

Memo:	01-028
Date:	April 10, 2001
TO:	Gordon Farnsworth, Chairman, Sequence VE Surveillance Panel
FROM:	Richard E. Grundza
SUBJECT:	Sequence VE Reference Test Status from October 1, 2000 through March 31, 2001

The following is a summary of Sequence VE reference tests that were completed during the period October 1, 2000 through March 31, 2001.

Lab/Stand Distribution

	Reporting Data	Calibrated as of 3/31/01
Number of Laboratories	5	3
Number of Stands	7	3

The following chart shows the laboratory/stand distribution:

Laboratory/Stand Distribution

	TMC Validity Codes	No. of Tests
Operationally and Statistically Acceptable	AC	3
Operationally Valid, Statistically Unacceptable	OC	3
Operationally Valid, Stand Removed from System	МС	1
Total		7

The following summarizes the status of the reference oil tests reported to the TMC:

Two of the tests were statistically unacceptable for severe sludge and ACW. The third statistically unacceptable test was due to mild AEV

Calibrations per start, lost tests per start and rejections per start rates are summarized below:

Calibration Attempt Summary

The calibration per start rate has decreased and is much lower than the historical rate. The lost test per start is comparable to the previous period and historical rates. Rejected test per start rate has increased with respect to the previous report period. The lost test per start rate compares favorably with the historical lost test rate, while the rejected test per start is much higher than the historical rate. Only three of the seven starts this period resulted in successful stand calibration.

The following chart shows the percentage of operationally valid tests failing the acceptance criteria:

Rejected Operationally Valid Tests

There were no instances of the application of "Engineering Judgment" in the interpretation of LTMS guidelines during this report period. A total of fourteen LTMS deviations have been granted during the life of the Sequence VE test.

There was one test from which the data was removed from the laboratory control charts, because the stand was abandoned. There were no operationally invalid tests reported during this report period. Aborted and operationally invalid tests by laboratory are summarized with the following chart:

Severity and Precision

Based on the mean delta/s values and pooled standard deviation for the current period, a 95% confidence interval representing severity for the current period is given below in reported units. For RCS, AES, ACW and MCW, calculations were performed in transformed units, then converted to reported units. Pooled s and mean delta/s values for RCS, AES, MCW and ACW are shown in transformed units.

<u>Variable</u>	Pooled s All Oils	<u>Mean</u> Delta/s	Confidence Interval	Based on	<u>Delta in</u> <u>Reported</u> <u>Units</u>
RCS	0.447	-0.655	3.97 - 7.42	7.0	-1.35
AES	0.765	-0.818	5.48 - 9.11	9.0	-0.90
APV	0.038	-0.063	6.46 - 6.54	6.5	0.00
AEV	0.126	0.382	4.92 - 5.18	5.0	0.05
ACW	3.038	1.064	131.0 - 317.6	130	84.0
MCW	4.109	0.599	311.2 - 689.7	380	102

The mean Δ /s for this period shows AES (-0.818), RCS (-0.655), MCW (0.599) and ACW (1.064) were severe, AEV (0.382) was mild, and APV (-0.063) was on or near target. Figures 1 through 6 are current industry severity and precision EWMA control charts and plots of summations Δ /s for RCS, AES, APV, AEV, MCW and ACW. Figures 7 through 9 compare the pooled standard deviation of the current period with previous periods.

RCS severity began the period in action alarm. Subsequent tests caused the industry charts to return to the warning level and then clear for three tests, before sounding a warning alarm at the end of the period. The alarm at the beginning period was caused by a severe (-2.653 Δ /s) result from one lab. The alarm goes to a warning level and subsequently clear after results closer to target are reported. A severity warning alarm occurs at the end of the period when a result -2.551 Δ /s from target is reported. This test was from a lab other than the lab reporting the -2.653 Δ /s result at the beginning of the period. RCS precision was in control the entire period. The summation Δ /s plot shows RCS having a severe trend at the beginning of the period, moderating towards the middle of the period.

As with the RCS control chart, AES began this period in severity EWMA action alarm, went to warning alarm, and then cleared for three tests before ending the period in warning alarm. The alarm at the beginning of the period was the result of a test $-2.945 \Delta/s$ from target, which followed a similarly severe result run by the same laboratory at the end of the last report period. The alarm clears when additional results, closer to target, are reported. A warning alarm sounds at the end of the period, which was caused by a result $-2.916 \Delta/s$ from target. This result was from a lab other than the one reporting severe results at the end of last report period and the beginning of this period. AES precision chart was in control for the period. The summation Δ/s plot shows that with the exception of the last test, severity was on or near target.

The APV severity and precision EWMA charts were in control the entire period. The summation Δ /s shows on or near target results for the period.

AEV severity was in control for the period. AEV precision began the period in control but sounded two precision EWMA warning alarms at the end of the period. The alarm may be lab related, based on a result from one lab which was $-1.538 \Delta/s$ from target, which was preceded by a result from a different lab which was $0.801\Delta/s$ and followed by a result from a third lab which was $0.787 \Delta/s$ from target. The lab reporting the severe result has typically been severe on varnish, having a severity adjustment in effect. The summation Δ/s plot shows severity on or near target for most of the period.

The charts for MCW severity and precision were in control the entire period. The summation Δ /s plot shows a severe trend for most of the period.

Industry control charts for ACW severity began the period in action alarm, clearing for four tests and finally sounding a warning alarm at the end of the period. Industry precision has been in warning or action alarm the entire period. Severity and precision problems appear to have been caused by two severe results from two labs. At the beginning of the period, one lab reported a result which was 4.622 /s from target. The following four results were within \pm one standard deviation of target. The last test reported was 2.597 /s from target. The summation Δ /s plot shows a severe trend for most of the period.

Pooled precision estimates show AES and RCS precision are directionally improved with respect to the previous period and are not significantly different than historical estimates. Precision for AEV and APV has improved significantly with respect to the previous period and historical estimates. ACW and MCW are directionally poorer when compared to the previous period, but have not degraded significantly with respect to the previous period and historical estimates.

Fuels and Reference Oils

Oil	TMC Inventory, in	TMC Inventory, in	Laboratory	Estimated life
	gallons	tests	Inventory, in tests	
925-3	227	75	6	3+ years
927	9	3	1	< 1 year
927-1	152	50	10	3+ years
930	281	93	4	3+ years
930-1	265	88	0	3+ years
1006	1573	524	3	2+ years

Reference oil quantities available at the laboratories and TMC, as well as estimated life of these oils, is tabulated below.

Note: Oil 1006 is used across multiple test areas, TMC inventory represents total amount of that oil on hand.

Information Letters

Information Letter 01-1 was issued on January 15, 2001. This information letter revised temperature measurement sensor calibration frequency to prior to a calibration attempt.

Information Memos

The following memos were issued by the TMC during this period.

Memo	Date	Subject
00-130	10/4/00	Sequence VE Semi-Annual Report

The following table compares the standard deviation used in the LTMS for severity adjustment calculations, which is a pooled estimate of precision based on oils 930 and 1002, with the current and historical pooled precision of the oils 1002, 1006 and 930.

Parameter	Severity Adjustment	Historical Pooled	Current Period Pooled
	Standard Deviation	Standard Deviation,	Standard Deviation,
	(n = 43)	Oils 930, 1006 and	Oils 930, 1006 and
		1002 (n =324)	1002 (n = 3)
AES	0.594	0.701	0.471
RCS	0.528	0.588	0.076
AEV	0.239	0.264	0.177
APV	0.213	0.253	0.050
ACW	2.318	2.583	0.486
MCW	3.155	3.866	0.235

Summary

Calibration per start rate has decreased with respect to the previous period and historical rates. The rejected test per start has increased with respect to the previous period and historical rates. The lost test per start rate compares favorably with the previous period and historical rates. Precision, when compared to the previous period, is directionally better for AES and RCS and comparable to historical estimates. AEV and APV precision has improved significantly with respect to both the previous period and historical rates. ACW and MCW precision are directionally poorer when compared with the previous period and are not significantly different than historical estimates. AES, ACW, RCS and MCW trended severe this period. AEV was mild and APV was on or near target for severity. The severe results appear to lab related, occurring at the beginning and end of the report period.

Attachments

c: Sequence VE Surveillance Panel

ftp://www.tmc.astm.cmri.cmu.edu/docs/gas/sequencev/semiannualreports/ve-4-2001 J. L. Zalar

F. M. Farber

Listing of Tables and Figures Included as Part of This Report to the Sequence VE Surveillance Panel

Table 1 summarizes the mean and range of results, by oil, of all operationally valid reference oil tests reported to the TMC, through March 31, 2001, in transformed and reported units, where applicable.

Table 2 summarizes the mean and range of results, by oil, of all operationally valid reference oil tests reported to the TMC from October 1, 2000 through March 31, 2001, in transformed and reported units, where applicable.

Table 3 summarizes the mean and range of individual varnish part results, by oil, of all operationally valid dual plug reference oil tests reported to the TMC through March 31, 2001.

Table 4 summarizes the mean and range of individual sludge part results, by oil, of all operationally valid dual plug reference oil tests reported to the TMC through March 31, 2001.

Table 5 is the Sequence VE Industry Timeline

Figures 1 through 6 are the Industry control charts for the dual plug head results for AES, RCS, APV, AEV, ACW and MCW.

Figures 7 through 9 compare the pooled standard deviation of the dual plug head results for this ASTM reporting period with previous ASTM reporting periods, for AES and RCS, AEV and APV, and ACW and MCW, respectively.

TABLE 1 SEQUENCE VE DUAL PLUG HEAD ALL OPERATIONALLY VALID DATA

	DATE COMPLETED H	ENDING	MARCH 31	, 2001			
OIL CODE	TEST PARAMETER	Ν	MEAN	S	REI	ORTED	RANGE
	/ _ / /						
1002	RCS(-1(LN(9.65-RCS)))	122	-0.505	.516	-1.637	TO	0.734
	RCS (MERITS*)		7.992		4.510	TO	9.170
	AES (-1(LN(9.65-AES)))		0.367	.603	-1.244	TO	1.427
	AES (MERITS*)		8.957		6.180	TO	9.410
	Avg. Pist. Varnish		7.104	.222	6.620	TO	7.570
	Avg. Eng. Varnish		5.590	.272	4.230	TO	6.290
	MCW (Square Root)		14.09	3.22	4.243	TO	19.31
	MCW (micrometres*)		198.5		18.00	TO	373.0
	ACW (Square Root)		9.649	2.42	3.633	TO	15.21
	ACW (micrometres*)		93.09		13.20	ТО	231.4
1006	RCS (-1(LN(9.65-RCS)))	54	-0.011	.738	-1.954	то	1.022
	RCS (MERITS*)		8.639		2.590	TO	9.290
	AES (-1(LN(9.65-AES)))		0.602	.890	-1.792	TO	1.661
	AES (MERITS*)		9.103		3.650	TO	9.460
	Avg. Pist. Varnish		6.949	.271	6.460	TO	7.590
	Avg. Eng. Varnish		5.509	.247	4.940	TO	6.060
	MCW (Square Root)		9.023	4.36	4.359	TO	18.06
	MCW (micrometres*)		81.42		19.00	TO	326.0
	ACW (Square Root)		6.760	3.04	3.033	TO	13.55
	ACW (micrometres*)		45.70		9.200	ТО	183.5
925-2	RCS (-1(LN(9.65-RCS)))	9	-1.452	.192	-1.658	то	-1.102
	RCS (MERITS*)		5.380		4.400	TO	6.640
	AES (-1(LN(9.65-AES)))		-0.426	.357	-0.944	TO	0.174
	AES (MERITS*)		8.119		7.080	TO	8.810
	Avg. Pist. Varnish		6.546	.184	6.300	TO	6.900
	Avg. Eng. Varnish		4.477	.227	4.160	TO	4.840
	MCW (Square Root)		6.367	3.37	3.162	TO	12.04
	MCW (micrometres*)		40.54		10.00	TO	145.0
	ACW (Square Root)		4.330	1.39	2.530	TO	6.411
	ACW (micrometres*)		18.75		6.400	ТО	41.10
925-3	RCS (-1(LN(9.65-RCS)))	144	-1.215	.334	-2.194	ТО	-0.182
	RCS (MERITS*)		6.281		0.680	TO	8.450
	AES (-1(LN(9.65-AES)))		-0.443	.528	-1.959	TO	0.916
	AES (MERITS*)		8.093		2.560	TO	9.250
	Avq. Pist. Varnish		6.565	.222	5.730	TO	7.100
	Avg. Eng. Varnish		4.088	.276	3.580	TO	4.950
	MCW (Square Root)		6.531	3.10	2.236	то	16.85
	MCW (micrometres*)		42.65		5.000	TO	284.0
	ACW (Square Root)		4.830	1.79	2.025	ΤO	12.28
	ACW (micrometres*)		23.33	_	4.100	TO	150.9
926-1	RCS (-1(LN(9.65-RCS)))	8	0.476	.469	-0.385	то	1.050
	RCS (MERITS*)		9.029		8.180	TO	9.300
	AES (-1(LN(9.65-AES)))		1.280	.473	0.301	TO	1.772
	AES (MERITS*)		9.372		8.910	то	9.480
	Avq. Pist. Varnish		6.963	.154	6.650	TO	7.160
	Avg. Eng. Varnish		5.570	.190	5,230	TO	5.850
	MCW (Square Root)		13.04	4.13	5.745	TO	17.89
	MCW (micrometres*)		169.9		33.00	TO	320.0
	ACW (Square Root)		8,091	2.75	4 648	TO	12 76
	ACW (micrometres*)		65 47		21 60	TO	162 R
			00.17		21.00		

	Т	ABLE 1	1				PAGE 2
	SEQUENCE	VE DU	JAL PLUG	HEAD			
	ALL OPERA	TIONA	LLY VALII	DATA			
	DATE COMPLETED E	NDING	MARCH 31	L, 2001			
OIL CODE	TEST PARAMETER	Ν	MEAN	S	RE	PORTI	ED RANGE
927	RCS (-1(LN(9.65-RCS)))	22	-1.583	.489	-2.128	то	-0.049
	RCS (MERITS*)		4.781		1.250	то	8.600
	AES (-1(LN(9.65-AES)))		-0.907	.744	-1.739	то	0.916
	AES (MERITS*)		7.174		3.960	то	9.250
	Avg. Pist. Varnish		6.780	.338	6.150	то	7.600
	Avg. Eng. Varnish		4.994	.250	4.490	то	5.510
	MCW (Square Root)		19.02	2.98	8.000	то	21.73
	MCW (micrometres*)		361.6		64.00	то	472.0
	ACW (Square Root)		13.55	2.77	5.523	то	16.75
	ACW (micrometres*)		183.6		30.50	ТО	280.4
927-1	RCS (-1(LN(9.65-RCS)))	7	-1.832	.170	-1.981	то	-1.509
	RCS (MERITS*)		3.403		2.400	то	5.130
	AES (-1(LN(9.65-AES)))		-1.275	.258	-1.537	то	-0.820
	AES (MERITS*)		6.071		5.000	то	7.380
	Avg. Pist. Varnish		6.991	.214	6.580	то	7.200
	Avq. Enq. Varnish		5.023	.276	4.500	то	5.270
	MCW (Square Root)		19.32	1.24	17.92	то	21.70
	MCW (micrometres*)		373.4		321.0	то	471.0
	ACW (Square Root)		14.24	.990	13.07	то	15.83
	ACW (micrometres*)		202.9		170.9	ТО	250.7
930	RCS (-1(LN(9.65-RCS)))	151	-0.285	.590	-1.920	то	1.609
	RCS (MERITS*)		8.320		2.830	то	9.450
	AES (-1(LN(9.65-AES)))		0.345	.706	-1.656	то	1.470
	AES (MERITS*)		8.942		4.410	то	9.420
	Avq. Pist. Varnish		6.993	.268	5.950	то	7.820
	Avq. Enq. Varnish		4.846	.261	4.130	то	5.700
	MCW (Square Root)		9.813	4.21	3.464	то	20.07
	MCW (micrometres*)		96.30		12.00	TO	403.0
	ACW (Square Root)		6.858	2.58	2.470	ТО	15.78
	ACW (micrometres*)		47.04		6.100	ТО	248.9

* CALCULATED IN TRANSFORMED UNITS AND CONVERTED BACK TO REPORTED UNITS 04/03/01 statsmon.SAS

TA	ABLE 2	
SEQUENCE	VE DUAL	PLUG HEAD
ALL OPERA	TTONALLY	VALTD DATA

OIL CODE	DATA FROM OCTOBER 1, TEST PARAMETER	2000 N	THROUGH MEAN	MARCH s	31,	2001 R1	EPORT	ED RANGE
1006	RCS (-1(LN(9.65-RCS)))	2	0.767	.076		0.713	TO TO	0.821
	$\Delta ES \left(-1 \left(LN \left(9 65 - \Delta ES\right)\right)\right)$		1 327	471		0 994	TO	1 661
	AES (MERITS*)		9.385	• • / -		9.280	TO	9.460
	Avg. Pist. Varnish		6.885	.049		6.850	TO	6.920
	Avg. Eng. Varnish		5.735	.177		5.610	TO	5.860
	MCW (Square Root)		5.998	.236		5.831	то	6.164
	MCW (micrometres*)		35.97			34.00	TO	38.00
	ACW (Square Root)		4.656	.486		4.313	TO	5.000
	ACW (micrometres*)		21.68			18.60	TO	25.00
925-3	RCS (-1(LN(9.65-RCS)))	2	-1.750	.628		-2.194	TO	-1.306
	RCS (MERITS*)		3.897			0.680	TO	5.960
	AES $(-1(LN(9.65-AES)))$		-1.270	.973		-1.959	TO	-0.582
	AES (MERITS*)		6.088	0.0.1		2.560	TO	7.860
	Avg. Pist. Varnish		6.335	.021		6.320	-10	6.350
	Avg. Eng. Varnish		4.265	.021		4.250	.1.0	4.280
	MCW (Square ROOL)		11.39	5.81		7.280	-10 	15.49
	MCW (MICIOMetres*)		129.6	1 27		53.00	10 TO	12 06
	ACW (micrometres*)		81.79	4.27		36.30	TO	145.5
927-1	RCS (-1(LN(9.65-RCS)))	1	-1.954	•		-1.954	ТО	-1.954
	RCS (MERITS*)		2.590			2.590	TO	2.590
	AES (-1(LN(9.65-AES)))		-1.418	•		-1.418	TO	-1.418
	AES (MERITS*)		5.520			5.520	TO	5.520
	Avg. Pist. Varnish		7.120	•		7.120	TO	7.120
	Avg. Eng. Varnish		4.500	•		4.500	TO	4.500
	MCW (Square Root)		21.70	•		21.70	TO	21.70
	MCW (micrometres*)		471.0			471.0	TO	471.0
	ACW (Square Root)		14.39	•		14.39	TO	14.39
	ACW (micrometres*)		207.0			207.0	ТО	207.0
930	RCS (-1(LN(9.65-RCS)))	1	-1.351	•		-1.351	TO	-1.351
	RCS (MERITS*)		5.790			5.790	TO	5.790
	AES (-1(LN(9.65-AES)))		-1.044	•		-1.044	TO	-1.044
	AES (MERITS*)		6.810			6.810	TO	6.810
	Avg. Pist. Varnish		7.290	•		7.290	TO	7.290
	Avg. Eng. Varnish		4.860	•		4.860	TO	4.860
	MCW (Square Root)		20.07	•		20.07	TO	20.07
	MCW (micrometres*)		403.0			403.0	TO	403.0
	ACW (Square Root)		13.45	•		13.45	'T'O	13.45
	ACW (MICrometres*)		T80.8			T80.8	.T.O	T80.8

* CALCULATED IN TRANSFORMED UNITS AND CONVERTED BACK TO REPORTED UNITS 04/03/01 statsmon.SAS

TABLE 3

SEQUENCE VE DUAL PLUG ALL OPERATIONALLY VALID DATA DATA REPORTED THROUGH MARCH 31, 2001

OIL CODE	VARNISH PART	Ν	MEAN	S	REP	ORTED	RANGE
1002	AVERAGE PISTON	122	7.104	.222	6.620	то	7.570
	ROCKER ARM COVER		3.594	.659	2.250	TO	5.540
	CAMSHAFT BAFFLE		7.197	.567	5.170	TO	8.550
	CYLINDER WALL (BRT)		2.916	.661	2.140	ТО	8.290
	OIL PAN		7.175	.604	4.020	ТО	8.520
1006	AVERAGE PISTON	54	6.949	.271	6.460	то	7.590
	ROCKER ARM COVER		3.312	.727	1.720	TO	4.650
	CAMSHAFT BAFFLE		7.200	.387	5.890	TO	8.130
	CYLINDER WALL (BRT)		2.906	.311	2.300	ТО	3.640
	OIL PAN		7.157	.482	5.380	ТО	8.140
925-2	AVERAGE PISTON	9	6.546	.184	6.300	то	6.900
	ROCKER ARM COVER		3.452	.642	2.280	ТО	4.380
	CAMSHAFT BAFFLE		3.679	.810	2.330	ТО	4.840
	CYLINDER WALL (BRT)		3.098	.147	2.880	то	3.290
	OIL PAN		5.613	.295	5.310	ТО	6.320
925-3	AVERAGE PISTON	144	6.565	.222	5.730	то	7.100
	ROCKER ARM COVER		2.457	.577	1.410	ТО	4.660
	CAMSHAFT BAFFLE		3.048	.873	1.380	ТО	6.150
	CYLINDER WALL (BRT)		3.018	.385	2.240	TO	5.920
	OIL PAN		5.345	.411	4.400	ТО	6.360
926-1	AVERAGE PISTON	8	6.963	.154	6.650	то	7.160
	ROCKER ARM COVER		4.144	.638	3.400	ТО	5.080
	CAMSHAFT BAFFLE		7.036	.642	6.120	ТО	7.810
	CYLINDER WALL (BRT)		2.713	.270	2.280	ТО	3.090
	OIL PAN		6.990	.574	6.280	TO	7.720
927	AVERAGE PISTON	22	6.780	.338	6.150	то	7.600
	ROCKER ARM COVER		3.409	.792	2.080	ТО	5.480
	CAMSHAFT BAFFLE		5.875	.811	3.870	ТО	7.270
	CYLINDER WALL (BRT)		2.658	.396	1.940	ТО	3.380
	OIL PAN		6.229	.461	5.460	ТО	7.100
927-1	AVERAGE PISTON	7	6.991	.214	6.580	то	7.200
	ROCKER ARM COVER		3.703	.673	2.670	ТО	4.780
	CAMSHAFT BAFFLE		5.946	.467	5.350	ТО	6.630
	CYLINDER WALL (BRT)		2.503	.415	1.810	ТО	2.950
	OIL PAN		5.970	.655	4.830	ТО	6.680
930	AVERAGE PISTON	151	6.993	.268	5.950	то	7.820
	ROCKER ARM COVER		3.158	.707	1.780	ТО	5.300
	CAMSHAFT BAFFLE		5.320	.689	3.370	то	7.390
	CYLINDER WALL (BRT)		2.815	.407	1.920	то	4.420
	OIL PAN		5.941	.572	4.650	то	8.160

TABLE 4

SEQUENCE VE DUAL PLUG ALL OPERATIONALLY VALID DATA DATA REPORTED THROUGH MARCH 31, 2001

OIL CODE	SLUDGE PART	Ν	MEAN	(MERITS*) s	s R	EPORTE	D RANGE
1002	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	122	716 0.099 0.589 099 0.061 0.242	(7.954) .4 (9.094) .4 (9.445) .4 (8.896) .5 (9.059) .6 (9.215) .4	124 4. 105 6. 105 7. 535 5. 520 3. 152 6.	51 TO 19 TO 90 TO 71 TO 60 TO 90 TO	9.17 9.45 9.75 9.50 9.59 9.65
1006	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	54	353 0.084 0.554 000 013 0.270	(8.577) .5 (9.081) .6 (9.425) .6 (9.000) .6 (8.987) .7 (9.236) .5	584 2. 540 4. 585 3. 559 4. 763 1. 596 5.	59 TO 23 TO 04 TO 50 TO 30 TO 99 TO	9.29 9.56 9.75 9.51 9.60 9.67
925-2	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	9	-1.53 781 313 091 0.093 0.406	(5.375) .1 (7.817) .6 (8.632) .4 (8.905) .2 (9.089) .6 (9.334) .2	176 4. 537 4. 190 7. 230 8. 552 6. 244 8.	40 TO 97 TO 55 TO 26 TO 77 TO 95 TO	6.64 9.16 9.25 9.16 9.47 9.53
925-3	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	144	-1.32 912 454 346 229 0.220	(6.263) .3 (7.510) .5 (8.426) .6 (8.586) .5 (8.743) .6 (9.198) .5	300 0. 598 2. 519 2. 518 2. 504 0. 508 4.	68 TO 06 TO 06 TO 80 TO 39 TO 65 TO	8.45 9.31 9.72 9.48 9.59 9.65
926-1	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	8	0.008 0.486 0.879 0.372 0.663 0.515	(9.008) .3 (9.385) .3 (9.585) .3 (9.311) .3 (9.485) .1 (9.402) .1	311 8. 304 8. 346 9. 302 8. L90 9. L14 9.	 18 TO 76 TO 30 TO 66 TO 29 TO 25 TO 	9.30 9.51 9.75 9.50 9.60 9.50
927	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	22	-1.66 875 783 954 883 694	(4.733) .4 (7.601) .6 (7.812) .6 (7.404) .6 (7.582) .6 (7.999) .6	139 1. 592 5. 392 1. 519 4. 379 3. 547 4.	25 TO 42 TO 28 TO 58 TO 00 TO 90 TO	8.60 9.53 9.70 9.36 9.35 9.43
927-1	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK UNDERSIDE OF BLOCK	7	-1.89 -1.19 -1.18 -1.20 -1.40 940	(3.398) .1 (6.714) .1 (6.740) .6 (6.686) .3 (5.940) .2 (7.440) .2	L60 2. L43 6. 523 2. 373 5. 291 3. 220 6.	40 TO 07 TO 64 TO 38 TO 91 TO 77 TO	5.13 7.40 8.20 8.33 7.54 8.32

TABLE 4

SEQUENCE VE DUAL PLUG ALL OPERATIONALLY VALID DATA DATA REPORTED THROUGH MARCH 31, 2000 PART N MEAN (MERITS*) S REPORTED RANGE

				,			
OIL CODE	SLUDGE PART	Ν	MEAN	(MERITS*)	S	REPORTE	D RANG
930	ROCKER ARM COVER CAMSHAFT BAFFLE FRONT SEAL HOUSING OIL PAN VALVE DECK	151	547 060 0.343 164 023	(8.273) (8.938) (9.290) (8.822) (8.977)	.465 .557 .557 .592 .643	2.83 TO 4.10 TO 5.26 TO 3.69 TO 2.83 TO	9.45 9.53 9.70 9.50 9.59
	UNDERSIDE OF BLOCK		0.207	(9.187)	.524	5.81 TO	9.63

Table 5 Sequence VE Industry Timeline

19950201	95-3	Start of Dual Plug VE Testing
19950515		Targets For Oil 925-3 and 930 Updated
19950523	95-5	Sludge Rating Sites Revised on Cylinder Head
19950523	95-5	Oxygen limits in test method were incorrect
19950524	95-4	AEV Correction Factor Approved (Candidates only)
19950601		Targets For Oil 1002 and 930 Updated
19950901		Reground followers introduced.
19960901	95-5	Data dictionary version 19950530 implemented
19951003		Targets for 1002; 925-3 and 930 Updated
19951101	95-6	Increased Aliphatic naphtha concentration to 50%
19951101	95-6	Added requirements to change honing oil & filter 1/15 Hrs
19951101	95-6	Changed cylinder head calibration rig calibration requirements
19951101	95-6	Allowed Torque to Yield bolts to be used twice
19951101	95-6	Corrected errors in footnote 14 and renumbered footnotes
19960101	95-7	Instituted program to monitor test fuel stored at labs
19951003	95-7	Revised pooled s for severity adjustment calculations
19960515	96-2	Implemented industry correction factors for ACW and MCW
19960901	96-1	Standard orifice mount: clean orifice daily: standard correction
19900901	JO T	calculation
19960901	96-1	Revised stage 1 to 2 RAC temperature Ramp
19960901	96-1	Calibration Frequency Changes and requirements
19960901	96-1	Specified Follower Installation Tool
19960901	96-1	Coolant Flush Cart Calibration
19960901	96-1	Pre-lube engine when downtime exceeds 8 hours
19960901	96-1	Require the use of OHTA-007-1 adapter
19960901	96-1	Required use of lifter fill chamber for VE lifters
19960901	96-1	Standardized separator height at 5.5 ± 0.25 in
19960901	96-1	Standardized sample probe distance 2.75±0.25" from exh man flange
19960901	96-1	Required pressurized engine coolant system at 10 psig
19960901	96-1	Specified engine coolant out temperature measurement at 1"
19960901	96-1	Clarified what is a shutdown and reporting requirements
19960901	96-1	Deleted retention requirements for excess oil at oil leveling
19960901	96-1	Corrected errors; footnote 2; table 3; section 9.3.1 and Fig A3.25
19961001	96-2	Forms and Data Dictionary Change, Version 19960726
19961001	96-2	Added requirement to identify sampling technique used for sampling of lab fuel supply
19961119	97-1	Humidity Calibration Requirements Added
19961119	97-1	Clean Blowby Orifice weekly
19970101	97-1	Changed AFR probe location
19970310	97-2	Changed Cam Wear measurements (Avg. Max and individual lobes) to
		micrometres
19970310	97-2	Forms and data dictionary changes to accompany wear measurement
19970010	<i></i>	units. Version 19970130
19970429	97-3	Corrected typo errors in 8.3.5, 9.3.2 and 13.2.2.1.
19970129	5, 5	Changed Nalcool to Pencool 2000
19970820	97-4	Added requirements to flow test fuel injectors, prior to each test
19970820	97-4	Changed calibration frequency for fuel flow measurement device from
2007.0020	5, 1	every 3rd test to every reference
19971124	97-5	Changed field length for DELACW and DELMCW, Moved notes 29 and 31
		into text of procedure
19971118	97-6	Allowed removal of piston staining and deleted Annex A13.
19980611	98-1	Machining of 0.5 mm pistons, Calibration frequency Changes
19980709		Test Target Update, Reference oil 1006 (N=20)
19980611	99-1	Machining of 0.5 mm pistons, Calibration frequency Changes
19990224		Test Target Update, Reference oil 1006 (N=30)
19990615	99-2	Added Procedure for re-using cylinder heads, deleted requirement to
		identify cams with lobes <50C
19991216	99-3	Revised method to allow use of non-kit parts obtained from Ford
		Dealers, for other than parts listed in the Origin of Significant
0000016	00 1	Parts Sneet (FORM A/.12)
20000910	00-T	Revised definitions to match DU2.B Glossary of Terms and Their
20010115	01 1	Delinitions Deviged gelibration from the temperature services
ZUUIUII5	0 I - I	Revised calibration frequency for temperature sensors.

SEQUENCE VE INDUSTRY OPERATIONALLY VALID DATA

Rocker Cover Sludge - Merits

SEQUENCE VE INDUSTRY OPERATIONALLY VALID DATA

Average Engine Sludge - Merits

Average Piston Varnish - Merits

Average Engine Varnish - Merits

Maximum Camshaft Wear (Micrometers)

TMC 27MAR01:11:48

Average Camshaft Wear (Micrometers)

TMC 27MAR01:11:46

Summary of AES and RCS Pooled s Value By ASTM Report Period

Summary of AEV and APV Pooled s Values by ASTM Report Period

Figure 9

Summary of ACW and MCW Pooled s Values by ASTM Report Period

