Memo: 00-130

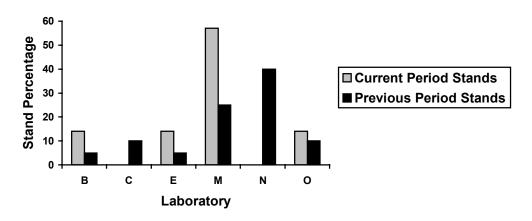
Date: October 4, 2000

TO: Gordon Farnsworth, Chairman, Sequence VE Surveillance Panel

FROM: Richard E. Grundza

SUBJECT: Sequence VE Reference Test Status from April 1, 2000 through

September 30, 2000

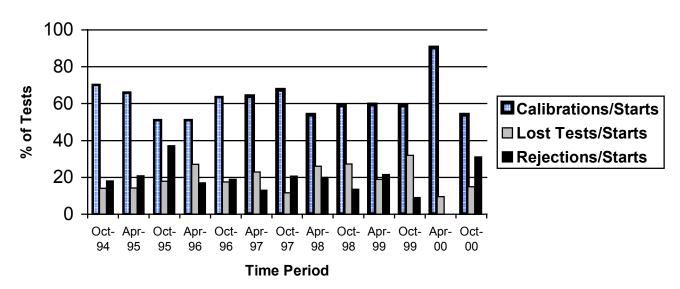

The following is a summary of Sequence VE reference tests that were completed during the period April 1, 2000 through September 30, 2000.

Lab/Stand Distribution

	Reporting Data	Calibrated as of 9/30/00
Number of Laboratories	5	4
Number of Stands	8	7

The following chart shows the laboratory/stand distribution:

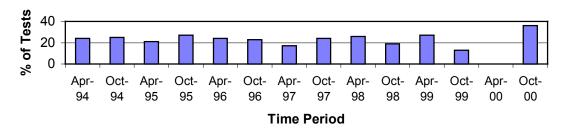
Laboratory/Stand Distribution



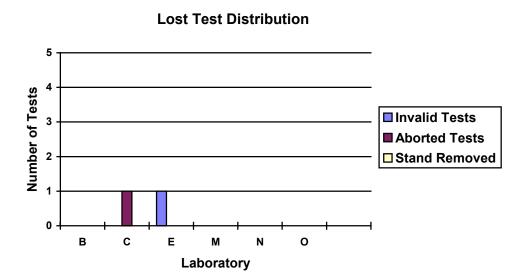
The following summarizes the status of the reference oil tests reported to the TMC:

	TMC Validity Codes	No. of Tests
Operationally and Statistically Acceptable	AC	7
Operationally Valid, Statistically Unacceptable	OC	4
Operationally Invalid, Lab Judgment	LC	1
Aborted Test	XC	1
Total		13

Calibrations per start, lost tests per start and rejections per start rates are summarized below:


Calibration Attempt Summary

The calibration per start rate has decreased and is somewhat lower than the historical rate. The lost test per start and rejected test per start rates have increased with respect to the previous report period. The lost test per start rate compares favorably with the historical lost test rate, while the rejected test per start is much higher than the historical rate.


The following chart shows the percentage of operationally valid tests failing the acceptance criteria:

Rejected Operationally Valid Tests

There were no instances of the application of "Engineering Judgment" in the interpretation of LTMS guidelines during this report period. A total of fourteen LTMS deviations have been granted during the life of the Sequence VE test.

There was one operationally invalid test. This test was determined to be invalid when the summation delta of the low blowby readings recorded during the test exceeded the procedural limit of 1.6. One test was aborted due to an engine build problem. Aborted and operationally invalid tests by laboratory are summarized with the following chart:

Severity and Precision

Based on the mean delta/s values and pooled standard deviation for the current period, a 95% confidence interval representing severity for the current period is given below in reported units. For RCS, AES, ACW and MCW, calculations were performed in transformed units, then converted to reported units. Pooled s and mean delta/s values for RCS, AES, MCW and ACW are shown in transformed units.

<u>Variable</u>	Pooled s	Mean	Confidence	<u>Based</u>	Delta in
	<u>All Oils</u>	<u>Delta/s</u>	<u>Interval</u>	<u>on</u>	Reported Units
RCS	0.940	-0.441	2.11 - 7.51	7.0	-1.35
AES	0.985	-0.418	7.75 - 9.14	9.0	-0.33
APV	0.334	-0.315	6.03 - 6.47	6.5	-0.11
AEV	0.373	-0.633	4.53 - 4.97	5.0	-0.23
ACW	2.805	-0.060	87.4 - 172.1	130	-3.8
MCW	4.428	-0.482	206 - 414	380	-80

The mean Δ /s for this period shows AES (-0.418), RCS (-0.441), AEV (-0.633) and APV (-0.315) were severe, MCW (-0.482) was mild and ACW (-0.060) was on or near target. Figures 1 through 6 are current industry severity and precision EWMA control charts and plots of summations Δ /s for RCS, AES, APV, AEV, MCW and ACW. Figures 7 through 9 compare the pooled standard deviation of the current period with previous periods.

RCS severity and precision EWMA charts were in control for most of the period, the exception being the last test reported during this period. This test caused a severity EWMA warning alarm to sound. The result was $-3.540 \, \Delta/s$ from target and may be a stand related issue. The summation Δ/s plot shows RCS having a slight severe trend, with the most recent test having a large impact on the summation Δ/s during this period.

As with the RCS control chart, the last test reported during this period caused an AES severity EWMA alarm to sound. With the exception of this one test, AES severity was in control for the remainder of the period. This alarm appears to be lab related and was caused by one test which was $-3.594 \, \Delta/s$ from target. The AES precision chart was in control for the period. The summation Δ/s plot shows that with the exception of the last test, severity was on or near target.

The APV severity EWMA was in control the entire period. Precision EWMA began the period in control, sounding a series of three warning and an action alarm during the middle of the period, coming back into control for the last four tests reported during the period. The alarms appear to be caused by severe results from one lab being reported with mild results from different labs. The summation Δ /s shows on or near target results for most of the period, with several severe results in the middle of the period.

AEV severity began the period in control and sounded a one test severity EWMA warning alarm. The alarm appears to be lab related, with three results from one lab -2.876, -3.540 and -1.487 Δ /s from target. Precision EWMA charts also began the period in control but quickly went into warning and action alarm. Seven of the eleven tests reported this period caused alarms. Finally, the precision EWMA alarms clear for the last two tests. These alarms are the result of a number of severe results being reported from one lab/stand mixed with mild results from other labs. The summation Δ /s plot shows severity on or near target for most of the period, with a short severe trend midway through the period.

The chart for MCW severity began the period with a continuation of a mild alarm event from the previous period. This alarm event continued for seven tests, before clearing for the remaining four tests reported during this report period. No one lab or stand appears to have caused this alarm. The precision EWMA chart has been in control for the period. The summation Δ /s plot shows a mild trend for most of the period.

With the exception of one warning alarm, ACW severity EWMA has been in control for the period. Precision EWMA control charts were in control the entire period. The summation Δ /s plot shows severity trending mild most of the period.

Pooled precision estimates show AES and RCS precision has degraded with respect to both the previous period and historical estimates. Precision for AEV and APV is directionally worse when compared to the previous period and has degraded significantly with respect with historical estimates. ACW and MCW are also directionally poorer when compared to the previous period, but have not degraded significantly with respect to the previous period and historical estimates. It should be noted that the sludge and wear estimates were heavily influenced by one result. When this result is removed, the precision estimates compare well with the previous period and historical estimates. Furthermore, with the exception of the mild severity alarms for the wear parameters, all the other alarms can be accounted for by results obtained from two stands in different laboratories.

Fuels and Reference Oils

Reference oil quantities available at the laboratories and TMC, as well as estimated life of these oils, is tabulated below.

Oil	TMC Inventory, in	TMC Inventory, in	Laboratory	Estimated life
	gallons	tests	Inventory, in tests	
925-3	248	82	6	3+ years
927	8	2	1	frozen for IVA Test
927-1	152	50	10	3+ years
930	284	94	4	3+ years
930-1	265	88	0	3+ years
1002	4428	1476	4	3+ years
1006	1552	517	3	2+ years

Note: Oils 1002 and 1006 are used across multiple test areas, TMC inventory represents total amount of that oil on hand.

Information Letters

Information Letter 00-1 was issued on September 16, 2000. This information letter updated some of the definitions in the method to match those given in the D02.B Glossary of Terms and Their Definitions.

Information Memos

The following memos were issued by the TMC during this period.

Memo	<u>Date</u>	Subject
00-38	4/6/00	Sequence VE Semi-Annual Report
00-59	5/4/00	Reference Oil Status Report, Month of April 2000
00-77	5/30/00	Updated Statistics (N=20) Reference Oil 1006
00-87	6/8/00	Reference Oil Status Report, Month of May 2000
00-101	7/6/00	Reference Oil Status Report, Month of June 2000
00-111	8/4/00	Reference Oil Status Report, Month of July 2000
00-113	8/4/00	Draft of Sequence VE Information Letter 00-1
00-120	9/7/00	Reference Oil Status Report, Month of August 2000

TMC Activities

During this report period, the TMC visited six laboratories. During these visits, the following deficiencies were noted:

1) Temperatures during stage transitions not meeting the procedural requirements.

In all cases, these deficiencies have been identified to the laboratory and the laboratory has documented that corrective action has been taken.

The following table compares the standard deviation used in the LTMS for severity adjustment calculations, which is a pooled estimate of precision based on oils 930 and 1002, with the current and historical pooled precision of the oils 1002, 1006 and 930.

Parameter	Severity Adjustment	Historical Pooled	Current Period Pooled
	Standard Deviation	Standard Deviation,	Standard Deviation,
	(n = 43)	Oils 930, 1006 and	Oils 930, 1006 and
		1002 (n =304)	1002 (n = 6)
AES	0.594	0.691	1.184
RCS	0.528	0.578	1.149
AEV	0.239	0.258	0.442
APV	0.213	0.251	0.393
ACW	2.318	2.583	2.984
MCW	3.155	3.863	4.660

Summary

Calibration per start rate has decreased with respect to the previous period and historical rates. The rejected test per start and lost test per start rates have increased with respect to the previous period. When compared to the historical rates, the calibration per start rate is lower than the historical rate, while the rejected test per start rate is higher than the historical rate. The lost test per start rate compares well with historical rates. Precision, when compared to the previous period, has degraded significantly for AES and RCS, and is directionally poorer for all other parameters. When compared to historical estimates, precision has degraded significantly for AES, RCS, AEV and APV. AES, RCS, AEV, and APV all trended severe during this period, MCW was mild with ACW on or near target. The varnish precision EWMA alarms and the recent EWMA severity alarms for sludge, as well as the degradation in precision for these parameters, can be accounted for by results reported from two stands.

Attachments

c: Sequence VE Surveillance Panel

ftp://www.tmc.astm.cmri.cmu.edu/docs/gas/sequencev/semiannualreports/ve-10-2000

J. L. Zalar

F. M. Farber

Listing of Tables and Figures Included as Part of This Report to the Sequence VE Surveillance Panel

Table 1 summarizes the mean and range of results, by oil, of all operationally valid reference oil tests reported to the TMC, through September 30, 2000, in transformed and reported units, where applicable.

Table 2 summarizes the mean and range of results, by oil, of all operationally valid reference oil tests reported to the TMC from April 1, 2000 through September 30, 2000, in transformed and reported units, where applicable.

Table 3 summarizes the mean and range of individual varnish part results, by oil, of all operationally valid dual plug reference oil tests reported to the TMC through September 30, 2000.

Table 4 summarizes the mean and range of individual sludge part results, by oil, of all operationally valid dual plug reference oil tests reported to the TMC through September 30, 2000.

Table 5 is the Sequence VE Industry Timeline

Figures 1 through 6 are the Industry control charts for the dual plug head results for AES, RCS, APV, AEV, ACW and MCW.

Figures 7 through 9 compare the pooled standard deviation of the dual plug head results for this ASTM reporting period with previous ASTM reporting periods, for AES and RCS, AEV and APV, and ACW and MCW, respectively.

SEQUENCE VE DUAL PLUG HEAD OPERATIONALLY VALID DATA

DATA FROM APRIL 1, 2000 THROUGH SEPTEMBER 30, 2000 OIL CODE TEST PARAMETER N MEAN s REPORTED RANGE RCS (-1(LN(9.65-RCS))) 3 -0.099 1.62 1006 -1.954 TO 1.022

 RCS (-1(LN(9.65-RCS)))
 3 -0.099 1.62
 -1.954 TO 1.022

 RCS (MERITS*)
 8.546
 2.590 TO 9.290

 AES (-1(LN(9.65-AES)))
 0.073 1.66
 -1.652 TO 1.661

 AES (MERITS*)
 8.720 4.430 TO 9.460

 Avg. Pist. Varnish
 6.813 .364 6.560 TO 7.230

 Avg. Eng. Varnish
 5.300 .390 5.070 TO 5.750

 MCW (Square Root)
 8.168 5.95 4.472 TO 15.03

 MCW (micrometres*)
 66.72 20.00 TO 226.0

 ACW (Square Root)
 6.394 4.14 3.821 TO 11.17

 ACW (micrometres*)
 40.89 14.60 TO 124.7

 925-3

 RCS (-1(LN(9.65-RCS)))
 1 -1.987 .
 -1.987 TO -1.987

 RCS (MERITS*)
 2.360 2.360 TO 2.360

 AES (-1(LN(9.65-AES)))
 -1.658 .
 -1.658 TO -1.658

 AES (MERITS*)
 4.400 4.400 TO 4.400

 Avg. Pist. Varnish
 6.500 .
 6.500 TO 6.500

 Avg. Eng. Varnish
 5.100 .
 5.100 TO 5.100

 MCW (Square Root)
 18.65 .
 18.65 TO 18.65

 MCW (micrometres*)
 348.0 348.0 TO 348.0

 ACW (micrometres*)
 245.9 TO 245.9

 927

 RCS (-1(LN(9.65-RCS)))
 1 -1.974 .
 -1.974 TO -1.974

 RCS (MERITS*)
 2.450 2.450 TO 2.450

 AES (-1(LN(9.65-AES)))
 -1.537 .
 -1.537 TO -1.537

 AES (MERITS*)
 5.000 5.000 TO 5.000

 Avg. Pist. Varnish
 6.900 .
 6.900 TO 6.900

 Avg. Eng. Varnish
 5.100 .
 5.100 TO 5.100

 MCW (Square Root)
 17.92 .
 17.92 TO 17.92

 MCW (micrometres*)
 321.0 321.0 TO 321.0

 ACW (Square Root)
 14.34 .
 14.34 TO 14.34

 ACW (micrometres*)
 205.7 TO 205.7

 927-1 RCS (-1(LN(9.65-RCS))) 3 -0.045 .147 -0.199 TO 0.094 RCS (MERITS*) 8.604 8.430 TO 8.740 AES (-1(LN(9.65-AES))) 0.845 .215 0.598 TO 0.994 AES (MERITS*) 9.220 9.100 TO 9.280 Avg. Pist. Varnish 6.843 .421 6.440 TO 7.280 Avg. Eng. Varnish 4.483 .488 4.130 TO 5.040 MCW (Square Root) 8.326 2.83 5.831 TO 11.40 MCW (micrometres*) 69.33 34.00 TO 130.0 930

ACW (Square Root) 5.800 .832 4.930 TO 6.588 ACW (micrometres*) 33.64 24.30 TO 43.40

* CALCULATED IN TRANSFORMED UNITS AND CONVERTED BACK TO REPORTED UNITS 10/03/00

TABLE 2 PAGE 1

OPERATIONALLY VALID DATA							
	THROUGH	SEPTEM	BER 30,	2000			
OIL CODE	TEST PARAMETER	N	MEAN	s	REP	ORTE	D RANGE
1002	RCS (-1(LN(9.65-RCS)))	122	-0.505	.516	-1.637	TO	0.734
1002	RCS (MERITS*)		7.992		4.510	TO	9.170
	AES (-1(LN(9.65-AES)))					TO	
			0.367		-1.244		1.427
	AES (MERITS*)		8.957		6.180	TO	9.410
	Avg. Pist. Varnish		7.104		6.620	TO	7.570
	Avg. Eng. Varnish		5.590	.272	4.230	TO	6.290
	MCW (Square Root)		14.09	3.22	4.243	TO	19.31
	MCW (micrometres*)		198.5		18.00	TO	373.0
	ACW (Square Root)		9.649	2.42	3.633	TO	15.21
	ACW (micrometres*)		93.09		13.20	TO	231.4
	ACW (micrometres)		23.02		13.20	10	231.4
1006	RCS (-1(LN(9.65-RCS)))	52	-0.041	.736	-1.954	TO	1.022
1006		52		. /36			
	RCS (MERITS*)		8.609		2.590	TO	9.290
	AES (-1(LN(9.65-AES)))		0.575	.893	-1.792	TO	1.661
	AES (MERITS*)		9.087		3.650	TO	9.460
	Avq. Pist. Varnish		6.952	.276	6.460	TO	7.590
	Avg. Eng. Varnish		5.500	.246	4.940	TO	6.060
	MCW (Square Root)		9.140		4.359	TO	18.06
	MCW (micrometres*)		83.54		19.00	TO	326.0
	ACW (Square Root)		6.841	3.07	3.033	TO	13.55
	ACW (micrometres*)		46.80		9.200	TO	183.5
005.0	PGG / 1/TN/0 (F PGG)))	•	1 450	1.00	1 (50		1 100
925-2	RCS (-1(LN(9.65-RCS)))	9	-1.452	.192	-1.658	TO	-1.102
	RCS (MERITS*)		5.380		4.400	TO	6.640
	AES (-1(LN(9.65-AES)))		-0.426	.357	-0.944	TO	0.174
	AES (MERITS*)		8.119		7.080	TO	8.810
	Avg. Pist. Varnish		6.546	.184	6.300	TO	6.900
	Avg. Eng. Varnish		4.477		4.160	TO	4.840
	MCW (Square Root)		6.367		3.162	TO	12.04
	MCW (micrometres*)		40.54		10.00	TO	145.0
	ACW (Square Root)		4.330	1.39	2.530	TO	6.411
	ACW (micrometres*)		18.75		6.400	TO	41.10
005 3	DGG / 1/IN/0 (F DGG)))	140	1 007	206	1 050	шо	0 100
925-3	RCS (-1(LN(9.65-RCS)))	142			-1.970	TO	-0.182
	RCS (MERITS*)		6.306		2.480	TO	8.450
	AES (-1(LN(9.65-AES)))		-0.431	.516	-1.850	TO	0.916
	AES (MERITS*)		8.111		3.290	TO	9.250
	Avg. Pist. Varnish		6.569	.222	5.730	TO	7.100
	Avg. Eng. Varnish		4.085	.277	3.580	TO	4.950
	MCW (Square Root)		6.463	3.03	2.236	TO	16.85
	MCW (micrometres*)						
			41.77		5.000	TO	284.0
	ACW (Square Root)		4.770	1.69	2.025	TO	12.28
	ACW (micrometres*)		22.76		4.100	TO	150.9
006 1	DGG / 1/IN/2 65 DGG\\\	^	0 455	4.50	2 225	ш.	1 050
926-1	RCS (-1(LN(9.65-RCS)))	8	0.476	.469	-0.385	TO	1.050
	RCS (MERITS*)		9.029		8.180	TO	9.300
	AES (-1(LN(9.65-AES)))		1.280	.473	0.301	TO	1.772
	AES (MERITS*)		9.372		8.910	TO	9.480
	Avg. Pist. Varnish		6.963	.154	6.650	TO	7.160
	Avg. Eng. Varnish		5.570	.190	5.230	TO	5.850
	MCW (Square Root)		13.04	4.13	5.745	TO	17.89
	(544415 11006)		10.01	1.10	5.715	- 0	± / • O J

MCW	<pre>(micrometres*)</pre>	169.9	33.00	TO	320.0
ACW	(Square Root)	8.091 2.75	4.648	TO	12.76
ACW	(micrometres*)	65.47	21.60	TO	162.8

TABLE 2 PAGE 2

SEQUENCE VE DUAL PLUG HEAD OPERATIONALLY VALID DATA

THROUGH SEPTEMBER 30, 2000 REPORTED RANGE OIL CODE TEST PARAMETER N MEAN RCS (-1(LN(9.65-RCS))) 22 -1.583 .489 -2.128 TO -0.049 RCS (MERITS*) 4.781 1.250 TO 8.600 AES (-1(LN(9.65-AES))) -0.907 .744 -1.739 TO 0.916 AES (MERITS*) 7.174 3.960 TO 9.250 Avg. Pist. Varnish 6.780 .338 6.150 TO 7.600 Avg. Eng. Varnish 4.994 .250 4.490 TO 5.510 MCW (Square Root) 19.02 2.98 8.000 TO 21.73 MCW (micrometres*) 361.6 64.00 TO 472.0 ACW (Square Root) 13.55 2.77 5.523 TO 16.75 ACW (micrometres*) 183.6 30.50 TO 280.4 927 -1.981 TO -1.509
2.400 TO 5.130
-1.537 TO -0.820
5.000 TO 7.380
6.580 TO 7.200
4.800 TO 5.270
17.92 TO 19.77
321.0 TO 391.0
13.07 TO 15.83
170.9 TO 250.7 RCS (-1(LN(9.65-RCS))) 6 -1.812 .177 927-1

 RCS (-1(LN(9.65-RCS)))
 6
 -1.812
 .177

 RCS (MERITS*)
 3.529

 AES (-1(LN(9.65-AES)))
 -1.251
 .274

 AES (MERITS*)
 6.156

 Avg. Pist. Varnish
 6.970
 .226

 Avg. Eng. Varnish
 5.110
 .166

 MCW (Square Root)
 18.93
 .721

 MCW (micrometres*)
 358.2

 ACW (square Root)
 14.22
 1.08

 ACW (micrometres*)
 202.2

 -1.920 TO 1.609
2.830 TO 9.450
-1.656 TO 1.470
4.410 TO 9.420
5.950 TO 7.820
4.130 TO 5.700
3.464 TO 19.13
12.00 TO 366.0
2.470 TO 15.78 RCS (-1(LN(9.65-RCS))) 150 -0.278 .585 930 RCS (MERITS*)

AES (-1(LN(9.65-AES)))

AES (MERITS*)

AVG. Pist. Varnish

Avg. Eng. Varnish

MCW (Square Root)

MCW (square Root)

ACW (square Root) 6.100 TO 248.9

^{*} CALCULATED IN TRANSFORMED UNITS AND CONVERTED BACK TO REPORTED UNITS 10/03/00 statsmon.SAS

TABLE 3 PAGE 1

SEQUENCE VE DUAL PLUG ALL OPERATIONALLY VALID DATA DATA REPORTED THROUGH SEPTEMBER 30, 2000

OIL CODE	VARNISH PART	N	MEAN	S	REPO	RTED	RANGE
1002	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		7.104 3.594 7.197 2.916 7.175	.659 .567 .661	2.250 5.170 2.140	TO TO TO TO	7.570 5.540 8.550 8.290 8.520
1006	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		6.952 3.283 7.191 2.901 7.154	.724 .389 .315	1.720	TO TO TO TO	7.590 4.650 8.130 3.640 8.140
925-2	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		6.546 3.452 3.679 3.098 5.613	.642 .810 .147	2.280 2.330 2.880	TO TO TO TO	6.900 4.380 4.840 3.290 6.320
925-3	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		2.452 3.039	.572 .874	5.730 1.410 1.380 2.240 4.410	TO TO TO TO	7.100 4.660 6.150 5.920 6.360
926-1	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		6.963 4.144 7.036 2.713 6.990	.638 .642 .270		TO TO TO TO	7.160 5.080 7.810 3.090 7.720
927	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		6.780 3.409 5.875 2.658 6.229	.811	6.150 2.080 3.870 1.940 5.460	TO TO TO TO	7.600 5.480 7.270 3.380 7.100
927-1	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN		6.970 3.875 6.037 2.510 6.160		6.580 3.330 5.350 1.810 5.470	TO TO TO TO	7.200 4.780 6.630 2.950 6.680
930	AVERAGE PISTON ROCKER ARM COVER CAMSHAFT BAFFLE CYLINDER WALL (BRT) OIL PAN	150	6.991 3.164 5.317 2.813 5.941	.267 .705 .690 .407	5.950 1.780 3.370 1.920 4.650	TO TO TO TO	7.820 5.300 7.390 4.420 8.160

TABLE 4 PAGE 1

SEQUENCE VE DUAL PLUG

ALL OPERATIONALLY VALID DATA DATA REPORTED THROUGH SEPTEMBER 30, 2000 OIL CODE SLUDGE PART N MEAN (MERITS*) S REPORTED RANGE ROCKER ARM COVER 122 -.716 (7.954) .424 4.51 TO 9.17 1002 CAMSHAFT BAFFLE 0.099 (9.094) .405 6.19 TO 9.45 0.589 (9.445) .405 7.90 TO 9.75 FRONT SEAL HOUSING OIL PAN VALVE DECK -.099 (8.896) .535 5.71 TO 9.50 0.061 (9.059) .620 3.60 TO 9.59 0.242 (9.215) .452 6.90 TO 9.65 UNDERSIDE OF BLOCK -.3/4 (8.546) .585 2.59 TO 9.29
CAMSHAFT BAFFLE 0.067 (9.064) .643 4.23 TO 9.56
FRONT SEAL HOUSING 0.537 (9.416) .693 3.04 TO 9.75
OIL PAN -.017 (8.983) .665 4 50 TO 7 1006 0.263 (9.231) .605 5.99 TO 9.67 UNDERSIDE OF BLOCK -1.53 (5.375) .176 4.40 TO 6.64

CAMISHAFT BAFFLE -.781 (7.817) .637 4.97 TO 9.16

FRONT SEAL HOUSING -.313 (8.632) .490 7.55 TO 9.25

OIL PAN -.091 (8.905) .230 8 26 TO

VALVE DECK
UNDERSIDE CO ROCKER ARM COVER 9 -1.53 (5.375) .176 4.40 TO 6.64 925-2 0.093 (9.089) .652 6.77 TO 9.47 0.406 (9.334) .244 8.95 TO 9.53 UNDERSIDE OF BLOCK 925-3 ROCKER ARM COVER 142 -1.31 (6.289) .292 2.48 TO 8.45 CAMSHAFT BAFFLE
FRONT SEAL HOUSING
OIL PAN
VALUE DECK -.902 (7.535) .595 2.06 TO 9.31 -.442 (8.445) .610 2.06 TO 9.72 -.336 (8.600) .503 3.42 TO 9.48 -.215 (8.760) .583 3.09 TO 9.59 VALVE DECK 0.233 (9.208) .494 4.65 TO 9.65 UNDERSIDE OF BLOCK ROCKER ARM COVER 8 0.008 (9.008) .311 8.18 TO 9.30 CAMSHAFT BAFFLE 0.486 (9.385) .304 8.76 TO 9.51 FRONT SEAL HOUSING 0.879 (9.585) .346 9.30 TO 9.75 OIL PAN 0.372 (9.311) .302 8.66 TO 9.50 VALVE DECK 0.663 (9.485) 100 0.00 TO 926-1 0.515 (9.402) .114 9.25 TO 9.50 UNDERSIDE OF BLOCK ROCKER ARM COVER 22 -1.66 (4.733) .439 1.25 TO 8.60 927 -.875 (7.601) .692 5.42 TO 9.53 CAMSHAFT BAFFLE FRONT SEAL HOUSING -.783 (7.812) .892 1.28 TO 9.70 OIL PAN -.954 (7.404) .619 4.58 TO 9.36 -.883 (7.582) .879 3.00 TO 9.35 VALVE DECK -.694 (7.999) .647 4.90 TO 9.43 UNDERSIDE OF BLOCK -1.87 (3.524) .167 2.40 TO 5.13
CAMBHAFT BAFFLE -1.18 (6.754) .152 6.07 TO 7.40
FRONT SEAL HOUSING -1.15 (6.857) .674 2.64 TO 8.20
OIL PAN -1.14 (6.865) .376 5.56 TO ...
VALVE DECK ROCKER ARM COVER 6 -1.87 (3.524) .167 2.40 TO 5.13 CAMSHAFT BAFFLE -1.18 (6.754) .152 6.07 TO 7.40 927-1

UNDERSIDE OF BLOCK -.901 (7.537) .213 6.95 TO 8.32

TABLE 4 PAGE 2

SEQUENCE VE DUAL PLUG ALL OPERATIONALLY VALID DATA

DATA REPORTED THROUGH SEPTEMBER 30, 2000

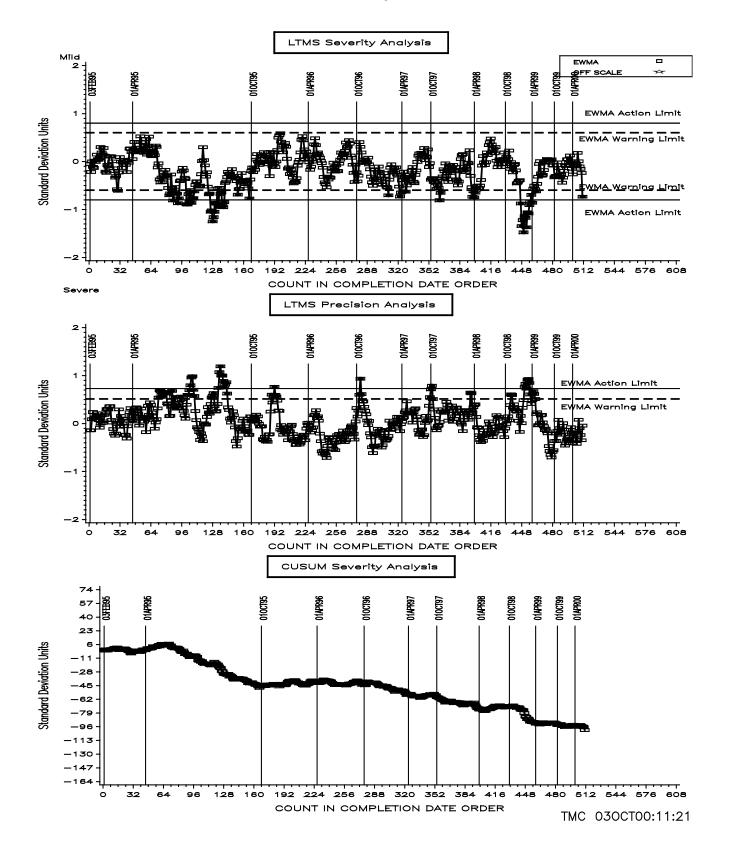
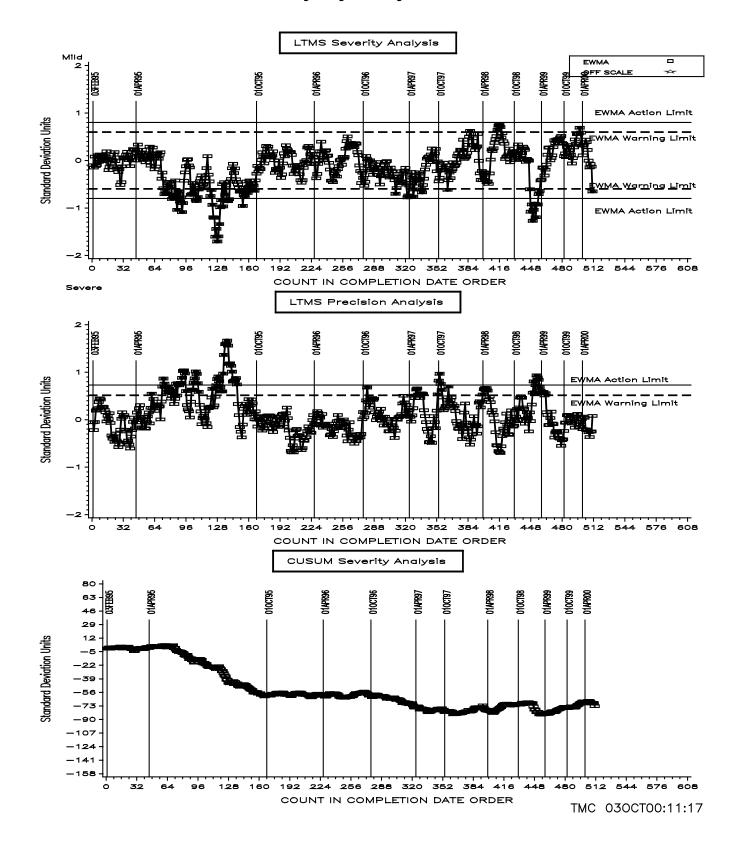

	DATA KULOKTI	UD 111.			JU, 2	000	
OIL CODE	SLUDGE PART	N	MEAN	(MERITS*)	s	REPORTE	D RANGE
930	ROCKER ARM COVER	150	541	(8.283)	.460	2.83 TO	9.45
	CAMSHAFT BAFFLE		053	(8.945)	.553	4.10 TO	9.53
	FRONT SEAL HOUSING		0.353	(9.297)	.546	5.26 TO	9.70
	OIL PAN		158	(8.829)	.589	3.69 TO	9.50
	VALVE DECK		015	(8.985)	.637	2.83 TO	9.59
	UNDERSIDE OF BLOCK		0.215	(9.194)	.516	5.81 TO	9.63

Table 5 Sequence VE Industry Timeline

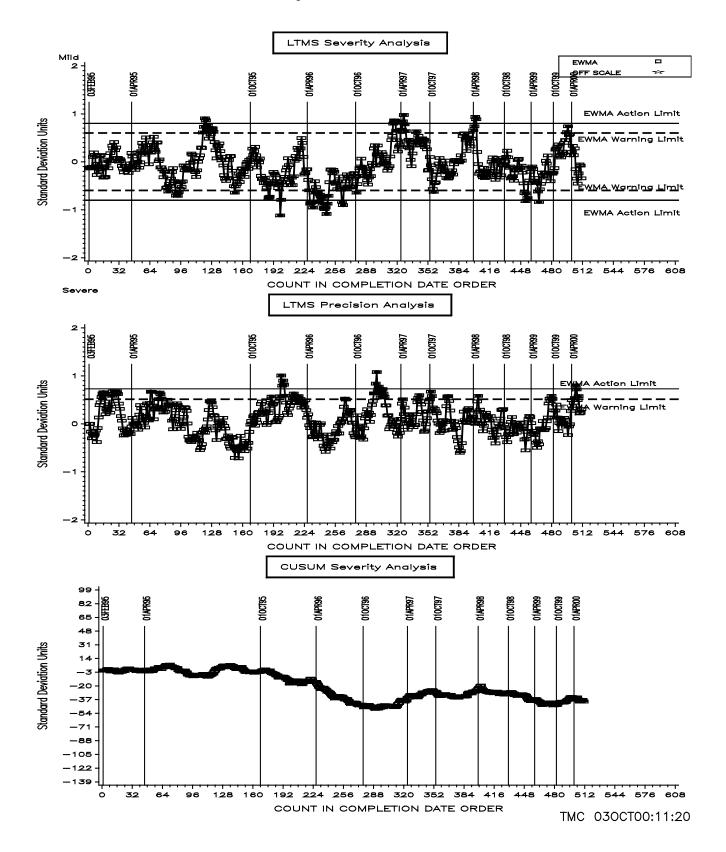
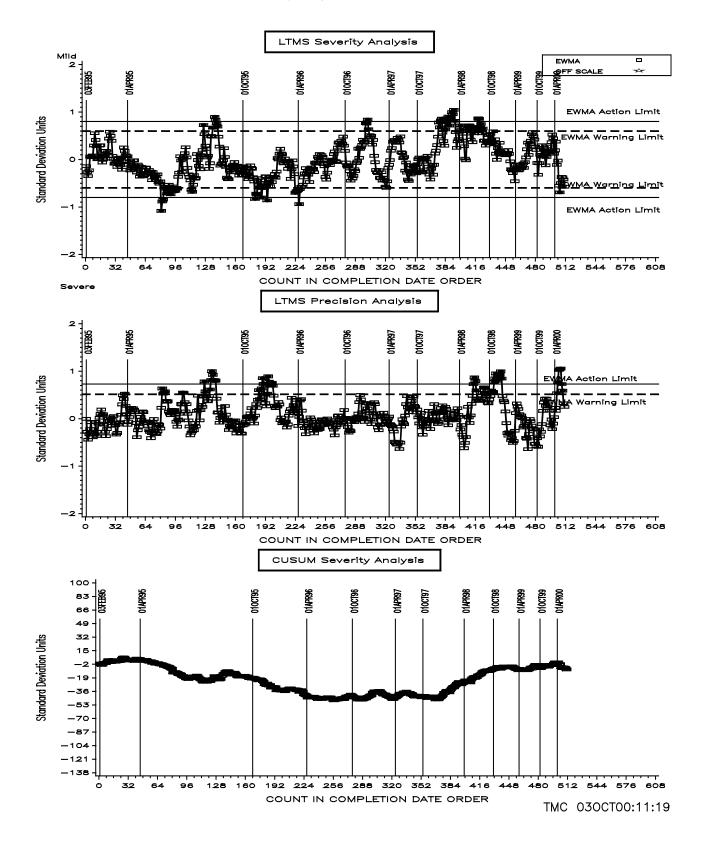
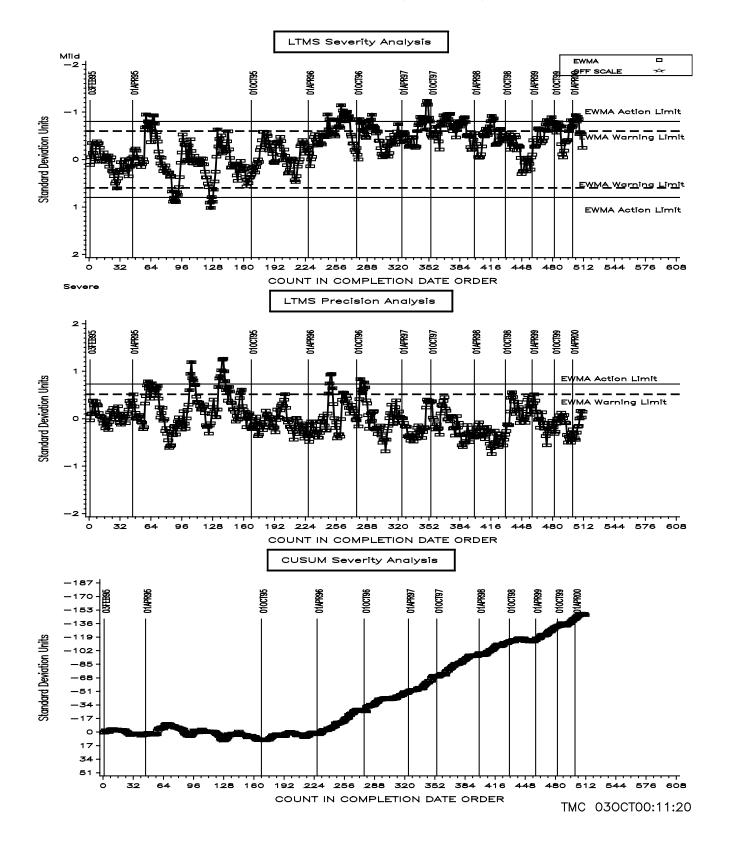

19950201	95-3	Start of Dual Plug VE Testing
19950515		Targets For Oil 925-3 and 930 Updated
19950523	95-5	Sludge Rating Sites Revised on Cylinder Head
19950523		Oxygen limits in test method were incorrect
19950524	95-4	AEV Correction Factor Approved (Candidates only)
19950601		Targets For Oil 1002 and 930 Updated
19950901		Reground followers introduced.
19960901	95-5	Data dictionary version 19950530 implemented
19951003	0= 6	Targets for 1002; 925-3 and 930 Updated
19951101		Increased Aliphatic naphtha concentration to 50%
19951101		Added requirements to change honing oil & filter 1/15 Hrs
19951101		Changed cylinder head calibration rig calibration requirements Allowed Torque to Yield bolts to be used twice
19951101 19951101		Corrected errors in footnote 14 and renumbered footnotes
19960101	95-6 95-7	Instituted program to monitor test fuel stored at labs
19951003		Revised pooled s for severity adjustment calculations
19960515		Implemented industry correction factors for ACW and MCW
19960901		Standard orifice mount; clean orifice daily; standard correction
1000001	J0 I	calculation
19960901	96-1	Revised stage 1 to 2 RAC temperature Ramp
19960901		Calibration Frequency Changes and requirements
19960901		Specified Follower Installation Tool
19960901		Coolant Flush Cart Calibration
19960901		Pre-lube engine when downtime exceeds 8 hours
19960901		Require the use of OHTA-007-1 adapter
19960901		Required use of lifter fill chamber for VE lifters
19960901	96-1	Standardized separator height at 5.5±0.25 in
19960901	96-1	Standardized sample probe distance 2.75±0.25" from exh man flange
19960901	96-1	Required pressurized engine coolant system at 10 psig
19960901	96-1	Specified engine coolant out temperature measurement at 1"
19960901	96-1	Clarified what is a shutdown and reporting requirements
19960901	96-1	Deleted retention requirements for excess oil at oil leveling
19960901		Corrected errors; footnote 2; table 3; section 9.3.1 and Fig A3.25
19961001		Forms and Data Dictionary Change, Version 19960726
19961001	96-2	Added requirement to identify sampling technique used for sampling
		of lab fuel supply
19961119		Humidity Calibration Requirements Added
19961119		Clean Blowby Orifice weekly
19970101		Changed AFR probe location
19970310	97-2	Changed Cam Wear measurements (Avg, Max and individual lobes) to
10070310	07 0	micrometres
19970310	97-2	Forms and data dictionary changes to accompany wear measurement units, Version 19970130
19970429	97-3	Corrected typo errors in 8.3.5, 9.3.2 and 13.2.2.1.
19970429	91-3	Changed Nalcool to Pencool 2000
19970820	97-4	Added requirements to flow test fuel injectors, prior to each test
19970820	97-4	Changed calibration frequency for fuel flow measurement device from
19970020	J / 4	every 3rd test to every reference
19971124	97-5	Changed field length for DELACW and DELMCW, Moved notes 29 and 31
	<i>3</i> ,	into text of procedure
19971118	97-6	Allowed removal of piston staining and deleted Annex A13.
19980611	98-1	Machining of 0.5 mm pistons, Calibration frequency Changes
19980709		Test Target Update, Reference oil 1006 (N=20)
19980611	99-1	Machining of 0.5 mm pistons, Calibration frequency Changes
19990224		Test Target Update, Reference oil 1006 (N=30)
19990615	99-2	Added Procedure for re-using cylinder heads, deleted requirement to
		identify cams with lobes <50C

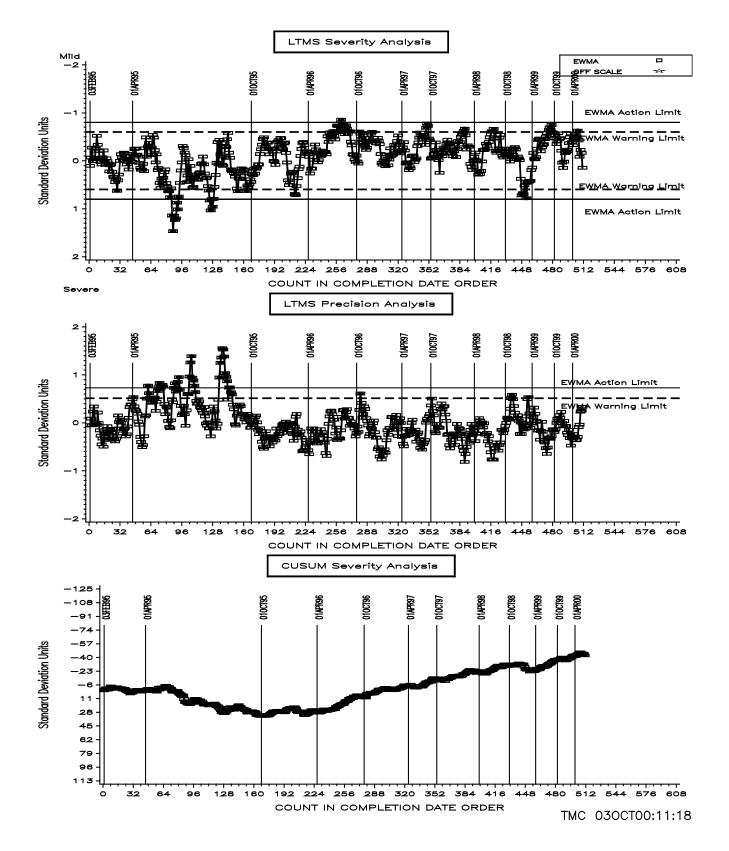
19991216	99-3	Revised method to allow use of non-kit parts obtained from Ford Dealers, for other than parts listed in the Origin of Significant
20000916	00-1	Parts Sheet (Form A7.12) Revised definitions to match D02.B Glossary of Terms and Their Definitions

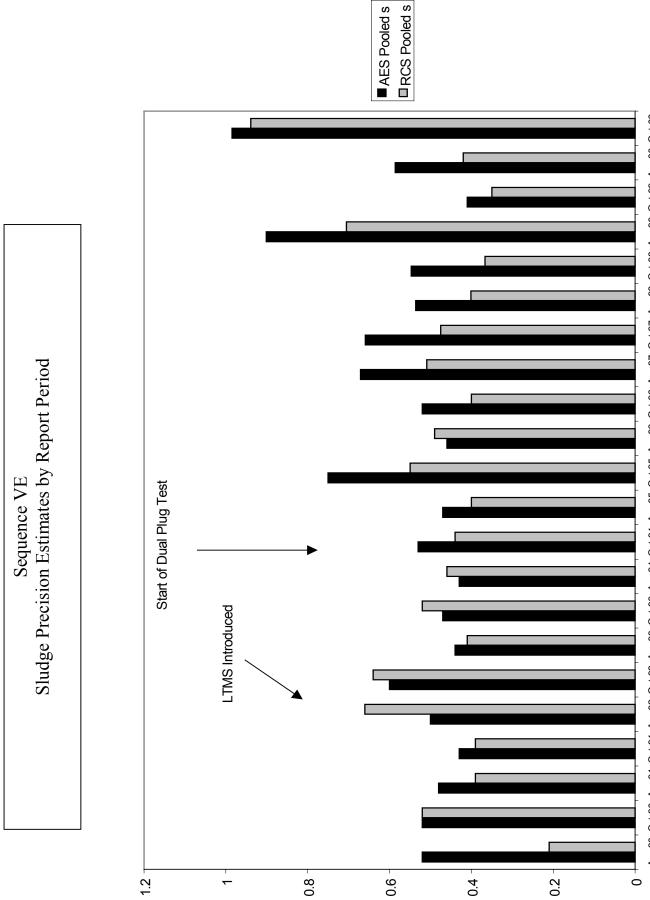
Rocker Cover Sludge - Merits

Average Engine Sludge — Merits

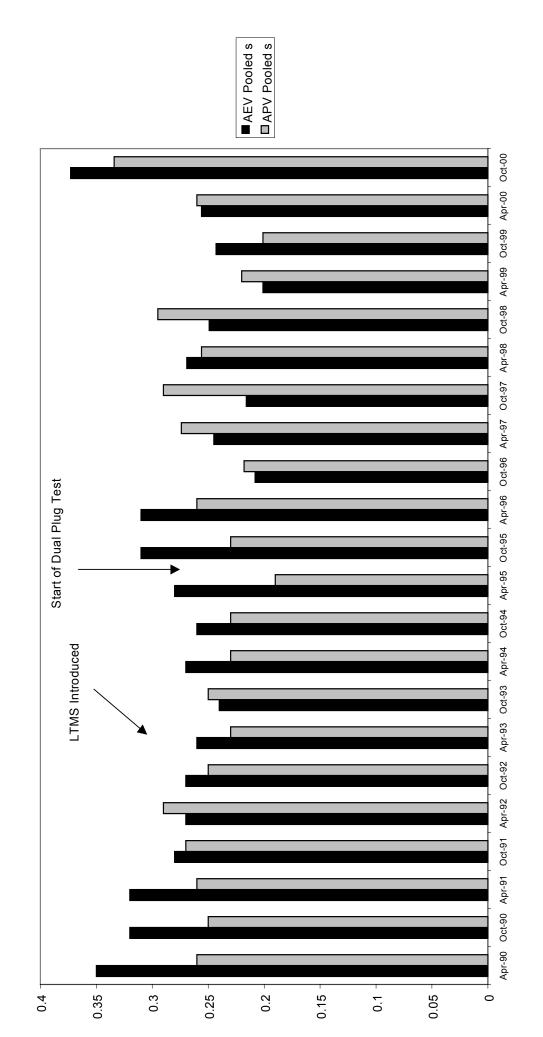
Average Piston Varnish — Merits

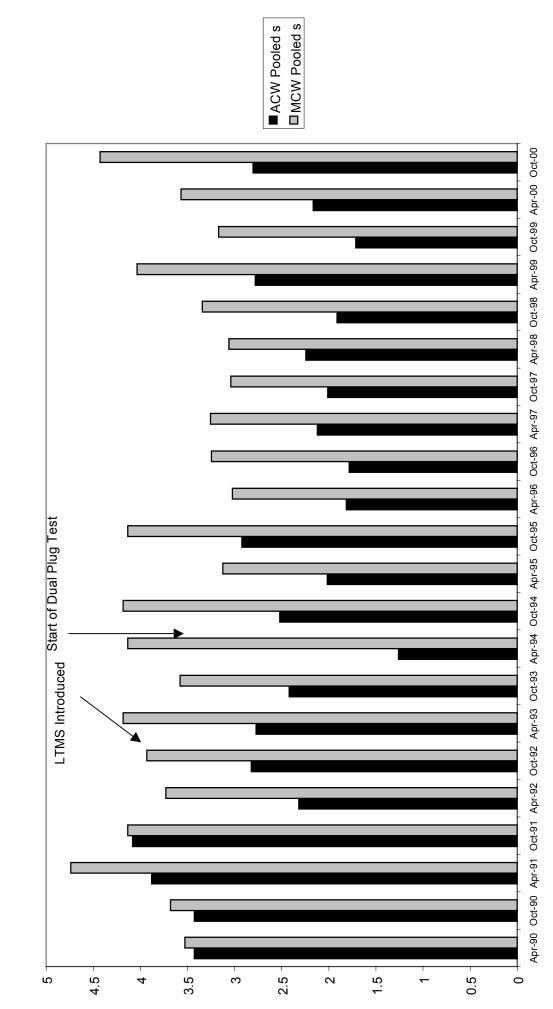





Figure 4



Maximum Camshaft Wear (Micrometers)


Average Camshaft Wear (Micrometers)



Apr-90 Oct-90 Apr-91 Oct-91 Apr-92 Oct-92 Apr-93 Oct-93 Apr-94 Oct-94 Apr-95 Oct-95 Apr-96 Oct-96 Apr-97 Oct-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Oct-00

Sequence VE
Varnish Precision Estimates by Report Period

Sequence VE Wear Precision Estimates by Report Period

