

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 / USA *Phone* 610.832.9500 *Fax* 610.832.9666 *Web* www.astm.org

COMMITTEE D02 ON PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS

CHAIRMAN: RANDY F JENNINGS, TENNESSEE DEPT OF AGRIC, P O BOX 40627, NASHVILLE, TN 37204, UNITED STATES (615) 837-5327, FAX: (615) 837-5335, E-MAIL: RANDY JENNINGS@TN.GOV
 FIRST VICE CHAIRMAN: JAMES J SIMNICK, BP AMERICA, 150 W WARRENVILLE RD, NAPERVILLE, IL 60563, UNITED STATES (630) 420-5936, FAX: (630) 420-4831, E-MAIL: SIMNICJJ@BP.COM
 SECOND VICE CHAIRMAN: MICHAEL A COLLIER, PETROLEUM ANALYZER CO LP, 21114 Hwy 113, CUSTER PARK, IL 60481, UNITED STATES (815) 458-0216, FAX: (815) 458-0217, E-MAIL: MICHAEL.COLLIER@PACLP.COM
 SECOND SECRETARY: HIND M ABI-AKAR, CATERPILLAR INC, BLDG H3000, OLD GALENA ROAD, MOSSVILLE, IL 61552, UNITED STATES (309) 578-9553, E-MAIL: ABI-AKAR_HIND@CAT.COM
 SECRETARY: SCOTT FENWICK, NATIONAL BIODIESEL BOARD, PO BOX 104848, JEFFERSON CITY, MO 65110-4898, UNITED STATES (800) 841-5849, FAX: (517) 635-7913, E-MAIL: SFENWICK@BIODIESEL.ORG
 STAFF MANAGER: ALYSON FICK, (610) 832-9681, FAX: (610) 832-9668, E-MAIL: AFICK@ASTM.ORG

Issued: Feb. 20, 2017 Reply to: Dan Worcester Southwest Research Institute 6220 Culebra Rd. San Antonio, TX 78238 Phone: 210.522.2405 Email: <u>dworcester@swri.org</u>

These are the unapproved minutes of the 02.16.2017 Sequence VI Conference Call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 9:06 AM Eastern Time by Greg Miranda.

Agenda

An Agenda was not included for this meeting. Discussion is on the VIF Precision Matrix.

1.0 Roll Call

The Attendance list is Attachment 1.

2. The VIF Precision Matrix Analysis

- 2.1 Jo Martinez gave the presentation, included as Attachment 2.
- a. The VIF will move forward. It will use number of runs and engine run limit of 900 hours for the last start and same BL weighting as the VIE test.
- b. The review included 18 valid matrix tests.
- c. Each engine will run two valid acceptable references, and will gather the 5th run data as is being done on the VIE test.
- d. There was some difference in response between labs, and engine G58 showed a different response in the same lab, but is not statistically significant. Bob Campbell asked about how many references tests versus candidates per engine. This will be discussed in the LTMS presentation.
- e. There will be new VIF engine hour correction equations:

Ì₽ □₽

FEI1 = FEI1_OR + 0.000403*(ENHREND - 700) FEI2 = FEI2_OR + 0.000293*(ENHREND - 700)

3. The VIF LTMS

- 3.1 Todd Dvorak gave the presentation, included as Attachment 3.
- 3.2 The reason for two references per engine is the second run may be a milder result, but it may also be that the first test on an engine is more severe. More data is needed.
- 3.3 The analysis was 4 runs per engine. There was discussion on another analysis using the 5th run data to get additional data.
- 3.4 During this discussion review moved from the LTMS back to the supplemental pages of Attachment 2. On page 45 is the Executive Summary that discusses number of references and candidate runs per engine.
- Motion #1:Recommend the Stat Group re-analyze the VIF data using 5 tests per engine where
that data is available.William Buscher, Katerina Pecinovsky,, second.8 Yes, 3 Waive, 0 No

4.0 Next Meeting.

4.1 Face-to-face meeting, 02.23.2017 The next meeting will be in San Antonio. IAR volunteered to host the meeting. It will start at 8:00 AM Central Time.

The meetings adjourned at 11:49 AM Eastern Time.

ASTM SEQUENCE V	
-----------------	--

Name	Email/Phone C	Company	Attend
A 1. A 16- 000	NI	Tutantala	ATTEND
Adrian Alfonso	Phone: (210) 838-0431	Intertek	
Voting Member	Adrian.Alfonso@intertek.com		ATTEND
Jason Bowden	Phone: (440) 354-7007	OHT	ATTEND
Voting Member	jhbowden@ohtech.com	.	
Amol Savant	acsavant@valvoline.com	Valvoline	
Voting Member	N (240) 001 0510		ATTEND
Tim Cushing	Phone: (248) 881-3518	General	ATTEND
Voting Member	Timothy.Cushing@gm.com	Motors	
Rich Grundza	Phone: (412) 365-1034	ТМС	ATTEND
Voting Member	reg@astmtmc.cmu.edu		
Jeff Hsu	Phone: (832) 419-3482	Shell	ATTEND
Voting Member	j.hsu@shell.com		
Teri Kowalski	Phone: (734) 995-4032	Toyota	ATTEND
Voting Member	Teri.Kowalski@tema.toyota.com		
Dan Lanctot	Phone: (210) 690-1958	TEI	ATTEND
Voting Member	dlanctot@tei-net.com		
Greg Miranda	Phone: (440) 347-8516	Lubrizol	ATTEND
Voting Member	Greg.Miranda@Lubrizol.com		
Katerina	Phone:	Afton	ATTEND
Pecinovsky	Katerina.Pecinovsky@AftonChemical.c	com	
Voting Member			
Brianne Pentz	Phone:	BP	ATTEND
Voting Member	Brianne.Pentz@bp.com		
Andy Ritchie	Phone: (908) 474-2097	Infineum	ATTEND
Voting Member	Andrew.Ritchie@infineum.com		
			_
Ron Romano	Phone: (313) 845-4068	Ford	
Voting Member	rromano@ford.com		
Clifford Salvesen	Phone: (856) 224-2954	ExxonMobil	ATTEND
Voting Member	Clifford.r.Salvesen@exxonmobil.com		
Kaustav Sinha	Phone: (713) 432-6642	Chevron	ATTEND
Voting Member	LFNQ@chevron.com	Oronite	
Haiying Tang	Phone: (248) 512-0593	Chrysler	
Voting Member	HT146@Chrysler.com		
Dan Worcester	Phone: (210) 522-2405	SwRI	ATTEND
Voting Member	Dan.Worcester@swri.org		

ASTM SEQUENCE VI			
Name	Email/Phone	Company	Attend

Ed Altman	Ed.Altman@aftonchemical.com	Afton	
Bill Anderson	Bill.anderson@aftonchemical.com	Afton	ATTEND
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	ATTEND
Lisa Dingwell	Lisa.Dingwell@AftonChemical.com	Afton	
Todd Dvorak	Todd.Dvorak@aftonchemical.com	Afton	ATTEND
Greg Guinther	Greg.Guinther@aftonchemical.com	Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com	Afton	
Christian Porter	Christian.Porter@aftonchemical.com	Afton	
Jeremy Styer	Jeremy.Styer@aftonchemical.com	Afton	
Timothy Caudill	Tlcaudill@valvoline.com	Valvoline	
Tisha Joy	Tisha.Joy@bp.com	BP	
Michael Blumenfeld	Michael.1.Blumenfeld@exxonmobil.com	EM	
	Phone: (856) 224.2865		
Don Smolenski	Donald.j.Smolenski@Evonik.com	Evonik	
Doyle Boese	Doyle.Boese@infineum.com	Infineum	ATTEND
	Phone: (908) 474-3176		
Gordon Farnsworth	Gordon.Farnsworth@infineum.com	Infineum	ATTEND
Charlie Leverett	Charlie.Leverett@yahoo.com	Infineum	ATTEND
	Phone: (210) 414-5448		
Mike McMillan	mmcmillan123@comcast.net	Infineum	ATTEND
Jordan Pastor	Jordan.Pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
William Buscher	William.Buscher@intertek.com	Intertek	
Al Lopez	Al.Lopez@intertek.com	Intertek	
Addison Schweitzer	Addison.Schweitzer@intertek.com	Intertek	
Bob Olree	olree@netzero.net	Intertek	
Andy Buczynsky	Andrew.Buczynsky@gm.com	GM	ATTEND
Thomas Hickl	Thomas.Hickl@de.gm.com	GM	
Jeff Kettman	Jeff.Kettman@gm.com	GM	
Jonas Leber	Jonas.Leber@opel.com	GM	
Mike Raney	Michael.P.Raney@gm.com	GM	
-	Phone: (248) 408-5384		
Angela Willis	Angela.P.Willis@gm.com	GM	
Jerry Brys	Jerome.Brys@lubrizol.com	Lubrizol	
	Phone: (440) 347.2631		
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
James Matasik	James.Matasic@lubrizol.com	Lubrizol	

ASTM SEQUENCE VI

Email/Phone Company Name Attend ATTEND Kevin O'Malley Kevin.OMalley@lubrizol.com Lubrizol Phone: (440) 347.4141 Scott Rajala srajala@ILAcorp.com Idemitsu **Dave Passmore IMTS** dpassmore@imtsind.com Chris Castanien Chris.Castanien@neste.com Neste Phone: (440) 290-9766 Dwight Bowden dhbowden@ohtech.com OHT ATTEND Matt Bowden OHT mjbowden@ohtech.com **Ricardo** Affinito affinito@chevron.com Oronite Phone: (510) 242-4625 Ian Elliot IanElliott@chevron.com Oronite ATTEND Jo Martinez Oronite jogm@chevron.com ATTEND **Robert Stockwell** Oronite rsto@chevron.com Christine.Eickstead@swri.org Christine Eickstead **SwRI** Travis.Kostan@swri.org ATTEND Travis Kostan **SwRI** ATTEND Patrick Lang Patrick.Lang@swRI.org **SwRI** Phone: (210) 522-2820 Michael Lochte mlochte@swri.org **SwRI** Karen Haumann Karen.Haumann@shell.com Shell **TG** Direct Scott Stap Scott.Stap@tgdirect.com **Clayton Knight** cknight@tei-net.com TEI zbishop@tei-net.com Zack Bishop TEI Phone: (210) 877-0223 Jeff Clark jac@astmtmc.cmu.edu TMC Hirano Satoshi Satoshi Hirano aa@mail.toyota.co.jp Toyota ATTEND Jim Linden lindenjim@jlindenconsulting.com Toyota Phone: (248) 321-5343 mark@tribologytesting.com Tribology Mark Adams Testing Valvoline Tom Smith Hapjthom@aol.com Hap Thompson VIx Facilitator Chris Taylor Chris.Taylor@vpracingfuels.com **VP** Racing **Fuels**

ASTM SEQUENCE VI

Name	Email/Phone	Company		Attend
			1	
MOTION:	5 RUN REVIEW			
Adrian Alfonso	YES			
Voting Member				
Jason Bowden	WAIVE			
Voting Member				
Amol Savant				
Voting Member				
Tim Cushing	YES			
Voting Member				
Rich Grundza	WAIVE			
Voting Member				
Jeff Hsu				
Voting Member				
Teri Kowalski				
Voting Member				
Dan Lanctot	WAIVE			
Voting Member				
Greg Miranda	YES			
Voting Member				
Katerina	YES			
Pecinovsky				
Voting Member				
Brianne Pentz	YES			
Voting Member				
Andy Ritchie	YES			
Voting Member				
Ron Romano				
Voting Member				
Clifford Salvesen				
Voting Member	VEQ			
Kaustav Sinha	YES			
Voting Member				
Haiying Tang				
Voting Member	VEG			
Dan Worcester	YES			
Voting Member				
VOTES	8 YES, 3 WAIVE			

ASTM SEQUENCE VI

Name	Email/Phone	Company	Attend
MOTION			
MOTION:			
Adrian Alfonso			
Voting Member			
Jason Bowden			
Voting Member			
Amol Savant			
Voting Member			
Tim Cushing			
Voting Member			
Rich Grundza			
Voting Member			
Jeff Hsu			
Voting Member			
Teri Kowalski			
Voting Member			
Dan Lanctot			
Voting Member			
Greg Miranda			
Voting Member			
Katerina			
Pecinovsky			
Voting Member			
Brianne Pentz			
Voting Member			
Andy Ritchie			
Voting Member			
Ron Romano			
Voting Member			
Clifford Salvesen			
Voting Member			
Kaustav Sinha			
Voting Member			
Haiying Tang			
Voting Member			
Dan Worcester			
Voting Member			
VOTES			

VIF Precision Matrix Analysis

Statistics Group Date: February 16, 2017

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Summary

- Analyses reflect surveillance panel decisions to:
 - Move forward with the VIF test allowing up to 4 full length tests with the 4th test starting with an engine hour of 900 or less (Motioned on 7-19-16).
 - Include the 18 valid precision matrix tests (Motioned on 11-7-16)
 - 1-17-17 Motion: In the opinion of the SP the VIF should be similar to the VIE and any disagreement between the VIE methods of analyzing the results with the VIF matrix data is caused by the small data set available for analysis. The VIF analysis shall proceed using the same BL weights, engine hour correction calculation methods, run limitations, etc. as the VIE used.
 - o Engine reference shall include two tests
 - Gather 5th run data similar to the VIE
 - o Revisit assumptions with more data

Executive Summary

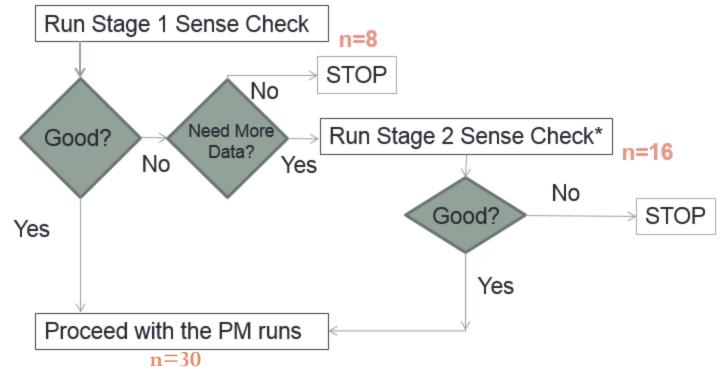
- Precision Matrix (PM) Analysis Highlights:
 - Within the shortened engine hours, data support the use of no transformation
 - Oils discriminate for both FEI1 and FEI2:
 - FEI1: 542-2 > 543 > 1011
 - FEI2: 543 > (542-2 & 1011)
 - The difference between labs is not statistically significant
 - Engine differences within labs:
 - FEI1: the differences between the engines are not statistically significant
 - FEI2: G58 < G96; the difference in Lab A engines is not statistically significant
 - An engine-based LTMS system is recommended
 - Oil discrimination may not be consistent across engines (based on limited data)
 - A higher BLB2 to BLA shift correlates with higher FEI2

Executive Summary

- Precision Matrix (PM) Analysis Highlights (continued):
 - Engine hour adjustments (recommended though not statistically significant):
 - $FEI1 = FEI1_OR + 0.000403*(ENHREND 700)$
 - $FEI2 = FEI2_OR + 0.000293*(ENHREND 700)$
 - Estimated within engine test precision
 - FEI1 s: 0.21; FEI2 s: 0.19
 - Estimated test precision across labs and engines
 - FEI1 s: 0.22; FEI2 s: 0.30
 - LTMS Oil Targets:

5

	Target Standard		Standard Deviation		RM	1SE
Oil	FEI1	FEI2	FEI1	FEI2	FEI1	FEI2
542-2 (n=6)	2.23	1.52	0.18	0.13	0.22	0.30
1011 (n=5)	1.45	1.41	0.14	0.39	0.22	0.30
543 (n=7)	1.88	2.25	0.27	0.34	0.22	0.30

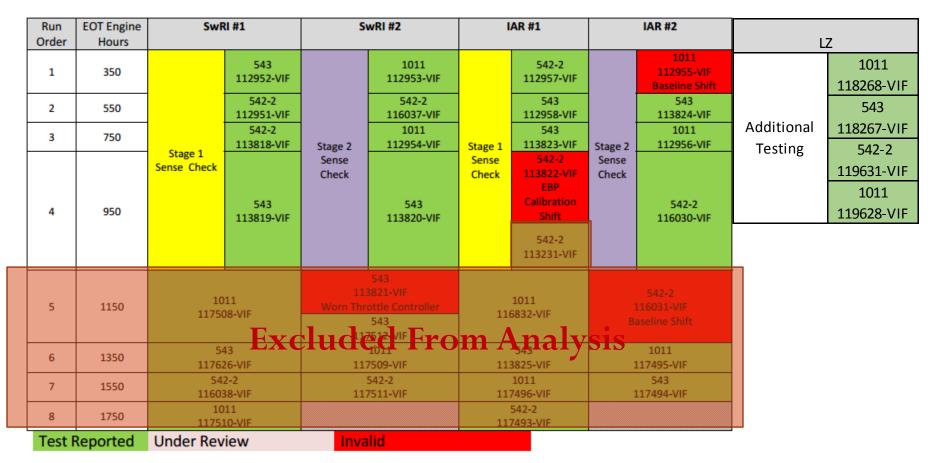

Note: Engine hour adjustment, precision and LTMS targets may change with more data

Review PM Data for Analysis

- Precision Matrix data summary:
 - 3 Labs {A, G, B}
 - 3 Reference Oils {1011, 542-2, 543}
 - 5 Engines {58 & 96 at Lab G; 122 & 144 at Lab A; 306 at Lab B}
- 36 tests were considered; 18 are viable for inclusion in precision matrix analysis and 18 are excluded due to following reasons:
 - 4 were deemed invalid
 - 14 don't meet engine life restriction

Review PM Data for Analysis

• Precision matrix tests were conducted in a stage gate process


*Stage 2 Sense Check can be re-designed based on the outcome of Stage 1 Sense Check

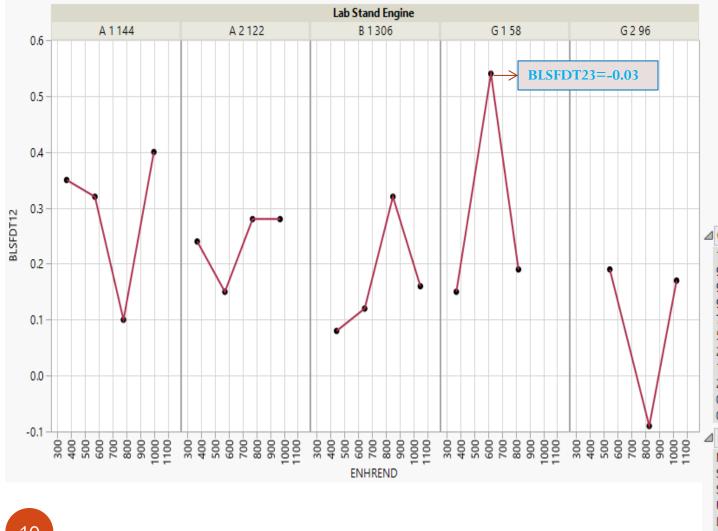
• 4 additional tests were conducted at Lubrizol upon initial matrix review

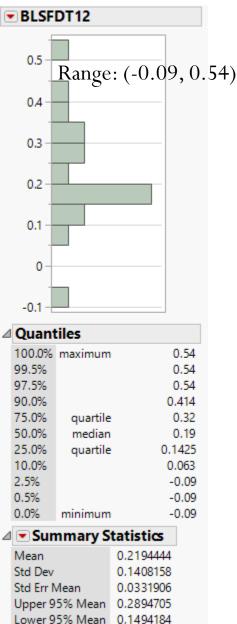
PM Data for Analysis

• Precision Matrix (PM):

• On 11-7-16 the surveillance panel passed a motion to include 18 tests in the statistical analysis.

• Table is from Frank Faber's 6-21-16 matrix update plus 4 additional tests

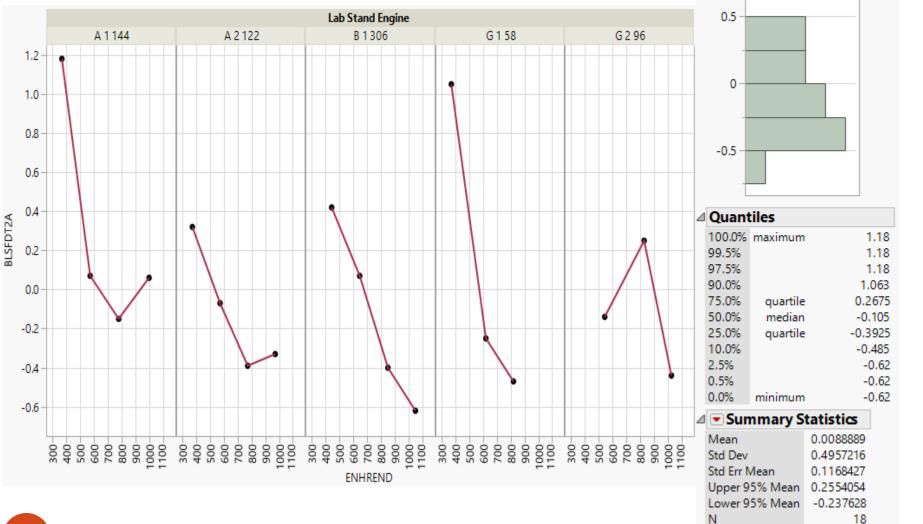

Review PM Data for Analysis


- Average engine hour age¹:
 - PM Average EngHrs = 700

LTMSLAB	ENGNO	Average ENHREND	Max ENHREND
A	122	673	972
A	144	678	995
G	58	604	820
G	96	798	1023
В	306	747	1046

¹For reference:VID $Ln(EngHrs) = 7.37 (e^{7.37} = 1598 hours)$ VIE ENHREND = 675 Hours

BL SHIFT % DELTA, BLB1 VS BLB2



18

N

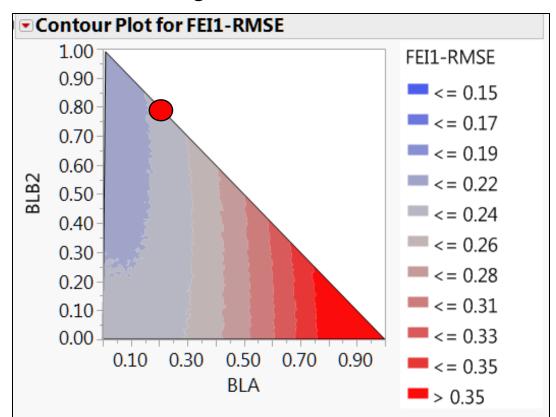
10

BL SHIFT % DELTA, BLB2 VS BLA

BLSFDT2A

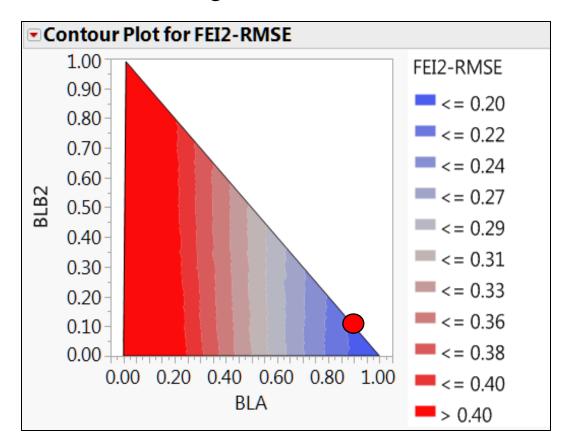
1

Range: (-0.62, 1.18)


Evaluating Baseline Weight Scenarios

- Excel Program developed to evaluate 10,000 different weight combinations of BLB1, BLB2, and BLA
- Excel based prediction model for precision (RMSE) included Lab, Eng(Lab), Oil, and EngHr factors
- All BL weight combinations summed to a value of 1.0
- For those runs that included a BLB3, BL weights were applied to BLB2 & BLB3 in lieu of BLB1 & BLB2
- Results are shown on the following slides

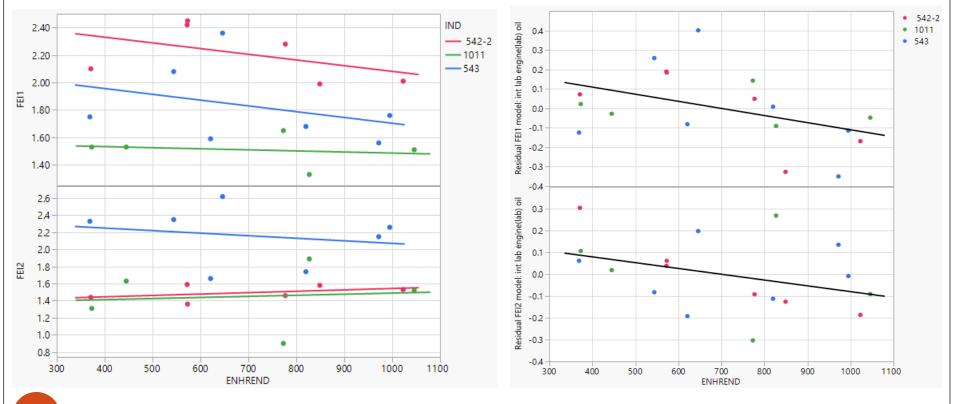
Evaluating Baseline Weight Scenarios


• Plot of RMSE vs. baseline (BL) weight combinations for FEI1 shown below:

- RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
- VID & VIE FEI1 Baseline weights are 80% & 20% (shown in red circle)

Evaluating Baseline Weight Scenarios

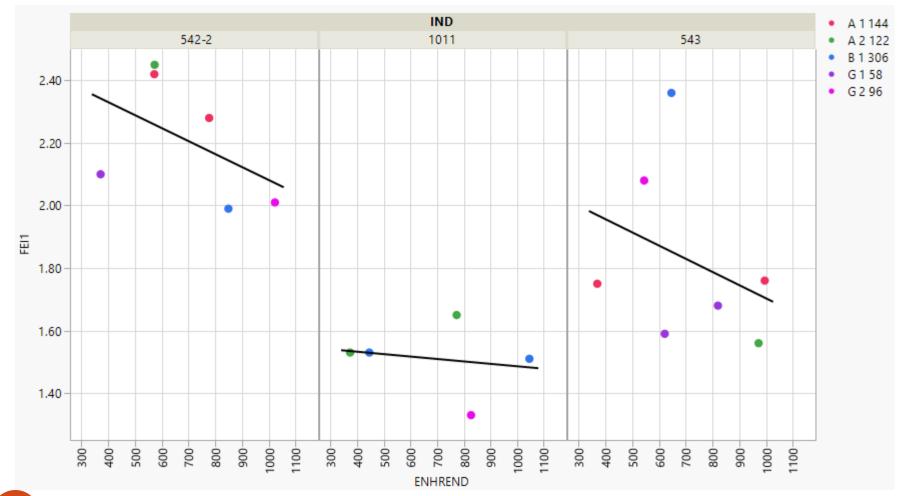
- Plot of RMSE vs. baseline weight combinations for FEI2 shown below
 - RMSE of weights can be interpreted from plot- if BL weights sum to 1.0
 - VID & VIE FEI2 Baseline weights are 10% & 90% (shown in red circle)


Agenda

Evaluating Engine Hour Adjustment

- Analyzing PM Data
 - FEI1
 - FEI2
 - Comparing VIF Precision and Oil Discrimination with other Tests

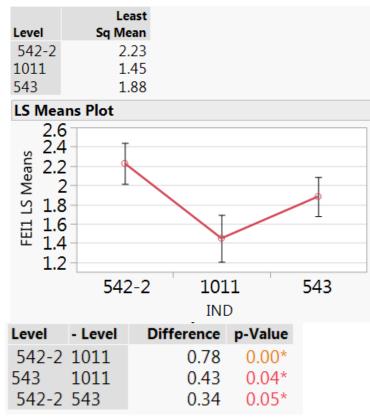
Evaluating Engine Hour Adjustment


- Analyses of FEI1 and FEI2 model *residuals* were explored to identify the best method for Engine Hour Adjustment
 - The residuals were based on a model fit with LTMSLAB, IND, and ENGNO(LTMSLAB) factors
- A linear adjustment was selected to be consistent with the VIE approach

Agenda

- Evaluating Alternatives for Engine Hour Adjustment
- Analyzing PM Data
 - **FEI1**
 - FEI2
 - Comparing VIF Precision and Oil Discrimination with other Tests

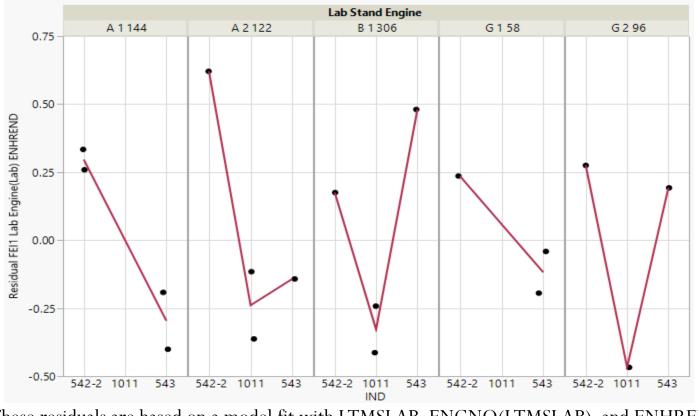
• Plot of FEI1_OR


- Overall ANOVA Summary of FEI1 data:
 - Oils significantly differ
 - VIF PM Test Precision: 0.22 (contrast w/VID PM test precision of 0.12; VIE is 0.30)

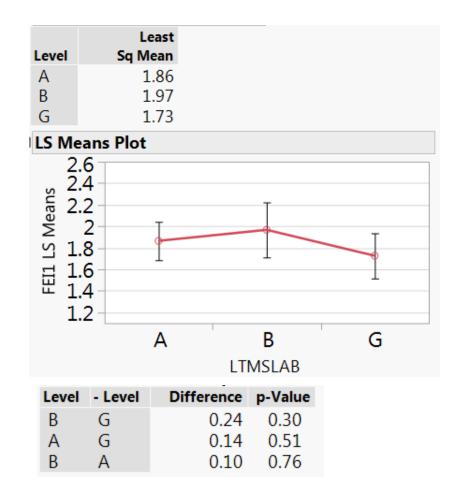
ry of I	it			
		0.76592		
di		0.602064		
n Square	e Error	0.222538		
lesponse	2	1.865556		
ons (or S	Sum Wgts)	18		
s of Va	ariance			
	Sum of			
DF	Squares	Mean Sq	uare	F Ratio
7	1.6204138	0.23	1488	4.6743
10	0.4952307	0.04	9523	Prob > F
17	2.1156444			0.0144*
	n Square Response ons (or S s of Va DF 7 10	n Square Error Response ons (or Sum Wgts) s of Variance Sum of DF Squares 7 1.6204138 10 0.4952307	0.76592 0.602064 n Square Error 0.222538 Response 1.865556 ons (or Sum Wgts) 18 s of Variance 18 Sum of DF Squares Mean Sq 7 1.6204138 0.23 10 0.4952307 0.04	0.76592 0.602064 n Square Error 0.222538 Response 1.865556 ons (or Sum Wgts) 18 Sof Variance Sum of DF Squares 7 1.6204138 0.231488 10 0.4952307 0.049523

FEI1 Engine Hours Adjustment: $FEI1 = FEI1_OR + 0.000403*(ENHREND - 700)$

Parameter Estimates						
Term		Estimat	e Prob> t			
Intercept		2.134534	1 <.0001*			
LTMSLAB[A]		0.011875	8 0.8723			
LTMSLAB[B]		0.114465	6 0.2292			
LTMSLAB[A]:ENGN	0[122	0.022902	8 0.7949			
LTMSLAB[G]:ENGN	O[58]	-0.11969	0.2502			
IND[542-2]		0.374141	8 0.0007*			
IND[1011]		-0.40402	0.0013*			
ENHREND		-0.00040	3 0.1323			
Effect Tests						
Source	DF	Prob > F				
LTMSLAB	2	0.3026				
ENGNO[LTMSLAB]	2	0.4949				
IND	2	0.0014*				
ENHREND	1	0.1323				

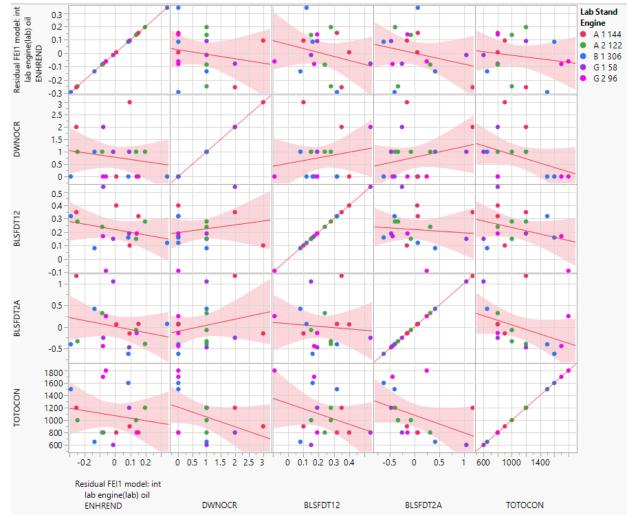

- Oils significantly differ:
 - All pairwise oil comparisons are significantly different
 - 1011 < 543 < 542-2

	VID FEI1	VIE FEI1
Ref Oil	Target	Target
542	1.49	2.56


21

- FEI1 Oil Discrimination by Engine
 - Contrast below plot with oil ranking of {1011 < 543 < 542-2}
 - Engines do not appear to separate oils the same way, but caution should be used when basing conclusions on limited data.

• The difference between labs is not statistically significant


Effect Tests					
Source	DF	Prob > F			
LTMSLAB	2	0.3026			
ENGNO[LTMSLAB]	2	0.4949			
IND	2	0.0014*			
ENHREND	1	0.1323			

- Engine differences within the same Lab:
 - Comparisons: {A-144 vs. A-122} & {G-58 vs. G-96}
 - Conclusion: the differences between the engines are not statistically significant

Parameter Estimates					
Term		Estimate	Prob> t		
Intercept		2.1345341	<.0001*		
LTMSLAB[A]		0.0118758	0.8723		
LTMSLAB[B]		0.1144656	0.2292		
LTMSLAB[A]:ENGNO[122]		0.0229028	0.7949		
LTMSLAB[G]:	ENGNO[58]	-0.119698	0.2502		
IND[542-2]		0.3741418	0.0007*		
IND[1011]		-0.404026	0.0013*		
ENHREND		-0.000403	0.1323		
Effect Test	s				
Source	DF	Prob > F			
LTMSLAB	2	0.3026			
ENGNO[LTMS	LAB] 2	0.4949			
IND	2	0.0014*			
ENHREND	1	0.1323			

- Matrix Plot of FEI1 residuals vs. some other related test variables
 - No observable trends that correlate with FEI1 residuals

FEI1 Precision

Model: FEI1 Engine hours adjusted vs. Oil, Lab, Engine(Lab)

Model RMSE

- s = 0.21
- VIE Precision Matrix s=0.29
- VID Precision Matrix s=0.14
- VID LTMS s=0.12

Repeatability

- s = 0.21
- r = 0.58

Model: FEI1 Engine hours adjusted vs. Oil

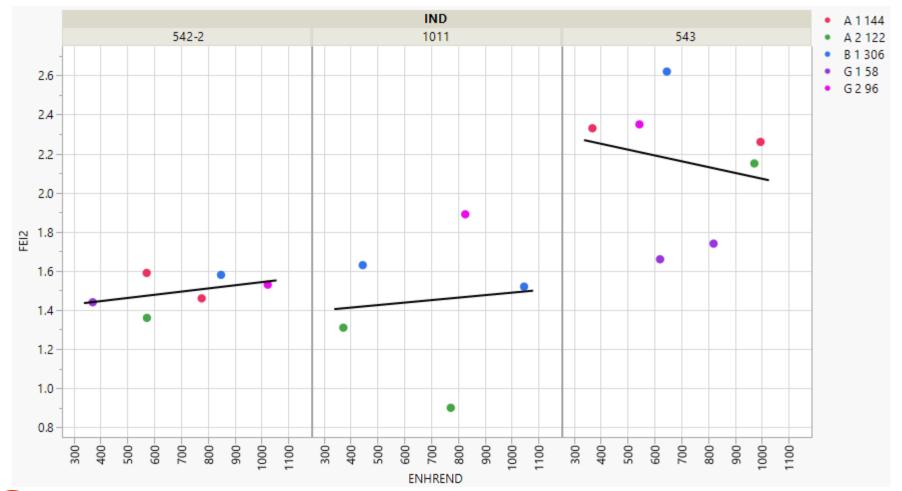
Reproducibility

•
$$s = 0.22$$

•
$$R = 0.61$$

25

FEI1 Precision


Based upon the Seq. VIF and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI1 result¹ of 1.42 – 2.00 for the VIF and 1.61 – 2.00 for the VID.

Note 1: An FEI1 of 2.0 was arbitrarily selected in the calculations as the upper pass/fail limit.

Agenda

- Evaluating Engine Hour Adjustment
- Analyzing PM Data
 - FEI1
 - FEI2
 - Comparing VIF Precision and Oil Discrimination with other Tests

• Plot of FEI2_OR

- Overall ANOVA Summary of FEI2 data:
 - Oil and engines within lab effects are statistically significant
 - Labs marginally differ
 - VIF PM Test Precision: 0.20 (contrast w/VID PM test precision of 0.14; VIE is 0.12)

RSquare0.88295RSquare Adj0.801015Root Mean Square Error0.197072Mean of Response1.74Observations (or Sum Wgts)18	
Root Mean Square Error0.197072Mean of Response1.74Observations (or Sum Wgts)18	
Mean of Response 1.74 Observations (or Sum Wgts) 18	
Observations (or Sum Wgts) 18	
-	
Analysis of Variance	
Sum of	
Source DF Squares Mean Square F Rat	o
Model 7 2.9296278 0.418518 10.776	j2
Error 10 0.3883722 0.038837 Prob >	F
C. Total 17 3.3180000 0.000	*

FEI2 Engine Hours Adjustment: $FEI2 = FEI2_OR + 0.000293*(ENHREND - 700)$

Parameter Estimates					
Term	Estimate	Prob> t			
Intercept	1.9324298	<.0001*			
LTMSLAB[A]	-0.104097	0.1337			
LTMSLAB[B]	0.2021927	0.0286*			
LTMSLAB[A]:ENGNO[122]	-0.122791	0.1372			
LTMSLAB[G]:ENGNO[58]	-0.322516	0.0040*			
IND[542-2]	-0.205381	0.0133*			
IND[1011]	-0.314703	0.0030*			
ENHREND	-0.000293	0.2083			
Effect Tests					

Source	DF	Prob > F
LTMSLAB	2	0.0791
ENGNO[LTMSLAB]	2	0.0060*
IND	2	<.0001*
ENHREND	1	0.2083

• Oils significantly differ:

543

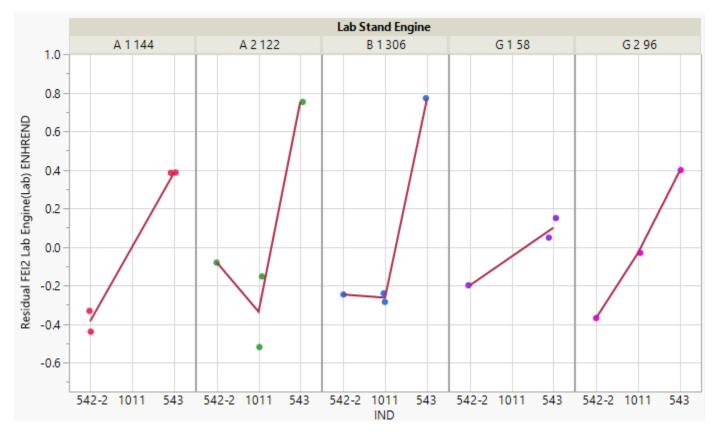
542-2

542-2 1011

• $543 > \{1011 \& 542-2\}$

Level	Lea Sq Me	ast		
542-2	-	52		
1011		41		
543	2.	25		
LS Mea	ns Plot			
2.5 2 Veaus 1.5 1				
	542	2-2 101	1	543
		IND)	
Level	- Level	Difference	p-Value	
	1011	0.83	0.00*	

0.73


0.11

0.00*

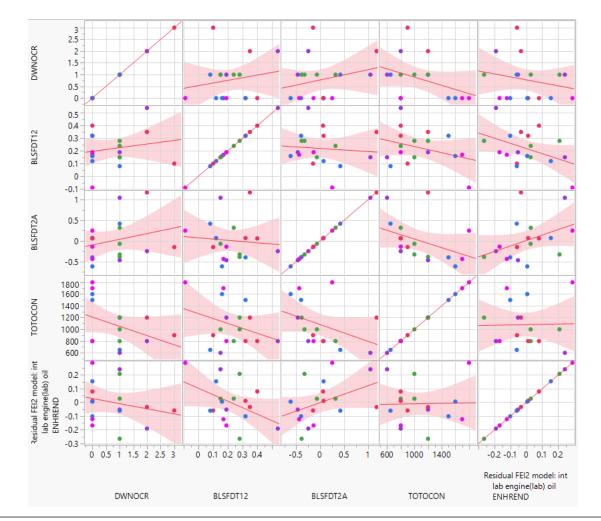
0.70

		VID FEI2	VIE FEI2
Ref C)il	Target	Target
542		0.8	1.73

- FEI2 Oil Discrimination by Engine
 - Contrast below plot with oil ranking: 543 > {1011 & 542-2}
 - Oil ranking is generally consistent across engines. There is less of a difference in oils in engine 58. Caution should be used when basing conclusions on limited data.

These residuals are based on a model fit with LTMSLAB, ENGNO(LTMSLAB), and ENHREND

- Labs marginally differ
 - Lab B tends to be higher than both A and G


Effect Tests			
Source	DF	Prob > F	
LTMSLAB	2	0.0791	
ENGNO[LTMSLAB]	2	0.0060*	
IND	2	<.0001*	
ENHREND	1	0.2083	

- Engine differences within the same Lab:
 - Comparisons: {A-144 vs. A-122} & {G-58 vs. G-96}
 - Conclusion: Engines within lab G significantly differ from one another

Parameter Esti	mate	s	
Term		Estimate	Prob> t
Intercept		1.9324298	3 <.0001
LTMSLAB[A]		-0.104097	7 0.1337
LTMSLAB[B]		0.2021927	0.0286
LTMSLAB[A]:ENGN	0[122] -0.122791	1 0.1372
LTMSLAB[G]:ENGN	0[58]	-0.322516	5 0.0040
IND[542-2]		-0.205381	0.0133
IND[1011]		-0.314703	3 0.0030
ENHREND		-0.000293	3 0.2083
Effect Tests			
Source	DF	Prob > F	
LTMSLAB	2	0.0791	
ENGNO[LTMSLAB]	2	0.0060*	
IND	2	<.0001*	
ENHREND	1	0.2083	

- Matrix Plot of FEI2 residuals vs. some other related test variables
 - Data suggest higher FEI2 when BLB2 vs. BLA is higher

FEI2 Precision

Model: FEI2 Engine hours adjusted vs. Oil, Lab, Engine(Lab)

Model: FEI2 Engine hours adjusted vs. Oil

Model RMSE

- s = 0.19
- VIE Precision Matrix s=0.12
- VID Precision Matrix s=0.16
- VID LTMS s=0.14

Repeatability

•
$$s = 0.19$$

•
$$r = 0.53$$

Reproducibility

•
$$s = 0.30$$

•
$$R = 0.83$$

FEI2 Precision

Based upon the Seq. VIF and VID pooled standard deviations (s_r) and ASTM's repeatability (r), there is no significant difference between an FEI2 result¹ of 0.97 – 1.50 for the VIF and 1.06 – 1.50 for the VID.

Note 1: An FEI2 of 1.5 was arbitrarily selected in the calculations as the upper pass/fail limit.

Agenda

- Evaluating Engine Hour Adjustment
- Analyzing PM Data
 - FEI1
 - **FEI2**
 - Comparing VIF Precision and Oil Discrimination with other Tests

Comparing VIF Precision and Oil Discrimination with other Tests

Sequence 1	VID FEI1			
Oil		Target (LTMS)	Method Standard Deviation	0.13
540	(GF5A)	1.32		
541	(GF5D)	0.87	Full span of results (st devs)	4.77
542	(GF5X)	1.49	Span of Oil 1010 - Oil 542 (st devs	1.15
1010		1.34		
Sequence	VID FEI2			
Oil		Target (LTMS)	Method Standard Deviation	0.14
540	(GF5A)	1.04		
541	(GF5D)	0.71	Full span of results (st devs)	2.79
542	(GF5X)	0.8	Span of Oil 1010 - Oil 542 (st devs	2.14
1010		1.1		
Sequence	VIE FEI1			
Oil		Target (LTMS)	Regression RMSE	0.29
1010-1		1.90		
542-2		2.56	Full span of results (st devs)	4.34
544		1.30	Span of Oil 1010 - Oil 542 (st devs	
Sequence	VIE FEI2			
Oil		Target (LTMS)	Regression RMSE	0.25
1010-1		1.82		
542-2		1.73	Full span of results (st devs)	1.64
544		1.41	Span of Oil 1010 - Oil 542 (st devs	0.36
Sequence	VIF FEI1			
Oil		Target (LTMS)	Regression RMSE	0.22
542-2		2.23		
1011		1.45	Full span of results (st devs)	3.55
543		1.88		
Sequence	VIF FEI2			
Oil		Target (LTMS)	Regression RMSE	0.30
542-2		1.52		
1011		1.41	Full span of results (st devs) 2.8	
543		2.25		

Comments

- A method of measuring test precision and oil discrimination is to divide the (FEI difference of best and worst performing reference oils) by the (test precision)
- The result is the # of standard deviations that separate reference oil performance
- Comparing the standard deviation alone is not necessarily meaningful; what if the standard deviation is larger, but oils span a larger FEI range? This is what appears to be the case for VIE FEI1
- Granted, this approach is influenced by choice of reference oils
- Engine tests typically show reference oil discrimination of about 1-3 standard deviations (see next slide)

Comparing VIF Precision and Oil Discrimination with other Tests

- Sequence IIIG ln(PVIS): oils separated by 2.0 standard deviations
- Sequence IIIG WPD: oils separated by 2.3 standard deviations
- Sequence IVA wear: oils separated by 1.2 standard deviations
- Sequence VID FEI2: oils separated by 2.9 standard deviations

C	IIIC
Nea	IIIG
DUU	IIIU

PERCENT VISCOSITY INCREASE Unit of Measure: LN(PVIS)

Reference Oil	Mean	Standard Deviation
434	4.7269	0.3859
435	5.1838	0.3096
435-2	5.1838	0.3096
438	4.5706	0.1768

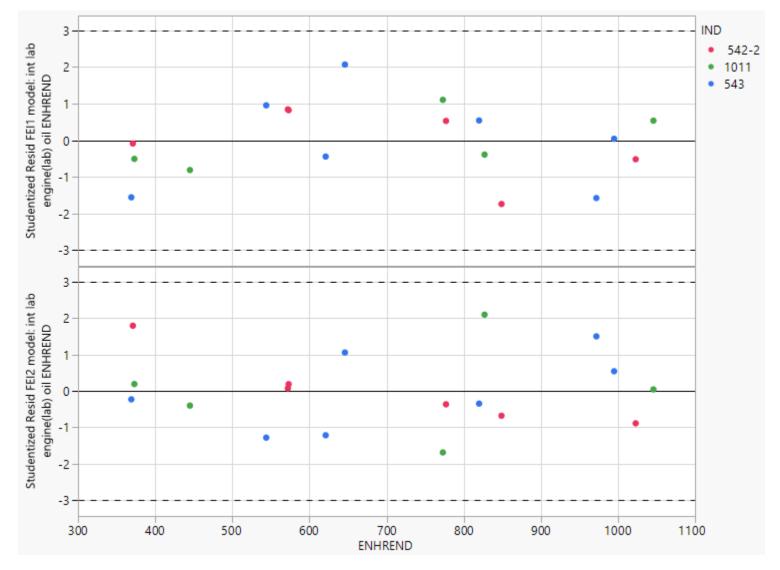
Seq IIIG

WEIGHTED PISTON DEPOSITS Unit of Measure: Merits

Reference Oil	Mean	Standard Deviation
434	4.80	0.96
435	3.59	0.58
435-2	3.59	0.58
438	3.20	0.33

AVERAGE CAMSHAFT WEAR Unit of Measure: micrometers

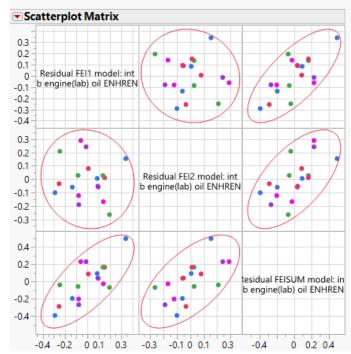
Reference Oil	Mean	Standard Deviation
1006-2	102.18	13.54
1007	84.76	15.40


Seq VID FUEL ECONOMY IMPROVEMENT at 100 Hours Unit of Measure: Percent

Reference Oil	Mean	Standard Deviation
540 (GF5A)	1.04	0.14
541 (GF5D)	0.71	0.14
542 (GF5X)	0.80	0.14
1010	1.10	0.18

Appendix 1

Residual Diagnostics Model


Residual Check Model: Oil, Lab, Engine(Lab), ENHREND

Correlation among parameters Model: Oil, Lab, Engine(Lab), ENHREND

Correlations

	Residual FEI1 model: int lab engine(lab) oil ENHREND I	Residual FEI2 model: int lab engine(lab) oil ENHREND R	esidual FEISUM model: int lab engine(lab) oil ENHREND
Residual FEI1 model: int lab engine(lab) oil ENHREND	1.0000	-0.0706	0.7278
Residual FEI2 model: int lab engine(lab) oil ENHREND	-0.0706	1.0000	0.6327
Residual FEISUM model: int lab engine(lab) oil ENHREND	0.7278	0.6327	1.0000

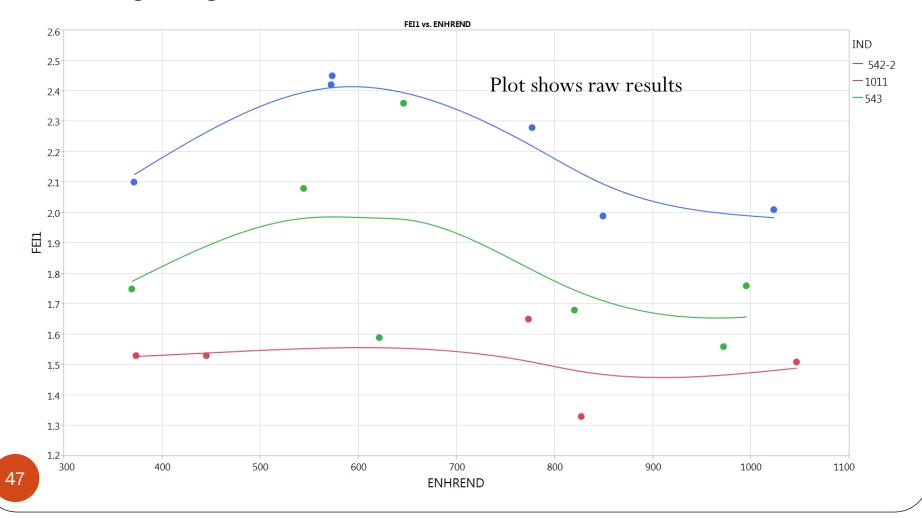
Appendix 2: VIF Engine Life Review

Industry Statistician Team Date: December 2016

Statistics Group

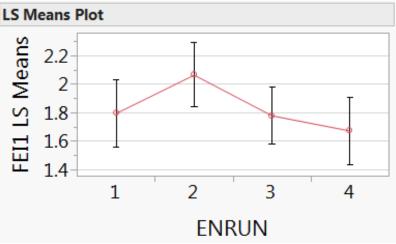
- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Executive Summary


- 1. There are a couple of key factors leading to high uncertainty in this analysis.
 - Missing 1011 2nd run data could have a major impact on engine life effect estimates, especially given the difference observed in FEI1 for run #2.
 - There are several data points with high studentized residuals for both FEI1 and FEI2 that have a significant impact on the Oil*ENHREND interaction term affect if excluded.
- 2. Limiting the engine life to 4 tests does not mean that the engine life affect is the same in this range. Some oils may still perform better or worse depending on the engine run number.
- 3. If one accepts that the engines effect may be different by oil, the mean confidence interval approach suggests 5 or 6 tests is reasonable.
- 4. There is no strong evidence that the engine life effect is different by oil, so the "Innocent until proven guilty" approach could argue for a full 8 test engine life.

If none of the options above are desirable, then additional data should be pursued to clear up the uncertainties.

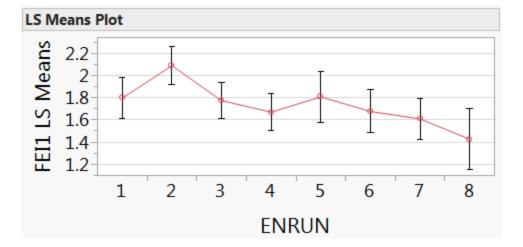
VIF Engine Life


Based on FEI1 Oil Discrimination

 Analysis of the n=18 data set showed a non linear trend in FEI1 as the engine ages for 542-2 and 543. No 2nd run data on oil 1011.

• Analysis of a statistical model with Oil, LabEngine, ENRUN terms revealed that FEI1 for engine run #2 is statistically milder than other runs, with engine run #4 being borderline statistically severe.

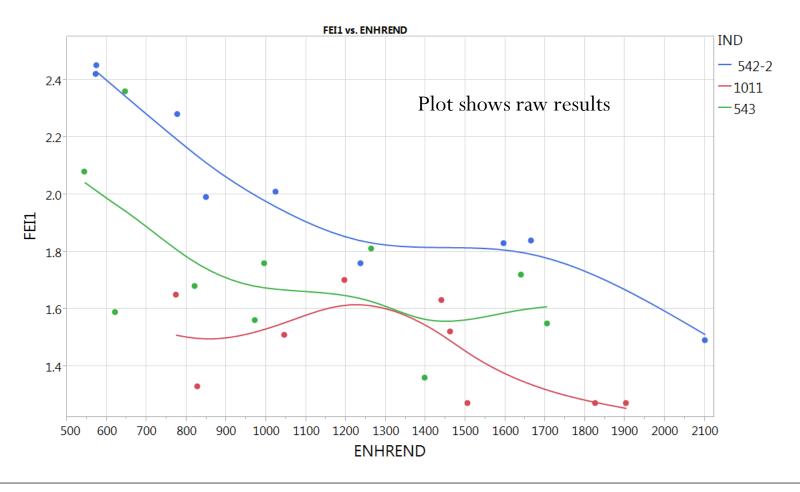
Expanded Estimates				
Nominal factors expanded to all levels				
Term	Estimate	Prob> t		
Intercept	1.8281641	<.0001*		
IND[542-2]	0.3368439	0.0011*		
IND[1011]	-0.304507	0.0104*		
IND[543]	-0.032337	0.6794		
LabEngine[A122]	0.0454625	0.6331		
LabEngine[A144]	0.0720826	0.4651		
LabEngine[B306]	0.0954625	0.3279		
LabEngine[G58]	-0.180633	0.1399		
LabEngine[G96]	-0.032374	0.7571		
ENRUN[1]	-0.032631	0.7289		
ENRUN[2]	0.2365007	0.0235*		
ENRUN[3]	-0.048632	0.5540		
ENRUN[4]	-0.155238	0.1084		


Leve	l - Level	Difference	p-Value
2	4	0.39173880.	0681
2	3	0.28513230.	2247
2	1	0.26913180.	3409
1	4	0.12260700.	8454
3	4	0.10660650.	8618
1	3	0.01600050.	9993

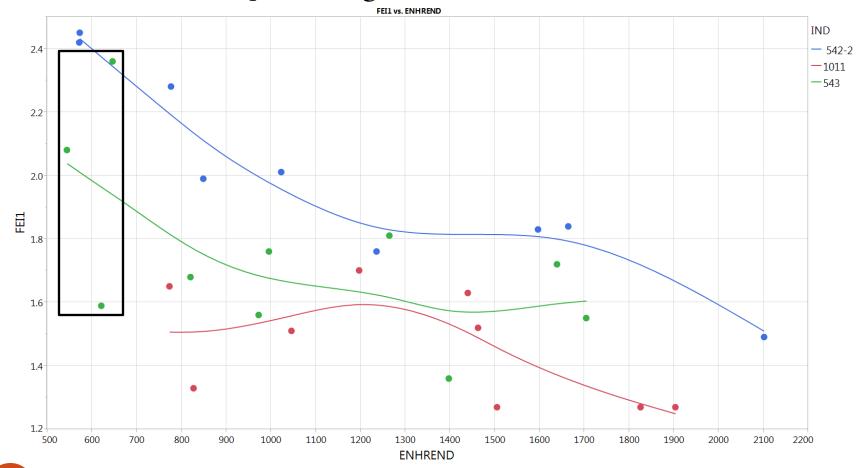
• LS Means plot for ENRUN for all 8 tests.


Expanded Estimates

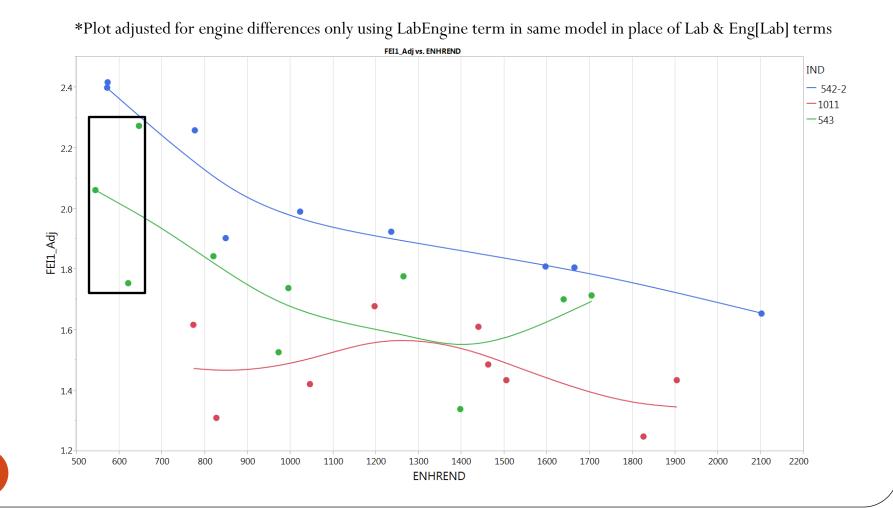
Nominal factors expanded to all levels


Term	Estimate	Prob> t
Intercept	1.733166	<.0001*
IND[542-2]	0.2900324	<.0001*
IND[1011]	-0.240728	0.0002*
IND[543]	-0.049304	0.3026
LabEngine[A122]	0.0230723	0.7096
LabEngine[A144]	0.032993	0.5902
LabEngine[B306]	0.0724994	0.3770
LabEngine[G58]	-0.174507	0.0095*
LabEngine[G96]	0.0459423	0.5285
ENRUN[1]	0.0660017	0.4414
ENRUN[2]	0.3604035	0.0004*
ENRUN[3]	0.0429733	0.5788
ENRUN[4]	-0.061312	0.4388
ENRUN[5]	0.0765682	0.4495
ENRUN[6]	-0.055025	0.5288
ENRUN[7]	-0.122549	0.1627
ENRUN[8]	-0.307061	0.0179*

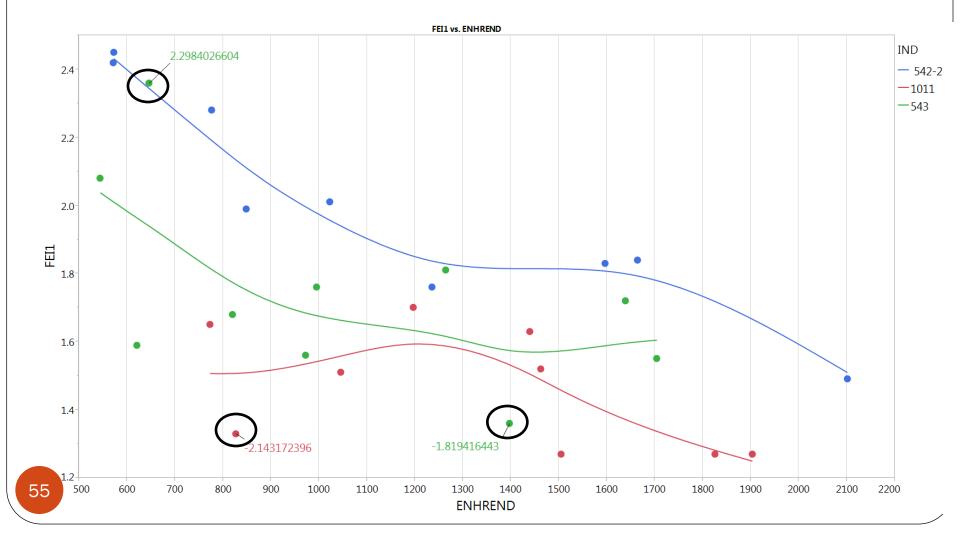
• Raw plot of FEI1 with n=32 data points

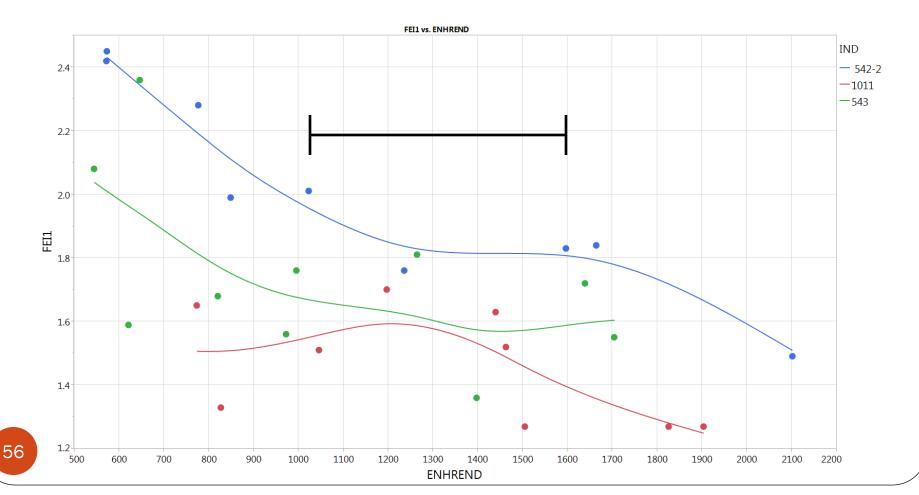


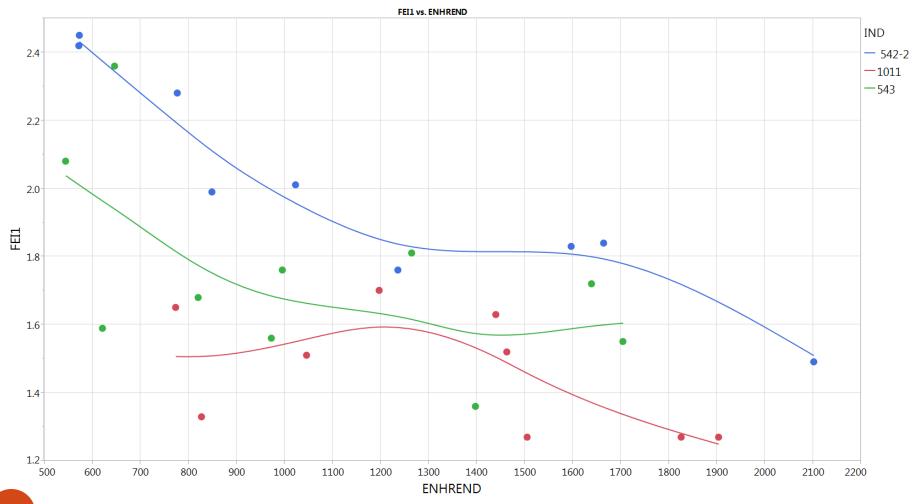
- Raw plot of FEI1 with n=28 data points (1st run points removed)
- 542-2 and 543 have similar trend
- No data for 1011 for ENHREND between 500 and 750 hours (ENRUN #2).



With small sample sizes, resulting analysis can be very sensitive to outlier results. Changes to any of the following points/sets of points on the following slides have a substantial impact on the conclusions.


 High variability in the 543 results for engine run #2. Results (unadjusted) span a range of 0.77%


1. Using a model with Oil, Lab, Eng[Lab], and Ln(ENGHREND) shows a residual difference of 0.53% for the max-min of these points.


2. The circled points have high studentized residuals.

- 3. There are only 3 combined data points for 542-2 and 543 for the range 1023 < ENHREND < 1596
 - Residual difference between the two 543 results is 0.40%

4. No 2^{nd} run data for 1011

Using Linear Engine Hours Correction

- Overall ANOVA Summary of FEI1 data:
 - Analysis indicates that no strong evidence exists that the engine hour effect is inconsistent across oils using all 28 data points.

Summary of Fit						
RSquare 0.79			792998			
RSquare Adj	RSquare Adj 0.6					
Root Mean Square	Error	0.1	191025			
Mean of Response		1.7	738929			
Observations (or Su	ım Wgts)		28			
Analysis of Variance						
Parameter Estimates			_			
Term Intercept				timate	Prob> t * .0001.	VI
IND[542-2]						1.4917753
IND[1011]					0.0002*	
LTMSLAB[A]					0.9660	2.1183154
LTMSLAB[B]			0.0784			2.110515
	LTMSLAB[A]:ENGNO[122]).6383	1.0577362
LTMSLAB[G]:ENGN					0.1064	1.172464
ENHREND	0[50]).0056*	1.3671563
(ENHREND-1177.5)	*IND[54	2-21				1.4734904
(ENHREND-1177.5)	-		0.0002			1.5015411
Effect Tests	IND[10]		0.0002	.1.51	5.1275	1.5015411
Source	Nparm	DF	Prob >	F		
IND	2	2	0.0001	k		
LTMSLAB	2	2	0.3962			
ENGNO[LTMSLAB]	2	2	0.2450			
ENHREND	1	1	0.0056;	k		
ENHREND*IND	2	2	0.2382			

- Overall ANOVA Summary of FEI1 data:
 - Linear engine hour estimate of -.000342
 - RMSE approximately 0.20
 - 542-2 > 543, 1011

	Summary of Fit					
	RSquare			0.75722	27	
	RSquare Ad	dj			0.67225	56
<	Root Mean	Squa	re Erro	or	0.19625	57
	Mean of Re	espons	se		1.73892	29
	Observatio	ns (or	Sum \	Ngts)	2	28
	Analysis of Va	riance				
	Parameter Esti	mates				
	Term			Estimate	Prob> t	VIF
	Intercept		2.157	76091	<.0001*	
	IND[542-2]	0.25	55296	0.0001*	1.4223859
	IND[1011]		-0.23	31568	0.0005*	1.5076273
	LabEngine[A122]		0.029	99943	0.6869	1.53062
	LabEngine[A144]	0.017	74383	0.8065	1.5195574
	LabEngine[B306]	0.08	55857	0.4015	2.0337874
	LabEngine[G58]	-0.15	54995	0.0520	1.7316222
\leq	ENHREND		-0.00	00342	0.0016*	1.2748697
	Effect Tests					
	Source	Nparm	DF	Pro	b > F	
	IND	2	2	0.000)2*	
	LabEngine	4	4	0.395	56	
	ENHREND	1	1	0.001	L6*	

Level		Least Sq Mean		
542-2	2 A	2.0099395		
543	В	1.7309155		
1011	В	1.5230756		
Levels	not co	onnected by	same letter	are
signifi	cantly	different.		
Level	- Level	Difference	Std Err Dif	p-Value
542-2	2 1011	0.4868640	0.09508290	.0001*
542-2	2 543	0.2790240	0.09185790	.0171*
543	1011	0.2078400	0.09464280	.0963

- FEI1 oil discrimination over the engine life
 - One approach to determine VIF engine life would be to track the p-value of the oil*ENHREND term using various subsets of the valid matrix data. The significance of this term represents the point at which the same engine hour correction should no longer be used for all oils.

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	12	.9487	.8002 to .8587
ENHREND < 1100	14	.8390	.5773 to .8507
ENHREND < 1300	17	.4996	.3023 to .9484
ENHREND < 1450	19	.0620	.0310 to .8564
ENHREND < 1596	21	.0491	.0236 to .8412
ENHREND < 1800	25	.2032	.0965 to .5550
All Valid Tests	28	.2383	.1279 to .7084

• Here is the same table with the low 543 result, testkey #117626

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	12	.9487	.8002 to .8587
ENHREND < 1100	14	.8390	.5773 to .8507
ENHREND < 1300	17	.4996	.3023 to .9484
ENHREND < 1450	18	.1686	.0695 to .7859
ENHREND < 1596	20	.1370	.0532 to .7003
ENHREND < 1800	24	.1489	.0685 to .7699
All Valid Tests	27	.2389	.1209 to .9844

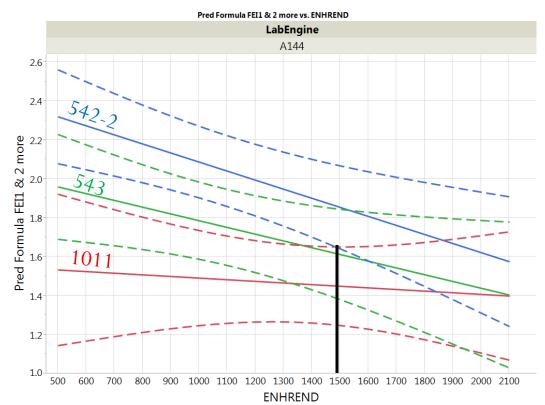
Here is the same table without the low 1011 result, testkey #112956

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	11	Not Estimable	
ENHREND < 1100	13	.9822	.8744 to .9307
ENHREND < 1300	16	.7949	.5247 to .8874
ENHREND < 1450	18	.2772	.1246 to .8366
ENHREND < 1596	20	.2205	.0937 to .7688
ENHREND < 1800	24	.5469	.2853 to .9031
All Valid Tests	27	.5769	.3242 to .9966

Here is the same table without the high 543 result, testkey #118267

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	11	.3864	.2528 to 2566
ENHREND < 1100	13	.5821	.3466 to .7623
ENHREND < 1300	16	.3342	.1550 to .4991
ENHREND < 1450	18	.0478	.0174 to .4202
ENHREND < 1596	20	.0680	.0246 to .4988
ENHREND < 1800	24	.1024	.0377 to .8950
All Valid Tests	27	.1166	.0438 to .5866

- FEI1 oil discrimination over the engine life
 - FEI1 ~ Oil, Lab, ENG[Lab], ENHREND, Oil*ENHREND
 - <u>Reminder</u>: Oil*ENHREND, Lab, and Eng[Lab] terms not significant to model


	Predicted Hours at which 542-2 no longer	
	discriminates from any	
Lab-Engine	other oil	
A 144	1500	
A 122	1450	
G 58	1500	
G 96	1400	
B 306	1175*	

* - sample size = 3 tests

Refer to Appendix A for plots of other stands

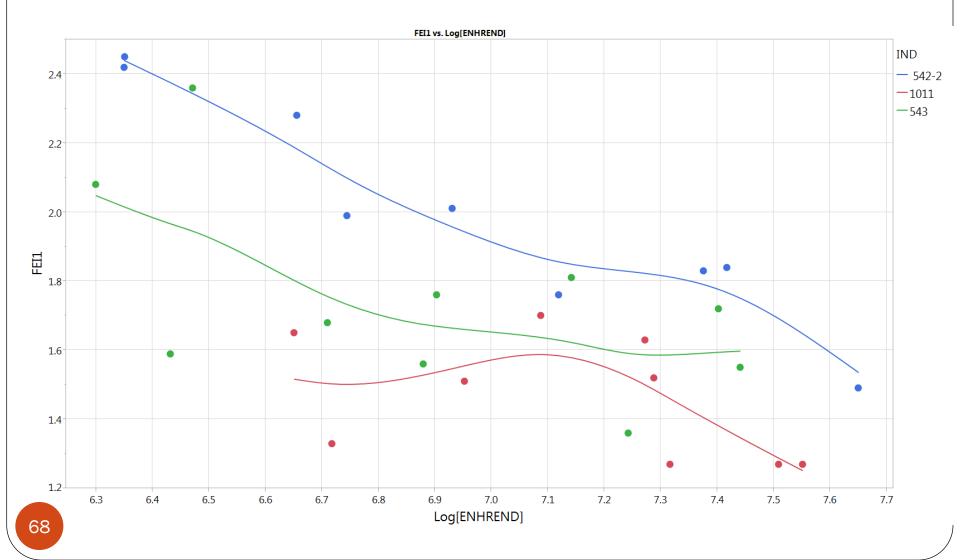
Example: Using A 144

Notice how the 95% confidence interval for 542-2 begins to overlap the 95% confidence interval for 1011 at around ENHREND = 1500.


FEI1 oil discrimination over the engine life, removing insignificant model terms.
FEI1 ~ Oil, ENHREND, and Oil*ENHREND

Predicted Hours at which 542-2 no longer discriminates from any other oil

1600


Example:

This example shows how the number of model degrees of freedom used directly affects the oil mean confidence intervals.

Using Ln(EngineHours) Correction

• Plot of Raw FEI1 by Ln of engine hours

- Overall ANOVA Summary of FEI1 data:
 - Analysis indicates that no strong evidence exists that the engine hour effect is inconsistent across oils using all 28 data points.

Summary of Fit]			
RSquare		0.81	8747				
RSquare Adj		0.7	2812				
Root Mean Square Error	r	0.1	L 787 5				
Mean of Response		1.73	38929				
Observations (or Sum W	/gts)		28				
Analysis of Variance							
Parameter Estimates							
Term					Estimate	Prob> t	VIF
Intercept				4.1	.006382<	:.0001*	
IND[542-2]				0.2	616914<	.0001*	1.5194489
IND[1011]				-0.	256281).0002*	1.7426644
LabEngine[A122]				0.0	4625510).5053	1.5891367
LabEngine[A144]				-0.0068280.9190 1.6262617			
LabEngine[B306]				0.09866160.2909 2.0215933			
LabEngine[G58]				-(0.17509().0214*	1.7915682
Log[ENHREND]				-0.	.337508().0037*	1.4324099
(Log[ENHREND]-6.9948	6)*IN[D[5	42-2]	-0.	2125760).1067	1.6643497
(Log[ENHREND]-6.9948	6)*IN[D[10)11]	(0.263360).1016	1.7969863
Effect Tests							
Source Npa	arm	DF	Pro	b > F			
IND	2	2	0.00)1*			
LabEngine	4	4	0.20	98			
Log[ENHREND]	1	1	0.00	37*			
Log[ENHREND]*IND	2	2	0.18	30			

- Overall ANOVA Summary of FEI1 data:
 - RMSE approximately 0.19
 - 542-2 > 543, 1011

	Summary of Fit						
	RSquare			0.781105			
	RSquare Adj	0.70449	0.704492				
<	Root Mean Squa	0.18635	6				
	Mean of Respon	1.73892	29				
	Observations (or	Wgts)	2	28			
	Analysis of Variance						
	Parameter Estimates						
	Term		Estimate	Prob> t	VIF		
	Intercept	4.58	09237	<.0001*			
	IND[542-2]	0.24	60968	0.0001*	1.430158		
	IND[1011]	-0.2	21658	0.0005*	1.5315996		
	LabEngine[A122]	0.03	36826	0.6337	1.5298675		
	LabEngine[A144]	0.02	17746	0.7477	1.522296		
	LabEngine[B306]	0.08	82937	0.3597	2.0069947		
	LabEngine[G58]	-0.1	63389	0.0299*	1.6678285		
<	Log[ENHREND]	-0.4	03997	0.0006*	1.2432375		
	Effect Tests						
	Source	Nparm	DF	Prob > F			
	IND	2	2	0.0002*			
	LabEngine	4	4	0.2763			
	Log[ENHREND]	1	1	0.0006*			

Level		Least Sq Mean		
542-2	A	2.0011172		
543	В	1.7305816		
1011	В	1.5333625		
Levels	not co	onnected by	same letter	are
signifi	cantly	different.		
Level	- Level	Difference	Std Err Dif	p-Value
542-2	1011	0.4677547	0.09100980	.0001*
542-2	543	0.2705356	0.08696310	.0146*
543	1011	0.1972191	0.09011030	.0977

- FEI1 oil discrimination over the log of engine life
 - One approach to determine VIF engine life would be to track the p-value of the oil*ln(ENHREND) term using various subsets of the valid matrix data. The significance of this term represents the point at which the same engine hour correction should no longer be used for all oils.

Data used	Number of test results	Overall p-value of oil*Ln(ENHREND) term	Range of p-values by oil of oil*Ln(ENHREND) term
ENHREND < 1000	12	.9628	.8196 to .8530
ENHREND < 1100	14	.9371	.7486 to .8728
ENHREND < 1300	17	.5340	.3024 to .9545
ENHREND < 1450	19	.0778	.0365 to .7910
ENHREND < 1596	21	.0723	.0334 to .7962
ENHREND < 1800	25	.1676	.0765 to .4689
All Valid Tests	28	.1830	.1016 to .7038

• Here is the same table with the low 543 result, testkey #117626

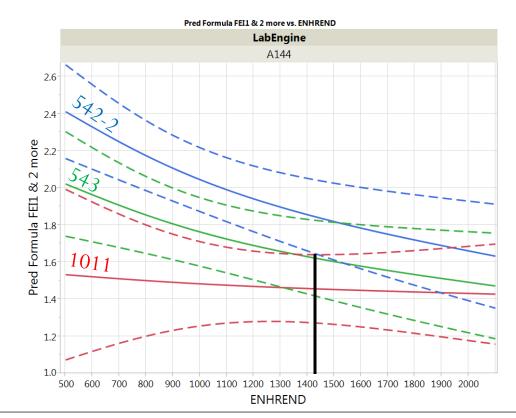
Data used	Number of test results	Overall p-value of oil*Ln(ENHREND) term	Range of p-values by oil of oil*Ln(ENHREND) term
ENHREND < 1000	12	.9628	.8196 to .8530
ENHREND < 1100	14	.9371	.7486 to .8728
ENHREND < 1300	17	.5340	.3024 to .9545
ENHREND < 1450	18	.1920	.0800 to .6891
ENHREND < 1596	20	.1594	.0631 to .6284
ENHREND < 1800	24	.1255	.0576 to .6624
All Valid Tests	27	.1719	.0755 to .9925

Here is the same table without the low 1011 result, testkey #112956

Data used	Number of test results	Overall p-value of oil*Ln(ENHREND) term	Range of p-values by oil of oil*Ln(ENHREND) term
ENHREND < 1000	11	Not Estimable	
ENHREND < 1100	13	.9458	.7586 to .9259
ENHREND < 1300	16	.8343	.5726 to .8918
ENHREND < 1450	18	.3300	.1514 to .7883
ENHREND < 1596	20	.3213	.1447 to .7544
ENHREND < 1800	24	.5003	.2503 to .8714
All Valid Tests	27	.4976	.2446 to .8765

Here is the same table without the high 543 result, testkey #118267

Data used	Number of test results	Overall p-value of oil*Ln(ENHREND) term	Range of p-values by oil of oil*Ln(ENHREND) term
ENHREND < 1000	11	.3850	.2518 to .2578
ENHREND < 1100	13	.6771	.4251 to .7399
ENHREND < 1300	16	.3513	.1656 to .4036
ENHREND < 1450	18	.0532	.0193 to .4020
ENHREND < 1596	20	.0919	.0342 to .5037
ENHREND < 1800	24	.0789	.0289 to .9589
All Valid Tests	27	.0763	.0262 to .6117

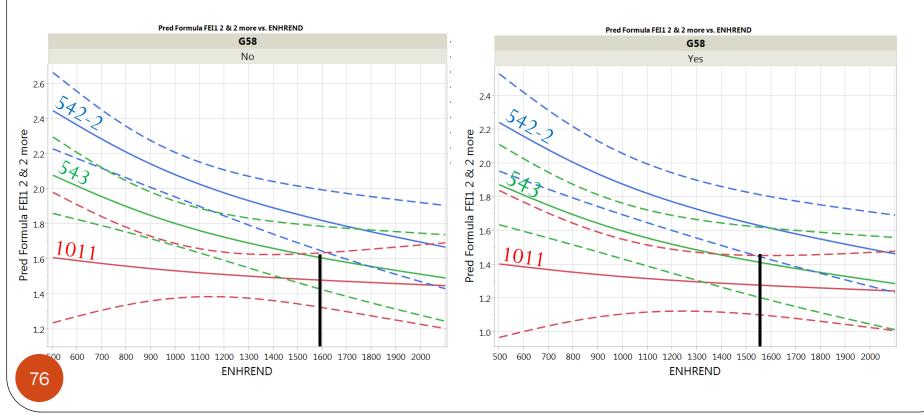

- FEI1 oil discrimination over the engine life
 - FEI1 ~ Oil, LabEngine, Ln(ENHREND), Oil*Ln(ENHREND)
 - <u>Reminder</u>: Oil*Ln(ENHREND) AND LabEngine terms not significant to overall model, but p-value = .02 for LabEngine[G58].

	Predicted Hours at which 542-2 no longer discriminates from any
Lab-Engine	other oil
A 144	1425
A 122	1400
G 58	1475
G 96	1350
B 306	1125*

* - sample size = 3 tests

Example: Using A 144

Notice how the 95% confidence interval for 542-2 begins to overlap the 95% confidence interval for 1011 at around ENHREND = 1425.



- FEI1 oil discrimination over the engine life
 - FEI1 ~ Oil, G58 (CategoricalY/N variable), Ln(ENHREND), and Oil*Ln(ENHREND)

G58	Predicted Hours at which 542-2 no longer discriminates from any other oil
Yes	1550
No	1600

Example:

This example shows how the number of model degrees of freedom used directly affects the oil mean confidence intervals.

VIF Engine Life

Based on # of standard deviations of oil separation

Diminishing Oil Discrimination in VIF

							1	1	
FEI1	EngHr	542-2	1011	543	542-2-1011	# of Sd	543-1011	# of Sd	n=28 FEI1 FEI2
	350	2.41	1.57	2.03	0.84	4.21	0.46	2.32	RMSE 0.20 0.18
	550	2.32	1.55	1.96	0.76	3.82	0.41	2.05	LSMeans
	750	2.22	1.54	1.89	0.69	3.43	0.36	1.78	542-2 2.02 1.40
	950	2.13	1.52	1.82	0.61	3.04	0.30	1.51	1011 1.54 1.44
	1150	2.04	1.51	1.75	0.53	2.65	0.25	1.24	543 1.75 2.08
	1350	1.94	1.49	1.68	0.45	2.26	0.19	0.97	Effect Size
	1550	1.85	1.47	1.61	0.37	1.87	0.14	0.70	% 0.48 0.68
	1750	1.75	1.46	1.54	0.30	1.48	0.09	0.43	SD 2.40 3.78
	1950	1.66	1.44	1.47	0.22	1.09	0.03	0.16	Model: Oil, Lab, Engine(Lab), Enghr
	2150	1.57	1.43	1.40	0.14	0.70	-0.02	-0.11	
	2350	1.47	1.41	1.33	0.06	0.31	-0.08	-0.38	
FEI2	EngHr	542-2	1011	543	543-542-2	# of Sd	543-1011	# of Sd	
	350	1.52	1.49	2.37	0.86	4.76	0.88	4.90	
	550	1.49	1.47	2.30	0.81	4.49	0.82	4.58	
	750	1.46	1.46	2.22	0.76	4.22	0.77	4.26	
	950	1.43	1.44	2.15	0.71	3.96	0.71	3.94	
	1150	1.41	1.42	2.07	0.66	3.69	0.65	3.62	
	1350	1.38	1.40	1.99	0.62	3.42	0.59	3.29	
	1550	1.35	1.38	1.92	0.57	3.16	0.53	2.97	
	1750	1.32	1.37	1.84	0.52	2.89	0.48	2.65	
	1950	1.29	1.35	1.77	0.47	2.62	0.42	2.33	
	2150	1.27	1.33	1.69	0.42	2.36	0.36	2.00	
	2350	1.24	1.31	1.61	0.38	2.09	0.30	1.68	

Test discriminates FEI1 approximately 3 standard deviations up to around the 5th test.

Diminishing Oil Discrimination in VIF

FEI1	EngHr	542-2	1011	543	542-2-1011	# of Sd	543-1011	# of Sd	n	=32	FEI1	FEI2
	350	2.64	1.58	2.19	1.06	5.57	0.61	3.20	R	MSE	0.19	0.18
	550	2.39	1.55	2.02	0.84	4.44	0.47	2.45			LSMeans	
	750	2.22	1.53	1.90	0.70	3.66	0.37	1.94	5	42-2	2.02	1.40
	950	2.09	1.51	1.80	0.58	3.07	0.29	1.55	1	011	1.55	1.44
	1150	1.99	1.50	1.73	0.49	2.59	0.23	1.23	5	43	1.75	2.08
	1350	1.90	1.48	1.67	0.42	2.19	0.18	0.97			Effect Size	
	1550	1.82	1.47	1.61	0.35	1.84	0.14	0.74	%	,)	0.47	0.68
	1750	1.76	1.47	1.57	0.29	1.54	0.10	0.54	S	D	2.47	3.78
	1950	1.70	1.46	1.53	0.24	1.27	0.07	0.36	₽	1odel: Oil,	Lab, Engine(L	ab), <mark>LnEnghr</mark>
	2150	1.64	1.45	1.49	0.19	1.02	0.04	0.20				
	2350	1.60	1.44	1.45	0.15	0.80	0.01	0.05				
FEI2	EngHr	542-2	1011	543	543-542-2	# of Sd	543-1011	# of Sd				
	350	1.58	1.47	2.49	0.91	5.04	1.02	5.65				
	550	1.51	1.45	2.32	0.81	4.50	0.87	4.84				
	750	1.46	1.43	2.21	0.74	4.13	0.77	4.29				
	950	1.43	1.42	2.12	0.69	3.85	0.70	3.87				
	1150	1.40	1.41	2.05	0.65	3.63	0.64	3.53				
	1350	1.37	1.41	1.99	0.62	3.44	0.58	3.24				
	1550	1.35	1.40	1.94	0.59	3.27	0.54	3.00				
	1750	1.33	1.39	1.89	0.56	3.13	0.50	2.78				
	1950	1.32	1.39	1.85	0.54	3.00	0.47	2.59				
	2150	1.30	1.38	1.82	0.52	2.88	0.43	2.41				
	2350	1.29	1.38	1.79	0.50	2.78	0.41	2.26				

Test discriminates FEI1 approximately 3 standard deviations up to around the 5th test.

VIF Engine Life

Differences in Estimated Slopes Over Engine Life

Comparing Slopes by Oil Over Various Subsets

- Table 1 shows the estimated linear engine life effect by oil using the model coefficients over various subsets of data. Data is scaled times 1000 to represent the estimated decrease in FEI1 over 1000 hours
- Table 2 shows the absolute difference in the oil slopes, using the data from Table 1.

The differences are minimized using the full 28 test data set.

	542-2	1011	543
ENHREND < 1000	-1.88	-4.74	-1.18
ENHREND < 1100	-0.68	-0.41	-1.39
ENHREND < 1300	-0.40	0.20	-0.90
ENHREND < 1450	-0.40	0.39	-0.99
ENHREND < 1596	-0.49	0.13	-0.91
ENHREND < 1800	-0.52	0.09	-0.35
All Valid Tests	-0.47	-0.08	-0.25

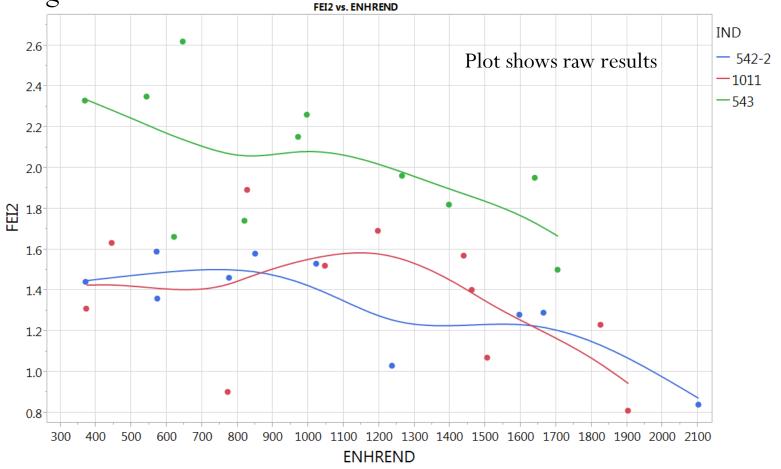
Table 2: Estimated Abs(Differences) in slopes

	542-2 &1011	542-2 & 543	1011 & 543
ENHREND < 1000	2.86	0.71	3.57
ENHREND < 1100	0.27	0.71	0.98
ENHREND < 1300	0.60	0.50	1.10
ENHREND < 1450	0.79	0.59	1.38
ENHREND < 1596	0.62	0.43	1.05
ENHREND < 1800	0.61	0.17	0.44
All Valid Tests	0.38	0.22	0.17

Conclusions for FEI1

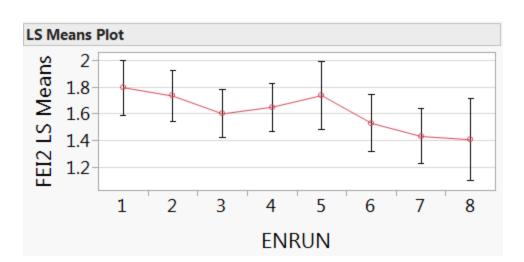
- There is a lot of uncertainty for engine run #2 for 543 (high variability) and 1011 (no data).
- There are two points with high contribution to the significance of the Oil*Ln(ENHREND) term in the 1300 to 1450 hour range.

Engine Life Options:


- One option would be to limit engine life to 4 or 5 tests to be consistent with the VIE, but this does not guarantee that the engine life affect is the same for all oils in this range. Additional 543 and 1011 engine run #2 data would still be needed to make that conclusion.
- Another option would be to use the mean confidence interval approach. Using the full model (Oil, Lab, Eng[Lab], ENHREND, and Oil*ENHREND), this would be 5 tests. Using only significant terms in the model, this would be 6 tests.
- 3. Finally, one could take the "Innocent until proven guilty approach" that says the engine life affect should be the same unless we are certain that its not. Given that we are not certain it is different, one could argue for a full 8 test engine life.

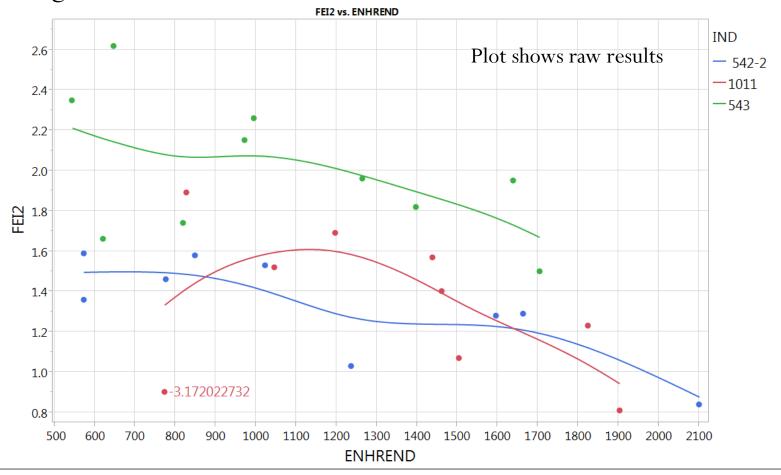
VIF Engine Life (n=28)

Based on FEI2 Oil Discrimination


Using Linear Engine Hours Correction

- FEI2 oil discrimination over the engine life
 - 543 discrimination from 542-2 and 1011 is consistent throughout the engine life

• Analysis of a statistical model with Oil, LabEngine, ENRUN terms show no unexpected deviations for any individual engine run.

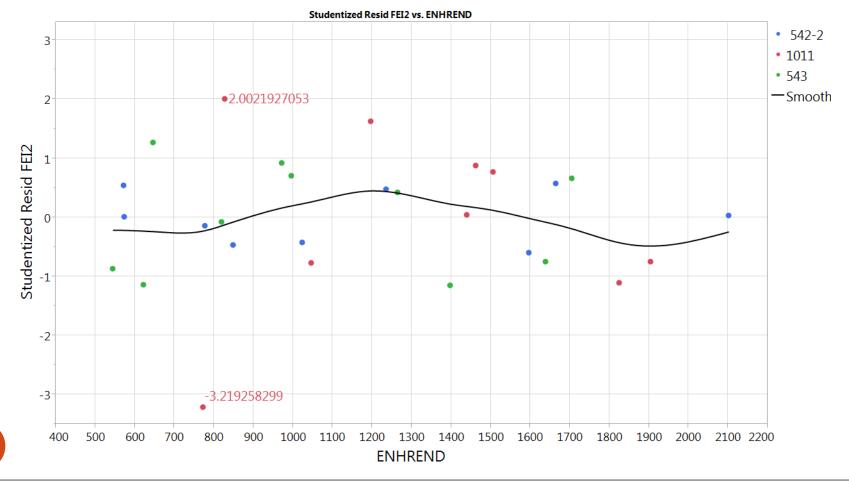

Expanded Estimates							
Nominal factors expanded to all levels							
Term	Estimate	Prob> t					
Intercept	1.6101654	<.0001*					
IND[542-2]	-0.188065	0.0025*					
IND[1011]	-0.24249	0.0003*					
IND[543]	0.430555	<.0001*					
LabEngine[A122]	-0.123208	0.0807					
LabEngine[A144]	0.0670234	0.3210					
LabEngine[B306]	0.2034689	0.0317*					
LabEngine[G58]	-0.379227	<.0001*					
LabEngine[G96]	0.2319421	0.0082*					
ENRUN[1]	0.1859426	0.0572					
ENRUN[2]	0.1227277	0.1887					
ENRUN[3]	-0.010054	0.9049					
ENRUN[4]	0.0393366	0.6472					
ENRUN[5]	0.1264465	0.2574					
ENRUN[6]	-0.080831	0.3987					
ENRUN[7]	-0.179782	0.0661					
ENRUN[8]	-0.203786	0.1306					

• FEI2 oil discrimination over the engine life

87

• Large studentized residual for testkey #112954 (Model with Linear engine hour correction, no interaction term)

• Overall ANOVA Summary of FEI2 data:


• Analysis indicates that the engine hours effect in FEI2 is consistent across the oils <u>tested</u>

eeseea						
Summary of Fit						
RSquare	0.8	393596				
RSquare Adj		0.8	340394			
Root Mean Square	Error	0.1	80469			
Mean of Response		1.5	73214			
Observations (or Su	ım Wgts)		28			
Analysis of Variance	_					
Parameter Estimates						
Term			Est	imate	Prob> t	VIF
Intercept			1.8662	722	<.0001*	
IND[542-2]			-0.22	198(0.0004*	1.4917753
IND[1011]			-0.208	176	0.0010*	1.6333332
LTMSLAB[A]			-0.054	386(0.3146	2.1183154
LTMSLAB[B]			0.1921	775	0.0221*	2.1870603
LTMSLAB[A]:ENGN	IO[122]		-0.075	591(0.1598	1.0577362
LTMSLAB[G]:ENGN	IO[58]		-0.304	506	<.0001*	1.172464
ENHREND			-0.000	202	0.0366*	1.3671563
(ENHREND-1177.5)	*IND[542	2-2]	6.4956	e-5(0.5605	1.4734904
(ENHREND-1177.5)	*IND[101	11	0.0001	144 (0.3807	1.5015411
Effect Tests						
Source	Nparm [DF	Prob > F			
IND	2	2	<.0001*			
LTMSLAB	2	2	0.0467*			
ENGNO[LTMSLAB]	2	2	0.0001*			
ENHREND	1	1	0.0366*			
ENHREND*IND	2	2	0.3515			

• Overall ANOVA Summary of FEI2 data:

89

• Analysis indicates that the engine hours effect in FEI2 is consistent across the oils tested

- FEI2 oil discrimination over the engine life
 - One approach to determine VIF engine life would be to track the p-value of the oil*ENHREND term using various subsets of the valid matrix data. The significance of this term represents the point at which the same engine hour correction should no longer be used for all oils.

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	12	.0568	.0424 to .0959
ENHREND < 1100	14	.1813	.1283 to .7264
ENHREND < 1300	17	.6453	.4156 to .9413
ENHREND < 1450	19	.5949	.4040 to .9060
ENHREND < 1596	21	.2988	.1789 to .9367
ENHREND < 1800	25	.1260	.0548 to .7965
All Valid Tests	28	.3515	.1538 to .5605

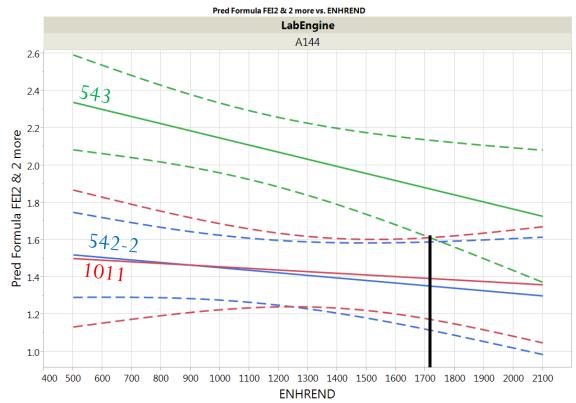
- FEI2 oil discrimination over the engine life
 - Here is the same table without testkey #112954

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	11	Not Estimable	
ENHREND < 1100	13	.1435	.0971 to .5106
ENHREND < 1300	16	.4209	.2064 to .6406
ENHREND < 1450	18	.2100	.1012 to .5952
ENHREND < 1596	20	.2725	.1397 to .8027
ENHREND < 1800	24	.3288	.2489 to .8529
All Valid Tests	27	.0972	.0337 to .4400

- FEI2 oil discrimination over the engine life
 - Here is the same table without testkey #112956

Data used	Number of test results	Overall p-value of oil*ENHREND term	Range of p-values by oil of oil*ENHREND term
ENHREND < 1000	11	Not Estimable	
ENHREND < 1100	13	.3078	.2303 to .9015
ENHREND < 1300	16	.0175	.0071 to .4962
ENHREND < 1450	18	.0038	.0022 to .4440
ENHREND < 1596	20	.0036	.0023 to .5337
ENHREND < 1800	24	.0021	.0011 to .1105
All Valid Tests	27	.1166	.0490 to .9702

- FEI2 oil discrimination over the engine life
 - FEI2 ~ Oil, Lab, Eng[Lab], ENHREND, and Oil*ENHREND


	Predicted Hours at which 542-2 no longer discriminates from any
Lab-Engine	other oil
A 144	1700
A 122	1675
G 58	1700
G 96	1650
B 306	1475*

* - sample size = 3 tests

Refer to Appendix A for plots of other stands

Example: Using A 144

Notice how the 95% confidence interval for 542-2 begins to overlap the 95% confidence interval for 1011 at around ENHREND = 1700.

93

VIF Engine Life

Based on # of standard deviations of oil separation

Diminishing Oil Discrimination in VIF

						-	1	1	
FEI1	EngHr	542-2	1011	543	542-2-1011	# of Sd	543-1011	# of Sd	n=28 FEI1 FEI2
	350	2.41	1.57	2.03	0.84	4.21	0.46	2.32	RMSE 0.20 0.18
	550	2.32	1.55	1.96	0.76	3.82	0.41	2.05	LSMeans
	750	2.22	1.54	1.89	0.69	3.43	0.36	1.78	542-2 2.02 1.40
	950	2.13	1.52	1.82	0.61	3.04	0.30	1.51	1011 1.54 1.44
	1150	2.04	1.51	1.75	0.53	2.65	0.25	1.24	543 1.75 2.08
	1350	1.94	1.49	1.68	0.45	2.26	0.19	0.97	Effect Size
	1550	1.85	1.47	1.61	0.37	1.87	0.14	0.70	% 0.48 0.68
	1750	1.75	1.46	1.54	0.30	1.48	0.09	0.43	SD 2.40 3.78
	1950	1.66	1.44	1.47	0.22	1.09	0.03	0.16	Model: Oil, Lab, Engine(Lab), Enghr
	2150	1.57	1.43	1.40	0.14	0.70	-0.02	-0.11	
	2350	1.47	1.41	1.33	0.06	0.31	-0.08	-0.38	
FEI2	EngHr	542-2	1011	543	543-542-2	# of Sd	543-1011	# of Sd	
	350	1.52	1.49	2.37	0.86	4.76	0.88	4.90	
	550	1.49	1.47	2.30	0.81	4.49	0.82	4.58	
	750	1.46	1.46	2.22	0.76	4.22	0.77	4.26	
	950	1.43	1.44	2.15	0.71	3.96	0.71	3.94	
	1150	1.41	1.42	2.07	0.66	3.69	0.65	3.62	
	1350	1.38	1.40	1.99	0.62	3.42	0.59	3.29	
	1550	1.35	1.38	1.92	0.57	3.16	0.53	2.97	
	1750	1.32	1.37	1.84	0.52	2.89	0.48	2.65	
	1950	1.29	1.35	1.77	0.47	2.62	0.42	2.33	
	2150	1.27	1.33	1.69	0.42	2.36	0.36	2.00	
	2350	1.24	1.31	1.61	0.38	2.09	0.30	1.68	

Test discriminates FEI1 approximately 3 standard deviations up to around the 5th test.

Diminishing Oil Discrimination in VIF

FEI1	EngHr	542-2	1011	543	542-2-1011	# of Sd	543-1011	# of Sd	n	=32	FEI1	FEI2
	350	2.64	1.58	2.19	1.06	5.57	0.61	3.20	R	MSE	0.19	0.18
	550	2.39	1.55	2.02	0.84	4.44	0.47	2.45			LSMeans	
	750	2.22	1.53	1.90	0.70	3.66	0.37	1.94	5	42-2	2.02	1.40
	950	2.09	1.51	1.80	0.58	3.07	0.29	1.55	1	011	1.55	1.44
	1150	1.99	1.50	1.73	0.49	2.59	0.23	1.23	5	43	1.75	2.08
	1350	1.90	1.48	1.67	0.42	2.19	0.18	0.97			Effect Size	
	1550	1.82	1.47	1.61	0.35	1.84	0.14	0.74	%	,)	0.47	0.68
	1750	1.76	1.47	1.57	0.29	1.54	0.10	0.54	S	D	2.47	3.78
	1950	1.70	1.46	1.53	0.24	1.27	0.07	0.36	₽	1odel: Oil,	Lab, Engine(L	ab), <mark>LnEnghr</mark>
	2150	1.64	1.45	1.49	0.19	1.02	0.04	0.20				
	2350	1.60	1.44	1.45	0.15	0.80	0.01	0.05				
FEI2	EngHr	542-2	1011	543	543-542-2	# of Sd	543-1011	# of Sd				
	350	1.58	1.47	2.49	0.91	5.04	1.02	5.65				
	550	1.51	1.45	2.32	0.81	4.50	0.87	4.84				
	750	1.46	1.43	2.21	0.74	4.13	0.77	4.29				
	950	1.43	1.42	2.12	0.69	3.85	0.70	3.87				
	1150	1.40	1.41	2.05	0.65	3.63	0.64	3.53				
	1350	1.37	1.41	1.99	0.62	3.44	0.58	3.24				
	1550	1.35	1.40	1.94	0.59	3.27	0.54	3.00				
	1750	1.33	1.39	1.89	0.56	3.13	0.50	2.78				
	1950	1.32	1.39	1.85	0.54	3.00	0.47	2.59				
	2150	1.30	1.38	1.82	0.52	2.88	0.43	2.41				
	2350	1.29	1.38	1.79	0.50	2.78	0.41	2.26				

Test discriminates FEI1 approximately 3 standard deviations up to around the 5th test.

Conclusions for FEI2

- There is a lot of uncertainty surrounding 1011 2nd run (no data) and 3rd run (0.70% residual difference for the two data points) on an engine.
- No evidence to limit engine life until around 1700 hours.

Benchmarking: Oil Discrimination in Various GF-5 PCMO Tests

- Sequence IIIG ln(PVIS): oils separated by 2.0 standard deviations
- Sequence IIIG WPD: oils separated by 2.3 standard deviations
- Sequence IVA wear: oils separated by 1.2 standard deviations
- Sequence VID FEI2: oils separated by 2.9 standard deviations

Seq	IIIG
-----	------

PERCENT VISCOSITY INCREASE Unit of Measure: LN(PVIS)

Reference Oil	Mean	Standard Deviation
434	4.7269	0.3859
435	5.1838	0.3096
435-2	5.1838	0.3096
438	4.5706	0.1768

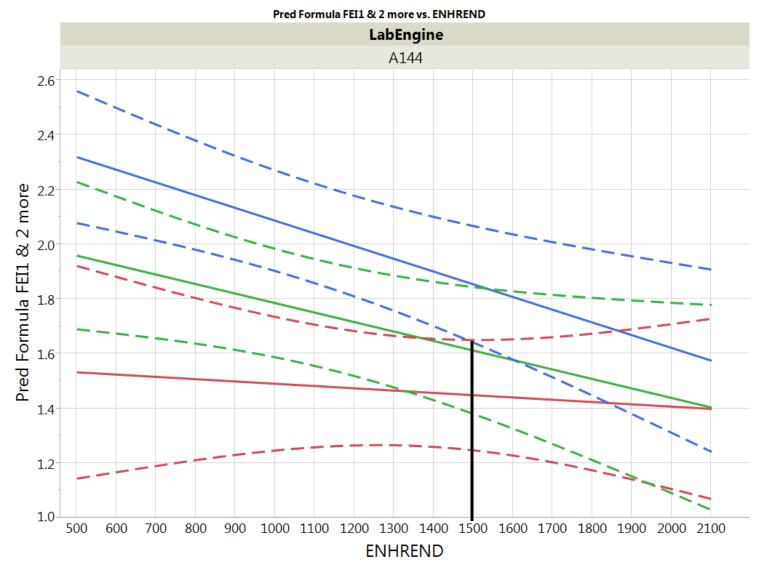
Seq IIIG

WEIGHTED PISTON DEPOSITS Unit of Measure: Merits

Reference Oil	Mean	Standard Deviation
434	4.80	0.96
435	3.59	0.58
435-2	3.59	0.58
438	3.20	0.33

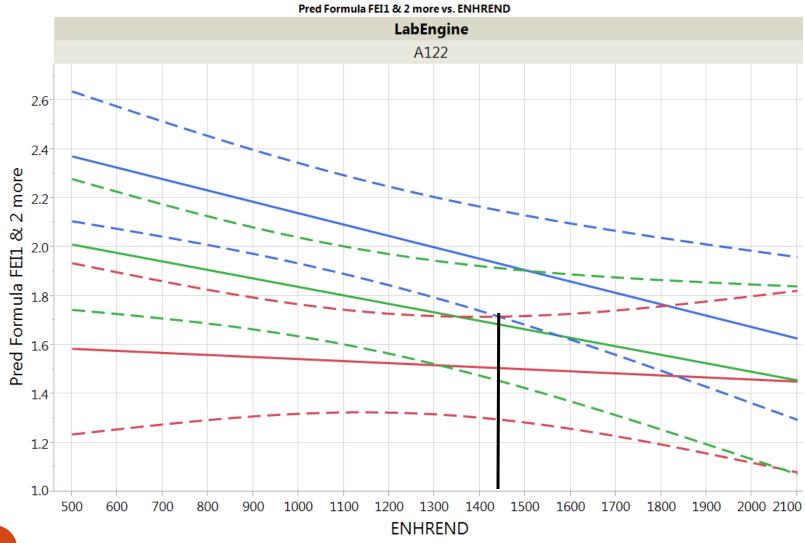
AVERAGE CAMSHAFT WEAR Unit of Measure: micrometers

Reference Oil	Mean	Standard Deviation
1006-2	102.18	13.54
1007	84.76	15.40

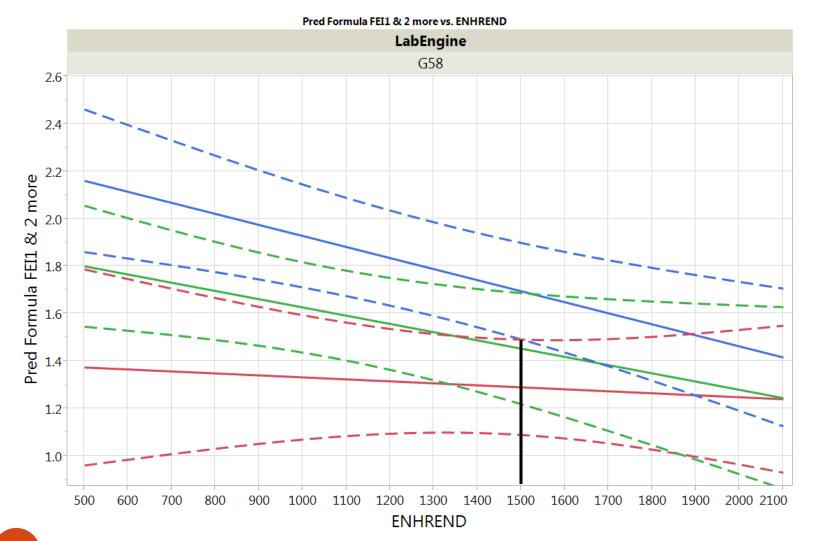

Seq VID FUEL ECONOMY IMPROVEMENT at 100 Hours Unit of Measure: Percent

Reference Oil	Mean	Standard Deviation
540 (GF5A)	1.04	0.14
541 (GF5D)	0.71	0.14
542 (GF5X)	0.80	0.14
1010	1.10	0.18

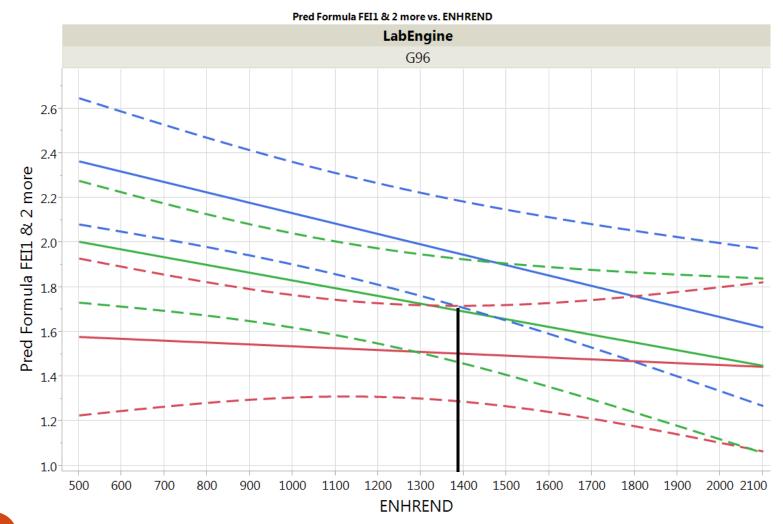
Appendix A

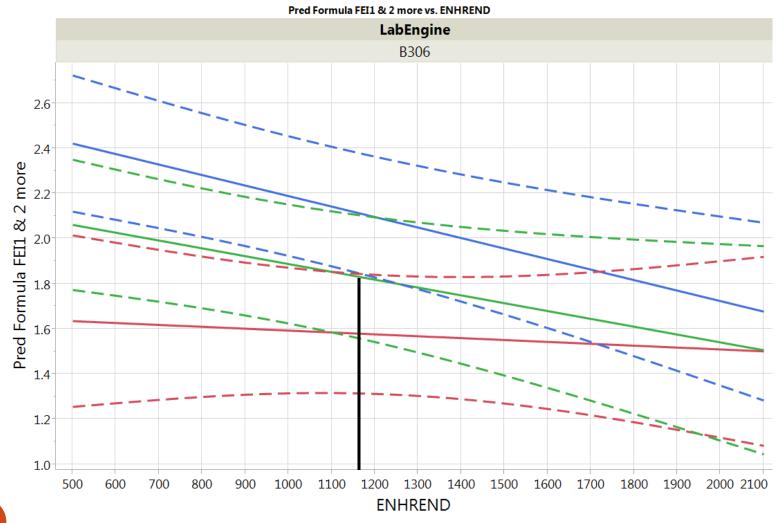

Additional Engine Plots Using Linear Engine Hour Correction w/ Interaction Term Included

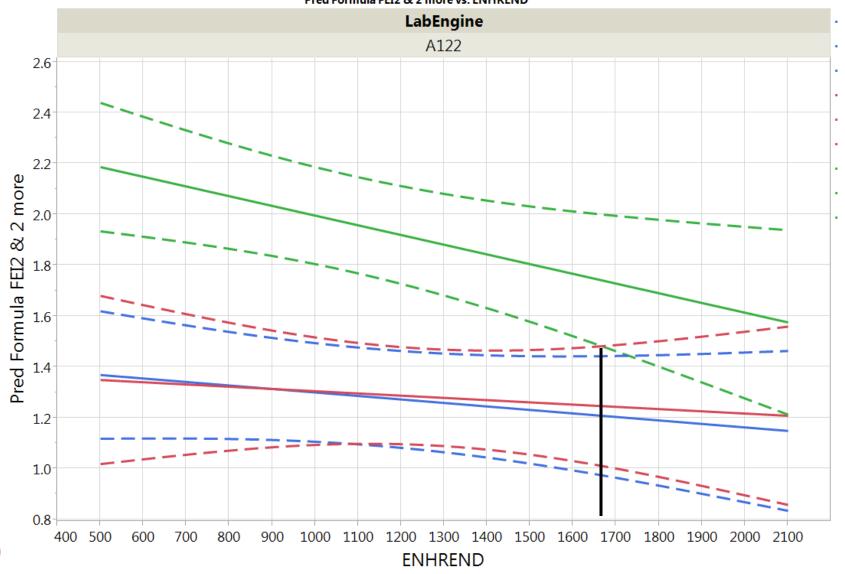
VIF Lab A Eng. 144 FEI1

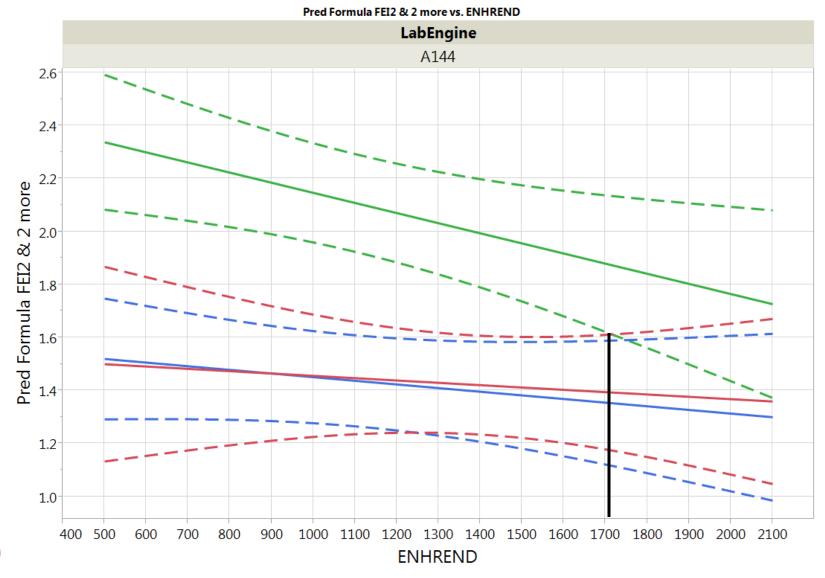


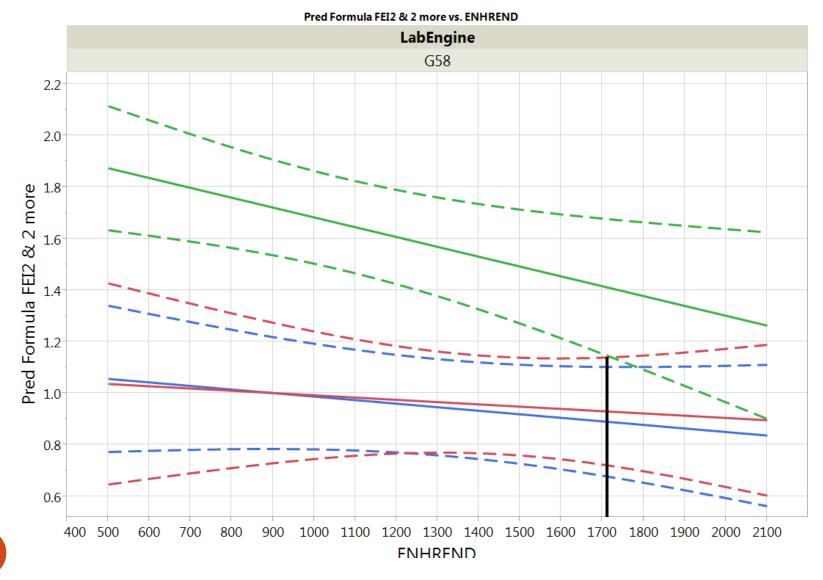
100

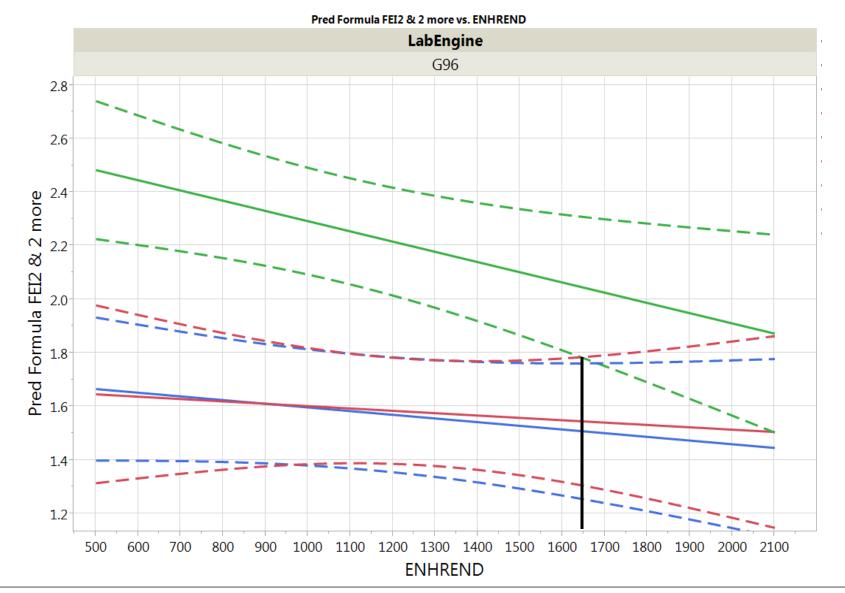

VIF Lab A Eng. 122 FEI1

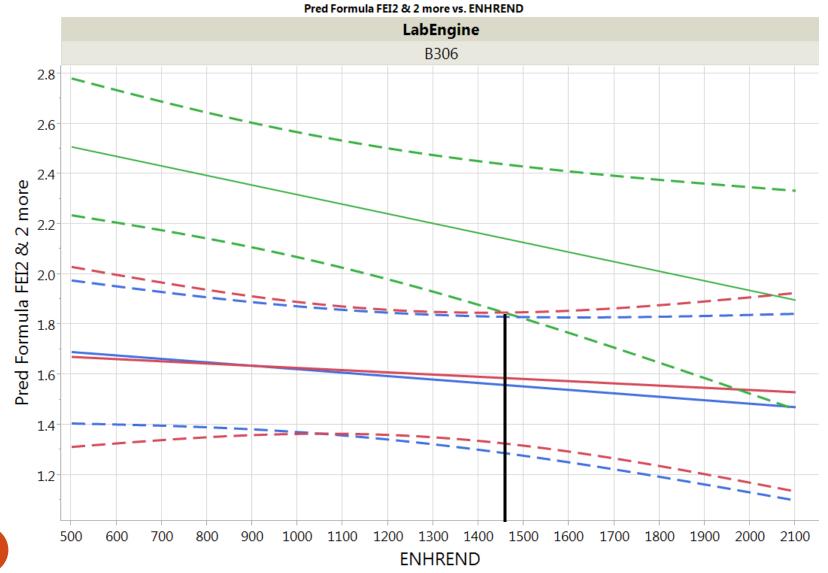

VIF Lab G Eng. 58 FEI1


VIF Lab G Eng. 96 FEI1


VIF Lab B Eng. 306 FEI1


VIF Lab A Eng. 122 FEI2 Pred Formula FEI2 & 2 more vs. ENHREND


VIF Lab A Eng. 144 FEI2


VIF Lab G Eng. 58 FEI2

VIF Lab G Eng. 96 FEI2

VIF Lab B Eng. 306 FEI2

VIF LTMS

Industry Statistician Team

Date: 02-07-2017

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

VIF LTMS

- With a limited VIF engine life and the relationship of engine age on the FEIs for the first & second runs, the Statistics Team recommends an LTMS that is based on a minimum two test calibration.
- The following slides outline the proposed VIF LTMS for a 4 run engine life.

Engine Hour Adjustment for VIF LTMS

- The VIF LTMS is based on the below engine hour adjustment:
 - FEI1 EngHr Adjustment:

FEI1 = 0.000403*(*ENHREND* - 700) + *FEI1_Original*

• FEI2 EngHr Adjustment:

FEI2 = 0.000293*(*ENHREND* - 700)+*FEI2_Original*

How are Yi's Calculated?

• Y_i calculation method equation:

5

$$Y_{i} = \frac{FEI_HrsAdj - RO_Target_FEI}{RO_StdDev}$$

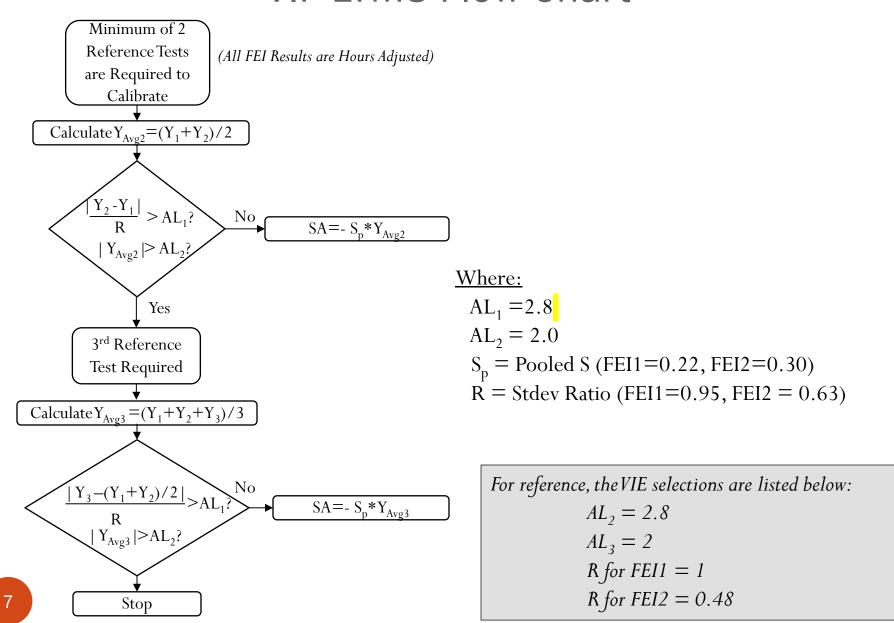
 As indicated in the above equation, the Y_i calculation is based on engine hour adjusted FEI results and LSMean¹ targets (shown in below table) for each reference oil.

Targets	FEI1 Target	FEI2 Target
542-2	2.23	1.52
1011	1.45	1.41
543	1.88	2.25

Note 1: FEI1 and FEI2 LSMeans were based on the n = 18 EngHr adj result data with Oil, Lab, and Eng(Lab) in the model

How are Yi's Calculated?

For the denominator part of the Y_i equation, the standard deviations of the engine hour adjusted FEI results by reference oil (shown in below table) will be used for the calculation


Targets	FEI1 Raw Stdev	FEI2 Raw Stdev
542-2	0.18	0.13
1011	0.14	0.39
543	0.27	0.34

• Note that severity adjustment calculation will be based on S_p rather than the individual standard deviation for the oil.

• FEI1
$$S_p = 0.22$$

• FEI2 $S_p = 0.30$

VIF LTMS Flow Chart

