

100 Barr Harbor Drive ■ PO Box C700 ■ West Conshohocken, PA 19428-2959

Telephone: 610-832-9500 ■ Fax: 610-832-9555 ■ e-mail: service@astm.org ■ Website: www.astm.org

Committee DO2 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: W. JAMES BOVER, ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, PO Box 971,

Annandale, NJ 08801-0971, (908) 730-1048, FAX: 908-730-1197, EMail: wjbover@erenj.com First Vice Chairman: KENNETH O. HENDERSON, Cannon Instrument Co, PO Box 16, State College, PA 16804,

(814) 353-8000, Ext: 0265, FAX: 814-353-8007, EMail: kenohenderson@worldnet.att.net Second Vice Chairman: SALVATORE J. RAND, 221 Flamingo Drive, Fort Myers, FL 33908, (941) 481-4729,

FAX: 941-481-4729

Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co LP, PO Box 206, Wilmington, IL 60481,

(815) 458-0216, FAX: 815-458-0217, EMail: macvarlen@aol.com

Assistant Secretary: JANET L. LANE, ExxonMobil Research and Engineering, 600 Billingsport Rd, PO Box 480,

Paulsboro, NJ 08066-0480, (856) 224-3302, FAX: 856-224-3616, EMail: janet_l_lane@email.mobil.com

Staff Manager: DAVID R. BRADLEY, (610) 832-9681, EMail: dbradley@astm.org

December 12, 2002

Reply to: Richard E. Grundza

ASTM Test Monitoring Center

6555 Penn Avenue Pittsburgh, PA 15206 Phone: 412-365-1031

Fax: 412-365-1047

Email: reg@astmtmc.cmu.edu

Unapproved Minutes of the November 20, 2002 Sequence VG Surveillance Panel Meeting held in San Antonio, Texas

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or part, outside of ASTM committee activities except with approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 12:58 PM by Chairman Gordon Farnsworth. A membership list was circulated for members and quests to sign in. The signed membership list is included as Attachment 1. A copy of the agenda is included as attachment 2. No changes to the membership were reported during this meeting. Minutes from the May 15th, 2002 meeting were approved as written, motion to approve, Bill Buscher, 2nd, Jerry Brys. Minutes from the September 17, 2002 meeting were approved as written, motion to approve, Bill Buscher, 2nd, Jerry Brys.

Review of Action Items from Previous Meeting

- 1) 1009 targets, TMC to collect two additional data points, Complete.
- 2) Chair to remind Ford of the rate and report items for upcoming meeting. Complete.
- 3) Future Hardware Task Force. Ongoing
- 4) Ford Bore Measurement procedure. Ongoing

See attachment 3.

TMC Report

A copy of the TMC Report is included as attachment 4. Test targets on reference oil 1009 were reviewed with no comments. The status of the VE test method D5302 was discussed and the panel agreed to recommend to Subcommittee B that Test Method D 5302 be withdrawn.

RSI Report

A copy of the RSI report is included as Attachment 5. Test volume has shown a decrease, with 55 operationally valid tests reported this period, with no replicate data, so precision estimates were not available.

Fuels Report

A copy of the fuel suppliers report is included as attachment 6. There has been little degradation of the fuel in storage at Dow. There is a 51 month supply at current usage rates. It was brought to the attention of the panel that there are adjustments being made to the fuel in storage, as the low end points tend to increase. Jim Carter informed the group that light ends are being added to the fuel. The panel tasked Jim with determining when these adjustments have been made and how these adjustments are being made. Plots of lab analysis data were also reviewed. No significant items were noted when individual lab data was reviewed. Questions abounded regarding what components were being added and what the purity of the added constituents is. Haltermann was tasked with identifying when these adjustments were made, what components were added, and what criteria were used to determine when these adjustments were made.

Test Sponsor Report

Barry Jecewski gave the test sponsor report, which is included as attachment 7. Labs have received Ford donated engines. Dan mentioned that the kits are also being assembled and deletion of cylinder heads is probably not an option. Barry would like to evaluate candidate data for follower pin wear, ring wear and bore wear and would like additional time to evaluate these parameters. Barry would also like to evaluate candidate blocks for bore wear. Gordon asked what the variability of the measurement would be. Field test data indicated that a representative value may be 14 - 17 wt. The panel agreed to extend the evaluation of ring wear and pin wear for an additional 6 months. There was no concensus to remove these measurements at this time, however, the panel agreed that if no information supporting the need for these measurements was forth coming at the May, 2003 meeting, these measurements will be dropped.

O&H Report

Dan Worcester gave the O & H report, included as attachment 8. The switch to Romeo engines will probably take place in July of 2003. Dave Glaenzer asked who is spearheading the hardware redistribution, Dan will coordinate the redistribution of hardware. At least two labs will begin to run out of hardware about February, 2003. History of development efforts using the Romeo Hardware was discussed. Final decision was made to use Romeo blocks with AER cylinder heads. Fuel dilution data was reviewed, with AER heads giving higher fuel dilution than the Romeo heads. Sludge ratings appear to be slightly different. Because of potential for cylinder head damage, cam bearings will be installed in the AER heads. A sample of a cam, which exhibited excessive journal wear was circulated. Both Perkin Elmer and SwRI have engines built which could start a test to evaluate the cam bearing change, as well as evaluate fuel dilution numbers from both labs. Jerry Brys asked Dave Walker of AER if the cam bearings were the same as mains and rods and Dave replied that the cam bearings are from a different supplier. Dave did mention that Federal Mogul, the rod and main bearing supplier, is working on developing a bearing for this application. Matrix for AER/Romeo engines will be ten tests on two bore sizes in five labs with two oils. Beto Ariaza asked if the group would like to conduct a lifetime buyout, Ben Weber said it would depend on the costs if the panel would decide to do a onetime purchase. TEI agreed to work with labs offline to address the potential for a one time build out.

Light Duty Rating Task Force

No presentation was given by Frank Farber. A copy of the memorandum generated by Scott Parke concerning the conduct of recent workshops will be included in the minutes (see attachment 9). The TMC is currently tasked with conducting rating workshops, however, CRC may conduct workshops and will be issuing these out for bids. An ASTM workshop will be scheduled for a light duty workshop. A copy of the TMC memo was circulated to panel members. Bill Buscher asked that the workshop address oil screen clogging. Bill also requested that as an O&H item, that for the cylinder head build, the labs be allowed to review the VG AER head build out, which AER agreed would not be a problem. Both SwRI and Perkin Elmer, along with Beto, will be available to review the head build up for the matrix engines. Dan, Beto and Bill will work with Dave Walker to conduct this build.

Old Business

At the September meeting, it was identified that a number of engines were sold to AER. A question was asked if these engines were equivalent. A motion was made to allow these engines as an alternate source. David Walker indicated these engines may be available for another year or so. The group requested that AER notify the panel when they will be disposing the remaining engines. Bill Buscher said that the number of engines that may be needed will probably about one hundred. Numerous discussions took place regarding the motion, and when voted upon the results were 6 for, 1 against and 3 waives.

Scope and Adjectives

Scope and adjectives were reviewed and are included as attachment 10. The usage rate of 1009 was reviewed and the panel agreed to use oils 925-3, 1006-2, 1007 and 1009 equally. The panel agreed to work on redistribution of engines so that there will be no wasting of the current hardware.

Under new business, the requirement to photograph parts was made optional, a revision to test method D 6593 was approved, 8 for, 1 against and 1 waive.

The meeting was adjourned a 4:01 PM

A copy of the Motions and Action Items from this (November 2002) meeting is included as attachment 11.

Sequence VG Surveillance Panel November 20, 2002

Name
Richard Grundze
Barry Decews/4
Frank Fernandez
FRANK FARRER
Alfredo MONTEZ
David Walker
DAVID GLAENZER

JIM CARTRE

DAN WORCESTEL

TIM CAUDILL

CLAYFON J. KNIGHT

BETO ARAIZA

PATRICK LAI JERRY BRYS WILLIAM A. BUSCHER III

RICK OLIVER TOM FRANKLIN BEN WEBER Phil Seinto Company ASIM TIME Ford Motor Chevron Oronite

CHEXPON DIONITE
FIER Monnaforthing

Ethyl HALTERMANN

PEAR AShland Test Engineering TEI IMPERIAL OI

IMPERIAL OIL LUBRIZOL SWIZI

PEAR SWRI LZ cmail addicss

ceg@astrutrac.com.cdu

BSECEWSKDFord.com

ffer@chevrontexaco.com

fmf@astrutrac.cmv.odu

amm ngahevron Texaco.com

davidwolker@Acture.com

dave-glaenzer@ethyl.com

JECARTIER@dow.com

The workester @ parimer. com

TL CAUDILL @ Ashland. Com

CKNIGHT DTEI-Net. Com

BARAIZA CTEI-Net. Com

patrich. L. lai @ esso, com

sabs @ / Ubrizoc. com

crickolivere attbicom tom. franklin@perkinelmge.com bwebereswri.edu PRSE LUBRIZOL. Com

Agenda

Sequence VG Surveillance Panel November 20, 2002 1:00PM – 5:00PM San Antonio, Texas

- 1. Chairman comments
- 2. Attendance sign-in sheet distribution
- 3. Membership changes
- 4. Motion and Action recorders
- 5. Approval of minutes for May 15, 2002 and September 17, 2002 meetings
- All
- 6. Review action Items from last meeting
- G. Farnsworth

- 7. TMC Reference Oil Report
 - Category oil 1009 status

- R. Grundza
- 8. RSI Candidate Status & Precision Report
- C. R. Oliver

- 9. Fuels supply and reblend status
 - Fuel batch analytical history

Worcester/Carter

- 10. VG Test Developer Report
 - Status of Romeo (2000 model) hardware
 - Status of engine parts kits
 - Review support data for Roller pin wear Ring wear

Barry Jecewski

Agenda

Sequence VG Surveillance Panel November 20, 2002 1:00PM – 5:00PM San Antonio, Texas

11. VG O&H Report

D. Worcester

- Status of Romeo engine matrix
- Timeline for Romeo engine introduction
- 12. Light Duty Rating Task Force

F. Farber

14. Scope and Objectives

All

- 15. Old Business
 - -AER engine motion
- 16. New Business
 - Recommend to Tech B-01 that the VE standard be withdrawn
- 17. Adjourn

Action Items Review

- 1.) TMC will collect two more 1009 test results, for a total of five, to calculate the test targets and LTMS standard deviation. Status: Done
- 2.) The chair will remind Ford of the rate and report items for the upcoming November meeting. Status:

 Done
- 3.) Establish future engine supply Task Force. Chair selected but no meeting yet
- 4.) Evaluate new Ford bore measurement procedure to determine need. <u>In progress by Barry Jecewski</u>

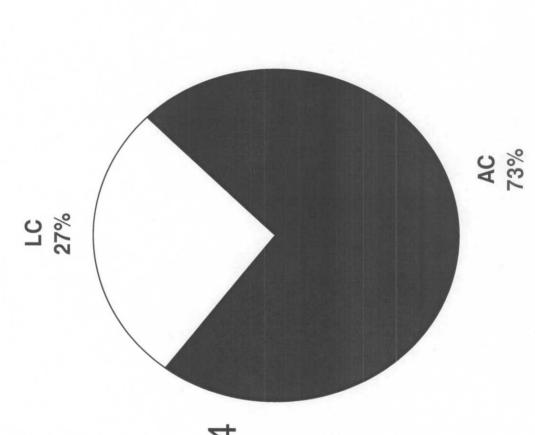
Sequence VG Meeting

November 20, 2002 San Antonio, TX

This report can be found on the TMC web site at

ftp://ftp.astmtmc.cmu.edu/docs/gas/sequencev/semiannualreports/vg-10-2002.pdf

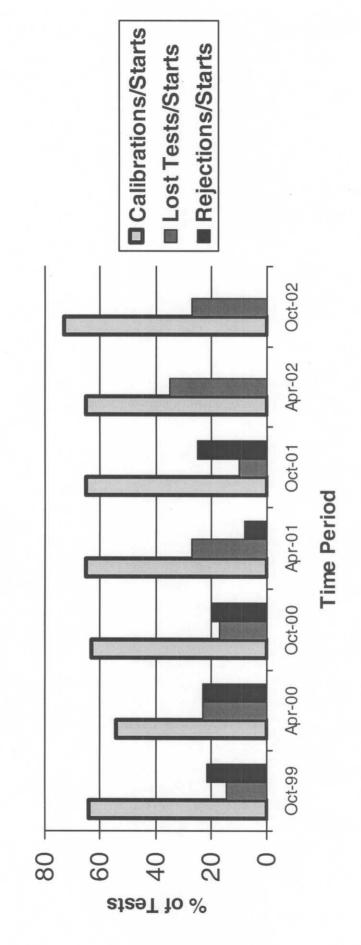
Sequence VG Semiannual Report


	Reporting Data	Calibrated as of 9/30/02
Number of Laboratories	22	4
Number of Stands	11	7

Laboratory/Stand Distribution

Reference Starts

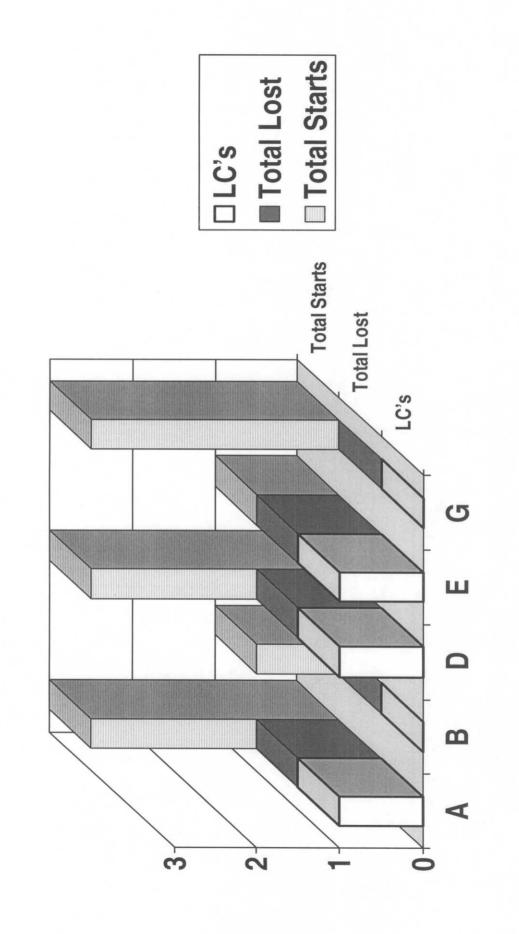
Total Starts this Period: 15 In addition to the Calibration tests, 4 results run to evaluate Romeo hardware were included in the starts.



■ AC

CC

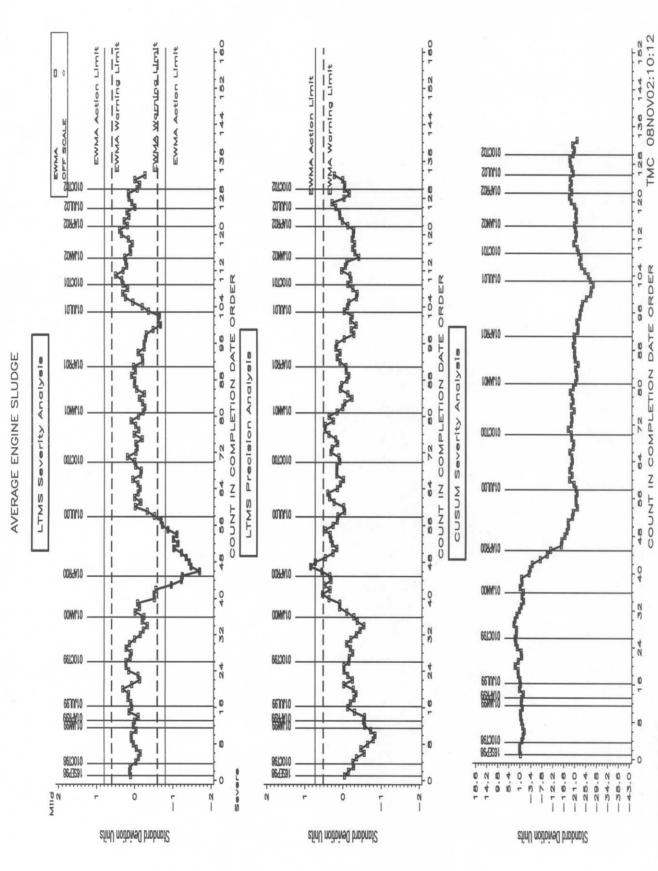
Rejected Test per Start Rates for the Period Ending Comparison of Calibration per Start, Lost Test and October 2002 with Previous ASTM Periods


Calibration Attempt Summary

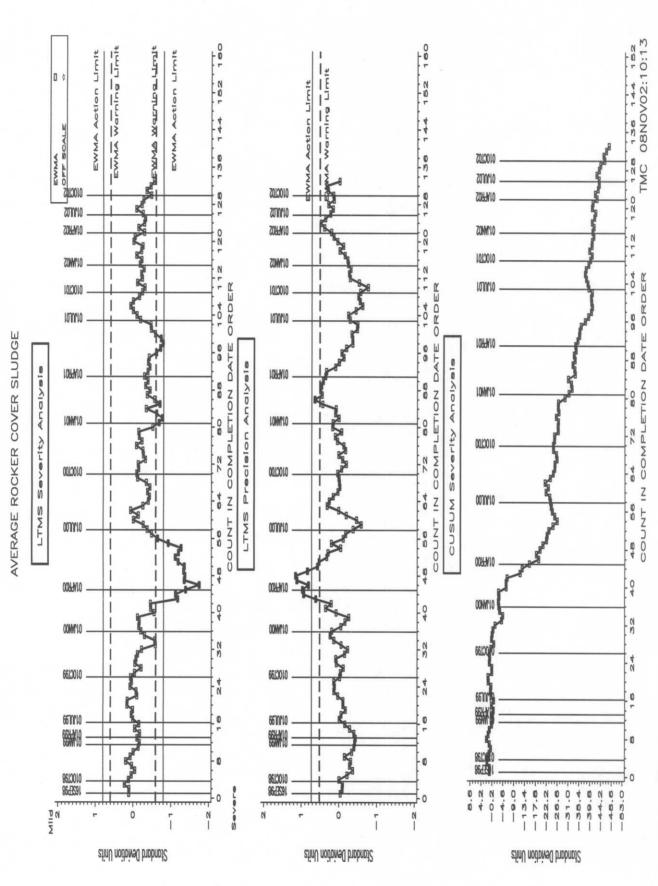
Lost Test Summary

- Stage II AFR too rich (1)
- MAP QI (1)
- Damaged Oberg filter, exhaust backpressure and speed QI (1)

Laboratory Lost Test Rate

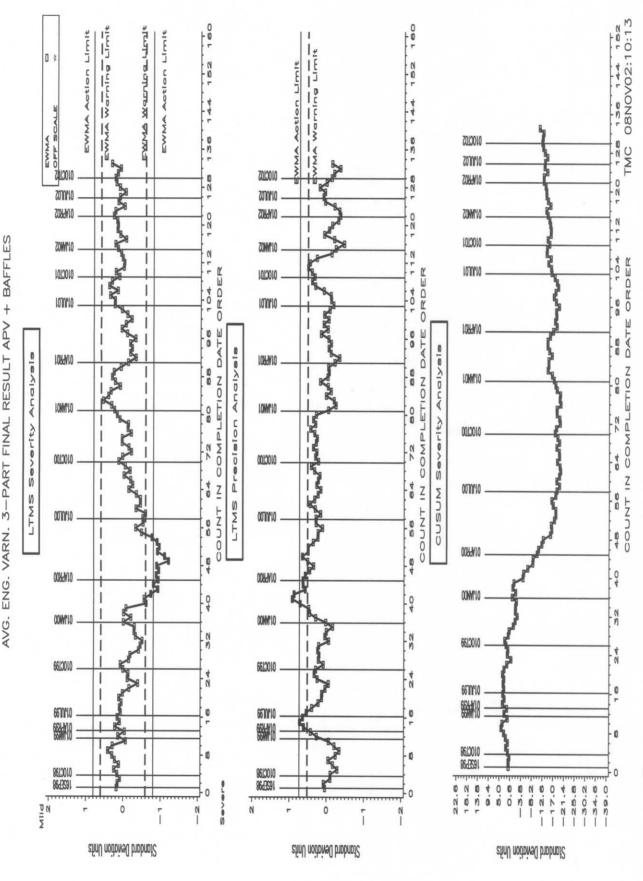


Industry Severity Summary

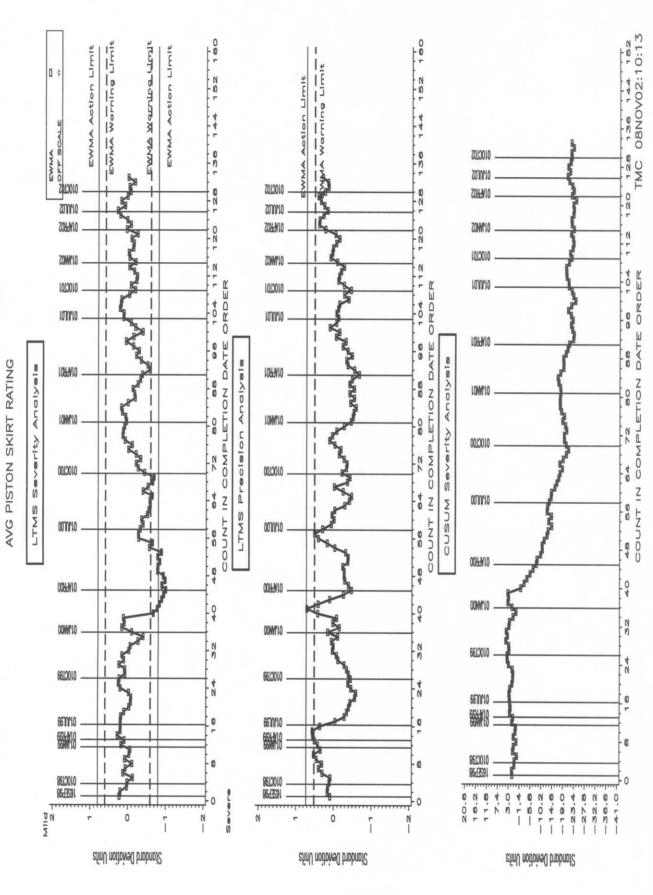

Delta in Reported Units	-0.05	0.00	0.12	0.00	5.8
<u>Based</u> <u>on</u>	8.0	7.8	7.5	8.9	20
<u>Confidence</u> <u>Interval</u>	7.74-8.06	7.66 – 7.95	7.72 – 7.98	8.83 – 9.03	6.1-31.6
Mean Delta/s	-0.390	0.010	0.297	0.135	-0.354
Pooled s All Oils	0.130	0.174	0.405	0.137	0.915
Variable	RAC	AES	APV	AEV	OSCR

Average A/s By Laboratory

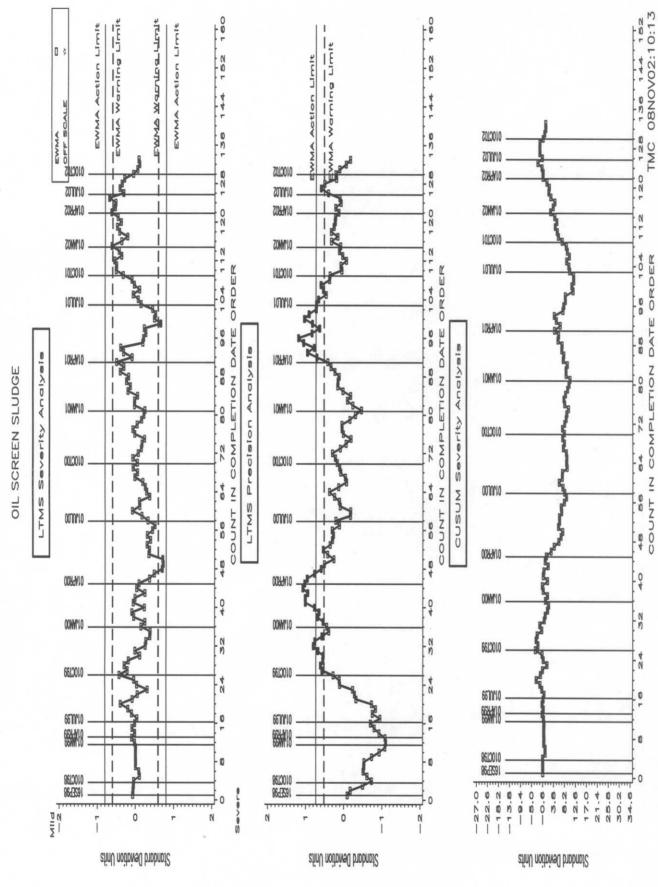
	_	_	_		
APV	-0.96	0.67	1.48		0.22
RAC	0.18	0.11	-1.08		-0.47
AEV	-0.12	-0.13	0.94		-0.15
OSCR	-0.46	1.78	-1.60	1	-0.16
AES	0.40	-1.18	-0.24	1	0.26
Laboratory	A	В	D	Э	G



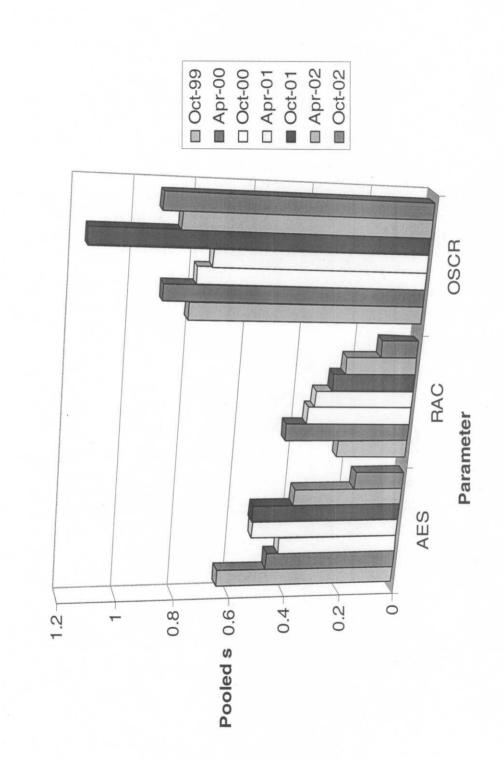
Test Monitoring Center



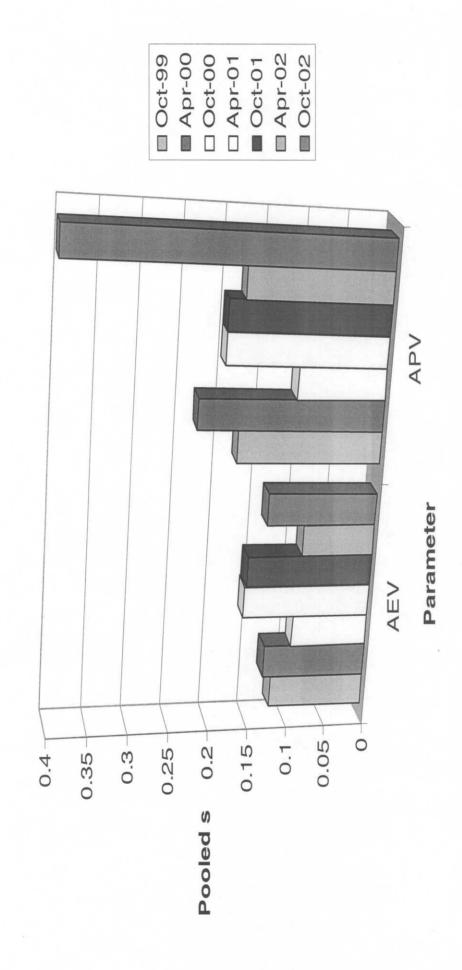
Test Monitoring Center


AVG. ENG. VARN. 3-PART FINAL RESULT APV + BAFFLES VG INDUSTRY OPERATIONALLY VALID DATA

Test Monitoring Center



Test Monitoring Center



Test Monitoring Center

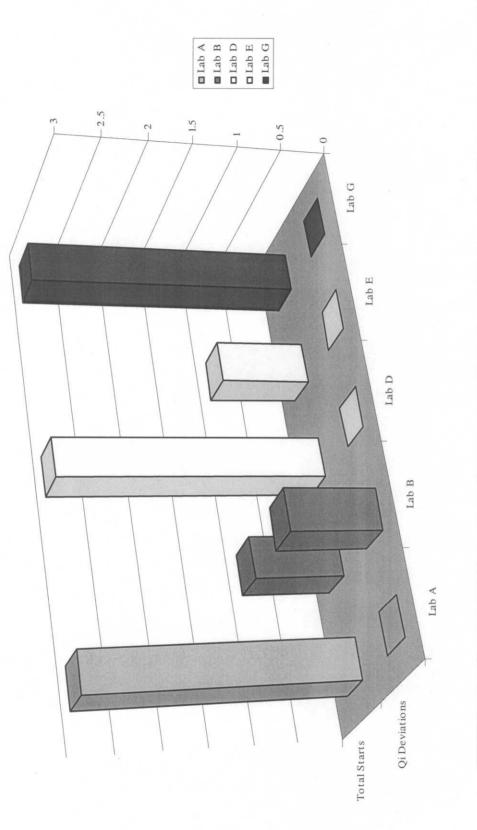
Comparison of Pooled Precision Estimates By ASTM Report Period

Comparison of Pooled Precision Estimates **By ASTM Report Period**

REG

Information Letters

- 2002. This information letter deleted the requirements to measure bore wear, replaced alternate power supply to power the EEC Information Letter 02-4 was issued July 8, rating of Rocker Arm Covers for varnish with module and lambda sensors and revised the Cam Baffle ratings, allowed use of an frequency for calibration of the lambda sensor.
- 25, 2002. This letter removed a number of Information Letter 02-5 was issued October remedial statements.


REG

Number of Tests, by Oil at Lab and TMC Industry Reference Oil Inventory

Estimated life	3+ years	< 1 year	3+ years	3+ years	3+ years
Laboratory Inventory, in tests	6	6	2	-	9
TMC Inventory, in tests	58	0	1718	168	338
TMC Inventory, in gallons	174	0	5154	504	1015
iio	925-3	1006	1006-2	1007	1009

Reference Oils 1006. 1007 and 1009 are used across multiple test areas, TMC inventory represents total amount of that oil on hand.

Summary of QI Deviations

	Number of Tests
Speed 1	1

Summary

- and historical rates, while the lost test per start rate has decreased slightly with respect to the previous period. There Calibrations per start compares well with the previous period were no rejected tests this period.
- AES was on or near target, while APV, AEV and OSCR trended mild and RAC trended severe for the period.
- Precision for AES, AEV, RAC and OSCR compares well with previous period and historical estimates. APV precision has degraded with respect to the previous period and historical estimates.

REG

1009 Targets

- Three Test Targets Issued August 1, 2002
- Updated with two additional tests, updated October 25, 2002
- Next Update at ten tests. Six results reported to date.

1009 Targets (n= 5)

Parameter	Mean	Standard Deviation
AES	7.78	0.36
RAC	9.15	0.22
AEV	8.93	0.11
APV	7.84	0.40
OSCR	2.670	1.303
HSR	None Allowed	owed

Test Monitoring Center

Data Used to Generate Targets

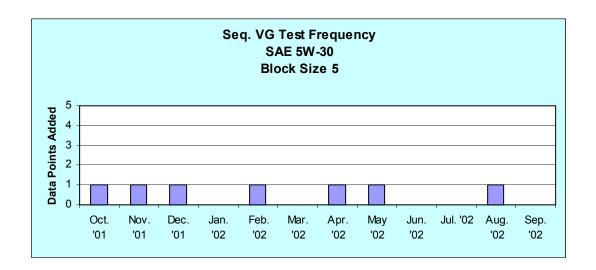
Unadjusted Results

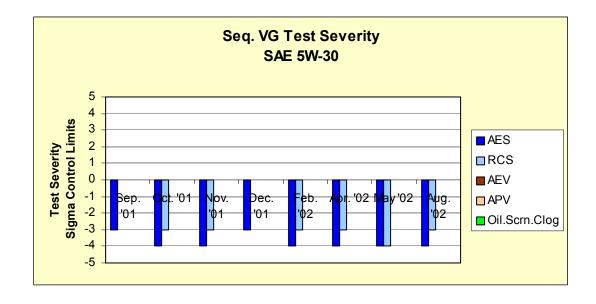
Lab	AES	RAC	AEV	APV	OSCR	HSR
A	8.12	9.33	8.78	7.26		0
В	7.74	9.26	8.91	8.16	22	0
Ð	8.13	9.16	60.6	8.22	5	0
A	7.29	8.78	8.97	7.64	75	0
Ð	7.60	9.23	8.91	7.90	34	0

Adjusted Results

)			
Lab	AES	RAC	AEV	APV	OSCR	HSR
А	8.12	9.33	8.78	7.26	2	0
В	7.74	9.26	8.91	8.16	12.14	0
G	8.13	9.16	60.6	8.22	5	0
A	7.29	8.78	8.97	7.64	75	0
Ü	09.7	9.23	8.91	7.90	34	0
Fast Monitoring	Center					MEG

Seq. VG Test


Test Frequency


• No EWMA data points were added in September, but one data point was added for August 2002.

Test Severity

- The last EWMA data point added in August 2002 indicated:
 - Average Engine Varnish (AEV), Average Piston Varnish (APV), and Oil Screen Clogging were in control.
 - Rocker Cover Sludge (RCS) moved back from exceeding the 4-sigma Control Lines to between the 3 and 4-Sigma control in a severe or lower performance direction.
 - Average Engine Sludge continued to exceed the 4-Sigma Control Line in a severe or lower performance direction.

For Detailed Information: http://www.registration-systems.com/Protected/PCMO.htm

SEQUENCE VG FUEL REPORT

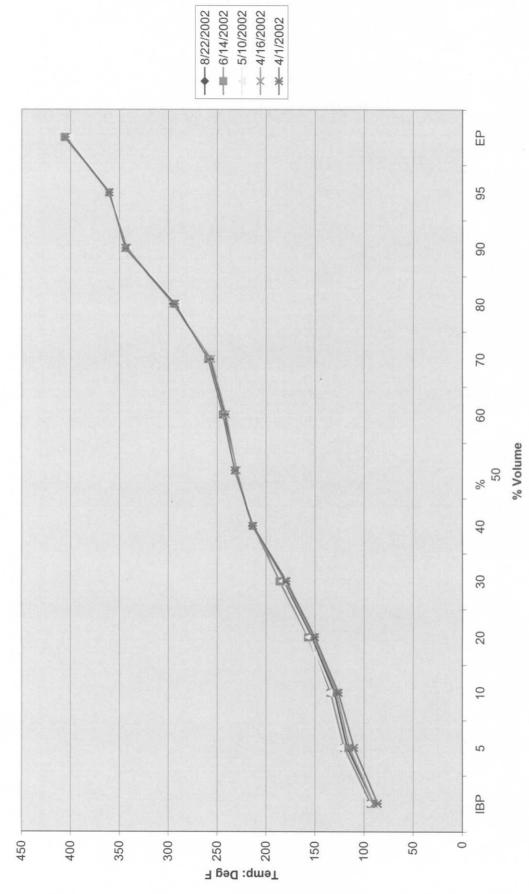
September 30, 2002

September 50, 2002	
SALEABLE GALLONS AT HALTERMANN PRODUCTS	435,202
GALLONS SHIPPED SIX MONTH PERIOD 4/01/2001 – 9/30/2002	50,550
AVERAGE USAGE PER MONTH	8425
NUMBER OF TESTS SUPPORTED BY PRESENT INVENTORY	621
NUMBER OF MONTHS OF INVENTORY ON HAND	51

HALTERMANN PRODUCTS ASTM Seq. VG Nov. 2002

 PRODUCT CODE:
 SVGM2
 Batch No.:
 9906416
 9906416
 9906416

 PRODUCT CODE:
 HF295
 Tank No.:
 74
 74
 74


 Analysis Date:
 8/29/2002
 8/1/2002
 7/2/2002

HOD 086	UNITS °F °F °F °F	84 112 125	85 113 127	88 117
086	°F °F °F	112 125	113	
086	°F °F °F	112 125	113	
	°F °F	125		117
	°F	0.000	127	
	8	140		128
		148	151	150
- 1	°F	177	180	181
- 1	°F	212	215	213
	°F	230	230	232
	°F	241	242	240
	°F	255	256	258
- 1	°F	292	294	293
	°F	343	344	345
	°F	360	361	359
	°F	405	400	398
	vol %	97.8	98.0	98.5
- 1	vol %	1.0	1.0	1.0
	vol %	1.2	1.0	0.5
4052	°API	57.3	57.1	57.0
4052	-	0.7495	0.750	0.750
323	psi	9.2	9.1	9.0
5191	psi	9.1	9.1	8.9
4294	wt %	< 0.01	< 0.01	< 0.01
525	minutes	>1440	-5.000.01 (page 2) (r	
381	mg/100mls	2	3	3
381	mg/100mls	<1	<1	<1
	4052 323 5191 4294 525 381	°API 4052 - 323 psi 5191 psi 4294 wt % 525 minutes 381 mg/100mls	4052 °API 57.3 4052 - 0.7495 323 psi 9.2 5191 psi 9.1 4294 wt % <0.01	vol % 1.2 1.0 4052 °API 57.3 57.1 4052 - 0.7495 0.750 323 psi 9.2 9.1 5191 psi 9.1 9.1 4294 wt % <0.01

-X-11/10/2000 -*-11/10/2000 -- 12/31/2001 ---3/9/2001 2/5/2001 Б % Volume % IBP **Temp: Deg F**

Lab 'E' Distillation Summary Haltermann SVGM

Lab 'D' Distillation Summary Haltermann SVGM

Lab 'E' Distillation (Deg F) Summary Haltermann SVGM

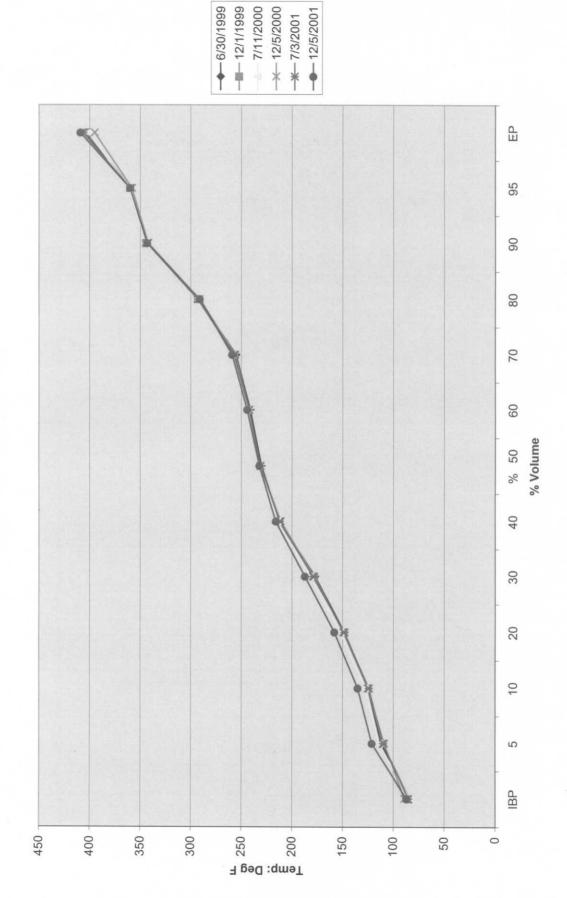
1BP 87 10 115 10 130 20 154 30 183 40 214 % 50 232 60 242 70 258	88 114 127	70		
10 20 30 40 50 60	1114	80	84	84
10 20 30 40 50 60	127	1111	110	108
20 30 40 50 60	121	127	126	125
30 40 50 60	151	151	152	150
50 60	181	181	181	180
50	214	213	214	213
	231	232	232	232
	242	243	243	242
	256	257	257	257
80 295	292	293	292	293
90 344	343	344	343	343
95 361	357	359	357	359
EP 405	396	404	400	400

Lab 'D' Distillation (Deg F) Summary Haltermann SVGM

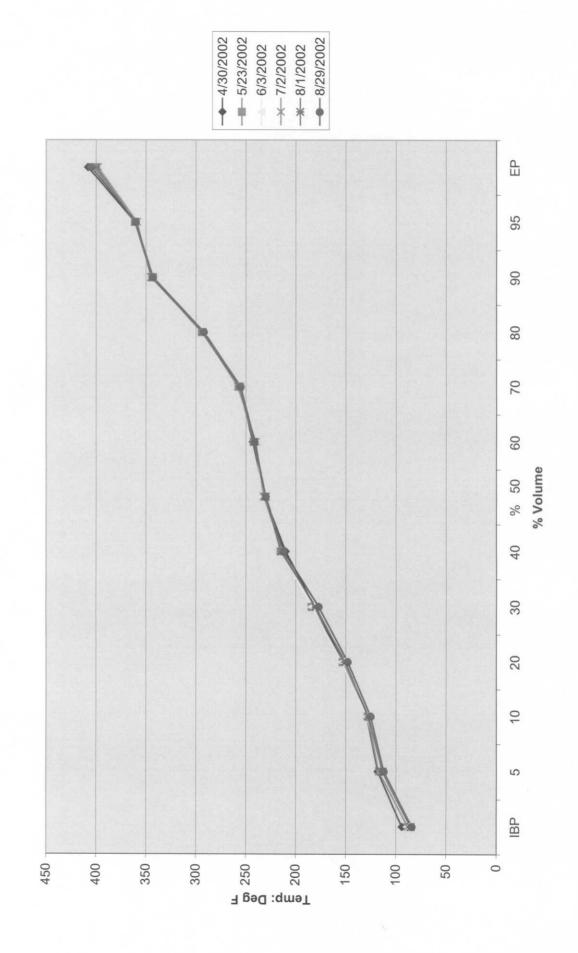
		8/22/2002	6/14/2002	5/10/2002	4/16/2002	4/1/2002
IBP		06	93	96	06	98
	2	117	120	124	115	110
	10	130	134	136	128	126
	20	153	157	156	152	150
	30	182	186	183	181	179
	40	214	213	212	214	213
%	20	231	231	231	230	232
	09	242	244	244	241	244
	70	257	259	259	256	259
	80	295	291	291	295	293
	06	343	342	342	342	344
	92	360	360	359	361	360
EP		406	406	401	405	405

Lab 'C' Distillation (Deg F) Summary Haltermann SVGM

BP 86 91 87 86 5 112 115 109 114 112 10 127 130 125 128 127 20 151 154 149 150 151 30 180 182 178 180 180 40 213 213 212 213 212 60 242 245 242 241 241 70 256 258 256 256 256 80 294 291 292 292 292 80 343 344 343 342 90 343 360 361 359 358 EP 405 406 402 404 404			7/2/2002	6/10/2002	7/2/2002 6/10/2002 4/16/2002	4/2/2002	1/9/2002
5 112 115 109 114 10 127 130 125 128 20 151 154 149 150 30 180 182 178 180 40 213 213 212 213 50 231 233 231 230 60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 90 361 360 361 359 95 361 405 406 402 402	35		98	91	87	87	98
10 127 130 125 128 20 151 154 149 150 30 180 182 178 180 40 213 213 212 213 50 231 233 231 230 60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 95 361 360 402 402		5	112	115	109	114	112
20 151 154 149 150 30 180 182 178 180 40 213 213 212 213 50 231 233 231 230 60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 405 406 402 402 402		10	127	130	125	128	127
30 180 182 178 180 40 213 213 212 213 50 231 233 231 233 60 242 245 242 241 70 256 258 256 251 80 294 291 292 292 90 343 344 344 343 95 361 360 361 359 405 406 402 402		20	151	154	149	150	150
40 213 213 213 213 50 231 233 231 230 60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 405 406 402 402 402		30	180	182	178	180	180
50 231 233 231 230 60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 95 361 360 361 359 405 406 402 402 402		40	213	213	212	213	212
60 242 245 242 241 70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 95 361 360 361 359 405 406 402 402		20	231	233	231	230	230
70 256 258 256 256 80 294 291 292 292 90 343 344 344 343 95 361 360 361 359 405 406 402 402		09	242	245	242	241	241
80 294 291 292 292 90 343 344 344 343 95 361 360 361 359 405 406 402 402		70	256	258	256	256	256
90 343 344 344 343 95 361 360 361 359 405 406 402 402		80	294	291	292	292	292
95 361 360 361 359 405 406 402 402		90	343	344	344	343	342
405 406 402 402		95	361	360	361	359	358
	۵.		405	406	402	402	404

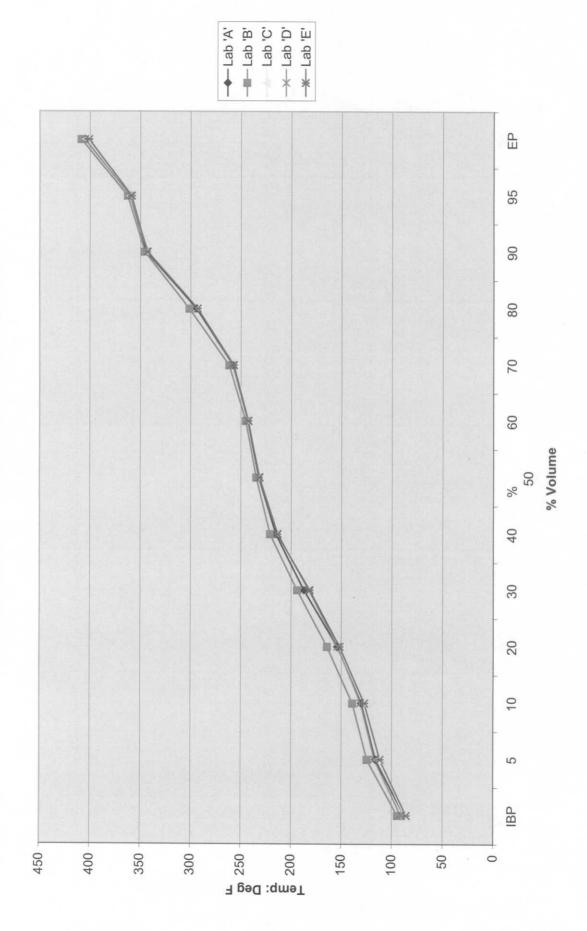

vtext	
critical	
CMIR	
ops	

Lab Has Marked LABVALID as V	Lab Has Marked OPVALID as has	round(wtd,0.5) eq round((1*g1uwd + 10*g2uwd + 35*g3uwd + 70*g4uwd + 3.5*12uwd + 20*13uwd + 35*14uwd),0.5) was NOT true.
	43206	
-	2	က


→ 7/2/2002 **-=** 6/10/2002 4/16/2002 -X-4/2/2002 -*-1/9/2002 EP % Volume % IBP Temp: Deg F

Lab 'C' Distillation Summary Haltermann SVGM

SVGM Distillation Curves - Initial Semi-Yearly Haltermann Products - Tank 74


SVGM Distillation Curves - Latest Six Months Haltermann Products - Tank 74

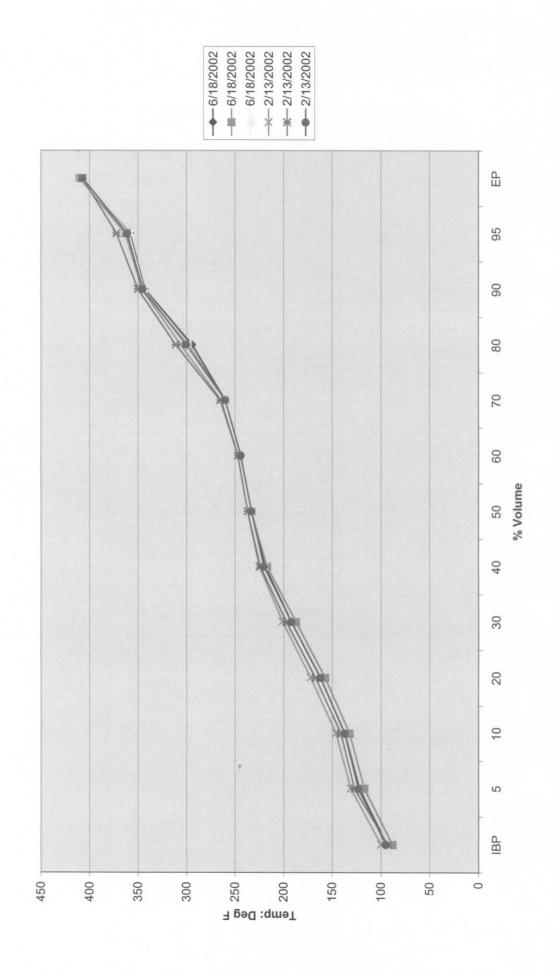
SVGM Distillation Curve (Deg F)Summary Haltermann Products - Tank 74

6/30/1999 12/1/1999 7/11/2000 12/5/2000 5 84 84 89 10 112 110 114 109 20 148 149 152 125 30 177 178 182 149 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 256 80 292 293 294 291 90 343 344 344 342 95 360 361 365				Initial Semi-Yearly	Yearly		
P 84 84 84 89 5 112 110 114 109 10 125 125 125 125 20 148 149 152 149 30 177 178 182 178 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 344 342 95 360 361 358 95 405 401 395		6/30/1999	12/1/1999	7/11/2000	12/5/2000	7/3/2001	12/5/2001
5 112 110 114 109 10 125 125 125 125 20 148 149 152 149 30 177 178 182 178 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 342 358 95 360 361 358 95 405 401 395	IBP	84	84	84	68	85	87
10 125 125 128 125 20 148 149 152 149 30 177 178 182 178 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 344 342 95 360 360 361 358 95 405 401 395	5	112	110	114	109	110	121
20 148 149 152 149 30 177 178 182 178 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 256 80 292 293 294 291 90 343 344 344 342 95 360 360 361 358 94 405 401 395	10	125	125	128	125	124	135
30 177 178 182 178 40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 342 342 95 360 360 361 358 405 405 401 395	20	148	149	152	149	148	158
40 212 213 214 211 50 230 231 231 231 60 241 242 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 342 95 360 360 361 358 405 405 401 395	30	177	178	182	178	179	187
50 230 231 231 231 60 241 242 242 242 70 255 257 256 80 292 293 294 291 90 343 344 342 342 95 360 360 361 358 405 405 401 395	40	212	213	214	211	212	216
60 241 242 242 242 242 70 255 257 257 256 80 292 293 294 291 90 343 344 344 342 95 360 360 361 358 405 402 401 395	% 50	230	231	231	231	231	232
70 255 257 257 256 80 292 293 294 291 90 343 344 342 342 95 360 360 361 358 405 402 401 395	09	241	242	242	242	242	244
80 292 293 294 291 90 343 344 344 342 95 360 360 361 358 405 402 401 395	70	255	257	257	256	257	259
90 343 344 344 342 95 360 360 361 358 405 402 401 395	80	292	293	294	291	293	291
95 360 360 361 358 405 402 401 395	90	343	344	344	342	343	343
405 402 401 395	95	360	360	361	358	360	360
	Б	405	402	401	395	406	409

Haltermann SVGM - All Labs Ave Distillation Curves

All Labs Average Distillation (Deg F) Summary Haltermann SVGM

		Lab 'A'	Lab 'B'	Lab 'C'	Lab 'D'	Lab 'E'	All Labs
IBP		87	94	87	91	86	89
	5	116	124	112	117	112	116
	10	130	139	127	131	127	131
	20	154	164	151	154	152	155
	30	187	194	180	182	181	185
	40	215	221	213	213	214	215
%	50	232	235	231	231	232	232
	60	243	245	242	243	242	243
	70	258	262	256	258	257	258
	80	294	301	292	293	293	295
	90	344	346	343	343	343	344
	95	360	363	360	360	359	360
EP		405	409	404	405	401	405


4/24/2001 -X-3/16/2001 --- 6/10/2002 -*-3/16/2001 ---9/25/2001 EP % Volume % IBP Temp: Deg F

Lab 'A' Distillation Summary Haltermann SVGM

Lab 'A' Distillation (Deg F) Summary Haltermann SVGM

		6/10/2002 9/25/2001 4/24/2001 3/16/2001 3/16/2001	9/25/2001	4/24/2001	3/16/2001	3/16/200
IBP		91	84	84	91	87
	5	120	113	110	121	116
	10	135	127	124	136	130
	20	159	150	148	161	154
	30	187	181	181	191	191
	40		214	215	220	220
%	20	234	231	232	235	232
	09	246	242	243	246	243
	70	260	256	257	261	258
	80	293	293	294	300	296
	90	344	343	344	346	344
	95	360	359	360	363	361
EP		399	406	405	410	405

Lab 'B' Distillation Summary Haltermann SVGM

Lab 'B' Distillation (Deg F) Summary Haltermann SVGM

		6/18/2002	6/18/2002 6/18/2002	6/18/2002	2/13/2002	2/13/2002	2/13/2002	
IBP		94	88	95	100	93	95	
	5	122	117	126	131	127	123	
	10		132	140	146	141	137	
	20	162	157	165	172	167	162	
	30	192	187	194	201	197	192	
	40		217	220	225	224	220	
	50		233	234	237	237	233	
	09		244	244	247	247	244	
	70		260	261	264	265	260	
	80		298	299	306	311	300	
	90	343	345	344	346	350	345	
	95		362	359	363	372	361	
EP		410	408	409	410	407	407	

→ 7/2/2002 **-=** 6/10/2002 4/16/2002 ×-4/2/2002 -*-1/9/2002 ЕР % Volume IBP Temp: Deg F

Lab 'C' Distillation Summary Haltermann SVGM

Sequence VG Test Report

ASTM Sequence VG Surveillance Panel Meeting San Antonio, Texas November 20, 2002

Barry Jeceewski

Fuels and Lubricants Engineering

Review support Data For Roller Pin and Ring Wear Measurements:

determine if there is a correlation between candidate oil(s) and roller pin follower wear, ring >A formal request has been made to RSI for a summary of candidate wear measurements on roller pin and ring wear. As previously stated, the objective of this request is to wear, and bore wear. The topic of bore wear will be discussed below.

Review Bore Wear Data on Seq. VG Engines:

> See attached sheets.

>After the analysis of bore wear on engines run with varies reference oils, formal request will be made to measure bore wear on candidate engines. Barry Jecewski
Gord Meter Company,
Fuels and Lubricants Eng

Seq. VG Test Developer Report

Status of 4.6I-2V Romeo (2000 model year hardware):

As of 11/18/02 (104) model year 2000 Ford Romeo 4.6 engines have been sold for future Sequence VG testing. Ford Power Products will liquidate any remaining model year 2000 Romeo engines during the first quarter of 2003. Ford Motor Co. has funded and supplied (8) Ford Romeo 4.6L-2V engines for matrix testing.

Status of Engine Part Kits:

All engines part kits (pistons/rings) are being processed

Barry Jecewski

Sond Meter Company

Fuels and Lubricants Eng

The VG ROMEO MATRIX

VG SURVEILLANCE PANEL SAN ANTONIO 11.20.2002

AER Engine Supply

, ,	Ma	May Est.			Curre	Current Picture	ure	
•	AER	DATE	USEAGE	GF-3	USE	AER	DATE	USEAGE
*	270	May-02	15	May-00	20		May-02	16
	255	Jun-02	15	Jun-00	19		Jun-02	9
	240	Jul-02	18	Jul-00	22		Jul-02	17
*	222	Aug-02	20	Aug-00	23		Aug-02	20
•	202	Sep-02	22	Sep-00	24		Sep-02	9
•	180	Oct-02	25	Oct-00	39	184	Oct-02	12
*	155	Nov-02	30	Nov-00	29	172	Nov-02	12
*	125	Dec-02	35	Dec-00	32	160	Dec-02	12
*	90	Jan-03	34	Jan-01	26	148	Jan-03	12
•	56	Feb-03	32	Feb-01	33	136	Feb-03	12
-	24	Mar-03	24	Mar-01	39	124	Mar-03	15
*	1000	Apr-03	35	Apr-01	35	109	Apr-03	30
•	965	May-03	30	May-01	30	79	May-03	30
*	935	Jun-03	21	Jun-01	21	49	Jun-03	30
•	914	Jul-03	27	Jul-01	27	19	Jul-03	30
•	887	Aug-03	27	Aug-01	27	720	Aug-03	25
•	860	Sep-03	16	Sep-01	16	695	Sep-03	20
*	844	Oct-03	23	Oct-01	23	675	Oct-03	15
*	11.15.2002							2

Matrix History

- SwRI and Ford Development
- 01.18.2001 O&H Meeting called charge are dials. to develop Romeo Matrix. Extended length and reduced oil
- 05.15.2002 Reduced oil charge matrix stopped.

11.15.2002

Matrix History

 07.16.2002 selected extended length test and 4 runs per Romeo block.

 10.2002 Matrix engines received.

11.2002 Decision to use AER heads on Romeo block.

Matrix Time Line

à	-	à	à	à	à	à	-	-	-	À	À	à		6	1	1	-	-)
													6	5	4	ω	N	_	₽	
																			0	
													INDUSTRY REVIEW	LABS SECOND TEST	LABS FIRST MATRIX RUN	SWRI AER/ROMEO TEST	RECEIVE PISTONS/RINGS	RECEIVE ROMEO ENGINES	Task Name	
																			Sep	September
																			Oct	October
																		1 1	Nov	November
																			Dec	December
																			Jan	January
																193			Feb	rebruary

Supply of AER Heads

- AER CAN SUPPLY SETS OF F1 & F4 AVAILABLE SOON. HEADS. THE PRICE WILL BE
- TEI WILL LOOK FOR BUYER FOR F5, F8 HEADS. NEW HEADS WILL BE IN THE ROMEO ENGINE KITS.
- INDUSTRY HAS ABOUT 300 HEADS AT LABS FOR REBUILD

11.15.2002

Matrix Configuration

- 10 TESTS, 5 LABS, 2 OILS, 2 0.500mm OVERSIZE PISTON/RING SIZES [0.125 and
- REGULAR CONFERENCE CALLS ON RESULTS DURING MATRIX
- DUAL RATING AT SWRI AND PEAR

11.15.2002

7

Matrix Design

8	A	LABS
925-3	1006	OILS
0.5	0.125	BORES

7		
-		

Ш	C
	1

2	Oil Oil	Oil 1006	
Lab	Bore .125	Bore .500	
SwRI	×	×	
PEAR	×	×	
LUBRIZOL			
ETHYL			
ASHLAND	×		

Matrix Status

- FORD HAS SUPPLIED ENGINES AND HARDWARE WILL SUPPLY SOME MAJOR BUILD
- SWRI, PEAR, LUBRIZOL, ETHYL AND ASHLAND WILL RUN MATRIX TESTS
- HALTERMANN WILL SUPPLY MATRIX FUEL
- Swri And Pear Will Start Tests BY FIRST WEEK OF DECEMBER

11.15.2002

MEMORANDUM: 02-117

DATE: November 18, 2002

TO: IIIF and VG Surveillance Panels

FROM: Scott Parke

SUBJECT: Light Duty Rating Status Report

The Fall 2002 ASTM Light Duty Rating Workshop was held during the week of September 23, 2002 at Southwest Research in San Antonio, Texas. Raters from all ASTM calibrated VG and IIIF testing labs attended. Several raters from client companies were present as well. A total of 20 raters contributed data.

The switch from rocker cover to cam baffle for the VG varnish rating has been completed. Two engines were rated for VG at this workshop. A total of eight pistons were rated by each rater for IIIF.

In an effort to reduce the impact to labs of having raters out of the lab on travel, the 2003 Light Duty Rating Workshop is expected to be scheduled for sometime in January or February. While this is short turnaround from the workshop just held, it will put the Light Duty workshop on a staggered schedule with the Heavy Duty workshop traditionally scheduled for the fall. January/February is being targeted in order to avoid ASTM semi-annual activity that consumes so much of the April/May timeframe.

SDP/sdp/ m02-117.sdp.doc

c: F. M. Farber

distribution: Email

ASTM SEQUENCE VE SURVEILLANCE PANEL

SCOPE AND OBJECTIVES

SCOPE

The Sequence V Surveillance Panel is responsible for the surveillance and continued improvement of the Sequence VE test documented in ASTM Standard D5302-92 and VG ASTM Standard D6593 as updated by the Information Letter System. Data on test precision and laboratory versus field correlation will be solicited and evaluated at least every six months. Improvements in rating technique, test operation, test monitoring and test validation will be accomplished through continual communication with the Test Sponsor, ASTM Test Monitoring Center, ASTM BO.01, Passenger Car Engine Oil Classification Panel, ASTM Light Duty Rating Task Force, ASTM Committee B0.01, CMA Monitoring Agency and CRC Motor Rating Methods Group. Actions to improve the process will be recommended when deemed appropriate based on input from the preceding. Development and correlation of updated test procedures with previous test procedures will be reviewed by the panel. This process will provide the best possible test procedure for evaluating automotive lubricant performance with respect to the lubricant's ability to prevent engine sludge, engine varnish, cam lobe wear, oil screen plugging, oil ring clogging and ring sticking.

<u>Objectives</u>		Target Date
1.	Establish VG fuel reblend confirmation trial timing	May 2003
2.	Approval testing of next VG fuel reblend	Nov. 2003
3.	New Romeo engine equivalency testing complete	Feb. 2003
4.	Introduce 1009 reference oil	Nov. 2002
5.	Cylinder Bore Task Group	June 2003
6.	Review need for Rate & Report items	May 2003
7.	Current engine distribution plan	Jan. 2002
8.	Future engine supply plan	Nov. 2003

G. R. FARNSWORTH, Chairman Sequence VG Surveillance Panel pjr Updated Nov. 20, 2002 San Antonio, Texas

S&O

Motions & Action Items Sequence VG Surveillance Panel November 20, 2002 As Recorded at the Meeting by Ben Weber

- 1. Meeting minutes were approved as written.
- 2. This previous action item still remains open. A Task Force, chaired by Barry J, will be formed to determine an industry method for purchase and procurement of test hardware for the VG and future sequence testing.
- **3.** The TMC report was accepted as presented.
- 4. The SP chair will request of B1 that the VE test method be withdrawn as an ASTM standard.
- 5. Much to the surprise of the VG SP, it was discovered at this meeting that Haltermann has been periodically adding light ends to the VG fuel. Haltermann will go back and let the SP know how many times with dates they have added light ends to the VG fuel, what percentage and what the material was. Several members wondered how Haltermann judges when to make this adjustment and how is it verified? Haltermann will notify the SP when they plan on making this adjustment so labs might be able to determine possible severity and precision issues.
- 6. The roller pin and ring wear measurements will cease at the May 2003 SP meeting, unless the data from references and RSI convince this panel of their value. This presumes that RSI will grant Barry's request to analyze the candidate data.
- 7. Bill B and Beto A need to get together to firm up the kit parts required now that we are going to AER heads.
- **8.** 1009 will use an assignment rate of 25%.
- 9. Dan will survey the industry again regarding AER hardware for future redistribution.
- 10. [Bill B & Jerry B Motion] Besides Ford Power Products, the new Romeo Sequence VG test engine, part number OG-804-AA, can also be procured from AER. Effective date: 11-20-2002. Approval of this motion does not preclude Ford Power Products as a distributor, but merely offers another source for the exact same test engine. The quantities being purchased are left to the various testing laboratories, as in the case of the current request from Ford Power Products. Passed (6 for, 1 against, 3 waives).
- 11. [Bill B & Jerry B] Motion to change 15.2 to make the photographic requirement optional. Passed (8 for, 1 against, 1 waive).