

Address 100 Barr Harbor Drive PO Box C700 W. Conshohocken, PA 19428-2959 | USA **Phone** 610.832.9500 **Fax** 610.832.9666 **Web** www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: KENNETH O. HENDERSON, Cannon Instrument Co., 2139 High Tech Road, State College, PA 16803,

(814) 353-8000, Fax: (814) 353-8007, e-mail: kenohenderson@worldnet.att.net

First Vice-Chairman: BEN R. BONAZZA, TI Group Automotive Systems, Caro Research Center, 326 Green Street, Caro, MI, 48723

(989) 673-8181 ext. 227, Fax: (989) 673-3241, e-mail: bbonazza@us.tiauto.com

Second Vice-Chairman: JANET L. LANE, ExxonMobil Research & Engrg., 600 Billingsport Rd, Paulsboro, NJ 08066-0480

(856) 224-3302, Fax: (856) 224-3616, e-mail: janet.l.lane@exxonmobil.com

First Secretary: RALPH A. CHERRILLO, Shell Global Solutions (ÚS) Inc., Westhollow Tech Ctr., 3333 Highway 6 South,

Houston, TX 77082 (281) 544-8789, Fax: (281) 544-8150, e-mail: ralph.cherrillo@shell.com

Second Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co. LP, PO Box 206, Wilmington, IL 60481, (815) 458-0216,

Fax: (815) 458-0217, e-mail: macvarlen@aol.com

Staff Manager: DAVID R. BRADLEY, (610) 832-9681, Fax: (610) 832-9668, e-mail: dbradley@astm.org

Issued: August 28, 2015 Reply to: Dan Worcester

Southwest Research Institute

6220 Culebra Rd.

San Antonio, TX 78238 Phone: 210.522.2405

Email: dworcester@swri.org

These are the unapproved minutes of the 08.25.2015 Sequence VI Surveillance Panel call.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 8:00 AM Central Time by Chairman Nathan Moles.

Agenda

The Agenda is the included as Attachment 1.

1.0 Roll Call

The Attendance list is Attachment 2. Mike Mcmillan was voting for Infineum, Adrian Alfonso for Intertek, Brian Marks for BP, Dan Lanctot for TEI, Robert Stockwell for Oronite and Tim Cushing will be the GM representative.

2.0 Approval of minutes

2.1 Approval of the minutes of the 08.18.2015 meeting.

MOTION: Approve the minutes from the 08.18.2015 conference call. [Jason Bowden, Dave Glaenzer, second] Approved unanimous.

3.0 Action Item Review

3.1 OHT to provide update on current VIE inventory and service engine order. –OHT It has been reported that only 144 VIE engines will be available for purchase. Need to investigate option to prolong usable life of the available engines. There are 59 of the current engines remaining. An order has been received for 144 engines. The Panel will look at the method to refresh VIE engines. See Attachment 3. Distribution of the remaining new engines will be based on historic use and the engine survey responses. One engine has cleaned with 1740 hours and about 2000 ml of oil consumption. Afton is running an engine that was cleaned and will report the results. There was discussion on parts to replace. There was a motion for the Precision Matrix to continue in parallel to used engine refresh and an action for the Stat Group to review used engines for use in the VIF matrix. These were dropped with no further action.

ACTION: An Engine Build Task Force will be created. Adrian Alfonso has volunteered to be Chair.

3.2 Labs reported VID engine inventory and expected depletion date of VID engines.

-Expected life of engines range from 2016 Q1 to 2018

Lab1: 2 engines Lab2: 2 engines Lab3: 3 engines

Lab4: 1 engines This will be an on-going effort.

- 3.3 SP chair and test sponsor to investigate what is needed to establish VID equivalent limits for VIE. This will be an on-going effort.
- 3.4 TMC to follow up with supplier of 5W-30 Tech1 and 542 oils to see if they can be made available as a reference oil. Also, if additional batches of 542 0W-20 can be re-blended.

The goal is to use different oil technologies in the Precision Matrix now that a 0W-16 version has been removed. TMC will confirm a 542-2 reblend.

MOTION: Proceed with approval of 5W-30 Tech 1 as a reference oil for the Precision Matrix. [Robert Stockwell, Gail Evans, second] 11 yes and 5 waive.

4.0 Old Business

4.1 List of items to be reviewed after the Precision Matrix

Do we really need to run three RO tests to establish the new engine for LTMS? Discussion of reducing the new reference requirement to two oils, then a third oil run after a defined number of candidates.

Discussion of using FEI 2 and FEI Sum for references to match candidate pass/fail criteria. Discussion of evaluating 80/20 ratio of BL before to after for FEI 1 and 10/90 for FEI 2. Should the acceptance bands value of 1.96 be rounded up? Due to the rounding on FEI 1 and 2 the actual pass limit is 1.91 and 1.92. This will be an on-going effort.

- 4.2 Update on progress of 5W-30 Tech1 in VIE testing. –Labs
 - -FEI1/2 = 1.09/1.05 @ 349 hours This test exceeded the procedure limit of -0.2 to 0.4 BLB Delta.
 - FEI1/2 = 0.29/0.37 @ 2059 hours This test was later declared invalid. This will be an on-going effort.
- 4.5 Engine hours needs to be addressed in the precision matrix and there is concern in the industry that the current design does not adequately address this. Two design approaches were selected for the stats group to investigate further. —Jo Martinez Approaches 2 and 3 were reviewed after their selection in the last meeting. See Attachment 4. One would include BOI/VGRA if acceptable to that group. There was discussion on the number of hours on each engine, and what to do for an engine failure. The recommendation was to target a maximum of 2500 hours on engines. The Stat group reviewed options 2 and 3 but also presented version 2.5. New VIE reference oil assignments will be random instead of the current fixed order for the VID and the industry may move to 2 reference oils due to reduced engine life and longer test length.
- 4.6 Update from task force, to investigate alternative Sequence VIE procedures that would improve 0W-16 response in the Sequence VIE test. Dan Worcester/Satoshi Hirano Hirano-san gave the presentation. See Attachment 5. There is a new Task Force with Dan Worcester as Chair to develop the VIF test. That group will work on matrix design and oil selection and the goal would be to have the VIF work parallel to the VIE Precision Matrix.

5.0 New Business

- 5.1 It has been reported that only 144 VIE engines will be available for purchase. Need to investigate option to prolong usable life of the available engines. This was covered in detail on Action Items 3.1.
- 6.0 Next Meeting will be at the Chair notification.

The meeting adjourned at 9:34 AM.

Sequence VI Surveillance Panel Conference Call Agenda August 25 @ 9:00-10:30AM EST

Call-in information is included below:

Call-in Number: 866-528-2256

Conference Code: 3744024

1.0) Roll Call

Do we have any membership changes or additions? Tim Cushing for Bruce Mathews, GM

2.0) Approval of minutes

2.1 Approve the minutes from the <u>August 18, 2015</u> Sequence VI Surveillance Panel.

 $\frac{ftp://ftp.astmtmc.cmu.edu/docs/gas/sequencevi/minutes/VIMinutes20150818\%20}{Conference\%20call.pdf}$

3.0) Action Item Review

3.1 OHT to provide update on current VIE inventory and service engine order. –OHT

It has been reported that only 144 VIE engines will be available for purchase. Need to investigate option to prolong usable life of the available engines.

3.2 Update of VID engine inventory and expected depletion date of VID engines.

-Expected life of engines range from 2016 Q1

Lab1: 2 engines Lab2: 2 engines Lab3: 3 engines Lab4: 1 engines

3.3 SP chair and test sponsor to investigate what is needed to establish VID equivalent limits for VIE

3.4 TMC to follow up with supplier of 5W-30 Tech1 and 542 oils to see if they can be made available as a reference oil. Also, if additional batches of 542 0W-20 can be re-blended.

4.) Old Business

- 4.1 List of items to be reviewed after the Precision Matrix
 - -Do we really need to run three RO tests to establish the new engine for LTMS?
 - -Discussion of reducing the new reference requirement to two oils, then a third oil run after a defined number of candidates.
 - -Discussion of using FEI 2 and FEI Sum for references to match candidate pass/fail criteria.
 - -Discussion of evaluating 80/20 ratio of BL before to after for FEI 1 and 10/90 for FEI 2.
 - -Should the acceptance bands value of 1.96 be rounded up? Due to the rounding on FEI 1 and 2 the actual pass limit is 1.91 and 1.92.
- 4.2 Update on progress of 5W-30 Tech1 in VIE testing. –Labs
 - -FEI1/2 = 1.09/1.05 @ 349 hours This test exceeded the procedure limit of -0.2 to 0.4 BLB Delta.
 - FEI1/2 = 0.29/0.37 @ 2059 hours This test was later declared invalid.

Lubrizol will run this oil and SwRI will repeat a run on a new engine with the same hours.

- 4.3 Engine hours needs to be addressed in the precision matrix and there is concern in the industry that the current design does not adequately address this. Two design approaches were selected for the stats group to investigate further. —Jo Martinez
- 4.4 Discussion on third reference oil for precision matrix (replacement for 1011). Two options discussed were 5W-30 versions of Tech1 or 542.
- 4.5 Update from task force, to investigate alternative test procedure Sequence "VIF" that would improve 0W-16. Dan Worcester/Satoshi Hirano (presentation attached)

5.) New Business

5.1 It has been reported that only 144 VIE engines will be available for purchase. Need to investigate option to prolong usable life of the available engines.

6.) Next Meeting

Call of the chairman

7.) Meeting Adjourned

Name	Address	Phone/Fax/Email	Attendanc
Jason Bowden	OH Technologies	Phone: (440) 354-7007	ATTEND
Voting Member		jhbowden@ohtech.com	
Timothy Caudill	Ashland	Phone: (606) 329-5708	
Voting Member		<u>Tlcaudill@ashland.com</u>	
David Glaenzer	Afton	Phone: (804) 788-5214	ATTEND
Voting Member		<u>Dave.Glaenzer@aftonchemical.com</u>	
Rich Grundza	ASTM TMC	Phone: (412) 365-1034	ATTEND
Voting Member		reg@astmtmc.cmu.edu	
Jeff Hsu	Shell	Phone: (832) 419-3482	ATTEND
Voting Member		j.hsu@shell.com	
Tracey King	Haltermann	Phone:	ATTEND
Voting Member		tking@jhaltermann.com	
Charlie Leverett	Intertek Automotive Research	Phone: (210) 647-9422	
Voting Member		charlie.leverett@intertek.com	
Teri Kowalski	Toyota	Phone: (734) 995-4032	ATTEND
Voting Member		teri.kowalski@tema.toyota.com	
Tim Cushing	General Motors	Phone: (248) 881 3518	ATTEND
Voting Member		timothy.cushing@gm.com	
Timothy Miranda	BP Castrol	Phone: (973) 305-3334	
Voting Member		<u>Timothy.Miranda@bp.com</u>	
Nathaniel Moles	Lubrizol	Phone: (440) 347-4472	ATTEND
Voting Member		Nathaniel.Moles@Lubrizol.com	
Mark Mosher	ExxonMobil	Phone: (856) 224-2132	
Voting Member		mark_r_mosher@exxonmobil.com	
Andy Ritchie	Infineum	Phone: (908) 474-2097	
Voting Member		Andrew.Ritchie@infineum.com	
Ron Romano	Ford Motor	Phone: (313) 845-4068	
Voting Member	1 old Wotol	rromano@ford.com	
			4.TTEND
Kaustav Sinha	Chevron Oronite	Phone: (713) 432-6642	ATTEND
Voting Member		LFNQ@chevron.com	
Mark Sutherland	TEI	Phone: 123-456-7890	
Voting Member		msutherland@tei-net.com	
Haiying Tang	Chrysler	Phone: (248) 512-0593	ATTEND
Voting Member		HT146@Chrysler.com	
Dan Worcester	Southwest Research Institute	Phone: (210) 522-2405	
Voting Member		dan.worcester@swri.org	

Name	Address Ph	one/Fax/Email	Attendance
Ed Altman	ed.altman@aftonchemical.com	Afton	
Bob Campbell	Bob.Campbell@aftonchemical.com	Afton	
Todd Dvorak	todd.dvorak@aftonchemical.com	Afton	ATTEND
Christian Porter	Christian.porter@aftonchemical.com	n Afton	
Terry Hoffman	Terry.Hoffman@aftonchemical.com		
Jeremy Styer	Jeremy.styer@aftonchemical.com	Afton	
Greg Guinther	greg.guinther@aftonchemical.com	Afton	
Amol Savant	ACSavant@ashland.com	Ashland	ATTEND
Don Smolenski	donald.j.smolenski@gm.com	Evonik	
Doyle Boese	Doyle.boese@infineum.com	Infineum	ATTEND
•	Phone: (908) 474-3176		
Mike McMillan	mmcmillan123@comcast.net	Infineum	ATTEND
Gordon Farnsworth	gordon.farnsworth@infineum.com	Infineum	
Mike Warholic	Michael.warholic@Infineum.com	Infineum	
	Phone: 908.474.2065		
Jordan Pastor	Jordan.pastor@Infineum.com	Infineum	
	Phone: (313) 348-3120		
Bob Olree	olree@netzero.net	Intertek	
Addison Schweitzer	addison.schweitzer@intertek.com	Intertek	
William Buscher	william.buscher@intertek.com	Intertek	ATTEND
Al Lopez	Al.Lopez@intertek.com	Intertek	
Adrian Alfonso	adrian.alfonso@intertek.com	Intertek	ATTEND
	Phone: (210) 838-0431		
Angela Willis	angela.p.willis@gm.com	GM	
Jeff Kettman	Jeff.kettman@gm.com	GM	
Mike Raney	Michael.p.raney@gm.com	GM	
•	Phone: (248) 408-5384		
Andy Buczynsky	andrew.buczynsky@gm.com	GM	
Jerry Brys	Jerome.brys@lubrizol.com	Lubrizol	
Jessica Buchanan	Jessica.Buchanan@Lubrizol.com	Lubrizol	
Michael Conrad	Michael.Conrad@Lubrizol.com	Lubrizol	
Joe Gleason	Jog1@lubrizol.com	Lubrizol	
G. Szappanos	George.Szappanos@lubrizol.com	Lubrizol	
Kevin O'Malley	Kevin.OMalley@lubrizol.com	Lubrizol	

Name	Address F	Phone/Fax/Email	Attendance
Chris Castanien	chris.castanien@gmail.com	Nestles	
Dwight Bowden	dhbowden@ohtech.com	OHT	
Matt Bowden	mjbowden@ohtech.com	OHT	
Robert Stockwell	rsto@chevron.com	Oronite	ATTEND
Jo Martinez		Oronite	ATTEND
Jo Martinez	jogm@chevron.com	Oromie	72
Valeriu Lieu	ValerieLieu@chevron.com	Oronite	
	Phone: (510) 242-3717		
Ricardo Affinito	affinito@chevron.com	Oronite	
	Phone: (510) 242-4625		
Guy Stubbs	Guy.Stubbs@swri.org	SwRI	
Patrick Lang	Patrick.lang@swir.org Phone: (210) 522-2820	SwRI	ATTEND
Michael Lochte	mlochte@swri.org	SwRI	
Scott Stap	Scott.stap@tgdirect.com	TG Direct	
Clayton Knight	cknight@tei-net.com	TEI	
Dan Lanctot	dlanctot@tei-net.com	TEI	ATTEND
		TEI	71112112
Zack Bishop	zbishop@tei-net.com Phone: (210) 877-0223	IEI	
Jeff Clark	jac@astmtmc.cmu.edu	TMC	
Hirano Satoshi	satoshi hirano aa@mail.toyota.co.ji		ATTEND
Jim Linden	lindenjim@jlindenconsulting.com	Toyota	ATTEND
V 1111 — 1110 V 11	Phone: (248) 321-5343	1 3 3 3 3 3 3	
Mark Adams	mark@tribologytesting.com	Tribology Testing	
Tom Smith	8,1	Valvoline	
Hap Thompson	Hapjthom@aol.com	VIE Facilitator	
тар тпотпрвоп	Trapjanom c uoncom	VIL I delitatoi	

Name	Address	Phone/Fax/Email	Attendance

Sequence VIE Ultra Sonic Cleaning August 2015

NAML

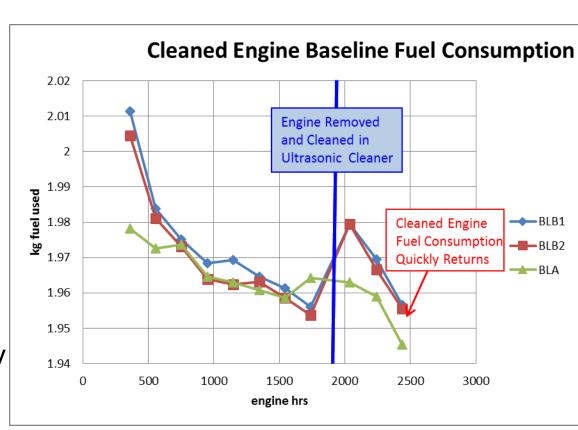
Cleaning VIE Engine

- The intent of this experiment was to prove out the working theory that the build up of deposits was resulting in increased oil consumption and loss of response
- Engine #129 removed with 1740 hours with oil consumption 2000ml
 - Engine was losing responsiveness and had exceeded oil consumption limits
- Engine was run through ultrasonic cleaner and reassembled
 - All original parts were cleaned and reused
 - Valves, bearings and rings were removed and hand cleaned
 - Only new parts used were head gaskets and yield bolts

Cleaning VIE Engine

- LZ 0W-20 Results:
 - FEI1/FEI2/Sum = 1.81/1.21/3.02 <u>Cleaned</u> engine with 2039 hours
 - FEI1/FEI2/Sum = 1.79/1.48/3.27 Original run with 361 hours
- RO 542-1 Results:
 - FEI1/FEI2/Sum = 2.01/1.26/3.27 <u>Cleaned</u> engine with 2240 hours
 - FEI1/FEI2/Sum = 2.17/1.48/3.65 Original run with 558 hours
- Cleaning the engine brought the response back within ranges of the new engine and OC back down to 1200ml

Cleaning VIE Engine


- What do the results look like on a older engine run per the current test procedure?
- LZ 0W-20 Results:
 - FEI1/FEI2/Sum = 1.42/0.72/2.14 <u>Alternate</u> engine with 2415 hours
- RO 542-1 Results:
 - FEI1/FEI2/Sum = 1.68/0.96/2.64 <u>Alternate</u> engine with 2220 hours
- LZ 0W-20 Results:
 - FEI1/FEI2/Sum = 1.81/1.21/3.02 <u>Cleaned</u> engine with 2039 hours
 - FEI1/FEI2/Sum = 1.79/1.48/3.27 Original run with 361 hours
- RO 542-1 Results:
 - FEI1/FEI2/Sum = 2.01/1.26/3.27 <u>Cleaned</u> engine with 2240 hours
 - FEI1/FEI2/Sum = 2.17/1.48/3.65 Original run with 558 hours

How Long Does it Last?

- As the engine ages the total fuel consumption of the baseline oils decrease, as does the relative response to friction modifiers
- Cleaning the engine resulted in the response to friction modifiers to be on par with a new engine as did the baseline oil's total fuel consumption
- This trend declined rapidly and returned to "preclean" levels within three tests

1st Candidate on Cleaned Engine was a Repeated Run:

FEI1/FEI2/Sum = 1.49/0.77/2.26 <u>Cleaned</u> engine with 2437 hours, OC 1400ml

FEI1/FEI2/Sum = 1.58/1.18/2.76 Original run with 1150 hours

Alternative Method

- Appears cleaning only, does not extend engine life significantly
- Cleaning accompanied with new rings and pistons could have significant/lasting impact
 - Are new rings and pistons available?
 - Timing of parts availability?

GF-6 VIE PRECISION MATRIX

Statisticians Task Force August 25, 2015

GF-6 PM Design Statisticians Task Force

- Doyle Boese, Infineum
- Kevin O'Malley, Lubrizol
- Todd Dvorak, Afton Chemical
- Jo Martinez, Chevron Oronite
- Ricardo Affinito, Chevron Oronite
- Martin Chadwick, Intertek
- Eric Liu, SwRI
- Rich Grundza, TMC

Objectives:

- Modify designs with Approaches 3 and 2 presented on 8/18/2015
- Oils need to be finalized
 - 542-2; 0w20
 - 1010-1; 5w20
 - 0w16 Tech 1: No longer a viable VIE matrix oil

Design Assumptions:

- 8 stands; 6 labs
- Funding for 53 matrix tests (Most likely 50 tests per MOA)
- Funding for 12 BOI/VGRA matrix tests

		Planned Test Stands						GF-6 Precision Matrix ONLY				
	Afton	LZ	XOM	Ashland	IAR	SwRI	Stands	TEST Cost	Total Runs	Cal Runs	Cal \$'s	Total \$'s
Chrysler Oxid. (Seq. IIIH Rep) 1	1	None	1	2	2	7	\$57,250	28	14	\$801,500	\$1,603,000
Sequence IVB (Toyota)	None	1	None	None	2	2	5	\$49,250	20	10	\$492,500	\$985,000
Sequence V-V8	1	1	None	1	2	2	7	\$63,000	28	14	\$882,000	\$1,764,000
LSPI (Ford)	None	1	None	None	2	2	5	\$14,250	20	10	\$142,500	\$285,000
Chain Wear Test (Ford)	1	None	None	1	2	2	6	\$45.750	24	12	\$549,000	\$1.098.000
Sequence VIE	1	1	1	1	2	2	8	\$32,750	53	24	\$786,000	\$1,735,750
											\$3,053,500	\$7,470,750

IAR and SwRI have 2 Stands for Each Test

Seq, IIIH, Seq. IVB, Seq. V, LSPI, Chain Wear are 4 Tests per Stand

Seq. VIE, 7 tests per stand for the first stand + 4 test per stand for the second.

Seq, IIIH, Seq. IVB, Seq. V, LSPI, Chain Wear have 2 Calibration Tests/Stand

Seq. VIE has 3 Calibration Tests/Stand

Test Funding - Total	\$7,470,750
Donated Tests - Total	\$3,653,500
Industry Funding MOA - Total	\$3,817,500
Actual Matrix Cost	\$3,817,250
Extra Funding	\$250

VIE Approach 3

- BOI/VGRA interspersed within matrix
- 6 engines run longer; 2 end earlier
- Maximum engine hours: 1950
- Average engine hours: 1150

For Illustrative Purposes Only (Not Final Design):

Run Order	SW1	SW2	IAR1	IAR2	LZ	Afton	Ashland	хом	
SOT Engine Hours	150	150	150	150	150	150	150	150	Engine Hrs
1	542-2	1010-1	Oil3	542-2	Oil3	1010-1	Oil3	1010-1	350
2	Oil3	542-2	1010-1	1010-1	1010-1	542-2	542-2	Oil3	550
3	1010-1	Oil3	542-2	Oil3	542-2	Oil3	1010-1	542-2	750
4	BOI/VGRA	Oil3	BOI/VGRA	Oil3	BOI/VGRA	BOI/VGRA	BOI/VGRA	BOI/VGRA	950
5	1010-1	542-2	542-2	1010-1	542-2	Oil3	1010-1	542-2	1150
6	BOI/VGRA	1010-1	BOI/VGRA	542-2	BOI/VGRA	BOI/VGRA	BOI/VGRA	BOI/VGRA	1350
7	Oil3		1010-1		1010-1	542-2	542-2	Oil3	1550
8	542-2		Oil3		Oil3	1010-1	Oil3	1010-1	1750
9	542-2		Oil3		Oil3	1010-1		1010-1	1950
EOT Engine Hours	1950	1350	1950	1350	1950	1950	1750	1950	Total Runs
Runs/Engine	9	6	9	6	9	9	8	9	65

VIE Approach 2

- Consecutive matrix tests
- 2 engines run longer; 6 end earlier
- Maximum engine hours: 2350
- Average engine hours: 1000

For Illustrative Purposes Only (Not Final Design):

Run Order	SW1	SW2	IAR1	IAR2	LZ	Afton	Ashland	хом	
SOT Engine Hours	150	150	150	150	150	150	150	150	EngHrs
1	542-2	1010-1	Oil3	542-2	Oil3	1010-1	Oil3	1010-1	350
2	Oil3	542-2	1010-1	Oil3	1010-1	542-2	542-2	Oil3	550
3	1010-1	Oil3	542-2	1010-1	542-2	Oil3	1010-1	542-2	750
4	1010-1	Oil3	542-2	Oil3	542-2	Oil3	1010-1	542-2	950
5	Oil3	1010-1	1010-1	1010-1	1010-1	542-2	542-2	Oil3	1150
6	542-2		Oil3						1350
7	1010-1		542-2						1550
8	542-2		542-2						1750
9	Oil3		1010-1						1950
10	1010-1		Oil3						2150
11	Oil3		542-2						2350
EOT Engine Hours	2350	1150	2350	1150	1150	1150	1150	1150	Total Runs
Runs/Engine	11	5	11	5	5	5	5	5	52

VIE Approach 2.5

- BOI/VGRA interspersed within matrix
- 2 engines run longer; 6 end earlier
- Maximum engine hours: 2950
- Average engine hours: 1200

For Illustrative Purposes Only (Not Final Design):

Run Order	SW1	SW2	IAR1	IAR2	LZ	Afton	Ashland	хом	
SOT Engine Hours	150	150	150	150	150	150	150	150	Engine Hrs
1	542-2	1010-1	Oil3	542-2	Oil3	1010-1	Oil3	1010-1	350
2	Oil3	542-2	1010-1	1010-1	1010-1	542-2	542-2	Oil3	550
3	1010-1	Oil3	542-2	Oil3	542-2	Oil3	1010-1	542-2	750
4	BOI/VGRA	Oil3	BOI/VGRA	Oil3	BOI/VGRA	BOI/VGRA	BOI/VGRA	BOI/VGRA	950
5	BOI/VGRA	1010-1	BOI/VGRA	542-2	BOI/VGRA	BOI/VGRA	BOI/VGRA	BOI/VGRA	1150
6	1010-1	542-2	542-2	1010-1	542-2	Oil3	1010-1	542-2	1350
7	Oil3		1010-1						1550
8	542-2		Oil3						1750
9	542-2		Oil3						1950
10	1010-1		542-2						2150
11	Oil3		Oil3						2350
12	542-2		Oil3						2550
13	1010-1		1010-1						2750
14	Oil3		1010-1						2950
EOT Engine Hours	2950	1350	2950	1350	1350	1350	1350	1350	Total Runs
Runs/Engine	14	6	14	6	6	6	6	6	64

Caveats

- We could extend the hours on some engines by decreasing the engine hours on engines with most runs
 - For Example: Approach 2 but with 3 engines out to 1950 hours
- If engine fails before the matrix finishes, what do we do?
 - Run remaining tests on new engine?
 - Move remaining tests to another matrix engine?
- Do we want to have fixed run order for the first 3 oils?
- After all labs run the first 5-6 tests, can we reassess engine "health" at the labs to determine the engines that will run additional tests to reach higher engine hours?
 - Better chance of reaching higher engine hours may be achieved by selecting "healthiest" engines

Proposal for Sequence VIF Matrix with REO Selection Options

Prepared for
Sequence VI Surveillance Panel
August 25th, 2015
Toyota Motor Corporation

- It was decided that Sequence VIE would be proceeded to the Precision Matrix for ILSAC GF-6A
- Sequence VI Surveillance Panel decided to form a taskforce to develop Sequence VIF for ILSAC GF-6B
 - Dan Worcester of SwRI is new chair
- In order to proceed the Sequence VIF development to meet the ILSAC GF-6 introduction timing, the work should be started as soon as possible
 - Matrix Design to be finalized
 - REO Selection to be decided

Needs of Sequence VIF Test Development

- To maintain ILSAC GF-6A and GF-6B Timing
 - Seq VIF Matrix needs to be completed in parallel to the Seq VIE Precision Matrix.
 - VIF matrix will provide data to establish the LTMS targets
- To Mitigate Shortage of Seq VID Availability
 - Ballot for the addition of VID for API SN/RC xW-16 is in process in the API LC.
 - Once approved, xW-16 test demand is certainly expected.
 - Need to establish equivalent P/F criteria in the new FE tests,
 i.e., Sequence VIF for xW-16, and Seq VIE for xW-20 and xW-30.

Proposed Test Conditions

- Oil and Coolant Temperatures at Stage 1, 3, 4, and 6 are 15°C lower than those of Sequence VIE
- No Change in Aging Conditions

Sequence VIF

Test Stage	1	2	3	4	5	6
Speed, RPM	2000	2000	1500	695	695	695
Torque , Nm	105	105	105	20	20	40
Oil Temp, °C	100	65	100	100	35	100
Coolant Temp, °C	94	65	94	94	35	94
Stage Weighting (%)	30	3.2	31	17.4	1.1	17.2

Aging condition: 2250 RPM, 110 Nm, 120 °C

Proposed Matrix Design

- 2 Laboratories
- 2 Engines per Lab
- 3 Reference Oils
- Total 30 test runs
 - 10 Sponsors x 3 Tests / Sponsor = Total 30 Tests
- Stepwise Execution
 - Step 1: Sense Check Run with 9 tests (Latin Square Design)
 - Step 2: Remaining Test to complete the Matrix

Proposed Matrix Design

Run	EOT Hour	Engine 11	Engine 21	Engine 12	Engine 22
1	350	TMC1011	Oil B (0W-16)	Oil C (0W-20)	TMC1011
2	550	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil C (0W-20)
3	750	Oil C (0W-20)	TMC1011	Oil B (0W-16)	Oil B (0W-16)
4	950	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil B (0W-16)
5	1150	TMC1011	Oil B (0W-16)	Oil B (0W-16)	Oil C (0W-20)
6	1350	Oil C (0W-20)	TMC1011	Oil C (0W-20)	TMC1011
7	1550	TMC1011	Oil C (0W-20)	TMC1011	Oil B (0W-16)
8	1750	Oil B (0W-16)		Oil C (0W-20)	

Sense Check Runs

REO Selection Options

	Oil A	Oil B (0W-16)	Oil C (0W-20)	Pros	Cons
Option 1	TMC1011 (Tech1 0W-16)	Oil 400 of VID Matrix	Oil 401 of VID Matrix	 Evaluate viscosity effect directly 	 Only 2 technologies
Option 2	TMC1011	Oil 400	Oil 201	 3 technologies Expect more separation btwn B and C	 No direct viscosity comparison
Option 3	TMC1011	Oil 400	TMC542 (VID/VIE REO)	 3 technologies Better tie back to VID Expect more separation btwn B and C Compare VIE and VIF 	 No direct viscosity comparison

Remarks:

- a) Oil 400 showed best result in the Toyota VID matrix.
- b) Oil 201 showed worse result than Oil 401 in the VID matrix, then can expect more separation between 0W-16 and 0W-20.
- c) TMC542 has comparable level of VID target in LTMS.

-> Option 3 seems the best choice

• Reference Info

	VID FEI Sum	VID FEI2	Source
TMC542 (0W-20)	2.29 (1.49 + 0.80)	0.80	LTMS (Aug-2015)
Oil 400 (0W-16)	2.87	1.51	Average of VID Matrix Data
Oil 401 (0W-20)	2.69	1.32	Average of VID Matrix Data
Oil 201 (0W-20)	2.60	0.96	Average of VID Matrix Data

Sequence VIF Test Development Action Plan

	Action Item	Action by	Target Timing
1	Finalize the SP proposal of the test plan to the AOAP and the PCEOCP for approval	Seq VI SP	Aug 25 th
2	Report the proposal and ask approval at the AOAP and PCEOCP meetings (Circulate the material in advance)	Seq VI SP/VIF TF	September 10th
3	Blend and deliver REO samples to labs	Toyota / TF	Mid ~ Late Sept
4	Choose 3 sponsors for the sense check matrix (Toyota and other 2 companies)	Toyota / TF	Early Sept
5	Allocate test engines/stands for the VIF	TF / Labs	Early Sept ?
6	Process documentations to start testing (RFQ and Purchase Order)	Sponsors and Labs	Mid Sept
7	Execution of the sense check matrix	Labs / TF	Late Sept ~ Mid Oct
8	Review of the Sense Check Matrix and Decision of Step 2	TF and SP	Late Oct
9	Process documentations to prepare Step 2	Sponsors and Labs	Late Sept ~ Late Oct
10	Execution of Step 2	Labs / TF	Nov ~ Dec
11	Analysis and Conclusion	TF and SP	Jan 2016 ?