Minutes of the Sequence VIF Task Force teleconference call

August 27, 2015 14:00 CDT

Chairman Dan Worcester opened the meeting with some general comments as to the scope of the Task Force and that this group is replacing the group which Charlie Leverett chaired. The goal of the group is to define the Sequence VIF test, a test similar to the Sequence VIE with lower operating temperatures for engine coolant and oil gallery during Stages 1, 3, 4 & 6. Temperatures are reduced by 15° C. The group is to look at the options for testing and meet weekly.

The meeting started with a review of the Toyota presentation, slightly modified for this meeting from the original presentation made to the Sequence VI SP. Several members expressed concern with running two matrices concurrently, the VIE and the VIF. The two independent labs are working on adjusting stand availability to accommodate. Much discussion was centered about the choice of the three oils for the Sense Check and Matrix testing. Slide 9 of the Toyota presentation details their assessment of oil selection. Oils not currently in use by the TMC will have to go through there for distribution to the labs. TMC oils 1011 and 542-2 are readily available. There will be a re-blend of 542 forthcoming but will probably not be available for the VIF testing. The group agreed that oils 1011 and 542 would be used. Oil 400 (as designated in last winter's Toyota VID matrix), OW-16, was proposed. It was questioned if oils 400 and 542 are from different suppliers. An Option 4 was proposed using oils 1011, 542 and 542 blended as a OW-16. After much discussion, Option 4 was dismissed and a motion made.

Motion by Oronite: Proceed with Toyota Option 3 as detailed on Slide 9 of the presentation. Second by Toyota. Vote by organization was held. Affirmative 8, Negative 0, Waive 5. Motion carried.

TMC has requested Toyota put them in touch with supplier of oil 400 so it may be secured.

Having decided on the three oils, the discussion moved to Jo Martinez's a review of the Stats Group presentation. Following a review of the presentation, discussion centered on Slide 4 "Sense Check" testing. The testing proposed was using three oils in three engines with no replication. The Stats Group prefers an alternative shown on Slide 5 which would allow some replicate data; however, all three oils would not be tested in each engine. There was much discussion as to the desired outcome of the "Sense Check" testing. It was generally agreed that oil 400 should produce better results than oil 542. If not, perhaps a re-design would be warranted. The Stats Group questioned what measure of difference might be applied.

At this time, Task Force members were asked to try and determine within their organizations what level of differences in results would constitute a change in their opinion.

Having questions that the Task Force was unable to answer, Chairman Dan Worcester moved the meeting close and reconvene on Wednesday, September 2 at 08:00 CDT and every Wednesday thereafter to continue discussions. Meeting Adjourned at 15:25 CDT.

Respectfully submitted,

David L Glaenzer

Afton Chemical Corporation

Name	Affiliation

Adrian Alfonso	Intertek
Amol C Savant	Ashland
Andrew Ritchie	Infineum
Charlie Leverett	Intertek
Chris Castanien	Nesteoil
Cliff Salvensen	ExxonMobil
Cole Hudson	SwRI
Dan Worcester Jr.	Chairman, SwRI
David Glaenzer	Secretary, Afton Chemical
Denny Gaal	
Doyle Boese	Infineum
Eric Liu	SwRI
Gordon Farnsworth	Infineum
Jason Bowden	OH Technologies
Jim Linden	Toyota
Jo Martinez	Chevron
Kaustav Sinha	Chevron
Kevin OMalley	Lubrizol
Mark Mosher	ExxonMobil
Martin Chadwick	Intertek
Matthew Bowden	OH Technologies
Michael Conrad	Lubrizol
Mike McMillan	Infineum
Nathaniel Moles	Lubrizol
Patrick Lang	SwRI
Ray Burn	ExxonMobil
Rich Grundza	ASTM Test Monitoring
Robert Stockwell	Chevron
Ron Romano	Ford Motor Company
Satoshi Hirano	Toyota
Teri Kowalski	Toyota
Timothy Cushing	General Motors
Todd Dvorak	Afton Chemical
Tracy King	Haltermann
Valerie Lieu	Chevron
William Buscher	Intertek

08/27/15	08/27/15	09/02/15
	Vote on	
	Option#3	
Р	У	
	У	
Р	W	
Р		
Р	У	
Р		
Р	W	
Р		
Р		
Р		
Р		
Р	W	
Р	У	
Р		
Р	У	
Р	У	
Р	У	
Р		
Р		
Р		
Р		
Р		
Р	W	
Р		
Р		
Р	У	
Р		
Р	W	
Р		
Р		
		-

8-0-5

τογοτα

Proposal of Sequence VIF Development Plan

Prepared for Sequence VIF Taskforce August 27th, 2015 Toyota Motor Corporation

August 27th, 2015

Current Status of Sequence VIE and VIF TOYOTA

- It was decided that Sequence VIE would be proceeded to the Precision Matrix for ILSAC GF-6A
- Sequence VI Surveillance Panel decided to form a taskforce to develop Sequence VIF for ILSAC GF-6B
 – Dan Worcester of SwRI is new chair
- In order to proceed the Sequence VIF development to meet the ILSAC GF-6 introduction timing, the work should be started as soon as possible
 - Matrix Design to be finalized
 - REO Selection to be decided

August 27th, 2015

Needs of Sequence VIF Test Development

TOYOTA

- To maintain ILSAC GF-6A and GF-6B Timing
 - Seq VIF Matrix needs to be completed in parallel to the Seq VIE Precision Matrix.
 - VIF matrix will provide data to establish the LTMS targets
- To Mitigate Shortage of Seq VID Availability
 - Ballot for the addition of VID for API SN/RC xW-16 is in process in the API LC.
 - Once approved, xW-16 test demand is certainly expected.
 - Need to establish equivalent P/F criteria in the new FE tests,
 i.e., Seq VIF for xW-16, and Seq VIE for xW-20 and xW-30.

August 27th, 2015

Prepared for Sequence VIF Taskforce

ΤΟΥΟΤΑ

4

- Proposed Test Conditions
 - Oil and Coolant Temperatures at Stage 1, 3, 4, and 6 are 15°C lower than those of Sequence VIE
 - No Change in Aging Conditions

Sequence VIF

Test Stage	1	2	3	4	5	6
Speed, RPM	2000	2000	1500	695	695	695
Torque , Nm	105	105	105	20	20	40
Oil Temp, °C	100	65	100	100	35	100
Coolant Temp, ^o C	94	65	94	94	35	94
Stage Weighting (%)	30	3.2	31	17.4	1.1	17.2

Aging condition: 2250 RPM, 110 Nm, 120 °C

August 27th, 2015

τογοτα

- Project Plan
 - Utilize existing data and information as much as possible
 - Sequence VIE development data
 - Toyota Sequence VID Matrix work for 0W-16
 - Reference Oil
 - Etc.
 - Conduct the Seq VIF test development by the same methodology as the Seq VID test development
 - 30 test matrix to establish test conditions with minimum number of test laboratories and test stands
 - Additional REO tests at other test laboratories to enlarge the REO database to establish the LTMS target

August 27th, 2015

ΤΟΥΟΤΑ

• Project Plan

	Description	Design	Test Laboratories	Sponsors			
Step 1	Step 1Sense Check Runs9 Tests with Latin Square (3 factors x 3 levels)		SwRl Intertek	Toyota + 2 companies			
Analyze	data and decide to pr	oceed to the step 2 at Seq \	/I SP and TF				
Step 2	Step 2Remaining Runs of 30 Test MatrixComplete matrix consists of step 1 and step 2SwRI IntertekRemaining 7 companies						
Finalize Establis	test conditions and te h engine hour correcti	st procedure as Sequence V on equation	/IF				
Step 3 Enlarge REO To be determined Other test Test database to laboratories laboratories laboratories establish LTMS target as industry Image: Stable industry Image: Stable industry							
Analyze	entire database and e	establish initial set of LTMS 1	targets	······			

August 27th, 2015

TOYOTA

- Proposed Matrix Design for Step 1 plus Step 2
 - 2 Laboratories
 - 2 Engines per Lab
 - 3 Reference Oils
 - Total 30 test runs
 - 10 Sponsors x 3 Tests / Sponsor = Total 30 Tests
 - Stepwise Execution
 - Step 1 : Sense Check Run with 9 tests (Latin Square Design)
 - Step 2 : Remaining Test to complete the Matrix
 - Test Sponsorship
 - 10 Companies plan to sponsor each 3 tests
 - Not based on the MOA funding

August 27th, 2015

ΤΟΥΟΤΑ

Run	EOT Hour	Engine 11	Engine 21	Engine 12	Engine 22
1	350	TMC1011	Oil B (0W-16)	Oil C (0W-20)	TMC1011
2	550	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil C (0W-20)
3	750	Oil C (0W-20)	TMC1011	Oil B (0W-16)	Oil B (0W-16)
4	950	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil B (0W-16)
5	1150	TMC1011	Oil B (0W-16)	Oil B (0W-16)	Oil C (0W-20)
6	1350	Oil C (0W-20)	TMC1011	Oil C (0W-20)	TMC1011
7	1550	TMC1011	Oil C (0W-20)	TMC1011	Oil B (0W-16)
8	1750	Oil B (0W-16)		Oil C (0W-20)	

Proposed Matrix Design

Sense Check Runs

August 27th, 2015

Prepared for Sequence VIF Taskforce

τογοτα

• REO Selection Options

	Oil A	Oil B (0W-16)	Oil C (0W-20)	Pros	Cons
Option 1	TMC1011 (Tech1 0W-16)	Oil 400 of VID Matrix	Oil 401 of VID Matrix	 Evaluate viscosity effect directly 	 Only 2 technologies
Option 2	TMC1011	Oil 400	Oil 201	 3 technologies Expect more separation btwn B and C 	 No direct viscosity comparison
Option 3	TMC1011	Oil 400	TMC542 (VID/VIE REO)	 3 technologies Better tie back to VID Expect more separation btwn B and C Compare VIE and VIF 	 No direct viscosity comparison

Remarks :

a) Oil 400 showed best result in the Toyota VID matrix.

- b) Oil 201 showed worse result than Oil 401 in the VID matrix, then can expect more separation between 0W-16 and 0W-20.
- c) TMC542 has comparable level of VID target in LTMS.

-> Option 3 seems the best choice : Toyota's recommendation

August 27th, 2015

Prepared for Sequence VIF Taskforce

ΤΟΥΟΤΑ

	VID FEI Sum	VID FEI2	Source
TMC542 (0W-20)	2.29 (1.49 + 0.80)	0.80	LTMS (Aug-2015)
Oil 400 (0W-16)	2.87	1.51	Average of VID Matrix Data
Oil 401 (0W-20)	2.69	1.32	Average of VID Matrix Data
Oil 201 (0W-20)	2.60	0.96	Average of VID Matrix Data

• Reference Info

August 27th, 2015

Prepared for Sequence VIF Taskforce

Sequence VIF Test Development Action Plan TOYOTA

	Action Item	Action by	Target Timing
1	Finalize the SP/TF proposal of the test plan to the	Seq VI SP	Aug 25 th
	AOAP and the PCEOCP for approval	Seq VIF TF	Aug 27 th
2	Report the proposal and ask approval at the AOAP	Seq VI SP/VIF TF	September 10 th
	and PCEOCP meetings		
	(Circulate the material in advance)		
3	Blend and deliver REO samples to labs	Toyota / TF	Mid ~ Late Sept
4	Choose 3 sponsors for the sense check matrix	Toyota / TF	Early Sept
	(Toyota and other 2 companies)		
5	Allocate test engines/stands for the VIF	TF / Labs	Early Sept ?
6	Process documentations to start testing	Sponsors and Labs	Mid Sept
	(RFQ and Purchase Order)		
7	Execute the sense check tests	Labs / TF	Late Sept ~ Mid Oct
8	Analyze the Sense Check Matrix and Decide to	TF and SP	Late Oct
	proceed to the Step 2		
9	Process documentations to prepare the Step 2	Sponsors and Labs	Late Sept ~ Late Oct
10	Execute the Step 2	Labs / TF	Nov ~ Dec
11	Analyze and Finalize the VIF Test Procedure	TF and SP	Jan 2016 ?
12	Execute Step 3	SP and Test Labs	Feb ~ Mar ? 2016
13	Analyze and Establish the initial LTMS target	SP	Apr 2016 ?

August 27th, 2015

Prepared for Sequence VIF Taskforce

GF-6 VIF PRECISION MATRIX

1

Statisticians Task Force August 26, 2015

GF-6 PM Design Statisticians Task Force

- Doyle Boese, Infineum
- Kevin O'Malley, Lubrizol
- Todd Dvorak, Afton Chemical
- Jo Martinez, Chevron Oronite
- Ricardo Affinito, Chevron Oronite
- Arthur Andrews, Exxon Mobil
- Martin Chadwick, Intertek
- Eric Liu, SwRI
- Rich Grundza, TMC

Toyota's Proposed Matrix for Seq VIF

- 2 Laboratories
- 2 Engines per Lab
- 3 Reference Oils
- Total 30 test runs
 - 10 Sponsors x 3 Tests / Sponsor = Total 30 Tests
- Stepwise Execution
 - Step 1 : Sense Check Run with 9 tests (Latin Square Design)
 - Step 2 : Remaining Test to complete the Matrix

Toyota's Proposed Seq VIF Matrix Design

Run	EOT Hour	Engine 11	Engine 12	Engine 21	Engine 22
1	350	350 TMC1011 Oil B (Oil C (0W-20)	TMC1011
2	550	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil C (0W-20)
3	750	Oil C (0W-20)	TMC1011	Oil B (0W-16)	Oil B (0W-16)
4	950	Oil B (0W-16)	Oil C (0W-20)	TMC1011	Oil B (0W-16)
5	1150	TMC1011	Oil B (0W-16)	Oil B (0W-16)	Oil C (0W-20)
6	1350	Oil C (0W-20)	TMC1011	Oil C (0W-20)	TMC1011
7	1550	TMC1011	Oil C (0W-20)	TMC1011	Oil B (0W-16)
8	1750	Oil B (0W-16)		Oil C (0W-20)	

Sense Check Runs

Alternative VIF Design

Run	EOT Hour	Engine 11	Engine 12	Engine 21	Engine 22
1	350	Oil B (0W-16)	TMC1011	Oil C (0W-20)	TMC1011
2	550	Oil C (0W-20)	Oil C (0W-20)	Oil B (0W-16)	Oil B (0W-16)
3	750	Oil C (0W-20)	TMC1011	Oil B (0W-16)	TMC1011
4	950	Oil B (0W-16)	Oil B (0W-16)	Oil C (0W-20)	Oil C (0W-20)
5	1150	TMC1011	Oil B (0W-16)	TMC1011	Oil C (0W-20)
6	1350	Oil B (0W-16)	TMC1011	Oil B (0W-16)	TMC1011
7	1550	Oil C (0W-20)	Oil C (0W-20)	TMC1011	Oil B (0W-16)
8	1750	TMC1011		Oil C (0W-20)	

Sense Check Runs will be tested in 2 engines/2 labs

Concerns

- Matrix Oils
 - If Option 3 was chosen, there's no direct Vis Grade comparison since 3 PM oils have different DIs
- Sense Check Runs
 - Proposed design doesn't include replicates within an engine
 - Neither design yields a high statistical power to detect differences

Appendix

Sequence VIF Test Development

ΤΟΥΟΤΑ

7

• REO Selection Options

	Oil A	Oil B (0W-16)	Oil C (0W-20)	Pros	Cons
Option 1	TMC1011 (Tech1 0W-16)	Oil 400 of VID Matrix	Oil 401 of VID Matrix	 Evaluate viscosity effect directly 	 Only 2 technologies
Option 2	TMC1011	Oil 400	Oil 201	 3 technologies Expect more separation <u>btwn</u> B and C 	 No direct viscosity comparison
Option 3	TMC1011	Oil 400	TMC542 (VID/VIE REO)	 3 technologies Better tie back to VID Expect more separation btwn B and C Compare VIE and VIF 	 No direct viscosity comparison

Remarks:

- a) Oil 400 showed best result in the Toyota VID matrix.
- b) Oil 201 showed worse result than Oil 401 in the VID matrix, then can expect more separation between 0W-16 and 0W-20.
- c) TMC542 has comparable level of VID target in LTMS.

-> Option 3 seems the best choice