A)	1.32		
541 (0	GF5D)	0.87	Full span of results (st devs)	4.77
542 (GF5X)	1.49	Span of Oil 1010 - Oil 542 (st devs	1.15
1010		1.34		
Sequence VI	ID FEI2			
Oil		Target (LTMS)	Method Standard Deviation	0.14
540 (0	GF5A)	1.04		
541 (0	GF5D)	0.71	Full span of results (st devs)	2.79
542 (GF5X)	0.8	Span of Oil 1010 - Oil 542 (st devs	2.14
1010		1.1		
Sequence V	IE FEI1			
Oil		Target (LTMS)	Regression RMSE	0.29
1010-1		1.90		
542-2		2.56	Full span of results (st devs)	4.34
544		1.30	Span of Oil 1010 - Oil 542 (st devs	2.28
Sequence V	IE FEI2			
Oil		Target (LTMS)	Regression RMSE	0.25
1010-1		1.82		
542-2		1.73	Full span of results (st devs)	1.64
544		1.41	Span of Oil 1010 - Oil 542 (st devs	0.36
Sequence V	IF FEI1			
Oil		Target (LTMS)	Regression RMSE	0.22
542-2		2.17		
1011		1.50	Full span of results (st devs)	3.05
543		1.85		
Sequence V	IF FEI2			
Oil		Target (LTMS)	Regression RMSE	0.29
542-2		1.49		
1011		1.47	Full span of results (st devs)	2.62
543		2.23		

Comments

- A method of measuring test precision and oil discrimination is to divide the (FEI difference of best and worst performing reference oils) by the (test precision)
- The result is the # of standard deviations that separate reference oil performance
- Comparing the standard deviation alone is not necessarily meaningful; what if the standard deviation is larger, but oils span a larger FEI range? This is what appears to be the case for VIE FEI1
- Granted, this approach is influenced by choice of reference oils
- Engine tests typically show reference oil discrimination of about 1-3 standard deviations (see next slide)

Comparing VIF Precision and Oil Discrimination with other Tests

- Sequence IIIG ln(PVIS): oils separated by 2.0 standard deviations
- Sequence IIIG WPD: oils separated by 2.3 standard deviations
- Sequence IVA wear: oils separated by 1.2 standard deviations
- Sequence VID FEI2: oils separated by 2.9 standard deviations

C	IIIC	
-Sea		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

PERCENT VISCOSITY INCREASE Unit of Measure: LN(PVIS)

Reference Oil	Mean	Standard Deviation
434	4.7269	0.3859
435	5.1838	0.3096
435-2	5.1838	0.3096
438	4.5706	0.1768

#### Seq IIIG

WEIGHTED PISTON DEPOSITS Unit of Measure: Merits

Reference Oil	Mean	Standard Deviation
434	4.80	0.96
435	3.59	0.58
435-2	3.59	0.58
438	3.20	0.33



#### AVERAGE CAMSHAFT WEAR Unit of Measure: micrometers

Reference Oil	Mean	Standard Deviation
1006-2	102.18	13.54
1007	84.76	15.40

Seq VID FUEL ECONOMY IMPROVEMENT at 100 Hours Unit of Measure: Percent

Reference Oil	Mean	Standard Deviation
540 (GF5A)	1.04	0.14
541 (GF5D)	0.71	0.14
542 (GF5X)	0.80	0.14
1010	1.10	0.18

# Appendix 1.1

# **Residual Diagnostics Model**

# Residual Check Model: Oil, Lab, Engine(Lab), ENHREND



45

# Correlation among parameters Model: Oil, Lab, Engine(Lab), ENHREND

Correlations			
St	Studentized Resid FEI1 model: int lab engine(lab) Oil ENHREN	Studentized Resid FEI2 model: int lab engine(lab) Oil ENHREND §	itudentized Resid FEISUM model: int lab engine(lab) Oil ENHREND
Studentized Resid FEI1 model: int lab engine(lab) Oil ENHREND	1.000	0.1477	0.7947
Studentized Resid FEI2 model: int lab engine(lab) Oil ENHREND	0.147	7 1.0000	0.7178
Studentized Resid FEISUM model: int lab engine(lab) Oil ENHREND	0.794	7 0.7178	1.0000
Scatternlot Matrix			
2 1 udentized Resid FEI1 mod ab engine(lab) Oil ENHRE 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	id FEISUM mc ab) Oil ENHRE		

# **VIF LTMS**

Industry Statistician Team

Date: 02-21-2017

# **Statistics Group**

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

# VIF LTMS

- With a limited VIF engine life and the relationship of engine age on the FEIs for the first & second runs, the Statistics Team recommends an LTMS that is based on a minimum two test calibration.
- The following slides outline the proposed VIF LTMS for a 4 or 5 run engine life.

# 4 Run Engine Life - LTMS

# Engine Hour Adjustment for VIF LTMS

- The VIF LTMS is based on the below engine hour adjustment:
  - FEI1 EngHr Adjustment:

*FEI1* = 0.000403*(*ENHREND* - 700) + *FEI1_Original* 

• FEI2 EngHr Adjustment:

*FEI2* = 0.000293*(*ENHREND* - 700)+*FEI2_Original* 

# How are Yi's Calculated?

•  $Y_i$  calculation method equation:

$$Y_i = \frac{FEI_HrsAdj - RO_Target_FEI}{RO_StdDev}$$

 As indicated in the above equation, the Y_i calculation is based on engine hour adjusted FEI results and LSMean¹ targets (shown in below table) for each reference oil.

	Target	
Oil	FEI1	FEI2
542-2 (n=6)	2.23	1.52
1011 (n=5)	1.45	1.41
543 (n=7)	1.88	2.25

Note 1: FEI1 and FEI2 LSMeans were based on the n = 18 EngHr adj result data with Oil, Lab, and Eng(Lab) in the model

# How are Yi's Calculated?

• For the denominator part of the Y_i equation, the standard deviations of the engine hour adjusted FEI results by reference oil (shown in below table) will be used for the calculation

	Standard Deviation		
Oil	FEI1	FEI2	
542-2 (n=6)	0.18	0.13	
1011 (n=5)	0.14	0.39	
543 (n=7)	0.27	0.34	

- Note that severity adjustment calculation will be based on  $S_R$  (reproducibility standard deviation) rather than the individual standard deviation for the oil.
  - FEI1  $S_R = 0.22$
  - FEI2  $S_R = 0.30$

Note: Oil standard deviations were based on EngHr adjusted data

### **VIF LTMS Flow Chart**



### 5 Run Engine Life - LTMS
#### Engine Hour Adjustment for VIF LTMS

- The VIF LTMS is based on the below engine hour adjustment:
  - FEI1 EngHr Adjustment:

*FEI1* = 0.000252*(*ENHREND* - 776) + *FEI1_Original* 

• FEI2 EngHr Adjustment:

*FEI2* = 0.000135*(*ENHREND* – 776)+*FEI2_Original* 

#### How are Yi's Calculated?

•  $Y_i$  calculation method equation:

$$Y_i = \frac{FEI_HrsAdj - RO_Target_FEI}{RO_StdDev}$$

 As indicated in the above equation, the Y_i calculation is based on engine hour adjusted FEI results and LSMean¹ targets (shown in below table) for each reference oil.

	Target				
Oil	FEI1	FEI2			
542-2 (n=7)	2.18	1.49			
1011 (n=6)	1.50	1.47			
543 (n=8)	1.85	2.23			

Note 1: FEI1 and FEI2 LSM eans were based on the n = 21 EngHr adj result data with Oil, Lab, and Eng(Lab) in the model

#### How are Yi's Calculated?

• For the denominator part of the Y_i equation, the standard deviations of the engine hour adjusted FEI results by reference oil (shown in below table) will be used for the calculation

	Standard Deviation				
Oil	FEI1	FEI2			
542-2 (n=7)	0.20	0.18			
1011 (n=6)	0.17	0.36			
543 (n=8)	0.26	0.32			

- Note that severity adjustment calculation will be based on  $S_R$  (reproducibility standard deviation) rather than the individual standard deviation for the oil.
  - FEI1  $S_R = 0.22$
  - FEI2  $S_R = 0.29$

Note: Oil standard deviations were based on EngHr adjusted data



Statistics Group Date: Feb 22, 2017

## **Statistics Group**

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

### Summary

- Analysis of FEI1 Yi and FEI2Yi data indicates a severity shift has occurred post matrix for the VIE.
- Analysis of data suggests that the post matrix severity shift is Severity shift is approximately 0.7 and 1.0 Standard deviations severe for FEI1Yi and FEI2Yi, respectively.
- No single factor in the data can be connected with the severity shift.

# Part 1 VIE – Matrix & Postmatrix Analysis Includes Chartable = Y

- Available VIE data for analysis:
  - N=71 total data points
  - N=29 data points Matrix
    - $1^{st}$  run n = 7
    - $2^{nd}$  run n = 8
    - $3^{rd}$  run n = 7
    - $4^{\text{th}}$  run n = 7
  - N = 42 data points Post Matrix
    - $1^{st}$  run n = 42

5

#### VIE - FEI1Data Review

• Post Matrix, the EWMA chart of the LTMS FEI1 data suggest that the test has been running severe.



• Post Matrix, the CUSUM chart of the FEI1 LTMS data also suggest that the test has been running severe.



#### • CUSUM by Reference oil





# VIE Severity - Data Review CUSUM by Reference oil – first run exclusively





- Analysis of  $Y_i$  data for FEI1 valid Matrix and Post Matrix
  - Factors for analysis: EngHrs, Lab, Stand(Lab)¹, RefOil, Matrix_Group
  - Analysis suggests that Lab and Stand(Lab) are significant
  - Matrix vs. Post Matrix effect is significant (LSMeans indicate 0.7 StDev severe)
  - No evidence of Oil*Matrix interaction

Response FEI1_Yi													
⊿ Whole Model				D D D	4 💌	Matrix_Po	stMatrix			RefOil*Matrix	PostMatrix		⊳
Actual by Predicted Plot				552	₽L	.everage P	lot			Leverage Plot			
Summary of Fit				INS IN	⊿L	.east Squa	res Means T	able		⊿ Least Squares	Means Table		丰
Analysis of Variance				Ā			Least				Leas	t	Ĩ
Lack Of Fit				BP	L	.evel	Sq Mean	Std Error	Mean	Level	Sq Mear	n Std Error	₽
Parameter Estimates				TM.	N	MATRIX	0.1807201	0.25075111	-0.04150	RO1010-1, MAT	RIX 0.221090	L 0.31988145	
Term	Estimate Std Er	or t Ratio	Prob>iti	ISL	P	ostMatrix	-0.5530893	0.20175099	-0.67853	RO1010-1,Post	Matrix -0.7432590	0.28538506	
Intercept	-0.146854 0.3827	65 -0.38	0.7030	B	⊿L	S Means I	Plot			RO542-2, MATE	UX 0.1457519	0.32570959	
LTMSLAB [ A]	-0.913105 0.2520	46 -3.62	0.0007*	-		۲ <u>۲</u>			]	RO542-2,PostM	atrix -0.3851440	0.27100833	
LTMSLAB [ B]	0.7063642 0.395	54 1.79	0.0809			1 Jea				RO544, MATRIX	0.1753184	1 0.34630703	
LTMSLAB [ C]	0.4113309 0.3254	89 1.26	0.2128			v 0-		т		RO544,PostMat	rix -0.5308650	0.33989415	
LTMSLAB [ D]	0.1086434 0.2301	.03 0.47	0.6391			≓ -1-	-	1		LS Means Plot			
LTMSLAB [F]	-0.440009 0.3953	89 -1.11	0.2717			≓ -2-				SUB 2-		RO1010-1	+
LTMSLAB [ A]:LTMSAPP[10]	0.2944824 0.4552	.56 0.65	0.5210		l	₩ -3		Destruction		9 1-		RO542-2	+
LTMSLAB [ A]:LTMSAPP[11]	1.213776 0.5475	44 2.22	0.0317*				MATRIX	PostMatrix		v 0-		RO544	+
LTMSLAB [ A]:LTMSAPP[2]	0.2642025 0.483	02 0.55	0.5871				Matrix_Po:	stMatrix		, -1-			
LTMSLAB [ A]:LTMSAPP[3]	-0.600231 0.4618	64 -1.30	0.2004							E -2-			
LTMSLAB [ A]:LTMSAPP[6]	-1.099441 0.7225	67 -1.52	0.1351							E -3	DIV DoctMat	ring	
LTMSLAB [ A]:LTMSAPP[8]	0.4461298 0.581	.65 0.77	0.4471							IVIAI		rix.	
LTMSLAB [ B]:LTMSAPP[1]	-0.560303 0.4782	37 -1.17	0.2475							M	atrix_PostMatrix		
LTMSLAB [ D]:LTMSAPP[1]	0.3464108 0.3005	34 1.15	0.2551										
LTMSLAB [ D]:LTMSAPP[2]	-0.092413 0.274	68 -0.34	0.7381										
LTMSLAB [G]:LTMSAPP[1]	-1.108007 0.4425	-2.50	0.0160*										
LTMSLAB [ G]:LTMSAPP[2]	-0.264172 0.3562	-0.74	0.4622										
LTMSLAB [G]:LTMSAPP[4]	0.2137108 0.4616	01 0.46	0.6456										
LTMSLAB [G]:LTMSAPP[5]	0.4405048 0.7370	69 0.60	0.5531										
LTMSLAB [G]:LTMSAPP[6]	0.7415904 0.7351	.31 1.01	0.3185										
RefOil[RO1010-1]	-0.0749 0.1517	65 -0.49	0.6240										
RefOil[RO542-2]	0.0664886 0.1498	0.44	0.6594										
Matrix_PostMatrix[MATRIX]	0.3669047 0.1838	92 2.00	0.0521										
RefOil[RO1010-1]*Matrix_PostMatrix[MATRIX]	0.1152698 0.1487	62 0.77	0.4425										
RefOil[RO542-2]*Matrix_PostMatrix[MATRIX]	-0.101457 0.1470	-0.69	0.4936										
ENHREND	-7.874e-5 0.0006	66 -0.12	0.9064										

11

¹Note: Post matrix chartable data has no repeat data for the engine within the same lab – thus Stand(Lab) factor selected for analysis.

- Raw data plot of FEI1 Yi data Matrix and Post Matrix
  - 1st Run post matrix data is generally more severe as compared to matrix data
  - Even though oil*Matrix is not significant, data below suggests that the effect of the severity shift is unequal for the 3 reference oils



12

• Comparison of original matrix engines vs. follow-on purchase for FEI1Y_i



• Comparison of original matrix engines vs. follow-on purchase *(engine run = 1, exclusively)* for FEI1Y_i



#### VIE – FEI2 Data Review

• Post Matrix, the EWMA chart of the LTMS FEI2 data suggest that the test has been running severe.



16

• Post Matrix, the CUSUM chart of the FEI2 LTMS data also suggest that the test has been running severe.



- Analysis of Yi data for FEI2 Matrix and Post Matrix
  - Factors for analysis: EngHrs, Lab, Stand(Lab)¹, RefOil, Matrix_Group
  - Analysis suggests that Lab and Stand(Lab) are significant
  - Matrix vs. Post Matrix effect is significant (LS means suggest a 1 StDev severity shift)
  - Evidence of Oil*Matrix interaction

Whole Model					D D	Þ.	Matrix P	ostMatrix			RefOil*Matrix Post	Matrix	
Actual by Predicted Plot						5	Leverage	Plot			Leverage Plot		
Summary of Eit						efc	Leverage Flot		Levelage Floe	s Table			
					ISL	≌	- Least Squa		able		2 Least Squares Mean	Loost	
					AB PP		Loval	EedSt Sa Moon	Std Error	Moon	Loval	Edst Sa Moon	Std Error
Lack Of Fit					- 5				0.28776056	0.0107		0.407540	0.26700415
Parameter Estimates					SM		Doct Matrix	0.5590208	0.28770030	-0.0107	RO1010-1, IVIATRIA	1 242022	0.30709413
Term	Estimate	Std Error	t Ratio	Prob> t	5		POSIVIAUIX	-0.0366060	0.25132850	-1.0491		-1.545055	0.32730028
Intercept	-0.247265	0.439259	-0.56	0.5763	8		⊿ LS Means	Plot			RO342-2, IVIATRIA	0.216204	0.37376246
LTMSLAB [A]	-1.133992	0.289247	-3.92	0.0003*	_		_ ∠ aus	-				0.204104	0.31100703
LTMSLAB [B]	1.0179085	0.45392	2.24	0.0299*			Š O		-		RO544, MATRIA	0.393008	0.39741999
LTMSLAB [C]	-0.597096	0.373529	-1.60	0.1169			S -1-	-			KOJ44,FOSUVIAU IX	-0.309228	0.39000000
LTMSLAB [ D]	-0.083371	0.264065	-0.32	0.7537			≻, -2				4 LS Means Plot		
LTMSLAB [F]	0.6483887	0.453747	1.43	0.1599			C -3-				SUB 1		RO1010-1 -
LTMSLAB [ A]:LTMSAPP[10]	0.0379226	0.52245	0.07	0.9425			₩ -41	MATDIX	DoctMatrix		Š Ó Š		RO542-2 -
LTMSLAB [ A]:LTMSAPP[11]	0.7347999	0.628359	1.17	0.2484					POSIVIAUIX		S -1-		RO544 🔹
LTMSLAB [ A]:LTMSAPP[2]	-0.115187	0.554311	-0.21	0.8363				Matrix_Po:	stMatrix		⋝2-	9	
LTMSLAB [ A]:LTMSAPP[3]	-1.159525	0.530032	-2.19	0.0339*							E -3-		
LTMSLAB [ A]:LTMSAPP[6]	-1.178238	0.829214	-1.42	0.1622								Doct Astri	
LTMSLAB [ A]:LTMSAPP[8]	1.2915908	0.667498	1.93	0.0593							WATKIA	POSUVIAUD	x
LTMSLAB [ B]:LTMSAPP[1]	-0.840169	0.548823	-1.53	0.1328							Matrix_	PostMatrix	
LTMSLAB [ D]:LTMSAPP[1]	0.1427553	0.344891	0.41	0.6809									
LTMSLAB [ D]:LTMSAPP[2]	-0.070995	0.315221	-0.23	0.8228									
LTMSLAB [G]:LTMSAPP[1]	-1.524173	0.507819	-3.00	0.0044*									
LTMSLAB [G]:LTMSAPP[2]	-0.245533	0.408856	-0.60	0.5512									
LTMSLAB [G]:LTMSAPP[4]	-0.684766	0.52973	-1.29	0.2027									
LTMSLAB [ G]:LTMSAPP[5]	1.6257134	0.845856	1.92	0.0610									
LTMSLAB [ G]:LTMSAPP[6]	0.8904581	0.843632	1.06	0.2968									
RefOil[RO1010-1]	-0.308151	0.174164	-1.77	0.0836									
RefOil[RO542-2]	0.1366406	0.171995	0.79	0.4311									
Matrix_PostMatrix[MATRIX]	0.4992174	0.211034	2.37	0.0224*									
RefOil[RO1010-1]*Matrix_PostMatrix[MATRIX]	0.3760736	0.170719	2.20	0.0328*									
RefOil[RO542-2]*Matrix_PostMatrix[MATRIX]	-0.258004	0.168706	-1.53	0.1332									
ENHREND	0.0001755	0.000764	0.23	0.8194									

- Raw data plot of FEI2Yi data Matrix and Post Matrix
  - 1st Run post matrix data is generally more severe as compared to matrix data
  - Even though oil*Matrix is not significant, data below suggests that the effect of the severity shift is unequal for the 3 reference oils



• Comparison of original matrix engines vs. follow-on for FEI2Y_i



• Comparison of original matrix engines vs. follow-on purchase *(engine run = 1, exclusively)* for FEI2Y_i



# Part 2VIE – Matrix & Postmatrix Analysis Includes Chartable = Y & N

### Summary

#### <u>FEI 1</u>

- Post-precision matrix data is estimated to be about 0.5 standard deviations more severe than in precision matrix, on average.
- Oil 544 has seen the smallest change is severity, but this difference is not statistically significantly different from the other two oils.
- OHT-2 engines average approx. 0.25 standard deviations more severe than OHT-1 engines, though this difference is not consistent across oils, nor statistically different from zero.
- Current coefficient used in the engine hour correction may be too steep.

#### <u>FEI 2</u>

- Post-precision matrix data is estimated to be about 1.0 standard deviations more severe than in precision matrix, on average, though 1010-1 has statistically shifted more severe than the other two oils, with a change in severity of 1.45 standard deviations.
- OHT-2 engines average approx. 0.25 standard deviations more severe than OHT-1 engines, though this difference is not statistically different from zero.
- Oils do not discriminate post-precision matrix.
- Engine hour correction appears to be appropriate.

- Available VIE data for analysis:
  - N=71 total data points
  - N=29 data points Matrix
    - $1^{st} run n = 7$
    - $2^{nd} run n = 8$
    - $3^{rd} run n = 7$
    - $4^{th} run n = 7$
  - N = 54 data points Post Matrix
    - $1^{st}$  run n = 45 (346 < ENHREND < 586)
      - o 8 data points with VAL = "NN" during period immediately following precision matrix.
      - o 3 data points from abandoned engines
    - $2^{nd}$  run n = 2 (585 < ENHREND < 678)
      - o Both from abandoned engines
    - $5^{\text{th}} \text{ run n} = 7 (1161 \le \text{ENHREND} \le 1252)$ 
      - *This data is not included unless stated.

#### VIE - FEI1Data Review

• Post Matrix, the EWMA chart of the LTMS FEI1 data suggest that the test has been running severe.



• Post Matrix, the CUSUM chart of the FEI1 LTMS data also suggest that the test has been running severe.



- Analysis of Y_i data for FEI1 valid Matrix and Post Matrix (Full Model)
  - Model: EngHrs, Lab, Stand(Lab)¹, Oil, Matrix_Group, Matrix_Group*Oil
  - Analysis suggests that Lab term is significant.
  - Matrix vs. Post Matrix term is marginally significant
  - No evidence of Oil*Matrix interaction

Parameter Estimates				
Term	Estimate	Std Error	t Ratio Prob> t	VIF
Intercept	-0.465213	0.26258	-1.77 0.0819	
IND[1010-1]	-0.03901	0.153097	-0.25 0.7998	1.6584193
IND[542-2]	0.0440368	0.152889	0.29 0.7744	1.5791737
LTMSLAB[ A]	-0.938678	0.245209	-3.83 0.0003*	3.6174443
LTMSLAB[ B]	0.6753073	0.419594	1.61 0.1131	6.4929264
LTMSLAB[ C]	0.4633799	0.349728	1.32 0.1906	4.2776511
LTMSLAB[ D]	0.103154	0.234859	0.44 0.6622	3.3185252
LTMSLAB[ F]	-0.389023	0.423284	-0.92 0.3620	5.5661436
LTMSLAB[ A]:LTMSAPP[1]	0.3485818	0.643617	0.54 0.5902	3.3042117
LTMSLAB[ A]:LTMSAPP[2]	0.3300329	0.506914	0.65 0.5177	2.7550128
LTMSLAB[ A]:LTMSAPP[3]	-0.534893	0.491105	-1.09 0.2807	2.2587215
LTMSLAB[ A]:LTMSAPP[6]	-1.001276	0.791875	-1.26 0.2113	4.1107959
LTMSLAB[ A]:LTMSAPP[8]	0.4753931	0.538164	0.88 0.3808	2.7123412
LTMSLAB[ A]:LTMSAPP[9]	-0.420197	0.791896	-0.53 0.5978	4.1110138
LTMSLAB[ A]:LTMSAPP[10]	0.3477402	0.492354	0.71 0.4829	2.2702239
LTMSLAB[ B]:LTMSAPP[1]	-0.504746	0.509005	-0.99 0.3256	2.3259762
LTMSLAB[ D]:LTMSAPP[1]	0.3611862	0.294649	1.23 0.2254	1.2784731
LTMSLAB[ D]:LTMSAPP[2]	-0.026573	0.268376	-0.10 0.9215	1.4188356
LTMSLAB[ G]:LTMSAPP[1]	-1.297437	0.426479	-3.04 0.0036*	1.8443425
LTMSLAB[ G]:LTMSAPP[2]	0.0676404	0.37521	0.18 0.8576	1.891294
LTMSLAB[ G]:LTMSAPP[4]	0.0257212	0.449693	0.06 0.9546	1.3256962
LTMSLAB[ G]:LTMSAPP[5]	0.4449461	0.784615	0.57 0.5729	1.6500893
LTMSLAB[ G]:LTMSAPP[6]	0.7928279	0.784558	1.01 0.3166	1.6498493
MatrixGroup[Matrix]	0.2671708	0.159474	1.68 0.0994	2.57227
ENHREND	0.0004784	0.000383	1.25 0.2173	1.2025656
MatrixGroup[Matrix]*IND[1010-1]	0.0854444	0.152215	0.56 0.5768	1.6633092
MatrixGroup[Matrix]*IND[542-2]	-0.066601	0.152034	-0.44 0.6630	1.561559

Effect Tests					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
IND	2	2	0.080525	0.0540	0.9475
LTMSLAB	5	5	15.442425	4.1391	0.0029*
LTMSAPP[LTMSLAB]	15	15	14.272079	1.2751	0.2485
MatrixGroup	1	1	2.094281	2.8067	0.0994
ENHREND	1	1	1.161892	1.5571	0.2173
MatrixGroup*IND	2	2	0.283289	0.1898	0.8276

Least Squares Means Table								
Level	Least Sq Mean	Std Error	Mean					
Matrix	0.0698997	0.23015411	-0.04150					
PostMatrix	-0.4644418	0.19340254	-0.69679					

Least Squares Means Table							
Level	Least Sq Mean						
Matrix,1010-1	0.1163337						
Matrix,542-2	0.0473355						
Matrix,544	0.0460300						
PostMatrix,1010-1	-0.5888966						
PostMatrix,542-2	-0.3538039						
PostMatrix,544	-0.4506248						

28

¹Note: Post matrix chartable data has no repeat data for the engine within the same lab - thus Stand(Lab) factor selected for analysis.

- Analysis of Y_i data for FEI1 valid Matrix and Post Matrix (Significant Terms Only)
  - Model: FEI1_Yi ~ Lab, Matrix_Group
  - Analysis suggests FEI1 data post-precision matrix is approx. 0.45 standard deviations more severe than in the precision matrix.

Parameter Estimates				
Term	Estimate	Std Error	t Ratio Prob> t	VIF
Intercept	-0.265379	0.123055	-2.16 0.0342*	
LTMSLAB[ A]	-0.73195	0.214106	-3.42 0.0010*	2.632764
LTMSLAB[ B]	0.3978742	0.299514	1.33 0.1880	3.1582132
LTMSLAB[ C]	0.6047716	0.327599	1.85 0.0688	3.5830737
LTMSLAB[ D]	0.129845	0.214106	0.61 0.5460	2.632764
LTMSLAB[ F]	-0.234407	0.397426	-0.59 0.5571	4.6841352
MatrixGroup[Matrix]	0.2259367	0.116665	1.94 0.0565	1.3141521

Effect lests								
Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F			
LTMSLAB	5	5	13.509689	3.4567	0.0072*			
MatrixGroup	1	1	2.931580	3.7505	0.0565			

Least	Least Squares Means Table								
Level	Least Sq Mean	Std Error	Mean						
А	-0.9973296	0.20600263	-1.1372						
В	0.1324948	0.33457631	0.1648						
C	0.3393922	0.36921991	0.4900						
D	-0.1355344	0.20600263	-0.2754						
F	-0.4997867	0.45718915	-0.2738						
G	-0.4315128	0.18460996	-0.5068						

Least Squares Means Table								
Level	Least Sq Mean	Std Error	Mean					
Matrix	-0.0394427	0.16635219	-0.04150					
PostMatrix	-0.4913162	0.17272372	-0.69679					

- Plot of FEI1 Yi data by Oil, Matrix Group
  - Matrix and Post Matrix where ENRUN <= 4
  - Post-matrix data is generally more severe as compared to matrix data
  - On average, oil 544 has not seen as large of a severity shift, though it was seen previously that these differences in shift magnitude are not statistically significantly different.



Oil	Matrix Avg.Yi	Post- Matrix Avg.Yi	Delta in Avg.Yi's.
1010-1	-0.06	-0.95	-0.89
542-2	0.00	-0.92	-0.92
544	-0.06	-0.40	-0.34

- Plot of FEI1 data by Oil, Matrix Group
  - Matrix and Post Matrix where ENRUN <= 4
  - Post-matrix data is generally more severe as compared to matrix data
  - On average, oil 544 has not seen as large of a severity shift, though it was seen previously that these differences in shift magnitude are not statistically significantly different.



- Plot of FEI1 Yi data by Lab, Matrix Group, Colored by Engine Batch
- The 3 labs with the most data (A, D, and G) have all experienced a similar shift postmatrix in FEI1 Yi, from 0.51 to 0.91 standard deviations more severe.
- Data looks similar for OHT-1 and OHT-2 engines post-matrix in labs A and D where multiple data points are available for comparison.


- Comparison of original matrix engines vs. follow-on purchase for FEI1Y_i
- 1st run data only
- OHT-2 engines are approx. 0.22 standard deviations more severe on average post-matrix. This difference is not statistically significant.



MatrixGroup/EngineBatch	Average FEI1Yi
Matrix/OHT-1	-0.08
Post-Matrix/OHT-1	-0.61
Post-Matrix/OHT-2	-0.83

- Comparison of original matrix engines vs. follow-on purchase for FEI1Y_i
- 1st run data only
- Oil 544 has not seen a similar severity shift on the OHT-2 engines



Oil	Matrix/OHT-1 Avg.Yi	Post-Matrix/OHT-1 Avg.Yi	Post-Matrix/OHT-2 Avg.Yi
1010-1	-0.74	-0.68	-1.13
542-2	-0.02	-0.51	-1.10
544	0.48	-0.73	-0.21

- Post-matrix data only
- Original Model was FEI_1 ~ Oil, Lab, Stand(Lab), Engine Batch, Engine Batch * Oil
- Model shown is FEI_1 ~ Oil, Lab (terms with p-value > 0.05 excluded)
- Analysis of post-matrix data only indicates that there is still good oil discrimination between all three reference oils.

Response FEI_1											
Whole Model							⊿ <b>▼IND</b>				
Actual by Predic	ted Plot						⊳ Leve	rage P	lot		
Summary of Fit							⊿ Leas	t Squar	es Means Tal	ble	
RSquare			0.8373	01			Level		Least Sq Mean	Std Error	Mea
RSquare Adj			0.8128	96			1010	0-1	1.7710251	0.07250095	1.6441
Root Mean So	quare Err	or	0.2180	01			542	-2	2.4055054	0.06418846	2.2738
Mean of Resp	onse		1.7710	64			544		1.3446843	0.07917368	1.1966
Observations	(or Sum	Wats)		47			⊿ LS M	leans P	lot		
Analysis of Vari	ance						SU	2.6		T	
Lack Of Fit							lear	2.4		T	
Parameter Estin	nates						S S	2	I		
Term	Estin	nate	Std Error	t Ratio	Prob> t	VIF	1	1.6	ľ		
Intercept	1.84040	49 0.0	55299	33.28 <	.0001*		臣	1.4			1
IND[1010-1]	-0.069	38 0.0	45154	-1.54 0	.1323	1.2213451		1.2-	1010-1	542-2	544
IND[542-2]	0.56510	04 0	.04512	12.52 <	.0001*	1.2522945			1010 1	J12 2	544
LTMSLAB[ A]	-0.3020	92 0.0	69611	-4.34<	.0001*	2.9547176				IND	
LTMSLAB[ B]	0.10292	84 0.1	12084	0.92 0	.3640	3.813325					
LTMSLAB[ C]	0.37449	46 0.1	80651	2.07 <mark>0</mark> .	.0447*	7.8312502					
LTMSLAB[ D]	-0.0305	52 0.0	71229	-0.43 0	.6703	2.9892303					
Effect Tests											
Source Npa	rm DF	Sum of S	Squares	F Ratio	Pro	5 > F					
IND	2 2	8.205	7454	86.3317	<.00	01*					
I TNACLAD	1 1	0.009	0250	5 25/9	0.00	17*					

- 5th run data included here to evaluate engine hour adjustment.
- It is difficult to say with limited data if the small slopes observed are indicative of a problem, or just normal variability. The upward slope seen in oil 1010-1 is largely affected by one mild result.
- The oils appear to discriminate at ENRUN = 5, though some overlap exists.



- $5^{\mathrm{th}}$  run data included here to evaluate engine hour adjustment.
- Model is FEI1 ~ Oil, Lab, and EngHours (Insignificant terms removed)

- On average, 5th run results are close to target, making them milder than 1st and 2nd run results.
- The ENHREND term is marginally significant, and suggests the current slope may be steeper than is should be, based on this limited data set.

Summary of Fit									
RSquare				0.8082	258				
RSquare Adj				0.779	908				
Root Mean S	quar	e Erro	r	0.2403	316				
Mean of Res	ponse	9		1.800	037				
Observations	6 (or 9	Sum V	Vgts)		54				
Analysis of Var	iance	]							
Lack Of Fit									
Parameter Estin	nates								
Term		Estimat	te	Std Error	t	Ratio	Prob> t		VIF
Intercept	1.74	16869	8 0.0	82103	21	1.28<	.0001*		
IND[1010-1]	-0.0	)4502	8 0.0	46074	-(	0.98 0	.3335	1.20	61747
IND[542-2]	0.57	73324	2 0.0	47198	12	2.15 <	.0001*	1.23	79269
LTMSLAB[ A]	-0.3	30264	9 0.0	74643	-4	1.05 <mark>(</mark>	.0002*	3.18	18516
LTMSLAB[ B]	0.09	91519	4 0.1	.23257	(	0.74 0	.4616	4.17	48544
LTMSLAB[C]	0.37	75977	7 0.1	.98964	1	1.89 0	0.0651	8.79	67801
LTMSLAB[ D]	-0.0	)4171	9 0.0	75383	-(	).55 C	).5827	3.24	52567
ENHREND	0.00	0238	1 0	.00012	1	1.98 0	0.0539	1.01	90676
Effect Tests									
Source N	parm	DF	Sum of	Squares		F Rati	o Pro	ob > F	
IND	2	2	9.45	57995	81	.8657	7 <.00	01*	
LTMSLAB	4	4	1.03	46453	4	.4788	3 0.00	)39*	
ENHREND	1	1	0.22	61135	3	.9153	3 0.05	39	

Engine Run	Sample size	Avg. FEI1 Yi
1	45	-0.75
2	2	-1.76
5	7	-0.02

## VIE – FEI2 Data Review

• Post Matrix, the EWMA chart of the LTMS FEI2 data suggest that the test has been running severe.



39

• Post Matrix, the CUSUM chart of the FEI2 LTMS data also suggest that the test has been running severe.



- Analysis of Y_i data for FEI2 valid Matrix and Post Matrix (Full Model)
  - Model: FEI2_Yi ~EngHrs, Lab, Stand(Lab)¹, Oil, Matrix_Group, Matrix_Group*Oil
  - Analysis suggests that Lab and Matrix Group terms are significant.
  - Marginally significant stand differences
  - Marginally significant Oil * Matrix interaction.

Parameter Estimates				
Term	Estimate	Std Error	t Ratio Prob> t	VIF
Intercept	-0.084211	0.420231	-0.20 0.8420	
IND[1010-1]	-0.317721	0.16414	-1.94 0.0587	1.6083459
IND[542-2]	0.1639894	0.165228	0.99 0.3258	1.6018155
LTMSLAB[ A]	-1.241327	0.260449	-4.77<.0001*	3.4235928
LTMSLAB[ B]	1.0512737	0.442479	2.38 0.0215*	6.2939952
LTMSLAB[ C]	-0.563803	0.366997	-1.54 0.1309	4.0956849
LTMSLAB[ D]	-0.096072	0.257229	-0.37 0.7104	3.2502557
LTMSLAB[ F]	0.7015268	0.443068	1.58 0.1198	5.2680009
LTMSLAB[ A]:LTMSAPP[1]	-0.413018	0.682005	-0.61 0.5476	2.8635841
LTMSLAB[ A]:LTMSAPP[2]	0.0387722	0.533137	0.07 0.9423	2.4517003
LTMSLAB[ A]:LTMSAPP[3]	-1.075009	0.514967	-2.09 0.0421*	1.9643517
LTMSLAB[ A]:LTMSAPP[6]	-1.166577	0.829571	-1.41 0.1660	3.3536921
LTMSLAB[ A]:LTMSAPP[8]	1.3767877	0.647982	2.12 0.0387*	2.5850008
LTMSLAB[ A]:LTMSAPP[9]	0.3999966	0.829602	0.48 0.6318	3.3539449
LTMSLAB[ A]:LTMSAPP[10]	0.1154926	0.516524	0.22 0.8240	1.9762455
LTMSLAB[ B]:LTMSAPP[1]	-0.829306	0.536597	-1.55 0.1287	2.3713717
LTMSLAB[ D]:LTMSAPP[1]	0.1317837	0.338193	0.39 0.6985	1.26895
LTMSLAB[ D]:LTMSAPP[2]	-0.06835	0.308905	-0.22 0.8258	1.4926981
LTMSLAB[ G]:LTMSAPP[1]	-1.409513	0.4484	-3.14 0.0028*	1.8681938
LTMSLAB[ G]:LTMSAPP[2]	-0.230458	0.400978	-0.57 0.5681	1.8177981
LTMSLAB[ G]:LTMSAPP[4]	-0.741686	0.51618	-1.44 0.1571	1.2984293
LTMSLAB[ G]:LTMSAPP[5]	1.6208004	0.82623	1.96 0.0555	1.6855452
LTMSLAB[ G]:LTMSAPP[6]	0.8601804	0.824402	1.04 0.3019	1.6780957
MatrixGroup[Matrix]	0.4951737	0.194102	2.55 0.0139*	3.3366679
ENHREND	-0.000126	0.000724	-0.17 0.8620	1.9965033
MatrixGroup[Matrix]*IND[1010-1]	0.385698	0.162586	2.37 0.0216*	1.5952155
MatrixGroup[Matrix]*IND[542-2]	-0.269445	0.163969	-1.64 0.1067	1.5774815

Effect Tests					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
IND	2	2	3.098655	1.9127	0.1585
LTMSLAB	5	5	23.892986	5.8994	0.0002*
LTMSAPP[LTMSLAB]	15	15	22.599866	1.8600	0.0523
MatrixGroup	1	1	5.271624	6.5081	0.0139*
ENHREND	1	1	0.024717	0.0305	0.8620
MatrixGroup*IND	2	2	5.147712	3.1776	0.0504

Least Squares Means Table									
Level	Least Sq Mean	Std Error	Mean						
Matrix	0.3474576	0.27278584	-0.0133						
PostMatrix	-0.6428898	0.21515357	-1.0922						

Least Squares Means Table											
Level	Least Sq Mean										
Matrix,1010-1	0.415435										
Matrix,542-2	0.242001										
Matrix,544	0.384936										
PostMatrix,1010-1	-1.346309										
PostMatrix,542-2	-0.209455										
PostMatrix,544	-0.372906										

41

¹Note: Post matrix chartable data has no repeat data for the engine within the same lab - thus Stand(Lab) factor selected for analysis.

- Analysis of Y_i data for FEI2 valid Matrix and Post Matrix <u>(Significant Terms Only)</u>
  - Model: FEI2_Yi ~Lab, Stand(Lab)¹, Oil, Matrix_Group, Matrix_Group*Oil
  - Analysis suggests FEI2 data post-precision matrix is approx. 0.95 standard deviations more severe than in the precision matrix.

Parameter Estimates				
Term	Estimate	Std Error	t Ratio Prob> t	VIF
Intercept	-0.152942	0.146146	-1.05 0.3004	
IND[1010-1]	-0.31685	0.162466	-1.95 0.0568	1.6068623
	0.1648//	0.163541	1.01 0.3182	1.6003004
	-1.24186	0.257894	-4.82<.0001^	3.423123
	1.0409505	0.434243	2.40 0.0203^	6.181/229
	-0.560427	0.362918	-1.54 0.1288	4.0843285
	-0.091606	0.253462	-0.36 0./193	3.218152
	0.7053195	0.438224	1.61 0.1138	5.2553508
LIMSLAB[ A]:LIMSAPP[1]	-0.424361	0.672293	-0.63 0.5308	2.83/6236
LIMSLAB[ A]:LIMSAPP[2]	0.040537	0.52/848	0.08 0.9391	2.4508199
LIMSLAB[ A]:LIMSAPP[3]	-1.0/33/3	0.509866	-2.11 0.0403*	1.963/022
TMSLAB[ A]:LTMSAPP[6]	-1.16038	0.820737	-1.41 0.1636	3.3475585
LTMSLAB[ A]:LTMSAPP[8]	1.3748541	0.641576	2.14 0.0370*	2.5842465
LIMSLAB[ A]:LIMSAPP[9]	0.4063203	0.820737	0.50 0.6227	3.34/5585
LTMSLAB[ A]:LTMSAPP[10]	0.1202649	0.510776	0.24 0.8148	1.9707168
LIMSLAB[ B]:LIMSAPP[1]	-0.81/828	0.52/3/1	-1.55 0.12/3	2.3358158
LIMSLAB[ D]:LIMSAPP[1]	0.13186/2	0.334898	0.39 0.6954	1.2689475
LIMSLAB[ D]:LIMSAPP[2]	-0.069334	0.305845	-0.23 0.8216	1.4922018
LIMSLAB[ G]:LIMSAPP[1]	-1.415263	0.442833	-3.20 0.0024*	1.8581262
LIMSLAB[ G]:LIMSAPP[2]	-0.225742	0.3961/1	-0.57 0.5714	1.809559
LIMSLAB[ G]:LIMSAPP[4]	-0./366/9	0.510362	-1.44 0.1551	1.2944252
LTMSLAB[ G]:LTMSAPP[5]	1.611156	0.816352	1.97 0.0540	1.6780187
LIMSLAB[ G]:LIMSAPP[6]	0.861156	0.816352	1.05 0.2965	1.6780187
MatrixGroup[Matrix]	0.4769025	0.161916	2.95 0.0049*	2.3677518
MatrixGroup[Matrix]*IND[1010-1]	0.3862998	0.160966	2.40 0.0202*	1.5944993
MatrixGroup[Matrix]*IND[542-2]	-0.267207	0.161875	-1.65 0.1051	1.5678477

¹Note: Post matrix chartable data has no repeat data for the engine within the same lab - thus Stand(Lab) factor selected for analysis.

- Plot of FEI2 Yi data by Oil, Matrix Group
  - Matrix and Post Matrix where ENRUN <= 4
  - Post-matrix data is generally more severe as compared to matrix data
  - On average, oil 1010-1 has shifted 0.50 to 0.75 standard deviations more severe than the other two oils, and this difference is statistically significant.



- Plot of FEI2 data by Oil, Matrix Group
  - Matrix and Post Matrix where ENRUN <= 4
  - Oil do not appear to separate post-matrix.



- Plot of FEI2Yi data by Lab, Matrix Group, Colored by Engine Batch
- Looking at the 3 labs with the most data (A, D, and G), Lab A and G appear to have observed a larger shift in FEI2 Yi than Lab D, though all are directionally the same.
- Data looks similar for OHT-1 and OHT-2 engines post-matrix for labs A and D where multiple data points are available for comparison.



- Comparison of original matrix engines vs. follow-on purchase for FEI2Y_i
- 1st run data only
- OHT-2 engines are approx. 0.31 standard deviations more severe on average post-matrix. This difference is not statistically significant.



MatrixGroup/EngineBatch	Average FEI2Yi
Matrix/OHT-1	0.09
Post-Matrix/OHT-1	-0.90
Post-Matrix/OHT-2	-1.21

- Comparison of original matrix engines vs. follow-on purchase for FEI2Y_i
- 1st run data only
- Post-matrix changing from OHT-1 to OHT-2 engines, Oils 544 and 542-2 shifted approx. 0.5 standard deviations more severe, while 1010-1 shifted approx. 0.25 standard deviations severe, on average.



- Post-matrix data only
- Original Model was FEI_2 ~ Oil, Lab, Stand(Lab), Engine Batch, Engine Batch * Oil
- Model shown is FEI_2 ~ Oil, Lab (terms with p-value > 0.05 excluded)
- Analysis of post-matrix data only indicates that there is no longer oil discrimination between any of the oils.

Response FEI_2											
Whole Model							⊿ <b>▼IND</b>	)			
Actual by Pred	icted Plot						⊳ Leve	erage F	Plot		
Summary of Fit	t						⊿ Leas	t Squa	res Means Ta	ble	
RSquare			0.3846	96			Level		Least Sq Mean	Std Error	Me
RSquare Adj			0.2924	01			101	0-1	1.5973810	0.08127962	1.4317
Root Mean S	0.2443	97			542	-2	1.5834063	0.07196062	1.4244		
Mean of Res	1.3953	1.395319			544		1.4886319	0.08876030	1.3000		
Observation	s (or Sui	n Wg	its)	47			⊿ LS N	leans	Plot		
Analysis of Var	riance	5					su	1.8	т	_	
Lack Of Fit							lea	1.7-			T
Parameter Esti	mates						S S	1.6-			
Term	Es	timate	Std Error	t Ratio	Prob> t	VIF	_2L	1.5-		L	-
Intercept	1.5564	4731	0.061995	25.11 <	.0001*		Ē	1.4-			
IND[1010-1]	0.0409	9079	0.050622	0.810	.4238	1.2213451		1.5 7	1010-1	542-2	544
IND[542-2]	0.0269	9332	0.050583	0.53 0	).5974	1.2522945			1010 1		511
LTMSLAB[ A]	-0.342	2526	0.07804	-4.39<	.0001*	2.9547176				IND	
LTMSLAB[ B]	0.0803	L936	0.125656	0.64 0	.5270	3.813325					
LTMSLAB[ C]	0.5165	5937	0.202525	2.55 <mark>(</mark>	.0147*	7.8312502					
LTMSLAB[ D]	] -0.043	3372	0.079854	-0.54 0	.5900	2.9892303					
Effect Tests											
Source Np	arm D	F Sum	n of Squares	F Ratio	Prot	5 > F					
IND	2 2	2 0.0	0928688	0.7774	0.466	64					
LTMSLAB	4 4	1.3	3468861	5.6374	0.00	11*					

- 5th run data included here to evaluate engine hour adjustment.
- Current engine hour adjustment seems appropriate, based on the relatively flat line observed in all 3 oils.



• 5th run data included here to evaluate engine hour adjustment.

50

- Model is FEI2 ~ Oil, Lab, and EngHours (Insignificant terms removed)
- On average, 5th run results are close to target, making them milder than 1st and 2nd run results.
- The ENHREND term is not significantly different from zero, meaning the current adjustment is still appropriate.

Summary of Fit								
RSquare		0.385	546					
quare Adj		0.2920	042			Engine Ru	n	n Sample size
ot Mean S	quare Erro	or 0.235	734					
lean of Res	oonse		1.4			1		45
bservations	(or Sum \	Ngts)	54			1		
Analysis of Var	iance					C		r
Lack Of Fit						Δ		Z
Parameter Estir Term	nates Estima	te Std Frror	t Ratio P	Prohisiti	VIE	F		7
ntercept	1.527887	7 0.080538	18.97 < .0	0001*		5		/
ND[1010-1]	0.038369	8 0.045195	0.85 0.4	4003	1.2061747			
ND[542-2]	0.040062	4 0.046299	0.87 0.3	3914	1.2379269			
TMSLAB[ A]	-0.3385	0.07322	-4.62<.(	0001*	3.1818516			
LTMSLAB[ B]	0.082187	8 0.120907	0.68 0.5	5001	4.1748544			
LTMSLAB[ C]	0.510809	0.195171	2.62 <mark>0.0</mark>	0120*	8.7967801			
LTMSLAB[ D]	-0.04837	8 0.073946	-0.65 0.5	5162	3.2452567			
ENHREND	6.0343e-	5 0.000118	0.51 0.6	5117	1.0190676			
Effect Tests								
Source N	parm DF 2 2	Sum of Squares	F Ratio	Prob 0 311	) > F   5			
LTMSLAB	4 4	1.3954982	6.2780	0.000	)4*			
ENHREND	1 1	0.0145173	0.2612	0.611	17			

# Appendix

# Appendix

- Comparison of baseline shift (BLB1 vs. BLB2)
- Post matrix, the variance of baseline shift appears to increasing



• Comparison of baseline shift (BLB2 vs. BLA)

Individual Value Plot of Baseline Shift (1st Run Data Exclusively)



• Estimated Fuel Age (LTMS_Date – Fuel_Production_Date) vs. FEI1_Yi



55

• Estimated Fuel Age (LTMS_Date – Fuel_Production_Date) vs. FEI1_Yi

