Sequence IV Surveillance Panel | MINUTES

REVISION DATE: 4/10/2018 7:57:00 AM

Relevant Test:	Sequence IVB
Note Taker:	Chris Mileti
Meeting Date:	03-28-2018
Comments:	Conference call to discuss the proposed LTMS system for the Sequence IVB test.

1. OPEN ACTION ITEMS (B. BUSCHER):

1.1.KA24E Fuel:

- 1.1.1. The IVB procedure must be updated with instructions for mixing different batches of KA24E fuel.
- 1.1.2. The Sequence VG/VH procedure can be referenced because it includes instructions for switching to a new fuel batch.

1.2. OHT Updates:

- 1.2.1. OHT is currently manufacturing clutch alignment tools.
- 1.2.2. Timing Chain Wedge and Engine Rotation Locking Tool:
 - 1.2.2.1. These two action items are still open.
 - 1.2.2.2. OHT is waiting on feedback regarding the design of these tools.

1.2.3. Thermal Barrier Coating:

- 1.2.3.1. The Surveillance Panel is interested in possibly applying a thermal coating to components of the IVB engine that have large surface areas (oil pan and front cover).
- 1.2.3.2. OHT has not yet identified a suitable product.

1.3. Oil Consumption:

1.3.1. The Surveillance Panel still needs to discuss a test validity limit for oil consumption.

1.4. Oil Samples:

- 1.4.1. There is an open action item for SWRI and IAR to swap oil samples and compare analytical results.
- 1.4.2. SWRI, Exxon and Lubrizol have provided Precision Matrix oil samples to IAR for analysis.
 - 1.4.2.1. Afton provided samples from their recent prove-out testing.
 - 1.4.2.2. These samples will be re-tested by IAR to eliminate laboratory bias.

1.5. Quality Index Calculations:

1.5.1. The Surveillance Panel has an open action item to reevaluate the QI calculations for oil gallery temperature.

1.6.TMC Updates:

1.6.1. Some test reports for the Prove-Out Matrix and Precision Matrix are incomplete.

1.6.2. The TMC will send an email to each laboratory that still needs to provide data for their Industry tests.

1.7. Parameter Database:

- 1.7.1. The Surveillance Panel has an open action item to create a database of parameters that are believed to have a significant impact on severity.
- 1.7.2. One example of such a parameter would be oil gallery temperature.

1.8. Oil Temperature Histogram:

- 1.8.1. Lubrizol has an open action item to evaluate whether a histogram is a more appropriate way to analyze the oil gallery temperature parameter.
- 1.8.2. IAR will follow-up with Lubrizol.

1.9. Blowby System:

1.9.1. The IVB procedure needs to be updated with instructions for cleaning the external blowby system.

1.10. 200HR Operational Data Plots:

- 1.10.1. The plots from SWRI and Lubrizol are available on the TMC website.
- 1.10.2. IAR has almost finished compiling its plots.

1.11. Engine Build Workshop:

- 1.11.1. Most of the labs participated in an engine build workshop earlier in the year.
- 1.11.2. The Surveillance Panel needs to compile all the notes from this meeting into a single document.

1.12. Unscheduled Downtime:

- 1.12.1. The IVB procedure needs to be updated with instructions about how to handle extended periods of unscheduled downtime.
- 1.12.2. These instructions need to reduce the likelihood of oxidation on camshafts and lifters.

1.13. Anomalous Operational Parameters:

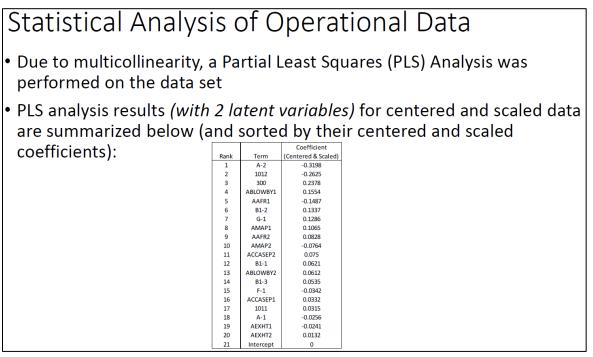
1.13.1. The Surveillance Panel needs to further analyze the four anomalous operational parameters identified by Lubrizol.

1.13.2. Parameter List:

- 1.13.2.1. Exhaust Gas Temperature
- 1.13.2.2. Crankcase Pressure / Blowby Flow Rate
- 1.13.2.3. Intake Manifold Pressure
- 1.13.2.4. AFR

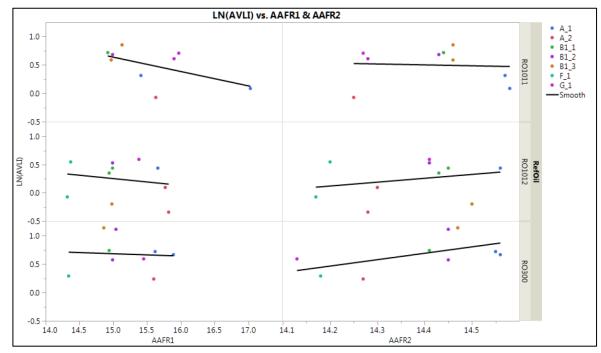
1.14. Appendix K:

1.14.1. Appendix K needs to be updated for the Sequence IVB test.


2. STATISTICAL ANALYSIS OF OPERATIONAL DATA (STATISTICS GROUP):

2.1. Background:

2.1.1. The Statistics Group conducted another analysis of Precision Matrix operational data (dated 03-20-2018).


- 2.1.2. The focus of this analysis was on exhaust gas temperature, AFR, intake manifold pressure and crankcase pressure.
- 2.1.3. A partial least squares analysis was used on all (28) Precision Matrix tests.

2.2. Slide #3:

2.2.1. The average Stage 1 blowby and AFR parameters are interesting.

2.3. Slide #5:

- 2.3.1. The rows in the chart correspond to different reference oils.
- 2.3.2. The Surveillance Panel needs to decide whether tighter controls should be implemented on the parameters of interest (particularly AFR and blowby).

2.3.3. Buscher requested that each laboratory review this analysis and be prepared to provide feedback during the next meeting.

3. STATISTICAL ANALYSIS OF IRON PARAMETER (STATISTICS GROUP):

3.1. Background:

- 3.1.1. The Statistics Group conducted an analysis of the iron parameter (dated 03-26-2018).
- 3.1.2. Iron is measured in the oil drain samples.

3.2. Slide #3:

Executive Summary
Precision Matrix (PM) Analysis Highlights:
• This analysis includes the results of 28 valid precision matrix tests
 Data supports the use of Ln(FEWMEOT) transformation Borderline statistical significant oil difference: 1012 < 300 Lab differences are statistically significant (A < B1) Stand within Lab differences are not statistically significant
 Oil discrimination is more significant for FEWMEOT than FEWML25 (Fe increase over last 25 hours) and FEWML50 (Fe increase over last 50 hours).
Oil discrimination is more significant with the Calcium Adjustment of the FEWMEOT data
 FEWMEOT can be affected by dilution factors such as fuel, water, volatility, etc. Calcium content is lower at EOT as compared to SOT
 FEWMEOT adjusted using calcium data may be a more preferred approach. However, this approach may contain more error as it is based on multiple (ICP) measurements of Calcium data. Adopting a procedure such as the IIIGB/IIIHB may reduce the error associated with the calcium based adjustment Possible concern - candidate oils may not be calcium based
 Correlation between sqrt(AVLI) and Ln(FEWMEOT) or Ln(FEWMEOT_Ca_Adj) is high (indicating parameter redundancy).

3.2.1. Several months ago, the Statistics Group analyzed several key parameters from the Precision Matrix data set.

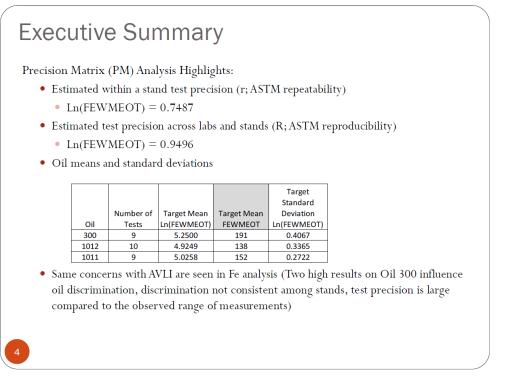
3.2.1.1. AVLI (average intake lifter volume loss) demonstrated the best discrimination.

- 3.2.2. The Statistics Group recently revisited the iron parameter.
 - 3.2.2.1. The N=21 and N=28 data sets were both used in the analysis.
 - 3.2.2.2. However, the Executive Summary deals exclusively with the N=28 analysis.
- 3.2.3. Iron demonstrates oil discrimination that is borderline statistically significant.
- 3.2.4. Lab differences with iron are statistically significant.
 - 3.2.4.1. For example, Lab B1 is more severe than Lab A.

3.2.5. Rate-of-Change of Iron:

- 3.2.5.1. The statisticians also looked at the rate-of-change of the iron parameter during the last 50-hours of the test and the last 25-hours of the test.
- 3.2.5.2. The statisticians confirmed that the rate-of-change of iron provides less discrimination than the end-of-test iron.

3.2.6. Iron vs. Engine Hours:


- 3.2.6.1. There is not a clear correlation between iron loss and engine hours.
- 3.2.6.2. The 1st run on an engine generally exhibits the most iron generation.
- 3.2.6.3. The 2nd run on an engine generally exhibits the lowest iron generation.

3.2.6.4. The statisticians will need more data (including data from tests with higher engine hours) before they can recommend a correction factor.

3.2.7. Calcium Adjustment:

- 3.2.7.1. Oil discrimination with end-of-test iron did improve when a calcium adjustment was applied.
- 3.2.7.2. However, there are some challenges to applying a calcium adjustment.
- 3.2.7.3. The IVB may need to adopt an iron analysis procedure that is like the one used for the Sequence IIIG/H.

3.3. Slide #4:

3.3.1. Concerns:

- 3.3.1.1. The statisticians have the same concerns with the iron parameter that they do with the AVLI parameter.
- 3.3.1.2. There are two severe results with REO300 that are driving oil discrimination.
- 3.3.1.3. Oil discrimination is not consistent among test stands.
- 3.3.1.4. There is a lot of overlap in the results for the three reference oils.

3.3.2. Comments from Toyota:

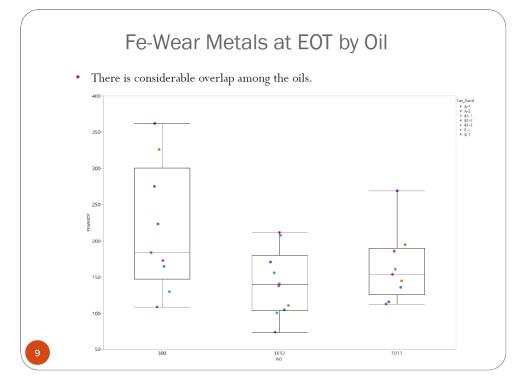
- 3.3.2.1. The increase in the rate-of-change of iron at the end of each test may be due to oil degradation.
- 3.3.2.2. Adding iron as a secondary parameter will provide protection against unusually performing oils.
- 3.3.2.3. Additional data collected during the Technology Demonstration period will aid in this analysis.

3.4. Slide #5:

Executive Summary

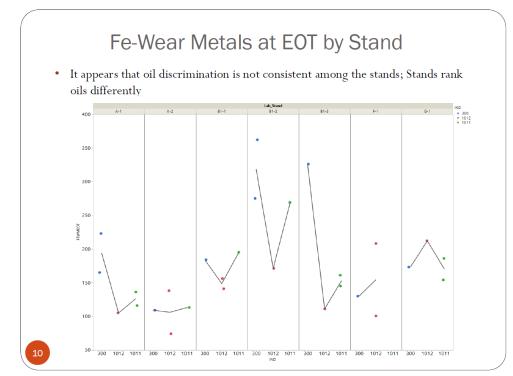
Precision Matrix (PM) Analysis Highlights:

- Estimated within a stand test precision (r; ASTM repeatability)
 - Ln(FEWMEOT_Ca_Adj) = 0.7162
- Estimated test precision across labs and stands (R; ASTM reproducibility)
 - Ln(FEWMEOT_Ca_Adj) = 0.9410
- Oil means and standard deviations


				Target Standard
		Target Mean	Target Mean	Deviation
Ref. Oil	Number of Tests	Ln(FEWMEOT_Ca_Adj)	FEWMEOT	Ln(FEWMEOT_Ca_Adj)
300	9	5.3987	221	0.3967
1012	10	5.0581	157	0.3277
1011	9	5.1648	175	0.2863

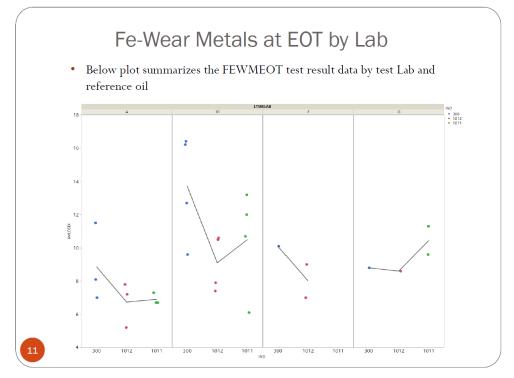
- Same concerns with AVLI are seen in Fe analysis (Two high results on Oil 300 influence oil discrimination, discrimination not consistent among stands, test precision is large compared to the observed range of measurements)
- 3.4.1. The final calcium level is lower than the initial calcium level for all the Precision Matrix tests.
 - 3.4.1.1. This supports the theory that the oil becomes diluted during the test.

3.5. Slide #7:

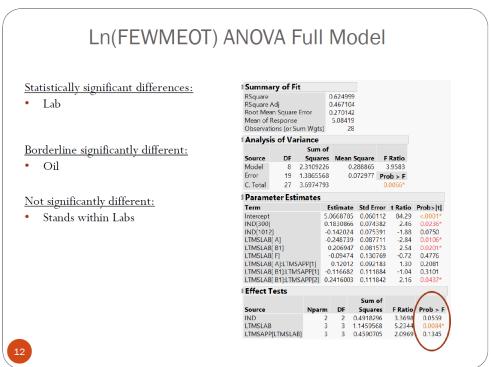

	compares the numbe			1	0	
cross GF-6 t	est types. The media			5 and the mea	in (without PF	
Test	Parameter	Oil 1	Oil 2	Range	Test s _r	SDs of Separation
IIIH	Ln(PVIS)	4.7191	3.3289	1.3902	0.4641	3
ШН	WPD	4.63	3.66	0.97	0.47	2.1
IIIHA	Ln(MRV)	11.1107	9.7854	1.3253	0.4214	3.1
IIIHB	PHOS	94.15	78.92	15.23	1.53	10
VIE	FEI 1	2.56	1.3	1.26	0.29	4.3
VIE	FEI 2	1.82	1.41	0.41	0.12	3.4
VIF	FEI 1	2.23	1.45	0.78	0.21	3.7
VIF	FEI 2	2.25	1.41	0.84	0.19	4.4
IX (LSPI)	Sqrt(AvPIE + 0.5)	4.2644	3.3819	0.8825	0.2856	3.1*1
VH	AES	8.43	6.47	1.96	0.5	3.9
VH	Ln(10-RCS)	0.9155	-0.5294	1.4449	0.2194	6.6
VH	AEV50	9.26	8.77	0.49	0.25	2
VH	APV50	8.67	7.35	1.32	0.53	2.5
X (CW)	Ln(CHST)	-2.10574	-2.63174	0.526	0.14148	3.7*2
IVB	Sqrt(AVLI)	1.3931	1.1543	0.2388	0.168	1.4
IVB	Ln(FEWMEOT)	5.25	4.9249	0.3251	0.2701	1.2
IVB	Ln(FEWMEOT_Ca_Adj)	5.3987	5.0581	0.3406	0.2584	1.3

- 3.5.1. The Sequence IVB parameters are shown in yellow.
- 3.5.2. These parameters are separated by standard deviations that range between 1.2 and 1.4.
 - 3.5.2.1. These are the lowest standard deviations of any GF-6 test.

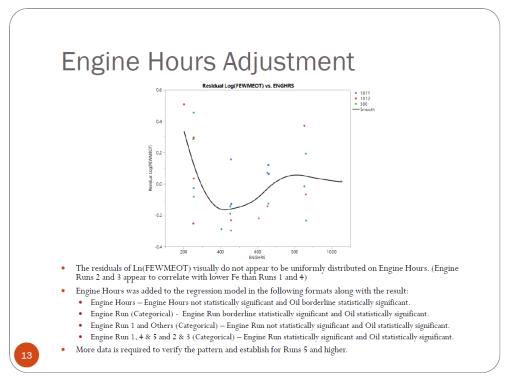
- 3.6.1. The best discrimination is exhibited between REO300 and REO1012.
- 3.6.2. There is still significant overlap between all three oils.


3.7. Slide #10:

- 3.7.1. The oil vs. wear pattern is different between test stands.
- 3.7.2. Some stands have a "V' pattern and some have an inverted "V" pattern.
- 3.7.3. The line for stand F-1 is flat.
- 3.7.4. The legs on some "V" patterns are longer than on others.


3.7.5. A-2 is the mildest stand while B1-2 is the most severe.

3.8. Slide #11:


- 3.8.1. Lab A has a relatively flat profile.
- 3.8.2. Lab B1 has a "check mark" shaped profile.
- 3.8.3. Lab F has a decreasing profile (only two oils were run during the Precision Matrix).
- 3.8.4. REO300 and REO1012 yielded almost identical results at Lab G.

3.9. Slide #12:

- 3.9.1. The laboratories are statistically different.
- 3.9.2. The stands within a single lab do not appear to be statistically different.
- 3.9.3. IMPORTANT NOTE: None of this iron data has been adjusted for calcium.

3.10. Slide #13:

- 3.10.1. The 1st run on an engine generates the highest end-of-test iron.
- 3.10.2. The 2nd run on an engine generates the lowest end-of-test iron.
- 3.10.3. The 3rd and 4th runs on an engine generate more wear than the 2nd run.
- 3.10.4. The statisticians were hoping to see a linear relationship between the residual and engine hours.

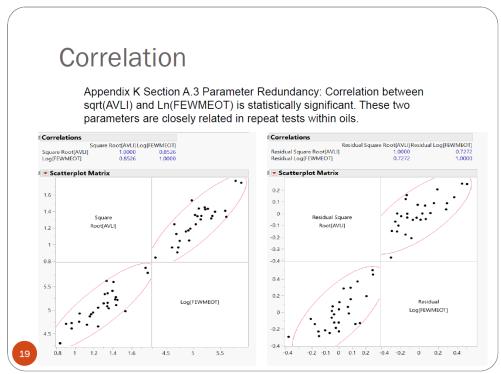
3.10.5. Intertek's Comments about Engine Longevity:

- 3.10.5.1. Most of the labs are running a given engine and cylinder head combination for up to six runs.
- 3.10.5.2. IAR has performed cylinder head swaps.
 - 3.10.5.2.1. They found that this will extend engine longevity to approximately 8-9 runs.
 - 3.10.5.2.2. At (9) runs, the engines must be decommissioned for excessive oil consumption.

3.10.6. Comments from Statisticians:

- 3.10.6.1. They need more data before they can recommend an engine hour adjustment.3.10.6.1.1. This would include data generated on an engine after a cylinder head change.
 - 3.10.6.1.2. Ideally, it would also include 8th or 9th run data.
- 3.10.6.2. There is a consensus within the Statistics Group that an engine hour adjustment is needed for the iron parameter.
- 3.10.6.3. They may need to revisit the AVLI parameter (to determine if there is an engine hour effect) once additional data is available.

3.10.7. Comments from Toyota:


- 3.10.7.1. Toyota is not surprised to see that the 1st run on an engine delivers the highest end-of-test wear.
 - 3.10.7.1.1. The first run occurs right after the break-in.

- 3.10.7.1.2. IAR noted that the break-in does not generate much iron.
- 3.10.7.2. The proposed iron pass/fail limit is intended to screen out high wear oils only.
 - 3.10.7.2.1. All the reference oils would pass if the limit were set at 400ppm.

3.10.8. Carry-Over Effect:

- 3.10.8.1. Both Lubrizol and Exxon are concerned about a "carry-over" effect.
- 3.10.8.2. Exxon noted that there is no "carry-over" effect with procedures like the Sequence III because the engine is rebuilt after each test.
- 3.10.8.3. Lubrizol noted that wear in areas of the engine other than the rings and bore can lead to a "carry-over" effect.
 - 3.10.8.3.1. For example, deformed valve stems may be causing excessive lifter button wear.
 - 3.10.8.3.2. Toyota responded that AVLI correlates well to weight loss.
 - 3.10.8.3.2.1. This indicates that most of the weight loss is coming from the wear surface of the lifter in most cases.
- 3.10.8.4. IAR noted that timing chains may have a "carry-over" effect as well.
- 3.10.8.5. There was a consensus within the group that an end-of-test checklist is needed to confirm that the engine was not damaged.
 - 3.10.8.5.1. IAR uses a similar checklist whenever they run a high wear oil.

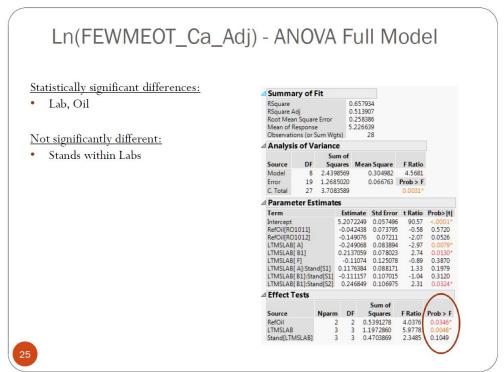
3.11. Slide #19:

- 3.11.1. There is a very strong correlation between AVLI and iron.
 - 3.11.1.1. This a concern if both are considered primary parameters.

3.11.2. Comments from TMC:

- 3.11.2.1. They are not sure how to handle iron in LTMS if it is a secondary parameter.
- 3.11.2.2. This parameter may require Y_i charts without severity adjustments.
- 3.11.2.3. Ultimately, this is a decision that should be made by the Surveillance Panel.

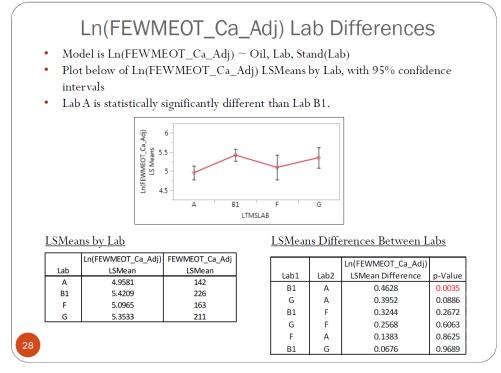
3.12. Slide #21:


Fe-Wear Metals - Correction Approach • Method Summary: Calcium concentration is believed to remain constant from SOT to EOT Reference ASTM 7320 - Sequence IIIGB for more information ٠ Changes in Ca levels can be due to volatility or dilution (i.e. fuel, water, etc.) Ratio of (Ca_SOT/Ca_EOT) is used to correct the FEWMEOT data to equivalent SOT levels Example of correction calculations are provided below 81 81 81 81 81 81 81 81 81 81 81 6 7 254 254 252 456 456 456 452 658 452 254 254 254 254 404 860 652 860 652 852 652 454 852 650 456 852 660 456 852 660 156 275 161 74 223 195 171 109 184 269 116 212 208 141 362 105 154 130 165 134 130 165 138 130 165 138 138 145 130 161 173 105 313.3 182.6 83.8 261.1 227.6 202.7 131.9 126.5 222.5 317.4 130.6 236.1 1227.4 165 1227.4 165 122.7 421.4 151 159.4 151 159.4 205.7 159.4 205.8 114.3 1781 1.1392 1.1343 1.1322 1.1709 1.1673 1.1851 1.1887 1.1604 1.2094 1.1800 129759-IVE 125879-IVE 125882-IVE 129752-IVE 129762-IVE 129766-IVE 129767-IVE 130948-IVE 129760-IVE 129760-IVE 129763-IVE RO101: RO101: RO101: RO101: RO101: RO101: RO101: RO300 2111 2449 2076 2107 2439 2056 2137 2115 2521 2521 2521 2521 2099 2496 2129 2159 1993 1988 2100 2478 2186 2094 2186 1861 2163 1773 1805 2058 2035 1783 1700 1811 1878 2264 2192 51 52 53 52 51 52 51 51 0.82 1.27 2.1 1.98 1.09 1.81 1.73 1.42 3.05 1.55 1.84 0.93 3.13 1.34 2.06 1.1 2.03 2.35 1.81 0.93 1.81 0.93 1.37 RO101 1.1262 109201-IVE 130944-IVE RO101 RO1012 1.1135 125183-IVB **S1** RO1012 1.0931 125183-1VB 129768-IVB 130938-IVB 129755-IVB 125184-IVB 125880-IVB 130939-IVB 120739-IVB 81 81 6 81 7 81 7 81 6 81 6 7 51 52 RO1012 RO300 2052 1726 2148 1840 1866 1798 1711.7 1798 2145 1842 1816 1767 2158.1 1.1701 1.1640 1.1620 1.1571 1.1570 1.1085 1.1614 1.1680 1.1552 1.1868 RO101 51 52 53 51 51 52 51 53 51 51 RO1011 RO1011 131277-IVE 129756-IVE RO101 129756-IVB 130943-IVB 129764-IVB 130940-IVB 130945-IVB RO101 RO1011 1.1531 RO30 1.1896 1.1317 RO101 2442.3

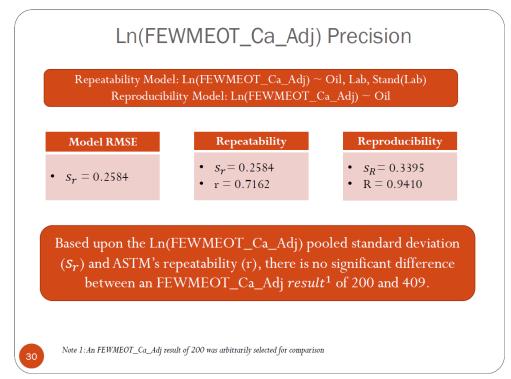
- 3.12.1. The calcium adjustment used in this analysis was taken from the Sequence IIIGB.
- 3.12.2. Calcium reduction is assumed to be the result of volatility and dilution.

3.12.3. Comments from Intertek:

- 3.12.3.1. The Sequence IVB generates a lot of water and fuel dilution.
- 3.12.3.2. If a calcium adjustment is used, the Surveillance Panel may want to adopt the ICP measurement restrictions listed in the Sequence IIIGB procedure.
 - 3.12.3.2.1. The IIIGB procedure specifies that start-of-test and end-of-test ICP samples be measured at the same time and on the same machine.


3.13. Slide #25:

3.13.1. The calcium adjustment does improve the significance of the oil discrimination.


3.13.2. It improves the oil discrimination from a borderline level to a statistically significant level.

3.14. Slide #28:

3.14.1. The p-values are more significant with the calcium adjustment.

3.15. Slide #30:

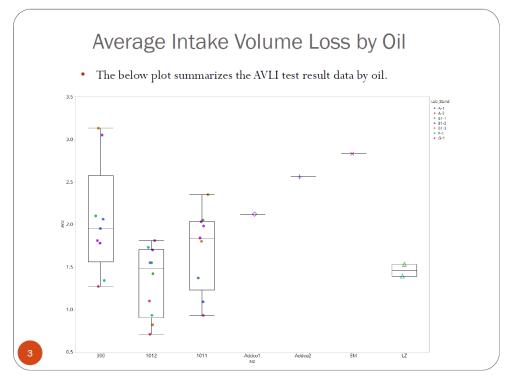
3.15.1. There is an improvement in overall repeatability with the calcium adjustment.3.15.1.1. This is a small improvement and not necessarily a "slam dunk".

3.15.2. The final decision about using a calcium adjustment will be up to the Surveillance Panel.

3.15.3. Comments from Intertek:

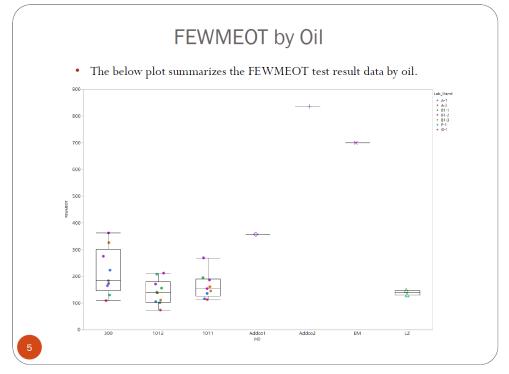
- 3.15.3.1. They are in favor of the calcium adjustment.
- 3.15.3.2. A transform is needed.
- 3.15.3.3. They are concerned about the potential redundancy between AVLI and end-of-test iron.
- 3.15.3.4. This issue can be resolved by making iron a secondary parameter.

3.15.4. Comments from General Motors:


- 3.15.4.1. What should be done about oils that do not use calcium?
 - 3.15.4.1.1. They have concerns about using calcium to assess volatility and dilution.
 - 3.15.4.1.2. Calcium is a detergent, so it is surface active.
 - 3.15.4.1.3. Some calcium will be lost due to this surface activation.
 - 3.15.4.1.4. IAR noted that the Industry may need to look at magnesium or sulfur when testing formulations that do not use calcium.
- 3.15.4.2. Would it be more appropriate to use fuel dilution or water content to assess volatility/dilution?
- 3.15.4.3. The three Precision Matrix oils probably use similar chemistry.
 - 3.15.4.3.1. The Surveillance Panel will need to look at outlier oils to determine if they display a different relationship between iron and AVLI.

4. STATISTICAL ANALYSIS OF HIGH WEAR OILS (STATISTICS GROUP):

4.1. Background:


4.1.1. The Statistics Group conducted an analysis of results from oils that were intended to generate high wear on the Sequence IVB test (dated 03-27-2018).

4.2. Slide #3:

4.2.1. This slide shows the Precision Matrix oils and the high wear oils on the same plot.

4.3. Slide #5:

4.3.1. IAR cannot explain the two consecutive mild results with the Lubrizol high wear oil.

4.3.2. Comments from Toyota:

- 4.3.2.1. The Lubrizol oil had a late TAN-TBN cross-over.
- 4.3.2.2. This suggests that the oil offers good degradation control.
- 4.3.3. General Motors asked if Lubrizol had any Sequence IIIG data for this oil.

4.3.4. Comments from Lubrizol:

- 4.3.4.1. This oil was not run on the Sequence III.
- 4.3.4.2. However, Lubrizol's statistical models predict that this oil would fail the Sequence IIIG for both WPD and PVIS.
- 4.3.4.3. The oil uses a typical AO package for a GF-4 formulation.

4.3.5. Comments from Intertek:

- 4.3.5.1. They have reports and/or presentations from the Surveillance Panel members that have run high wear oils.
- 4.3.5.2. This data will be compiled and shared with the Industry.

4.3.6. Statement from Unnamed Additive Company (Conveyed by Buscher):

- 4.3.6.1. This company is identified as "Addco2".
- 4.3.6.2. The data in the plot is for an oil with no ash and minimal anti-wear additives.
 - 4.3.6.2.1. Average Intake Lifter Volume Loss = 2.56mm³
 - 4.3.6.2.2. E.O.T. Iron = 836ppm
- 4.3.6.3. They rescinded the results from their second oil (which was an SN+ formulation).

4.3.7. Comments from Lubrizol:

- 4.3.7.1. The 200HR iron from the "Addco2" test is extremely high, especially considering that it had an average intake lifter volume loss around 2.5mm³.
- 4.3.7.2. Was there excessive wear or damage to the engine?

4.3.8. Intertek Response to Lubrizol's Question:

- 4.3.8.1. IAR confirmed that the engine did exhibit excessive wear after the test.
- 4.3.8.2. This was the 9^{th} run on the engine.
- 4.3.8.3. The engine was "healthy" during the 8th run.

- 4.3.8.4. The crankshaft was worn to a point at which it would no longer meet factory tolerances.
- 4.3.8.5. PDI bore traces indicate a wear scar of approximately 40-microns on the thrustside.
 - 4.3.8.5.1. The block would need to be honed if it were to be used again.
- 4.3.8.6. There is excessive piston ring wear.
- 4.3.8.7. There is some timing chain wear.
- 4.3.8.8. Oil consumption was around 1000g.
- 4.3.8.9. IAR believes that this oil would have even rendered a 1st run engine unserviceable.

4.3.9. Comments from Exxon:

- 4.3.9.1. The results from "Addco2" are like what they experienced with their high wear oil.
- 4.3.9.2. Their oil rendered a 6th run block unserviceable.
- 4.3.9.3. These two situations exemplify why they are concerned with iron as a pass/fail parameter.

4.3.10. Comments from Lubrizol:

- 4.3.10.1. Lubrizol shares Exxon's concerns about iron as a pass/fail parameter.
- 4.3.10.2. Lubrizol is also confused by the lack of consistency in engine wear with the "poor" oils.
 - 4.3.10.2.1. Lubrizol completely disassembled the Precision Matrix engine that was used to test its "poor" proof-of-performance oil.
 - 4.3.10.2.2. Wear was minimal.
- 4.3.10.3. IAR confirmed that the engine used for the repeat test with Lubrizol's "poor" proof-of-performance oil is still in service.
 - 4.3.10.3.1. So, wear with this engine was also minimal.

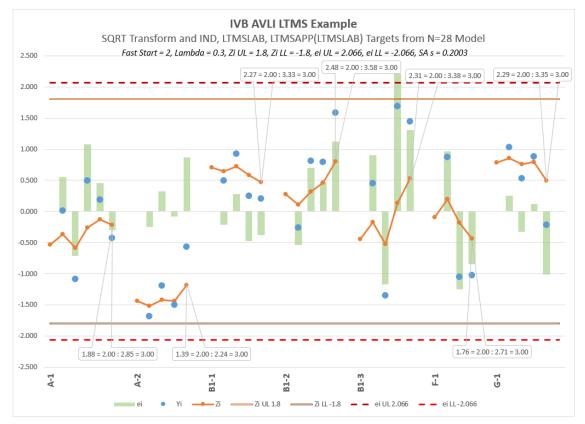
5. IVB LTMS SUGGESTIONS SUMMARY (STATISTICS GROUP):

5.1. Background:

- 5.1.1. The Word document outlines the proposed LTMS system for the Sequence IVB test (dated 03-08-2018).
- 5.1.2. The Excel spreadsheet has tabs that display the output of the proposed LTMS system.

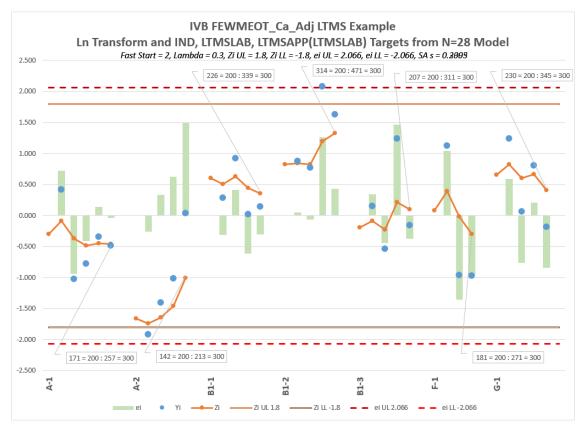
5.2. Overview of Proposed LTMS System (Word Document):

- 5.2.1. This would be a stand-based system with charts for AVLI (average intake lifter volume loss) and 200HR (end-of-test) iron.
 - 5.2.1.1. The statisticians have proposals for unadjusted iron and iron that is adjusted for calcium.
 - 5.2.1.2. The Excel file with the calcium adjustment was completed today.
- 5.2.2. Test stands will be charted separately with their own severity adjustments.

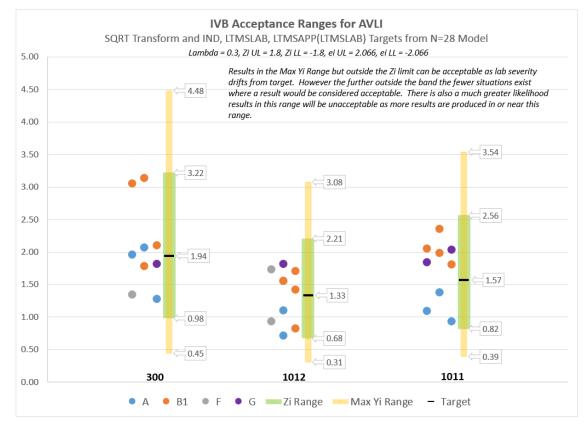

5.2.3. Z_i Limit:

- 5.2.3.1. A default recommended limit is used.
- 5.2.3.2. This default limit is used in all GF-6 test types except the Sequence IX.

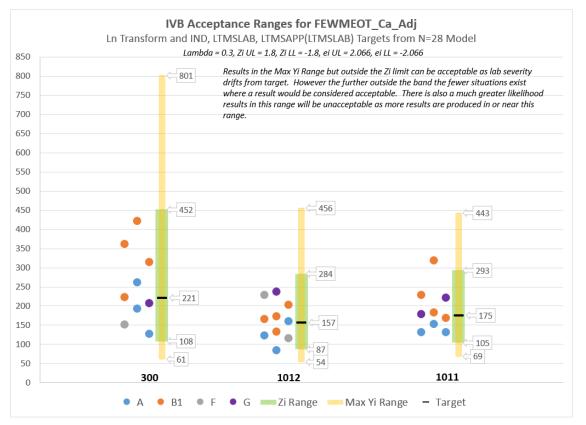
5.2.4. Z_o Limit:


- 5.2.4.1. A "fast start" Z_{\circ} limit is proposed.
- 5.2.4.2. Two tests are the default setting.
- 5.2.4.3. It will be up to the discretion of the Surveillance Panel to increase this to three tests.

5.3. LTMS Chart AVLI (Spreadsheet):


- 5.3.1. Stands A-1 and A-2 (which are in the same lab) are statistically very similar (even though they display some small visual differences).
 - 5.3.1.1. This supports the stand-based system.
- 5.3.2. Stand B1-3 did have one result that failed due to an ei alarm.
 - 5.3.2.1. However, the subsequent Precision Matrix result would have allowed the stand to reference.
 - 5.3.2.2. This is the only example of a failing result with the proposed LTMS system.

5.4. LTMS Chart FE_Ca_Adj (Spreadsheet):


- 5.4.1. The pattern is like that of the AVLI parameter.
- 5.4.2. Stand B1-3 does not trip an e alarm with the iron parameter.

5.5. Range Chart AVLI (Spreadsheet):

5.5.1. A lab that repeatedly operated in the yellow bands would trigger an alarm.

5.6. Range Chart FEWMEOT_Ca_Adj (Spreadsheet):

- 5.6.1. In certain situations, an 801ppm result with REO300 or a 456ppm result with REO1012 would be acceptable.
 - 5.6.1.1. However, a lab cannot operate close to these limits for long.

5.6.2. Comments from Lubrizol:

- 5.6.2.1. Stand B1-2 is operating with a Z_i of 1.3.
- 5.6.2.2. So, a high iron result on B1-2 would be acceptable.
- 5.6.2.3. However, the next test would need to have a lower iron for that stand to maintain calibration.

5.7. General Discussion:

5.7.1. Comments from Exxon:

- 5.7.1.1. They would like the Surveillance Panel to formally discontinue any further discussion or analysis with the N=21 dataset.
- 5.7.1.2. There was unanimous approval within the Surveillance Panel to discontinue the N=21 dataset.

5.7.2. How Should the Three Existing Reference Oils be Used?

- 5.7.2.1. The statisticians stated that this is an engineering decision and not a statistical decision.
- 5.7.2.2. Afton believes that REO1011 should be checked [during reference tests] more often than the other two oils because of its 0W-16 viscosity.
- 5.7.2.3. IAR reminded the Surveillance Panel that it can decide on a reference oil frequency now and change it later.
- 5.7.2.4. There was a broad consensus within the Surveillance Panel to initially test all three reference oils at an equal frequency.

5.7.3. Transformations:

5.7.3.1. There was a general agreement within the Panel that a square-root would be used for AVLI and a natural log would be used for the calcium-adjusted iron.

5.7.4. Iron:

- 5.7.4.1. Afton and the TMC are concerned about implementing iron as a pass/fail parameter before there is a clear understanding about how engine life will impact it.
 - 5.7.4.1.1. They suggested making iron a "report only" parameter until more data is available.
- 5.7.4.2. <u>Comments from Intertek:</u>
 - 5.7.4.2.1. The IVB Data Dictionary will need to be updated to reflect the proposed LTMS system.
 - 5.7.4.2.2. The Sequence IIIGB procedure uses magnesium or sodium to adjust the iron for formulations that lack calcium.
 - 5.7.4.2.3. The IVB will need to adopt the following IIIGB oil sample methodology:
 - 5.7.4.2.3.1. S.O.T. and E.O.T. ICP samples will need to be run consecutively and in duplicate.
 - 5.7.4.2.3.2. The average of the duplicate runs will be reported.
- 5.7.4.3. Lubrizol, Infineum and Exxon would all like to see more clarity with the iron parameter before the Surveillance Panel votes on the LTMS system.
- 5.7.4.4. General Motors and Ford agree that this test needs an iron parameter because AVLI is not sufficient.
 - 5.7.4.4.1. They want to make iron a pass/fail parameter now to eliminate the timing uncertainty with making it a pass/fail parameter in the future.
 - 5.7.4.4.2. They do not want any more delays with GF-6.

5.7.5. Communication:

5.7.5.1. The TMC will issue an information letter that summarizes all the procedural and process changes that accompany the new LTMS system.

5.7.6. Proposed Pass/Fail Limits:

- 5.7.6.1. Toyota is considering a 400ppm pass/fail limit for iron.
 - 5.7.6.1.1. This limit may be increased to 450ppm if a calcium adjustment is used.
- 5.7.6.2. Exxon noted that all three reference oils have Y_i's that would allow them to get into the 450ppm range for iron.
 - 5.7.6.2.1. Two of these three oils are considered good performers.
 - 5.7.6.2.2. One of these oils is considered a borderline performer.

5.7.6.3. <u>Consensus within Surveillance Panel:</u>

- 5.7.6.3.1. Chart iron using the unadjusted targets for now.
- 5.7.6.3.2. Implement the calcium adjustment after more data becomes available.
- 5.7.6.3.3. Limit the application of iron severity adjustments to candidate oils.
- 5.7.6.3.4. Do not implement calibration requirements for iron.

5.7.6.4. <u>Lobe Failures:</u>

- 5.7.6.4.1. Lobe failures should be captured in LTMS.
- 5.7.6.4.2. They will be reported as valid but not charted.

5.7.7. Vote:

- 5.7.7.1. The Surveillance Panel ran out of time during this conference call to hold a vote on the proposed LTMS system.
- 5.7.7.2. Buscher will issue an electronic ballot.
- 5.7.7.3. Intertek made the motion and Toyota seconded the motion.

Action Items	Person responsible	Completion Date

Follow-up Notes/Updates	Initials	Date Added

Attendees	Organization	Contact Information

Sequence IV Surveillance Panel

Conference Call March 28, 2018 9:00 a.m. - 12:00 p.m.

AGENDA

- 1. Chairman comments
- 2. Previous action item review
- 3. Sequence IVB Precision Matrix 2 AFR, exhaust gas temperature, crankcase pressure and intake manifold pressure operational data analysis
- 4. Sequence IVB Precision Matrix 2 statistical analysis review: Analysis and conclusions on iron content
- 5. Sequence IVB Precision Matrix 2 + high wear candidate oils statistical analysis review: Analysis and conclusions on AVLI and FEWMEOT
- 6. Sequence IVB LTMS review
- 7. Possible vote to accept a Sequence IVB LTMS
- 8. Motion and action item review
- 9. Next meeting
- 10. Adjourn

MEMBERSHIP SEQUENCE IV SURVEILLANCE PANEL

		March 28, 2018
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Bowden, Jason	OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 Phone No.: 440-354-7007 Fax No.: 440-354-7080 Email: jhbowden@ohtech.com	
Buscher III, William	Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 Phone No.: 210-647-9489 or 210-240-8990 cell Fax No.: 210-684-6074 Email: <u>william.buscher@intertek.com</u>	
Buscher, Jr., William	Buscher Consulting Services P.O. Box 112 Hopewell Jct., NY 12533 Phone No.: 914-897-8069 Fax No.: 914-897-8069 Email: <u>buschwa@aol.com</u>	
Grundza, Rich	ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 Phone No.: 412-365-1031 Fax No.: 412-365-1047 Email: reg@astmtmc.cmu.edu	
Hopp, Meryn	GM PowertrainMail Code 483-730-322823 Joslyn Rd.Pontiac, MI 48340-2920Phone No.: 228-318-7303Fax No.:Email:Meryn.hopp@gm.com	
Hosseini, Mahboobeh	Chevron Oronite Company LLC 100 Chevron Way, 71-7548 P.O. Box 1627 Richmond, CA 94802-0627 Phone No.: 510-242-3462 Fax No.: Email: <u>Mahboob.Hosseini@chevron.com</u>	
Hsu, Jeffery	Shell Global Solutions3333 Highway 6 SouthHouston, TX 77082Phone No.: 281-544-8619Fax No.: 281-544-8150Email: j.hsu@shell.com	
Kowalski, Teri	Toyota Motor North America, Inc.1555 WoodridgeAnn Arbor, MI 48105Phone No.: 734- 995-4032 or 734-355-8082 cellFax No.: 734- 995-9049Email: teri.kowalski@tema.toyota.com	

MEMBERSHIP SEQUENCE IV SURVEILLANCE PANEL

		March 28, 2018
NAME Lanctot, Dan	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
	Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249 Phone No.: Fax No.: Email: <u>DLanctot@tei-net.com</u>	
Linden, Jim	Total673 Campus RoadRochester Hills, MI 48309Phone No.: 248-321-5343Fax No.:Email:lindenjim@jlindenconsulting.com	
Mileti, Chris	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 440-347-2521 Fax No.: 440-347-4096 Email: <u>christopher.mileti@Lubrizol.com</u>	
Overaker, Mark	Haltermann Solutions15635 Jacintoport Blvd.Houston, TX 77345Phone No.:832-376-2202Fax No.:Email:mhoveraker@jhaltermann.com	
Pecinovsky, Katerina	Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23217-2158 Phone No.: 804-788- Fax No.: 804-788- Email: <u>Katerina.Pecinovsky@AftonChemical.com</u>	
Proctor, Robert	Honda R&D Americas, Inc. Phone No.: 937-309-9321 Fax No.: Email: <u>rproctor@oh.hra.com</u>	
Rais, Khaled	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-3842 Fax No.: 210-684-7523 Email: <u>khaled.rais@swri.org</u>	
Rieth, Ryan	Infineum USA L.P. 1900 E. Linden Avenue Linden, NJ 07036-0536 Phone No.: 908-474-7377 Fax No.: 908-474-3637 Email: Ryan.Rieth@Infineum.com	

MEMBERSHIP SEQUENCE IV SURVEILLANCE PANEL

NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	March 28, 2018
Romano, Ron	Ford Motor Company	SIGNATURE
	1800 Fairlane Drive Allen Park, MI 48101 Phone No.: 313-845-4068 Fax No.: 313-323-8042 Email: rromano@ford.com	
Sagawa, Takumaru	Nissan Motor Co., Ltd.560-2, Okatsukoku, Atsugi cityKanagawa 243-0192Phone No.:046-270-1515Fax No.:046-270-1585Email:t-sagawa@mail.nissan.co.jp	
Salvensen, Cliff	ExxonMobil Research & Engineering Co. 600 Billingsport Road P.O. Box 480 Paulsboro, NJ 08066-0480 Phone No.: 856-224-2954 Fax No.: Email: clifford.r.salvesen@exxonmobil.com	$\boldsymbol{\mathcal{U}}$
Savant, Amol	Valvoline 22 nd & Front Streets Ashland, KY 41114 Phone No. Fax No.: Email: <u>ACSavant@valvoline.com</u>	
Tang, Haiying	Chrysler Group LLC 800 Chrysler Drive Auburn Hills, MI Phone No.: Fax No.: Email: haiying.tang@fcagroup.com	
Tarry, Preston	BP 1500 Valley Road Wayne, NJ 07470 Phone No.: Fax No.: Email: <u>Preston.Tarry@bp.com</u>	
,	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	

NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	March 28, 2018 SIGNATURE
Adams, Mark	Tribology Testing Labs	
	Phone No.: 989-980-4418 Fax No.: Email: <u>mark@tribologytesting.com</u>	
Affinito, Ricardo	Chevron Oronite Company LLC	
	Phone No.: Fax No.: Email: <u>Ricardo.Affinito@chevron.com</u>	
Altman, Ed	Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23217-2158 Phone No.: 804-788-5279 Fax No.: 804-788-6358 Email: ed.altman@aftonchemical.com	
Bean, Nathan	Valvoline Phone No.: Fax No.: Email:	
Boese, Doyle	Infineum USA L.P.1900 E. Linden AvenueLinden, NJ 07036-0536Phone No.: 908-474-3176Fax No.: 908-474-3637Email: doyle.boese@infineum.com	
Bowden, Dwight	OH Technologies, Inc.9300 Progress ParkwayP.O. Box 5039Mentor, OH 44061-5039Phone No.: 440-354-7007Fax No.: 440-354-7080Email: dhbowden@ohtech.com	
Bowden, Matt	OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 Phone No.: 440-354-7007 Fax No.: 440-354-7080 Email: mbowden@ohtech.com	
Brys, Jerome	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 440-943-2631 / 440-943-1200 Fax No.: 440-943-9013 Email: jabs@lubrizol.com	

NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	March 28, 2018 SIGNATURE
Campbell, Bob	Afton Chemical Corporation	SIGNATURE
	500 Spring Street	
	P.O. Box 2158	
	Richmond, VA 23217-2158	
	Phone No.: 804-788-	
	Fax No.: 804-788-6358	
	Email: <u>bob.campbell@aftonchemical.com</u>	
Castanien, Chris	Neste	
	Phone No.:	
	Fax No.:	
	Email: <u>Chris.Castanien@nesteoil.com</u>	
Clark, Sid	Southwest Research Institute	
	50481 Peggy Lane	
	Chesterfield, MI 48047	
	Phone No.: 586-873-1255	
	Email: <u>sidney.clark@swri.org</u>	
Clark, Jeff	ASTM Test Monitoring Center	
Clark, Jeff	6555 Penn Avenue	
	Pittsburgh, PA 15206	
	Phone No.: 412-365-1032	
	Fax No.: 412-365-1047	
	Email: jac@astmtmc.cmu.edu	
Coker, Carlton	Intertek Automotive Research	
	5404 Bandera Road	
	San Antonio, TX 78238-1993	
	Phone No.: 210-647-9473 or 210-643-1817 cell	
	Fax No.:210-523-4607Email:carlton.coker@intertek.com	
	Eman. <u>carnon.coker(<i>a</i>)mertek.com</u>	
Collins, Chet	Southwest Research Institute	
	6220 Culebra Road	
	P.O. Drawer 28510	
	San Antonio, TX 78228-0510	
	Phone No.: 210-522-	
	Fax No.:	
	Email: <u>chet.collins@swri.org</u>	
Dvorak, Todd	Afton Chemical Corporation	
	500 Spring Street	
	P.O. Box 2158	
新	Richmond, VA 23217-2158 Phone No.: 804-788-	
	Fax No.: 804-788-6358	
	Email: todd.dvorak@aftonchemical.com	
Farnsworth, Gordon	Infineum USA L.P.	
,,	1900 E. Linden Avenue	
	Linden, NJ 07036-0536	
	Phone No.: 570-934-2776	
	Fax No.: 908-474-3637	
	Email: gordon.farnsworth@infineum.com	

NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	March 28, 2018 SIGNATURE
Haumann, Karin	Shell Global Solutions	SIGNATORE
	Phone No.: 281-544-6986 Fax No.: Email: <u>Karin.Haumann@shell.com</u>	
Hirano, Satoshi	Toyota	
	Phone No.: Fax No.: Email: <u>satoshi_hirano_aa@mail.toyota.co.jp</u>	
Knight, Clayton	Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249 Phone No.: 210-862-5987 cell Fax No.: 210-690-1959 Email: <u>cknight@tei-net.com</u>	
Kostan, Travis	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-2407 Fax No.: 210-684-7523 Email: travis.kostan@swri.org	
Lang, Patrick	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-2820 or 210-240-9461 cell Fax No.: 210-684-7523 Email: patrick.lang@swri.org	
Leverett, Charlie	Infineum Phone No.: 210-414-5445 Fax No.: Email: <u>charlie.leverett@yahoo.com</u>	
Lochte, Michael	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-5430 Fax No.: 210-684-7523 Email: michael.lochte@swri.org	
Lopez, Al	ntertek Automotive Research 5404 Bandera Road San Antonio, TX 78238-1993 Phone No.: 210-647-9465 or 210-862-7935 cell Fax No.: 210-523-4607 Email: <u>al.lopez@intertek.com</u>	

	SEQUENCE IV SURVEILLANCE PAN	March 28, 2018
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Martinez, Jo	Chevron Oronite Company LLC 100 Chevron Way, 71-7548 P.O. Box 1627 Richmond, CA 94802-0627 Phone No.: 510-242-5563 Fax No.: 510-242-1930 Email: jomartinez@chevron.com	1
Matasic, James	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 440-347-2487 Fax No.: Email: James.Matasic@Lubrizol.com	
McMillan, Mike	5019 Deer Creek Cir N Washington, MI 48094 Phone No.: 586-677-9198 Fax No.: Email: <u>mmcmillan123@comcast.net</u>	
Meier, Adam	ExxonMobil Phone No.: Fax No.: Email: <u>adam.r.meier@exxonmobil.com</u>	
O'Malley, Kevin	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 440-347-4141 Fax No.: Email: <u>Kevin.OMalley@lubrizol.com</u>	
Pastor, Jofran	Infineum Phone No.: Fax No.: Email: <u>jofran.pastor@infineum.com</u>	
Porter, Christian	Afton Chemical Corporation500 Spring StreetP.O. Box 2158Richmond, VA 23217-2158Phone No.: 804-788-5837Fax No.: 804-788-6358Email: christian.porter@aftonchemical.com	
Ritchie, Andrew	Infineum USA L.P. 1900 E. Linden Avenue Linden, NJ 07036-0536 Phone No.: 908-474-2097 Fax No.: 908-474-3637 Email: <u>andrew.ritchie@infineum.com</u>	

	SEQUENCE IV SURVEILLANCE PAN	March 28, 2018
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Smolenski, Don	Evonik	
	Phone No.: Fax No.: Email:	
Stockwell, Robert	Chevron Oronite Company LLC	7
	Phone No.: Fax No.: Email: <u>Robert.Stockwell@chevron.com</u>	
Sutherland, Mark	Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249 Phone No.: 210-867-8357 Fax No.: 210-690-1959 Email: <u>msutherland@tei-net.com</u>	
Taylor, Chris	VP Racing Fuels Phone No.: 210-710-4627 Fax No.: Email: <u>chris.taylor@vpracing-fuels.com</u>	
Thompson, Hap	ASTM Facilitator Phone No.: 904-287-9596 Fax No.: Email: <u>Hapjthom@aol.com</u>	
Tumati, Prasad	Haltermann Phone No.: Fax No.: Email: <u>ptumati@jhaltermann.com</u>	L
ANGELA	Phone No.: Fax No.:	
SCOTT	Email: SHELL Phone No.:	
	Fax No.: Email:	

		March 28, 2018
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Jost Enebericte	MAAA VANOUNE Phone No.: Fax No.: Email:	
DARAYL PURIFICATI	PETO CANADA Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	
	Phone No.: Fax No.: Email:	

Sequence IVB LTMS

Sequence IV Surveillance Panel eBallot

March 30, 2018

S	Sequence IVB Definitions	TOVOTA
	 AVLI = Intake lifter average volume loss, mm³ 	nm ³
•	 FEWMEOT = Iron content at end of test, ppm 	mdo

Š	Sequence IVB LTMS eBallot	TOVOTA
•	Stand based LTMS	
	 All stands will be charted separately 	
	 Severity adjustments will be calculated on a stand basis 	tand
٠	Use ASTM reference oils 300, 1012 and 1011	11
•	Use an equal reference oil assignment frequency	luency
•	Adopt the transform Sqrt(AVLI) for LTMS and	nd
	severity adjustment calculations	
•	Adopt the transform Ln(FEWMEOT) for severity	/erity
	adjustment calculations	

Se. pre	t referen ecision m	Set reference oil targets fro precision matrix 2 data set	gets from ata set	Set reference oil targets from the complete, N = 28, precision matrix 2 data set	te, N = 28,
I	– IND, LTMSLAB,N = 28 Model		MSLAP (L ⁻	LTMSLAP (LTMSAPP) w/ Sqrt from	/ Sqrt from
	AVLI Targets	argets			
L	Oil	Number of Tests	Target Mean AVLI	Target Mean Sqrt(AVLI)	Target Standard Deviation
!		c	101	7 7 7 7	Sqrt(AVLI)
	300	n	1.94	1.3931	0.2230
	1012	10	1.33	1.1543	0.1847
]	1011	6	1.57	1.2538	0.1932
	 Severing from C 	Severity adjustme from Oil only moe	ent standar del Sqrt(AV	 Severity adjustment standard deviation (SA s) is RMSE from Oil only model Sqrt(AVLI) = 0.2003 	A s) is RMSE

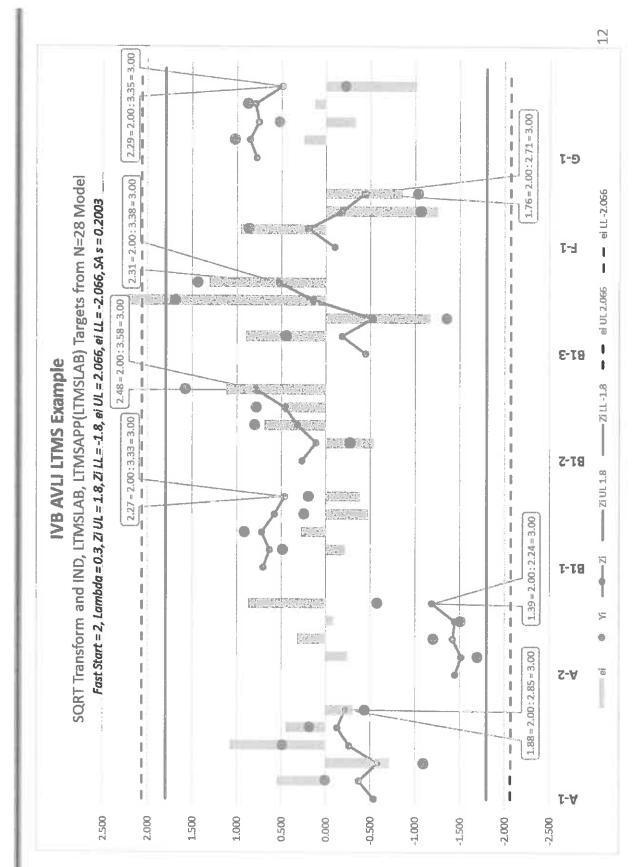
Sequ	Sequence IVB LTMS eBallot	3 LTMS el	Ballot		TOYOTA	DTA
• Se	Set reference oil targets fro precision matrix 2 data set	ce oil targ atrix 2 da	gets from ata set	Set reference oil targets from the complete, N = 28, precision matrix 2 data set	te, N = 28,	
5	 – IND, LTMSLAB, N = 28 Model 	Astab, LTI Aodel	MSLAP (L	LTMSLAP (LTMSAPP) w/ Ln from	/ Ln from	
	• FEWN	 FEWMEOT Targets 	S			
	Oil	Number of Tests	Target Mean FEWMEOT	Target Mean Ln(FEWMEOT)	Target Standard Deviation Ln(FEWMEOT)	
	300	6	191	5.2500	0.4067	
	1012	10	138	4.9249	0.3365	
	1011	6	152	5.0258	0.2722	
	Severit from C	ty adjustme Dil only moe	ent standar del Ln(FEW	 Severity adjustment standard deviation (SA s) is RMSE from Oil only model Ln(FEWMEOT) = 0.3426 	A s) is RMSE 26	

۱n

S.	Sequence IVB LTMS eBallot	τονοτα
•	AVLI will be a primary, critical LTMS parameter, with calibration acceptance criteria and severity	eter, verity
	adjustments – Will be charted	•
٠	FEWMEOT will be a secondary, non-critical LTMS	LTMS
	without calibration acceptance criteria	
	 Will be charted 	
•	Tests with lobe failures would be un-chartable	able

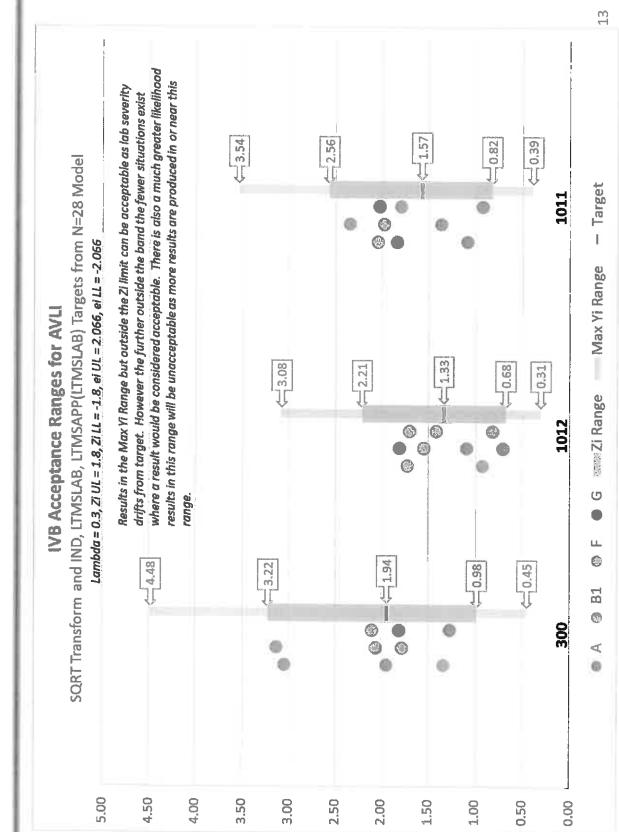
Sequence IVB LTMS eBallot	TOYOTA
 Utilize limits on Z_i (EWMA of severity), 	severity),
e _i (prediction error), and the excessive influence	excessive influence
calculation to determine acceptance and	eptance and
calculate severity adjustments	ts
— Z _i Lambda = 0.3	
$- Z_0 =$ Average of first two tests in a stand	in a stand
 Note this is how many references a new stand will require to enter the system 	es a new stand will require to
— Z _i Limit = +1.800/-1.800; a stand that exceeds these	nd that exceeds these
uires	additional references until it is within
 Do not update severity adjustments until after an acceptable reference is conducted 	ents until after an acceptable

TOYOTA	1.351; this limit applies to previously ids that have not been calibrated for periods and are attempting to calibrate	calibrate with one test if the Level 1 limits are	t will be judged against the	applies in situations ave potential impact to		nsideration include d changes in a currently ®
Sequence IVB LTMS eBallot	 e_i Limit 1 = +/-1.351; this limit applies to previously calibrated stands that have not been calibrated for two reference periods and are attempting to calibra 	 The stand can calibrate with one not exceeded 	 References after the first attempt will be judged against the level 3 ei limits 	 e_i Limit 2 = +/-1.734; this limit applies in situations pre-determined by the SP to have potential impact to 	severity	 Some situations that warrant consideration include hardware changes or engine build changes in a currently calibrated stand

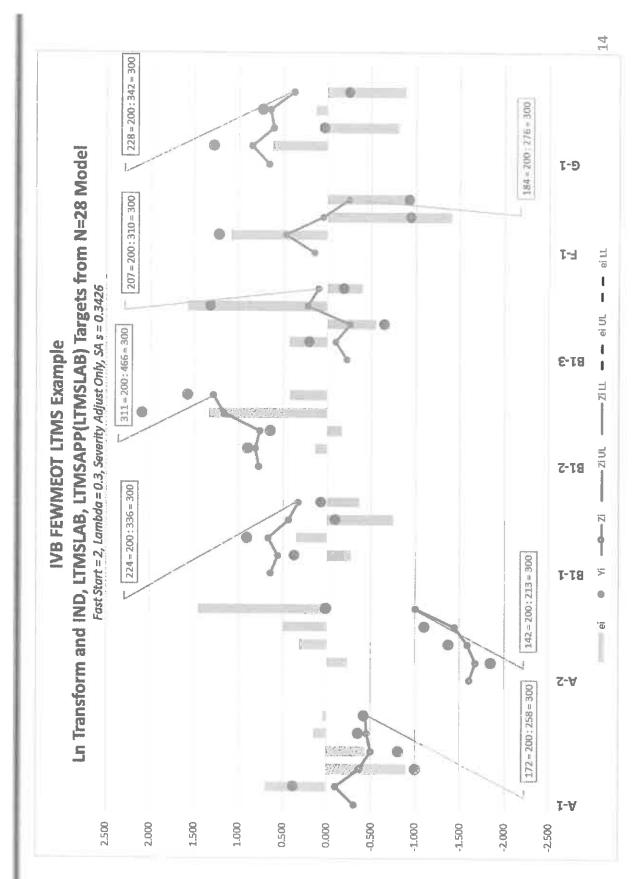

 The stand can calibrate with one test if the Level 2 limits are not exceeded References after the first attempt will be judged against the level 3 ei limits E_i Limit 3 = +/-2.066; this limit applies to all other situations when determining an acceptable reference. If the limit is exceeded do not update control charts until after an additional reference is conducted and apply excessive influence calculations The excessive influence calculation minimizes the impact of a failing reference test if the following reference test does not agree with the initial failing results and returns to historical severity performance (LTMS 1.A.5) 	Sequence IVB LTMS eBallot	TOYOTA
it the ence. Ig nce	 The stand can calibrate with one test if the Level 2 not exceeded 	imits are
ence. Ig nce	 References after the first attempt will be judged ag level 3 ei limits 	ainst the
s exceeded do not update control charts until litional reference is conducted and apply fluence calculations e influence calculation minimizes the ailing reference test if the following t does not agree with the initial failing eturns to historical severity performance	 – e_i Limit 3 = +/-2.066; this limit applies to all oth situations when determining an acceptable ref 	her erence.
e influence calculation minimizes the ailing reference test if the following t does not agree with the initial failing eturns to historical severity performance	 If the limit is exceeded do not update control charts after an additional reference is conducted and apple excessive influence calculations 	s until V
	 The excessive influence calculation minimizes timpact of a failing reference test if the followin reference test does not agree with the initial faresults and returns to historical severity perfor (LTMS 1.A.5) 	the B niling mance

Ň	Sequence IVB LTMS eBallot	ΤΟΥΟΤΑ
•	A minimum of two references will be required for each new stand	uired for
•	The reference calibration period will expire after 15 full length non-reference tests or 6 months,	re after onths,

Sequence	Sequence IVB LTMS eBallot	4
• The	The TMC will plot industry Zi charts to identify	
pote	potential shifts in industry wide performance	
– Lai	– Lambda = 0.2	
– Z ₀	$-Z_0 = 0.000$	
– Z _i I	– Z _i Limit 1 = +/-0.775	
•	 When industry level one limits are exceeded the TMC 	
	investigates whether severity adjustments are adequately addressing the trend investigates the possible causes and	
	communicates as appropriate with industry	
— Z _i I	Z _i Limit 2 = +/-0.859	
•	When industry level two limits are exceeded the TMC	
	iniorms the surveillance panel that the limit has been exceeded. The surveillance panel then investigates and	
		11


Sequence IVB LTMS eBallot

ΤΟΥΟΤΑ


Sequence IVB LTMS eBallot

TOVOTA

Sequence IVB LTMS eBallot

TOVOTA

, S	Sequence IVB LTMS eBallot	TOYOTA
•	Motion:	
	 Sequence IV surveillance panel accepts the Sequence IVB LTMS, as documented in the previous slides of this 	uence IVB his
	presentation (IVB LTMS eBallot 20180329.pptx). Effective 4/18/18 (two weeks after the close of this eBallot) to be	. Effective ot) to be
	applied to all Precision Matrix 2 and later reference tests	nce tests.
	The ASTM TMC will grant calibration status where applicable, based on the agreed on LTMS, with calibration	re calibration
	intervals effective based on reference test EOT dates.	dates.
٠	Motion by:	
	- Bill Buscher	
٠	Seconded by:	
	 Teri Kowalski 	
•	This eBallot will close on Wednesday, 4/4/18	00
		15

IVB LTMS Suggestion Summary – Items in BOLD need particular attention from the SP

- 1. Adopt the transform sqrt(AVLI) for LTMS and severity adjustment calculations.
- 2. References will be conducted on RO's 300 (40%), 1012 (40%) and 1011 (20%).
- 3. Select Reference Oil targets from presented n=21, n=28, or other model.
 - a. IND, LTMSLAB, LTMSLAP(LTMSAPP) w SQRT from N=21 Model
 - i. AVLI Targets

IND	Mean sqrt(AVLI)	Std dev sqrt(AVLI)
300	1.4306	0.2269
1011	1.2373	0.2136
1012	1.1104	0.1815

ii. Severity adjustment standard deviation (SA s) is RMSE from Oil only model sqrt(AVLI) = 0.2082

b. IND, LTMSLAB, LTMSLAP(LTMSAPP) w SQRT from N=28 Model

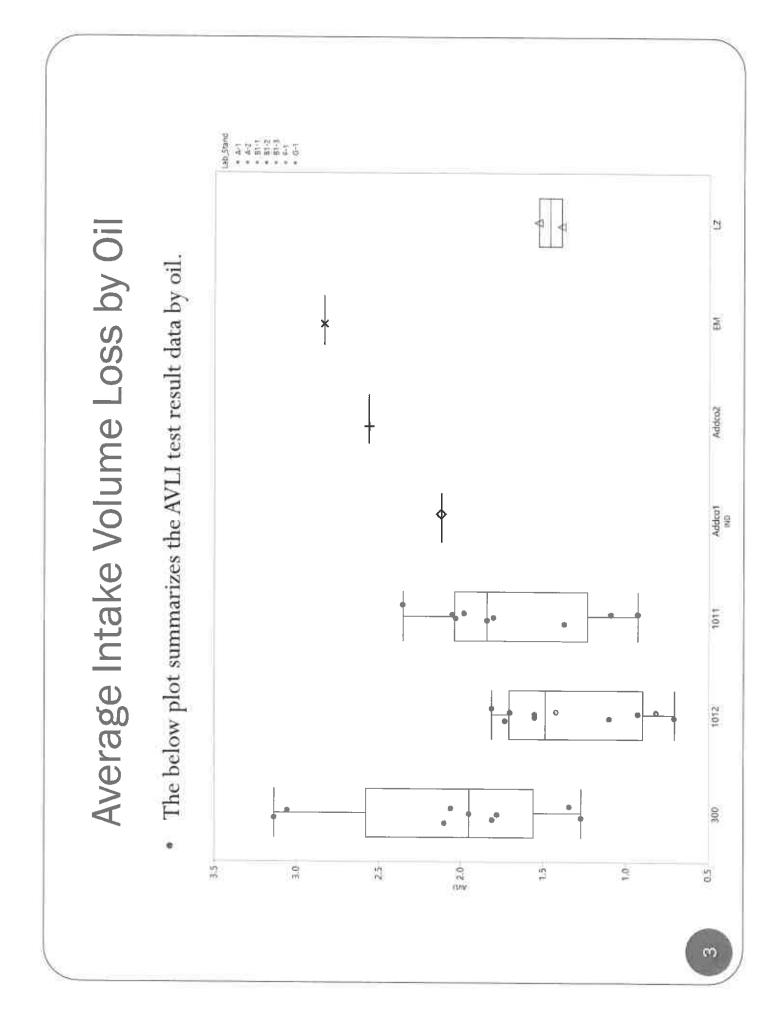
i. AVLI Targets

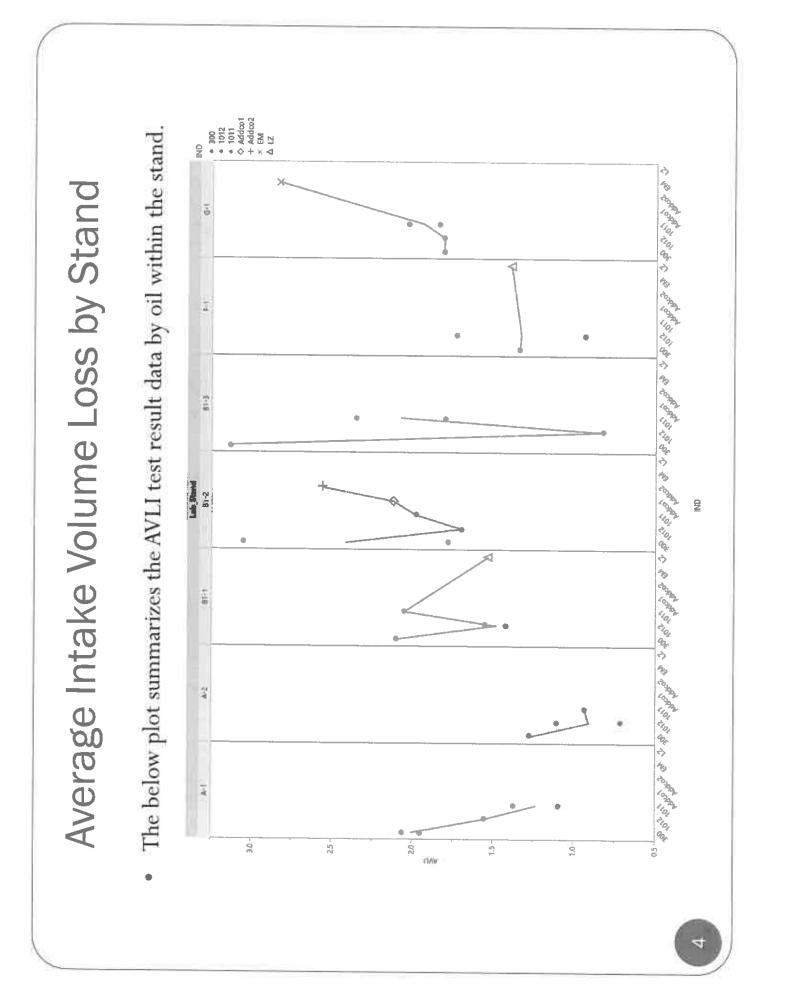
IND	Mean sqrt(AVLI)	Std dev sqrt(AVLI)
300	1.3931	0.2230
1011	1.2538	0.1932
1012	1.1543	0.1847

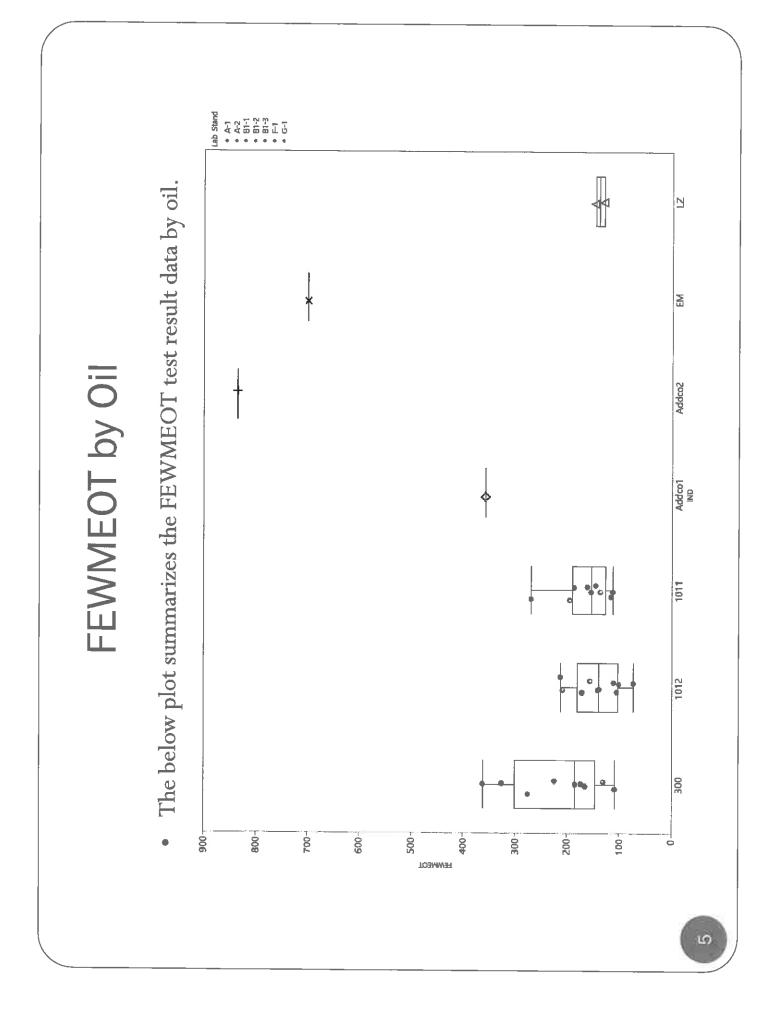
ii. Severity adjustment standard deviation (SA s) is RMSE from Oil only model sqrt(AVLI) = 0.2003

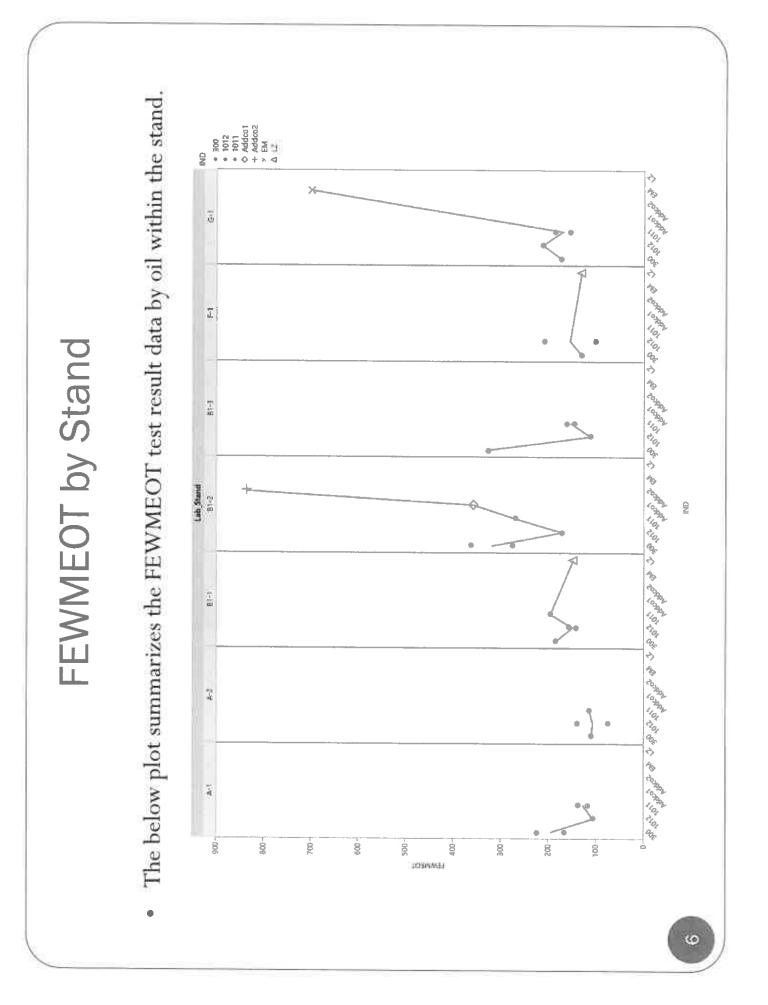
4. All stands will be charted separately.

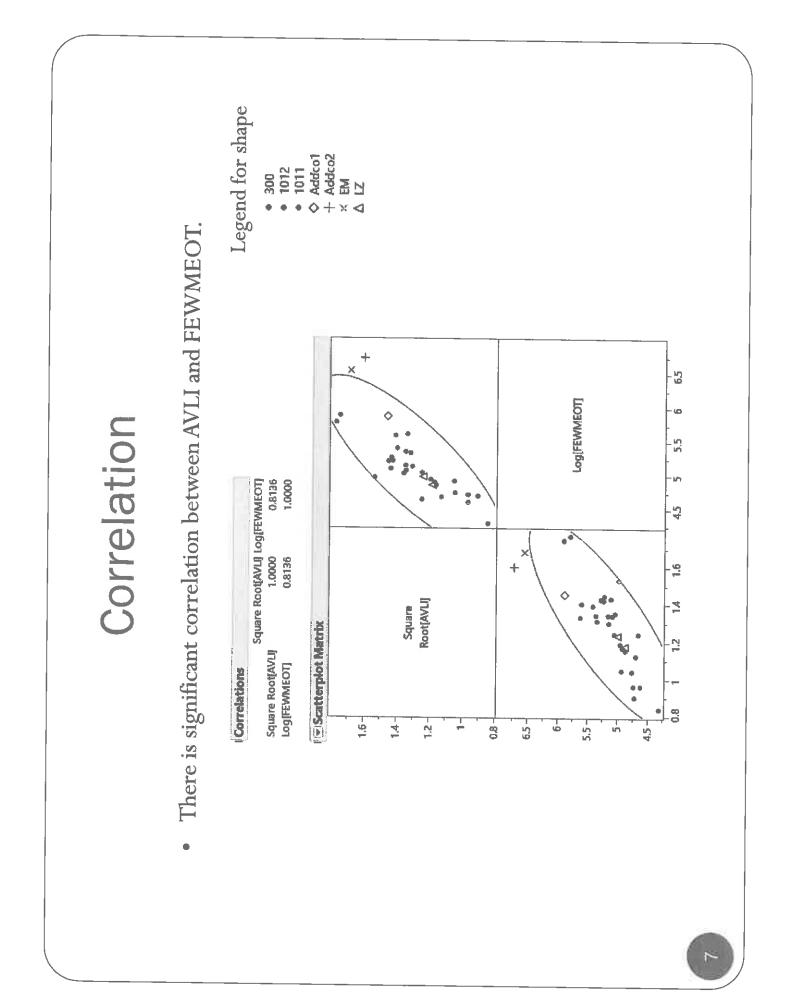
a. Severity adjustments will be calculated on a stand basis


- 5. Utilize limits on Z_i (EWMA of severity), e_i (prediction error), and the excessive influence calculation to determine acceptance and calculate severity adjustments.
 - a. Z_i Lambda = 0.3
 - b. Z₀ = Average of first two tests in a stand. Note this is how many references a new stand will require to enter the system.
 - c. Z_i Limit = +1.800/-1.800; a stand that exceeds these limits requires additional references until it is within the limits. Do not update severity adjustments until after an acceptable reference is conducted.
 - d. e_i Limit 1 = +/-1.351; this limit applies to previously calibrated stands that have not been calibrated for two reference periods and are attempting to calibrate again. The stand can calibrate with one test if the Level 1 limits are not exceeded. References after the first attempt will be judged against the level 3 ei limits.
 - e. ei Limit 2 = +/-1.734; this limit applies in situations pre-determined by the SP to have potential impact to severity. Some situations that warrant consideration include hardware changes or engine build changes in a currently calibrated stand. The stand can calibrate with one test if the Level 2 limits are not exceeded. References after the first attempt will be judged against the level 3 ei limits.
 - f. e_i Limit 3 = +/-2.066; this limit applies to all other situations when determining an acceptable reference. If the limit is exceeded do not update control charts until after an additional reference is conducted and apply excessive influence calculations.


- g. The excessive influence calculation minimizes the impact of a failing reference test if the following reference test does not agree with the initial failing results and returns to historical severity performance (LTMS 1.A.5).
- 6. A minimum of two references will be required for each new stand.
- 7. The reference calibration period will expire after **fifteen full length non-reference tests or 6 months**, whichever comes first.
- 8. The TMC will plot industry Zi charts to identify potential shifts in industry wide performance.
 - a. Lambda = 0.2
 - b. $Z_0 = 0.000$
 - c. Z_i Limit 1 = +/-0.775
 - When industry level one limits are exceeded the TMC investigates whether severity adjustments are adequately addressing the trend, investigates the possible causes, and communicates as appropriate with industry.
 - d. Z_i Limit 2 = +/-0.859
 - i. When industry level two limits are exceeded the TMC informs the surveillance panel that the limit has been exceeded. The surveillance panel then investigates and pursues resolution of the alarm.


Sequence IVB High Wear Oil Statistics Group March 27, 2018


Statistics Group


- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Statistical Analysis of Sequence IVB **Operational Data**

(Includes EGT, AFR, IntManPres, Crankcase Pressure Operational Data, Exclusive)

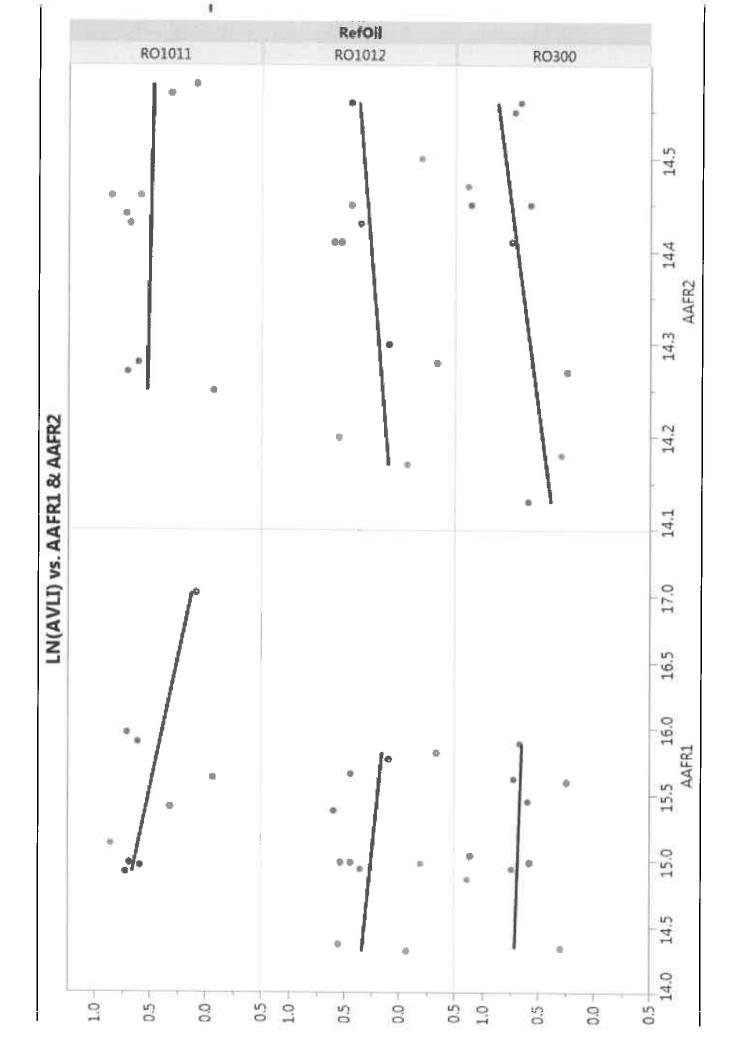
By: Industry Stats Team

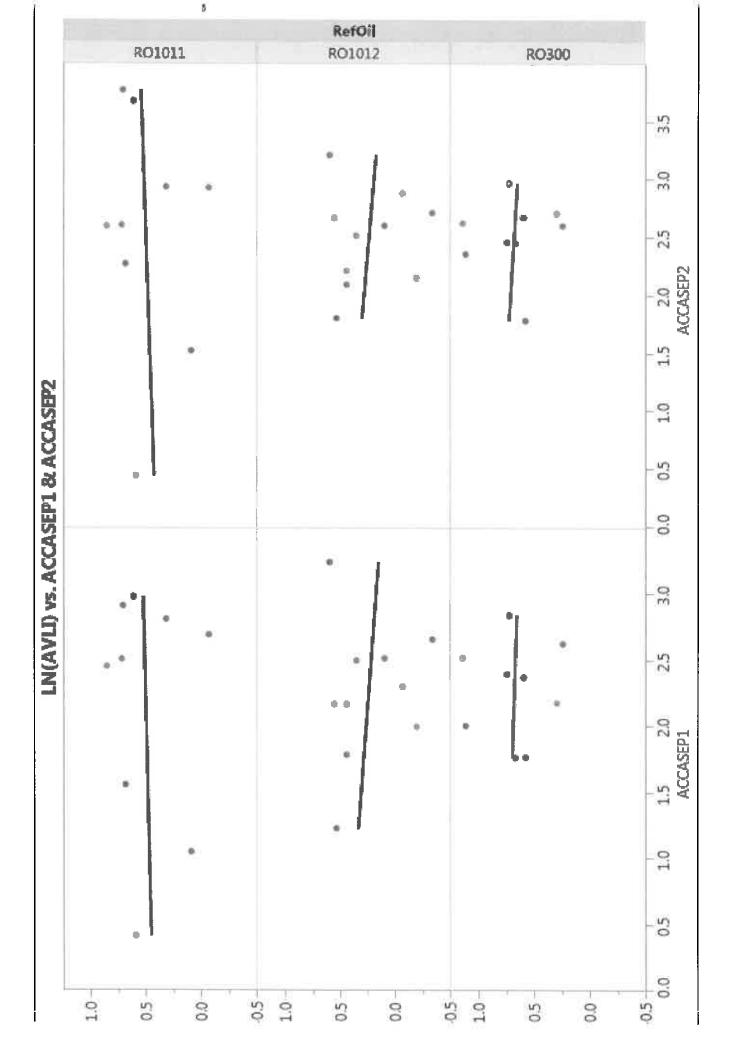
03-20-18

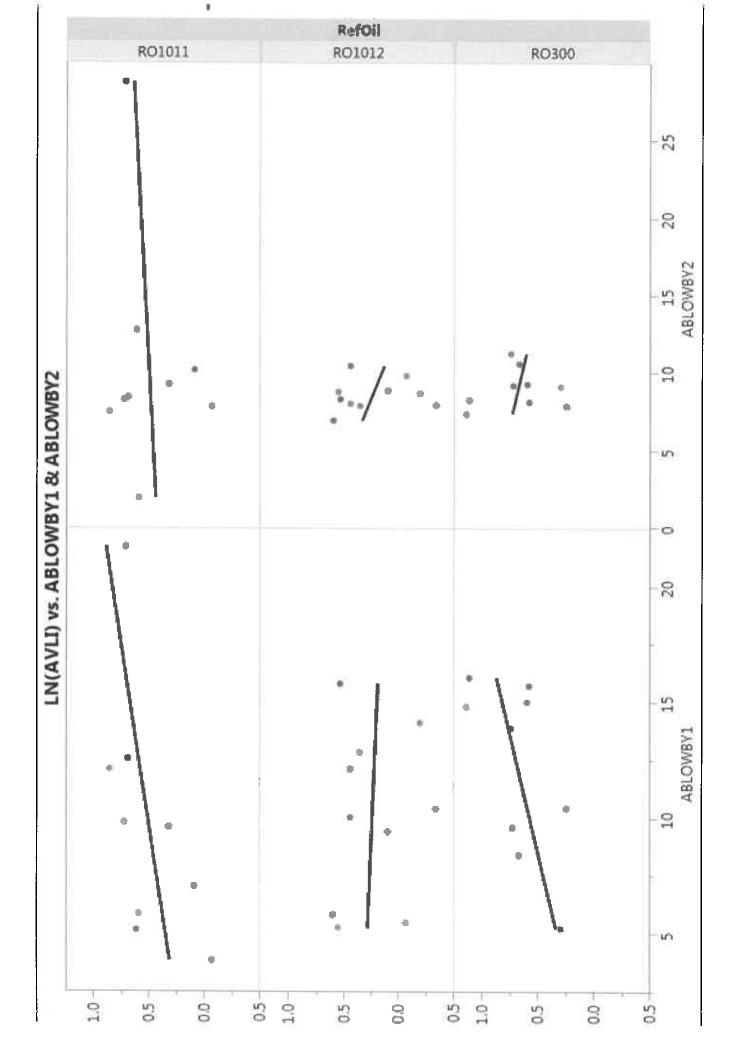
tatistical Analysis of Operational Data

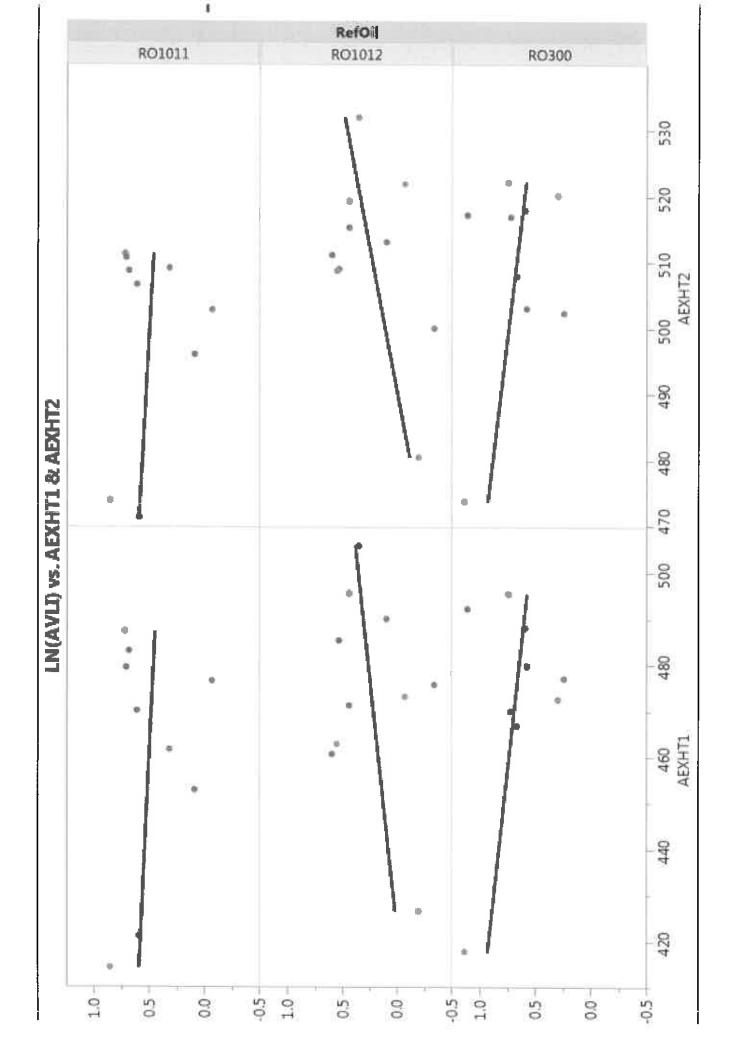
Analysis was performed to investigate the relationship of Sqrt(AVLI) parameter with respect to the below list of variables:

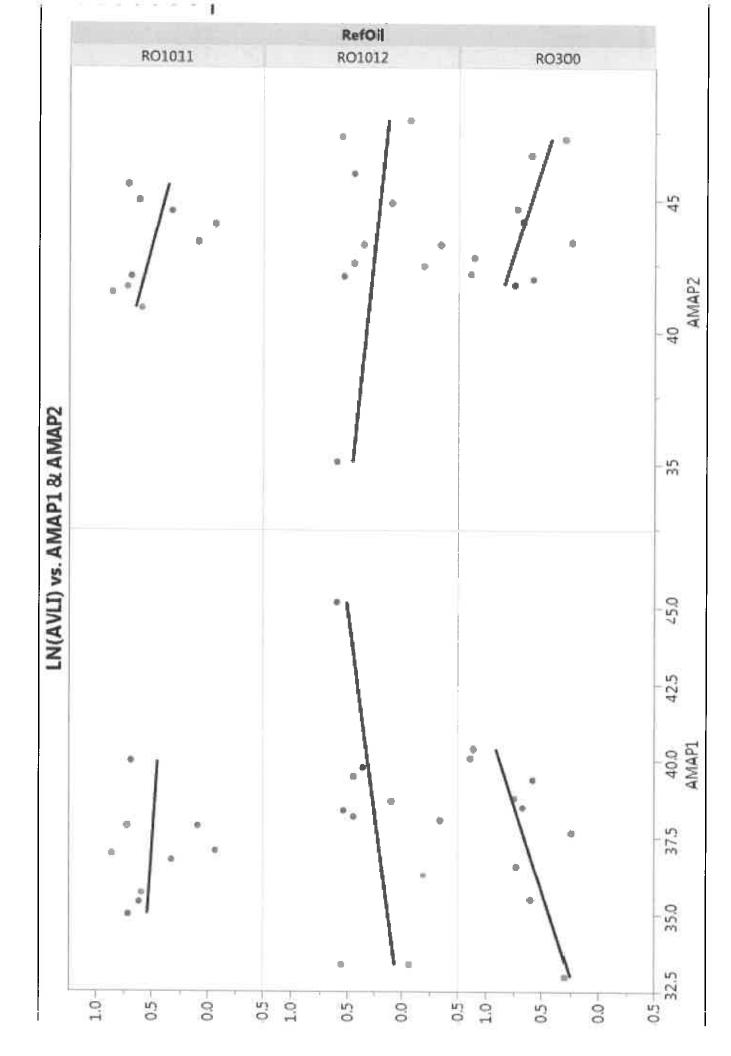
- Reference Oil (indicator coding of variable)
 - Stand[Lab] (indicator coding of variable)
 - AFR (stage 1 & 2)
- Blowby Flow Rate (stage 1 & 2)
- Crankcase Pressure (stage 1 & 2)
- Exhaust Temps (stage 1 & 2)
- Manifold Pressure (stage 1 & 2)


Analyzed data included all 28 PM test results


tatistical Analysis of Operational Data


Jue to multicollinearity, a Partial Least Squares (PLS) Analysis was verformed on the data set ¹LS analysis results (with 2 latent variables) for centered and scaled ire summarized below (and sorted by their centered and scaled ed) :oefficients):


Coefficient	rm (Centered & Scale	-2 -0.3198	12 -0.2625	0.2378	WBY1 0.1554	-R1 -0.1487	-2 0.1337	1 0.1286	AP1 0.1065	-R2 0.0828	AP2 -0.0764	SEP2 0.075	-1 0.0621	NBY2 0.0612	-3 0.0535	1 -0.0342	SEP1 0.0332	11 0.0315	1 -0.0256	HT1 -0.0241	HT2 0.0132	cept 0
	Rank Term	1 A-2	2 1012	300	4 ABLOWBY1	5 AAFR1	6 B1-2	7 6-1	8 AMAP1	9 AAFR2	10 AMAP2	11 ACCASEP2	12 B1-1	13 ABLOWBY2	14 B1-3	15 F-1	16 ACCASEP1	17 1011	18 A-1	19 AEXHT1	20 AEXHT2	21 Intercept


-Appendix-Plots of PLS Variables

Sequence IVB Precision Matrix Iron Analysis

Statistics Group March 26, 2018

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

 Precision Matrix (PM) Analysis Highlights: Precision Matrix (PM) Analysis Highlights: This analysis includes the results of 28 valid precision matrix tests This analysis includes the results of 28 valid precision matrix tests Bardenline statistical agginificant col precision matrix tests Bardenline statistical agginificant (A < B1) Stand within Lab differences are out statistically significant Coll discrimination is more significant (A < B1) Stand within Lab differences are not statistically significant Coll discrimination is more significant (A < B1) Coll discrimination is more significant to FEWMEOT than FEWML25 (Fe increase over last 25 hours) and FEWML30 (Fe increase over last 50 hours). Coll discrimination is more significant with the Calcium Adjustment of the FEWMEOT data Coll discrimination is more significant with the Calcium Adjustment of the FEWMEOT data HEWMEOT can be afflected by dilution factors such as fuel, water, volatility, etc. Coll discrimination is more table on sort HeWMEOT and played using calcium data may be a more preferred approach. However, this approach may contain to see are not at 1058/IIIIB may reduce the error associated with the calcium based adjustment feedlate out may not be adjustment and data. Adopting a procedure such as the IIG3/IIIIB may reduce the error associated with the calcium based adjustment feedlate out may not be adjust based on any not be adjust based on any not be adjust based on any ast be adjusted based on any precision may accurate the error associated with the calcium based adjustment feedlate out may not be adjust based on the set of the terror associated with the calcium based adjustment feedlate out may not be adjust based on the set of the terror associated with the calcium based adjustment to set adjust based on the set of the terror associated with the calcium based adjustment is a set of the terror as	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---	---

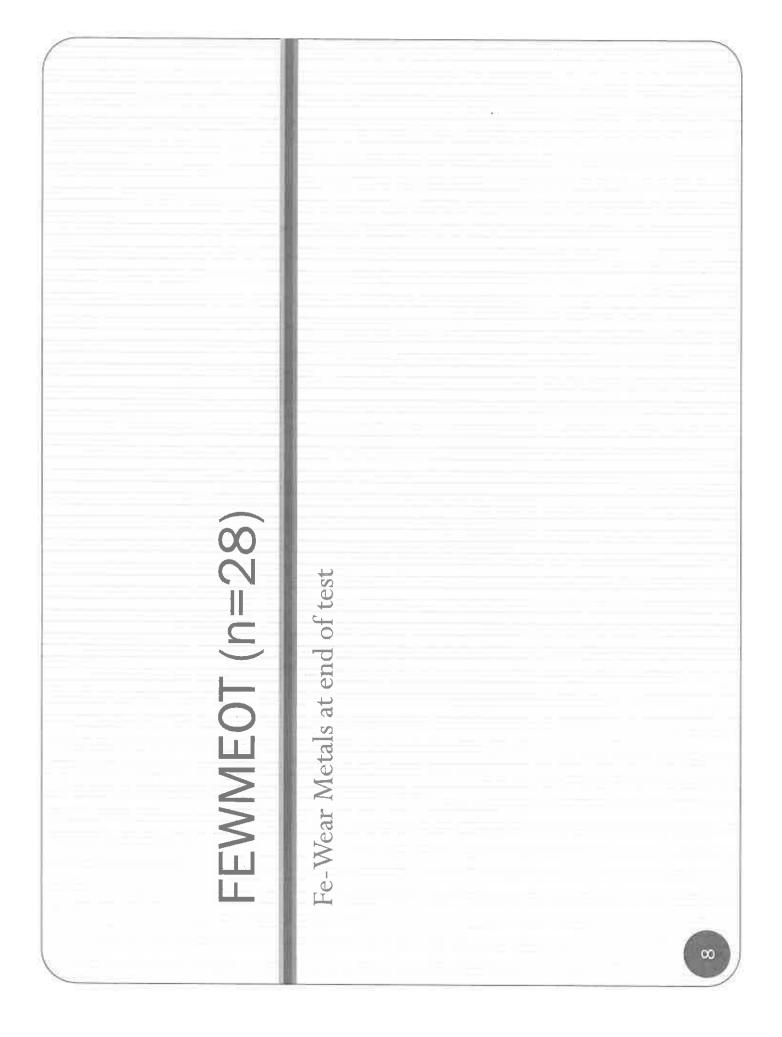
 Precision Matrix (PM) Analysis Highlights: Estimated within a stand test precision Ln(FEWMEOT) = 0.7487 	malysis Highli stand test pred) = 0.7487 ision across lal ision across lal ard deviation	ights: zision (r; AST s and stands s	 sion Matrix (PM) Analysis Highlights: Estimated within a stand test precision (r; ASTM repeatability) Ln(FEWMEOT) = 0.7487 Ln(FEWMEOT) = 0.7487 Ln(FEWMEOT) = 0.9496 Ln(FEWMEOT) = 0.9496 Oil means and standard deviations 	ducibility)
	stand test pred) = 0.7487) = 0.7487) = 0.7487) = 0.7487) = 0.9496 dard deviation	cision (r; AST os and stands s	M repeatability) (R; ASTM reproc	ducibility)
) = 0.7487 ision across lab) = 0.9496 dard deviation	os and stands s	(R; ASTM reprod	ducibility)
	ision across lal = 0.9496 dard deviation	s and stands	(R; ASTM reprod	ducibility)
) = 0.9496 dard deviation	8		
• $Ln(FEWMEOT) = 0.9496$	dard deviation	8		
• Oil means and standard deviations				
			Target	
Number of	of Target Mean	Target Mean	Deviation	
Oil Tests		FEWMEOT	Ln(FEWMEOT)	
	5.2500	191	0.4067	
1012 10	4.9249	138	0.3365	
1011 9	5.0258	152	0.2722	
 Same concerns with AVLI 		ı in Fe analysi	is (Two high resul	are seen in Fe analysis (Two high results on Oil 300 influence
oil discrimination,	liscrimination	not consisten	it among stands, 1	oil discrimination, discrimination not consistent among stands, test precision is large
compared to the observed range of measurements)	served range c	of measureme	ints))

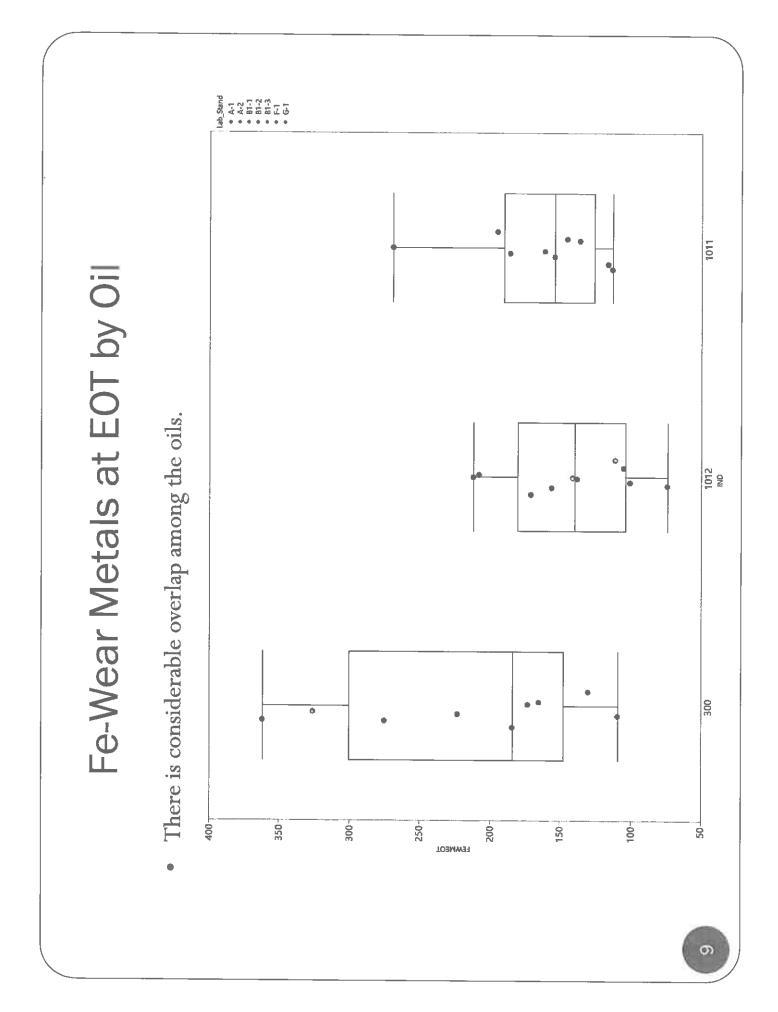
	sion Matrix (PM) Analysis Highlights: Estimated within a stand test precision (r; ASTM repeatability) • Ln(FEWMEOT_Ca_Adj) = 0.7162 Estimated test precision across labs and stands (R; ASTM reproducibility) • Ln(FEWMEOT_Ca_Adj) = 0.9410 Oil means and standard deviations $\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$	
	1 repeatabilit R; ASTM rep Target Mean FEWMEOT 221 157 175 175 175 175 175 175 175 175 17	
lary	ion Matrix (PM) Analysis Highlights: Estimated within a stand test precision (r; ASTM repeatability) • Ln(FEWMEOT_Ca_Adj) = 0.7162 Estimated test precision across labs and stands (R; ASTM reproducibility) • Ln(FEWMEOT_Ca_Adj) = 0.9410 Oil means and standard deviations Oil means and standard deviations $\boxed{FEWMEOT_Ca_Adj} = 0.9410 \\ \boxed{FEWMEOT_Ca_Adj} = 0.94$	
Summ	on Matrix (PM) Analysis Highlights: Estimated within a stand test precision Estimated within a stand test precision Estimated test precision across labs and Estimated test precision across labs and Estimated test precision across labs and Dil means and standard deviations Dil means and standard deviations Target N Ref. Oil Number of Tests Ln(FEWMEOT 300 9 5.398 1011 9 5.058 1011 9 5.058 1011 9 5.058 1011 10 5.058 1011 10 0 0 5.058 1011 10 0 0 5.058 1011 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Executive Summary	 Precision Matrix (PM) Analysis Highlights: Estimated within a stand test precision Ln(FEWMEOT_Ca_Adj) = 0.7162 Estimated test precision across labs and Ln(FEWMEOT_Ca_Adj) = 0.9410 Oil means and standard deviations Oil means and standard deviations Solo Un(FEWMEOT_0 Solo 1011 Same concerns with AVLI are seen in Foldi discrimination, discrimination not compared to the observed range of meastion 	
EXe	Preci	10

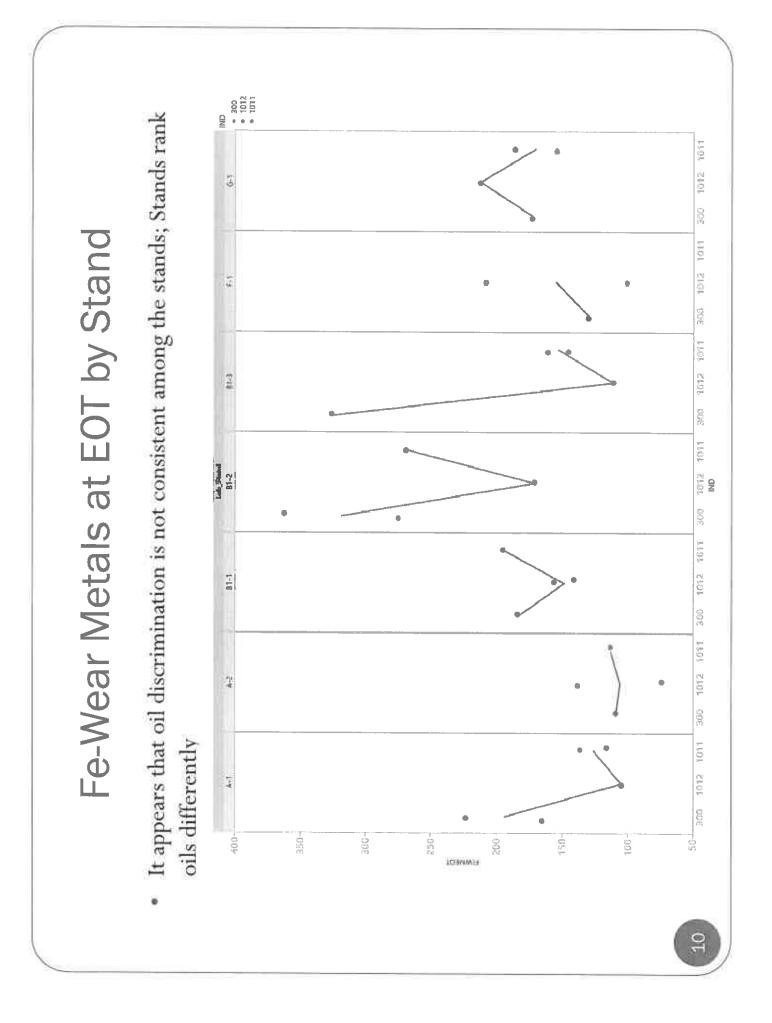
Data Utilized

- Precision Matrix Data:
- 4 Labs {A, B1, F and G}
- 3 Reference Oils {300, 1012, and 1011}
- 7 Stands {A-1, A-2, B1-1, B1-2, B1-3, F-1 and G-1}
- Total number of tests = 28
- Precision Matrix Data Table from Rich Grundza's 20180115 IVB Matrix update.

Run order	B1-1	81-2	B1-3	A-1	A-2	Z	6-1	Z
1	1012 12/2/3 73-IVB	300 1297/59-IVB	1011 125879-IVB	300 129752-IVB	1012 125882-IVB	1012 125183-WB	1012 130944-IVB	300
2	1011 129762-MB	1012 129766-IVB	1012 129767-IVB	1011 109201-IVB 1011* 125881-IVB	300 130948-IVB	300 1207:9-IVB	1011 125 184-WB	1011
rî)	300 129760-IVB	1011 129763-IVB	300 129761-IVB 300 130939-IVB	1012 129755-IVB	1011 125880-IVB	1012 130945-NB	1011 130943-IVB	300
÷	1012 129768-IVB	B/GF JALLAS	1011 12976.6.4VB	300 1.11277-IVB	1012 129756-1V8		300# 130940-IVB	
Reported			Imalid					

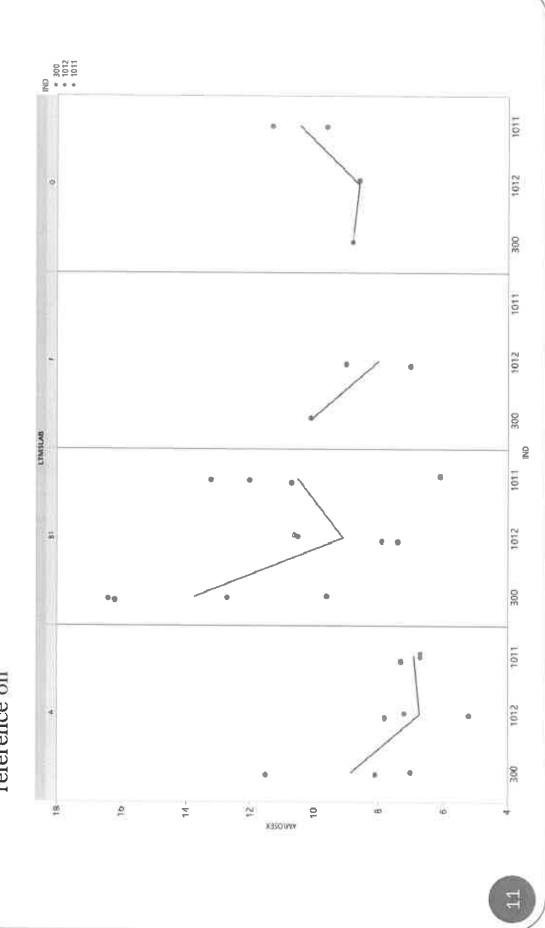

Laboratory is running additional test because of Lean AFR and lower fuel flow on original matrix test


Additional test donated by lab


Test	Parameter	Oil 1	011 2	Range	Test s _r	SDs of Separation
HIII	Ln(PVIS)	4,7191	3.3289	1.3902	0,4641	m
HIII	WPD	4.63	3.66	0.97	0.47	2.1
HIIH	Ln(MRV)	11.1107	9.7854	1.3253	0.4214	3.1
IIIHB	PHOS	94.15	78.92	15.23	1.53	10
NIE	FEI 1	2.56	1.3	1.26	0.29	4.3
VIE	FEI 2	1.82	141	0.41	0.12	3.4
VIF	FEI 1	2.23	1.45	0.78	0.21	3.7
VIF	FEI 2	2.25	141	0.84	0.19	4.4
(ISU) XI	Sqrt(AvPIE + 0.5)	4.2644	3.3819	0.8825	0.2856	3.1*1
нл	AES	8,43	6.47	1.96	0.5	3.9
НЛ	Ln(10-RCS)	0.9155	-0.5294	1.4449	0.2194	
Н	AEV50	9.26	8.77	0.49	0.25	2
НЛ	APV50	8 67	7.35	1.32	0.53	2.5
X (CW)	Ln(CHST)	-2.10574	-2.63174	0.526	0.14148	3 7*2
IVB	Sqrt(AVLI)	1.3931	1.1543	0.2388	0.168	1.4
IVB	Ln(FEWMEOT)	5.25	4.9249	0.3251	0.2701	1.2
IVB						

Reference Oil Discrimination Comparison

*1: Oil 220 not used as a reference oil. Including this oil would yield approx. 12 SDs of separation between 220 and 222.
*2: 271 vs. 1011



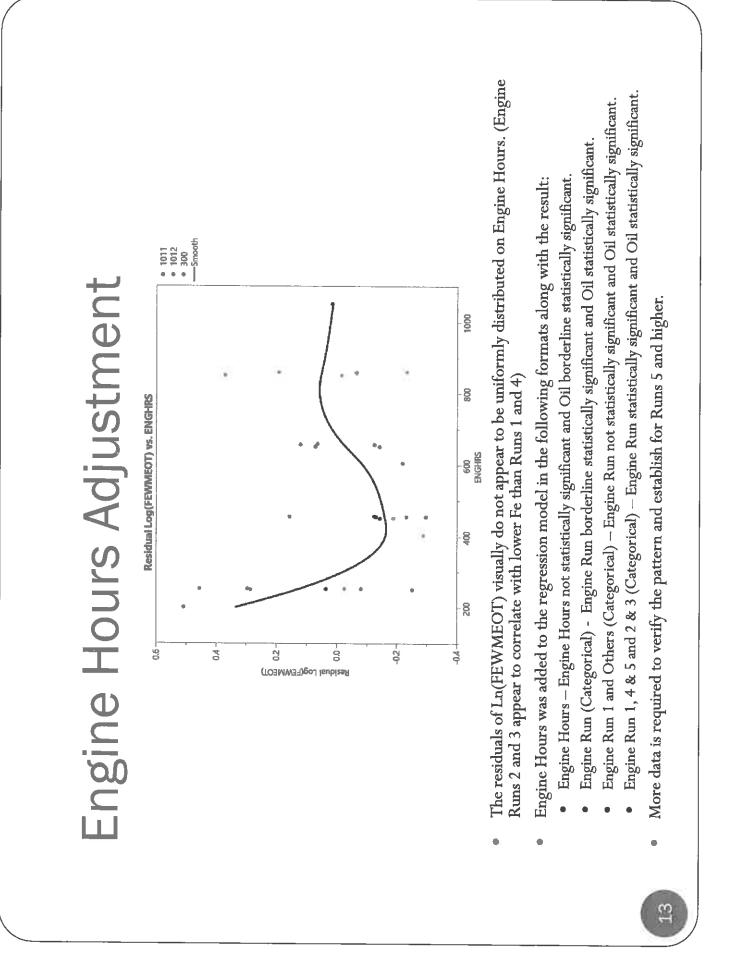
Fe-Wear Metals at EOT by Lab

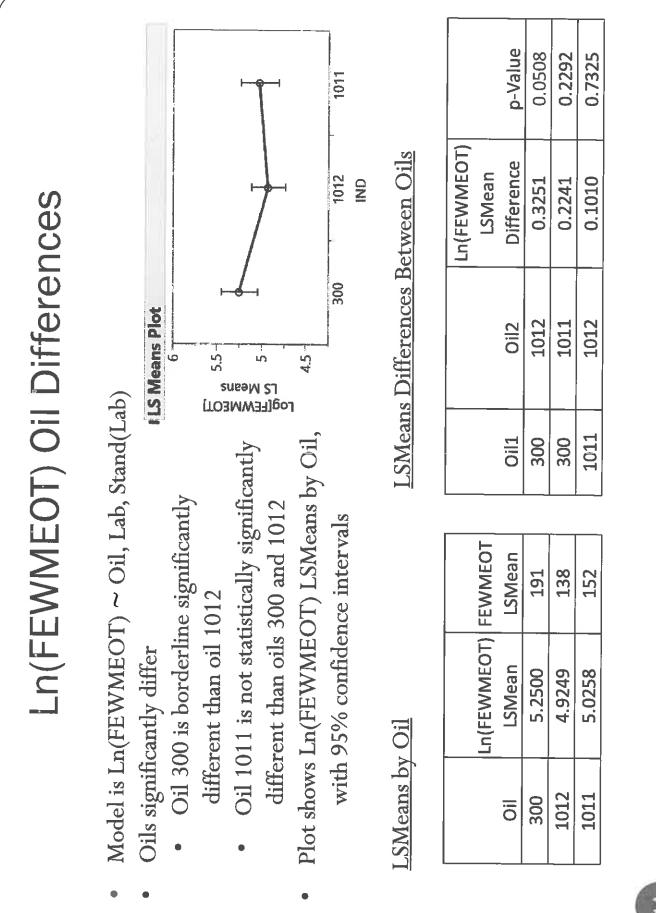
Below plot summarizes the FEWMEOT test result data by test Lab and reference oil •

Ln(FEWMEOT) ANOVA Full Model

Statistically significant differences:

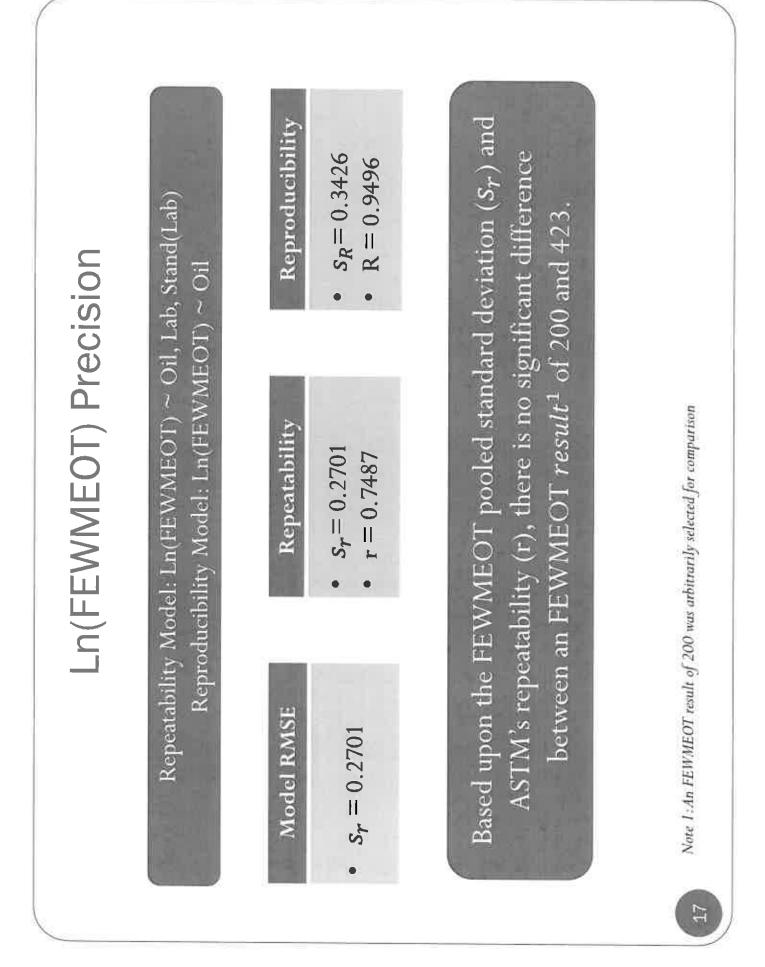
Lab


<u>Borderline significantly different:</u>


Oil

<u>Not significantly different:</u>

Stands within Labs •


I Summary of FI	of Fit					
RSquare		0.624999	666			
RSquare Adj		0.467104	104			
Root Mean Square Error	quare Error	0.270142	142			
Mean of Response	ponse	5.08419	419			
Observations	Observations (or Sum Wgts)	2)	28			
Analysis of Variance	f Variance					
	Sum of	of				
Source	DF Squares		Mean Square		F Ratio	
Model	8 2.3109226		0.288865		3.9583	
Error	19 1.3865568	68	0.072977		Prob > F	
C. Total	27 3.6974793	·93		0	0.0066*	
Parametei	Parameter Estimates		1			
Term		Estimate		Std Error	t Ratio	Prob> [t]
Intercept		5.0668785		0.060112	84.29	<.0001×
[00E]QNI		0.1830866	_	0.074382	2.46	0.0236*
[2101]ONI		-0.142024		0.075391	-1.88	0.0750
LTMSLAB[A]		-0.248739	-	0.087711	-2.84	0.0106*
LTMSLAB[B1]		0.206947		0.081573	2.54	0.0201*
LTMSLAB[F]		-0.09474		0.130769	-0.72	0.4776
LTMSLAB[A]:LTMSAPP[1]	LTMSAPP[1]	0.12012		0.092183	1.30	0.2081
LTMSLAB[B1	LTMSLAB[B1]:LTMSAPP[1]	-0.116682		0.111884	-1.04	0.3101
LTMSLAB B1	LTMSLAB(B1):LTMSAPP[2]	0.2416003	_	0.111842	2.16	0.0437*
Effect Tests	2					(
			Sum of	t of		
Source	Nparm	T DF	Squares		F Ratio	Prob > F
IND I TMSI AR		2 10	0.4918296	296	3.3698	0.0559
			000001111	222		10000

	ervals					<u>Labs</u>			p-Value	0.01	7T-0	0.71	0.84	0.97
ces	ufidence inte					<u>LSMeans Differences Between I</u>	Ln(FEWMEOT)	LSMean	Difference	0.4557	0.3833	0.2313	0.1540	0.0704
Ln(FEWMEOT) Lab Differences	h 95% cor	31.		i	U	Difference			Lab2	< •	A n		A	ŋ
ab Dif	nd(Lab) y Lab, wit	than Lab E			LTMSLAB	LSMeans			Lab1	5	ם פ	ט	L	B1
OT) Lá	il, Lab, Sta LSMeans h	/ different			- B1 LTM									
WME	EOT) ~ Oi NMEOT)	cally significantly	9	5. 5.	4.5			FEWMEOT	LSMean	124	195	144	187	
Ln(FE	Model is Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT) LSMeans by Lab, with 95% confidence intervals	Lab A is statistically significantly different than Lab B1. Its Means Plot		LS Means Log[FEWMEOT]	4	Lab		Ln(FEWMEOT)	LSMean	4.8181	5.2738	4.9721	5 2034	
	Model is Plot belo	Lab A is				<u>LSMeans by Lab</u>		_	Lab	A	B1	L	ۍ ا	
	• •	•											C	15

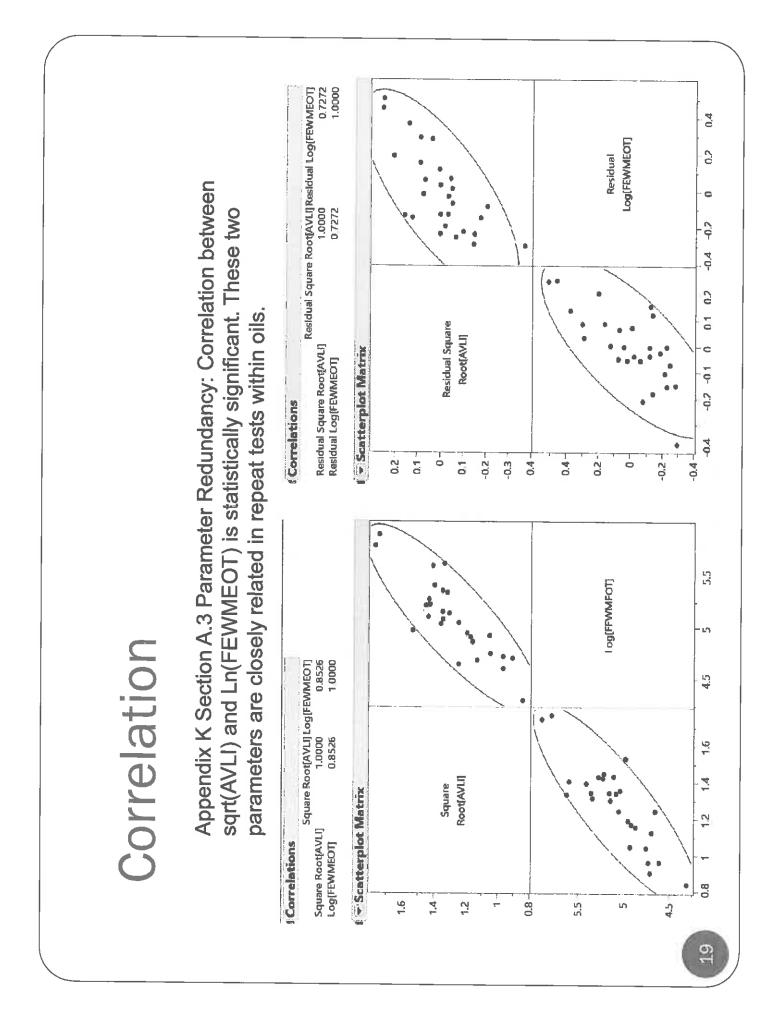
ences	ice intervals	other			<u>LSMeans Differences Between Stands within a Lab</u>	OT)	د ce p-Value		0.53	0.84	1		
Differ	6 confiden	from each	[etween Sta	Ln(FEWMEOT)	LSMean Difference	0.3665	0.3583	0.2402	0.0082		
n Lab) d, with 95%	y ditterent		· [F]1 [G]1	ifferences B		Stand2	[B1]3	[B1]1	[A]2	[B1]3		
Stand within Lab Differences	~ Oil, Lab, Stand(Lab) OT) LSMeans by Stand	ly significant		[B1]1	LSMeans D		Stand1	[B1]2	[B1]2	[A]1	[B1]1		
	Model is Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT) LSMeans by Stand, with 95% confidence intervals	Stands within labs are not statistically significantly different from each other ILS Means Plot	5.5- 5.5- 5.5- 1 2.5- 1 2.5- 5.5- 5.5- 5.5- 5.5- 5.5- 5.5- 5.5-	[A]1 [A]2		FEWMEOT	LSMean 140	110	174	248	172	144	182
-n(FEWMEOT)	Model is Ln(FEWMEOT) Plot below of Ln(FEWME	within labs are not ILS Means Plot	to <u>g[</u> FEWMEOT] LS Means 4		<u>y Stand</u>	Ln(FEWMEOT) FEWMEOT	LSMean 4.9383	4.6980	5.1571	5.5154	5.1489	4.9721	5.2034
Ln(Fl	Model i Plot bel	Stands v			LSMeans by Stand		Stand [Al1	[A]2	[B1]1	[81]2	[B1]3	[F]1	[G]1
	• •	•			Ī							1	16

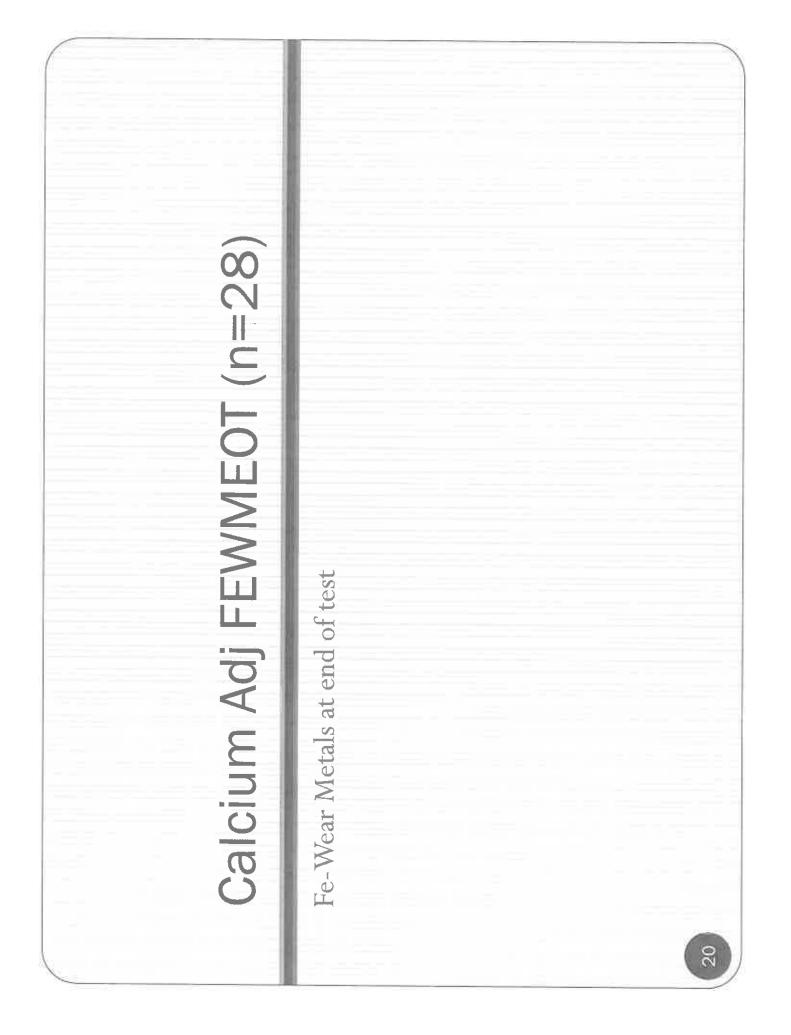
Reference Oil Targets

Model: Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab)

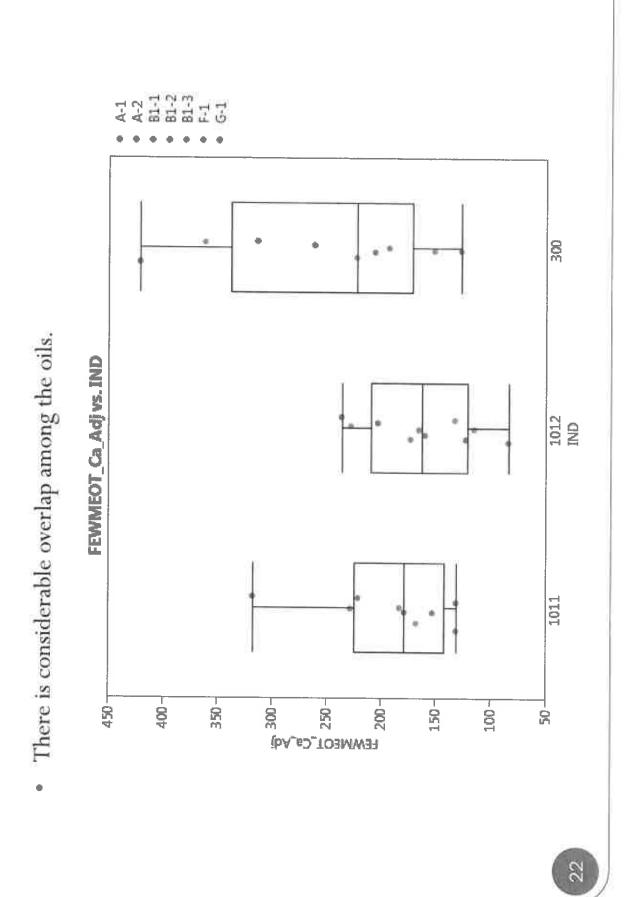
Iron at EOT (FEWMEOT) Unit of Measure: Ln(FEWMEOT)

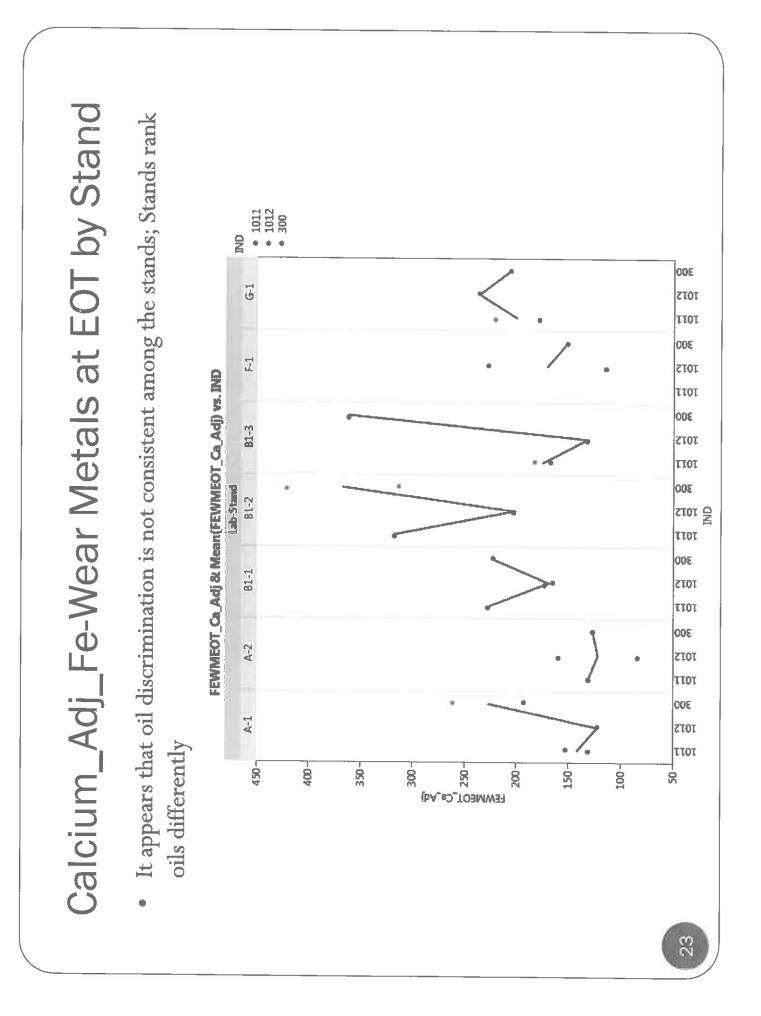
St. Dev 0.3365 0.4067 Target Mean FEWMEOT 191 138 Ln(FEWMEOT) Target Mean 5.2500 4.9249 Ref. Oil 1012 300

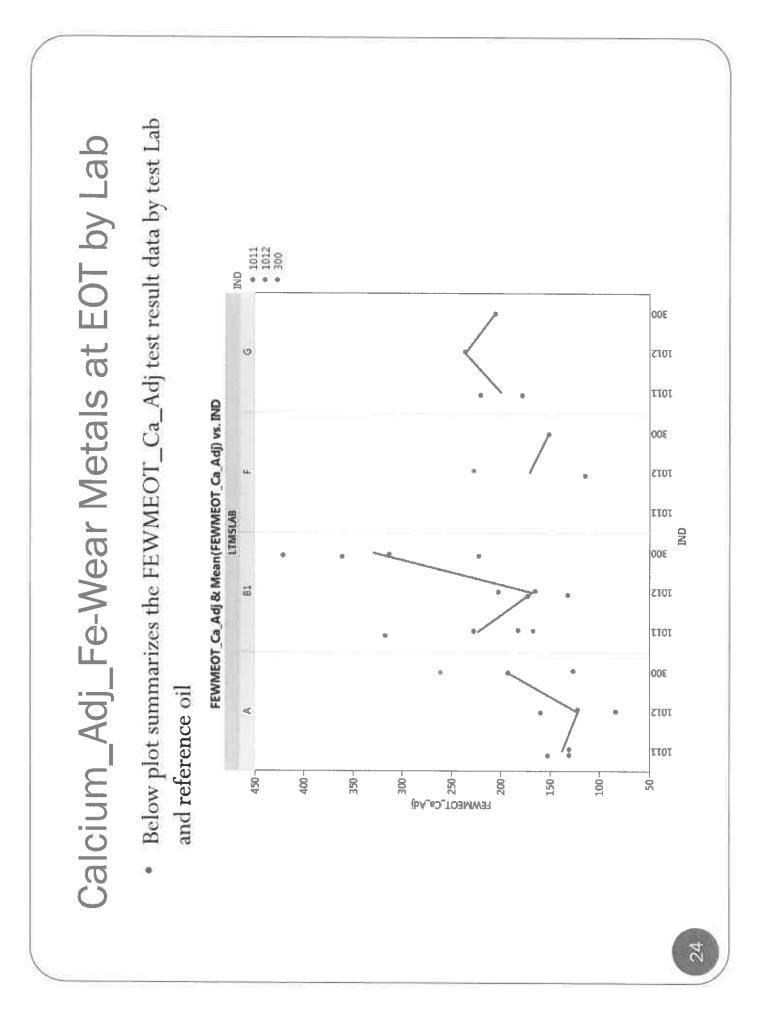

Target Means are the Oil LSMeans from the Model and Standard Deviations are calculated straight from Ln(FEWMEOT).


0.2722

152


5.0258

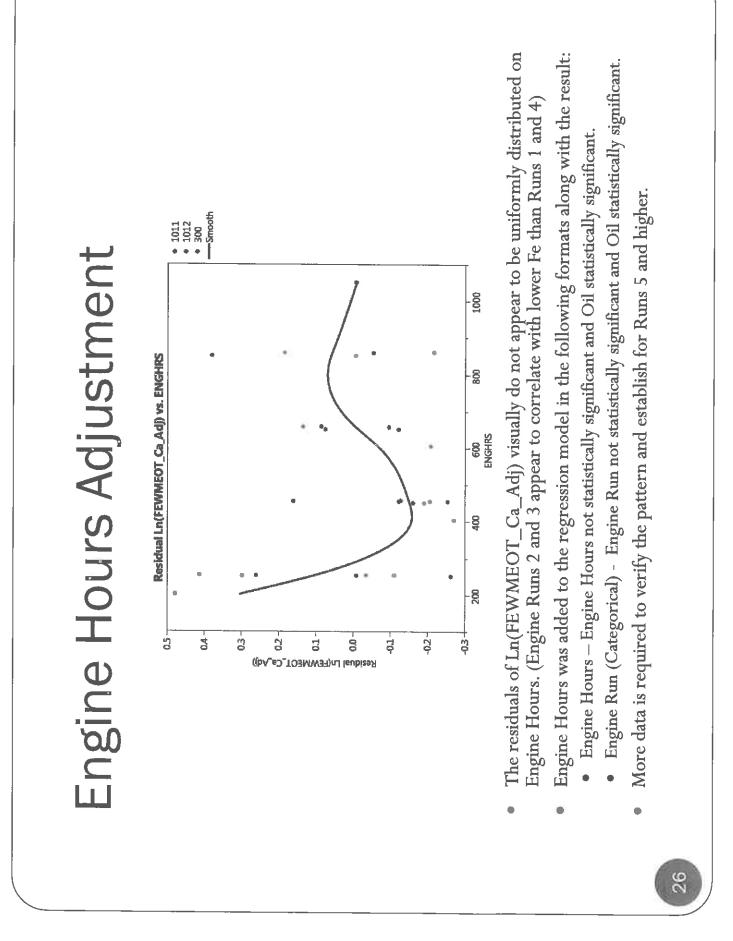

1011



Calcium_Adj_Fe-Wear Metals at EOT by Oil

Ln(FEWMEOT_Ca_Adj) - ANOVA Full Model

Statistically significant differences:


Lab, Oil

<u>Not significantly different:</u>

Stands within Labs

Summary of Fit	4 FR						
RSquare RSquare Adj		0.65	0.657934				
Root Mean Square Error	lare Error	0.25	0.258396				
Mean of Response Observations (or Sum Wgts)	nse or Sum W		5.226639 28				
Analysis of Variance	Variank	*		ŀ.,			
	S	Sum of				1	
Source D	DF Sa	Squares M	Mean Square	P	F Ratio		
Model	8 2,43!	2.4398569	0.304982	R	4.5681		
Error 1	19 1.268	1.2685020	0.066763		Prob > F		
C. Total 2	27 3.70(3,7083589			0.0031*		
Parameter Estimates	stimat				Teneral Balance		<u></u>
Term		Estimate	e Std Error	To:	t Ratio	Prob> [t]	
Intercept		5.2072249		1 96	90.57	<1000'>	
Refoil[R01011]		-0.042438	0	50	-0.58	0.5720	
Refoil[R01012]		-0.149076		11	-2.07	0.0526	
LTMSLAB[A]		-0.249068	_	2	-2.97	0,0079*	
LTMSLAB[B1]		0.2137059	_	ន្ត	2.74	0.0130*	
LTMSLAB[F]		-0.11074	_	378	-0.89	0.3870	
LIMSLAB(A):Stand(S1)	and[S1]	0.1176384	_	55	1.33	0.1979	
LTMSLAB[B1]:Stand(S7)	tand[S]	CTTTTT-	CIU/ULU V	96	5 F	0.3120	
Effect Tests						(
An Armen and a start party and a start a start			Smin of				
Source	Mazar	DF	See 197		E Ratio	Proh > F	-
RefOil	2	2	0.5391278		4.0376	0.0346*	
LTMSLAB		m	1.1972860		5.9778	0.0048*	
Stand[LTMSLAB]		m	0.4703869		2.3485	0.1049	-

9

Ln(FEWMEOT_Ca_Adj) Oil Differences

- Model is Ln(FEWMEOT_Ca_Adj) ~ Oil, Lab, Stand(Lab)
- Oils significantly differ
- Oil 300 is significantly different than oil 1012
- Oil 1011 is not statistically significantly different than oils 300 and 1012

snesM 2J

(ipv"eo"LOBMMEJ)ul

ŵ

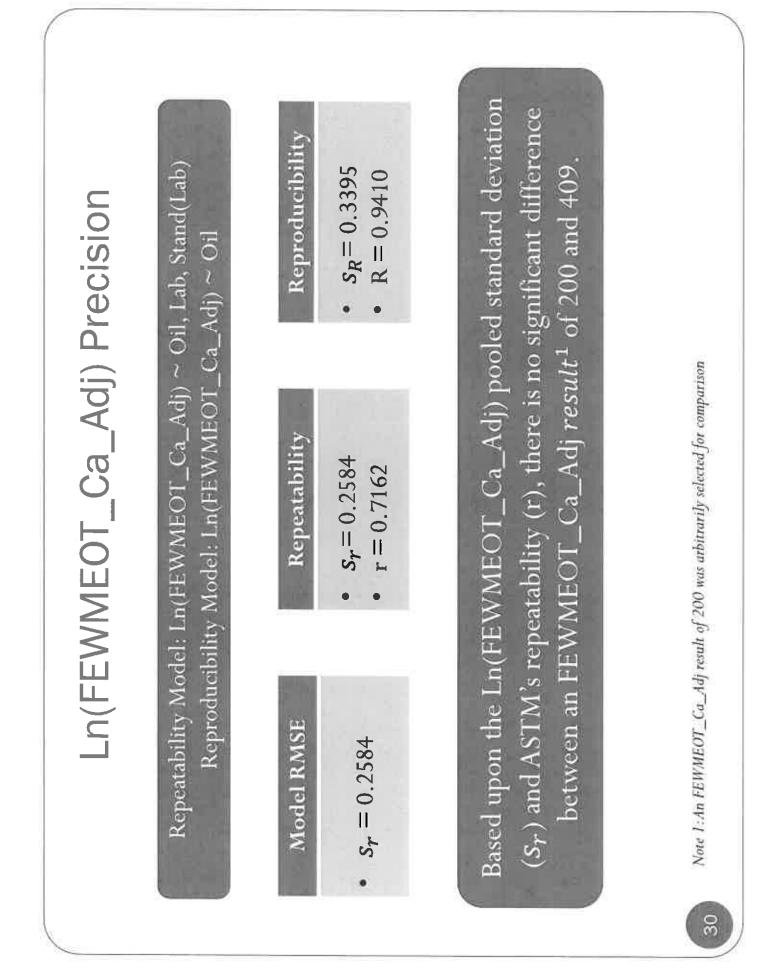
Plot shows Ln(FEWMEOT_Ca_Adj)
 LSMeans by Oil, with 95% Confidence Interval

LSMeans Differences Between Oils

202

1012 IND

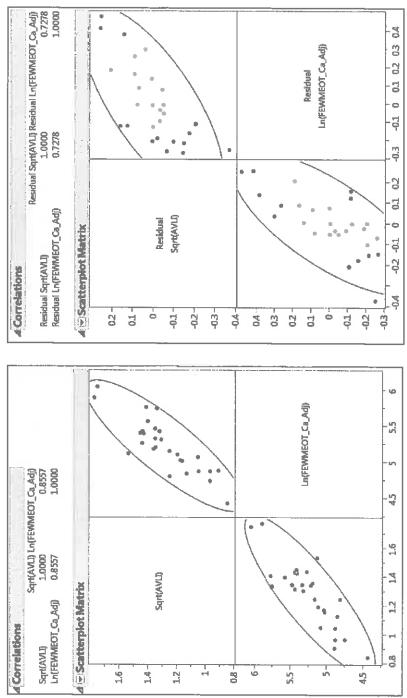
1011


ή. T

			_	
FEWMEOT_Ca_Adj	LSMean	175	157	221
Ln(FEWMEOT_Ca_Adj) FEWMEOT_Ca_Adj	LSMean	5.1648	5.0581	5.3987
	Oil	1011	1012	300

		Ln(FEWMEOT_Ca_Adj)	
0il1	Oil2	LSMean Difference	p-Value
300	1012	0.3406	0.0310
300	1011	0.2339	0.1775
1011	1012	0.1066	0.6852

ces	onfidence				<u>een Labs</u>	(ipd)	ence p-Value	0.0035	0.0886	0.2672	0.6063	0.8625	0.9689
Differen	ab) b, with 95% ce	Γ			<u>LSMeans Differences Between Labs</u>	Ln(FEWMEOT_Ca_Adj)	LSMean Difference	0.4628	0.3952	0.3244	0.2568	0.1383	0.0676
] de	and(L by La	b B1.	Harris	U	ns Diff		Lab2	A	۷	ш	Ŀ	۷	υ
j) Lá	Lab, St SMeans	han La		L.	LSMea		Lab1	B1	Ⴑ	B 1	U	ш	81
_Ad	~ Oil, _Adj) L9	ferent t		B1 LTMSLAB	_								
1EOT_Ca	EOT_Ca_Adj) ~ Oil, Lab, Stand(Lab) WMEOT_Ca_Adj) LSMeans by Lab, v	significantly dif	6- 5.5- 5.5- 45- 45-	4		FEWMEOT_Ca_Adj	LSIMEAN 1.47	142 276	163	211			
Ln(FEWMEOT_Ca_Adj) Lab Differences	Model is Ln(FEWMEOT_Ca_Adj) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT_Ca_Adj) LSMeans by Lab, with 95% confidence intervals	Lab A is statistically significantly different than Lab B1	Ln(FEWMEOT, Ca_Adj)		<u>LSMeans by Lab</u>	Ln(FEWMEOT_Ca_Adj)		1000-1-2	5.0965	5.3533			
	Plot inte	• Lab			LSMear			¢ 12	; LL	U			
					.—, L		_	_				00	07


nce interva		<u>ithin a Lab</u>		-	0.4108	0.484/		T. U.			
Adj) Stand within Lab Differences _Adj) ~ Oil, Lab, Stand(Lab) _Ca_Adj) LSMeans by Stand, with 95% confidence intervals istically significantly different from each other		1 [[B1]2 [B1]3 [F]1 [G]1 MSAPP[LTMSLAB] LSMeans Differences Between Stands within a	Ln(FEWMEOT_Ca_Adj)	LSIVIEAN UITTERENCE	0.3825	0.353 0 7353	0.0245	0.0243			
vithin L md(Lab) by Stand, w different fre		iffirences B		Lab_Stand2	5[L8]	т[та] т[та]	[B1]2				
Stand v Dil, Lab, Sta) LSMeans ignificantly		LTMSAPP[LTMSLAB] LTMSAPP[LTMSLAB] LSMeans Di			2[T8]	2(10)		TLU			
		[A]1 ' [A]2 ' [B1]1 LTN	FEWMEOT_Ca_Adj LSMean	160	127	202 289	197	163	211		
_n(FEWMEOT_Ca_Adj) Stand within Lab Diffel Model is Ln(FEWMEOT_Ca_Adj) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT_Ca_Adj) LSMeans by Stand, with 95% confit Stands within labs are not statistically significantly different from each other	Ln(FEWMEOT_Ca_Adj) Ln(FEWMEOT_Ca_Adj) LS Means LS Means	<u>LSMeans by Stand</u>	Ln(FEWMEOT_Ca_Adj) LSMean	5.0758	4.8405	5.6678	5.2852	5.0965	5.3533		
Ln(F • Modé • Plot l • Stand		LSMe	Level	[A]1	[A]2		[B1]3	[F]1	[G]1	29	Ň

Reference Oil Targets	Model: Ln(FEWMEOT_Ca_Adj) ~ Oil, Lab, Stand(Lab)	Iron at EOT (FEWMEOT_Ca_Adj) Unit of Measure: Ln(FEWMEOT_Ca_Adj)	if. Oil Target Mean Ln(FEWMEOT_Ca_Adj) FEWMEOT_Ca_Adj St. Dev	300 5.3987 221 0.3967	012 5.0581 157 0.3277	011 5.1648 175 0.2863		larget Means are the Oil LSMeans from the Model and Standard Deviations are calculated straight from Ln(FEWMEOT_Ca_Adj).
Reference	Model:		Ref. Oil	300	1012	1011	F	31 larg

Correlation

Sqrt(AVLI) and Ln(FEWMEOT_Ca_Adj) is statistically significant. These two Appendix K Section A.3 Parameter Redundancy: Correlation between parameters are closely related in repeat tests within oils.

Appendix A: FEWMEOT (n=21) Fe-Wear Metals at end of test 33

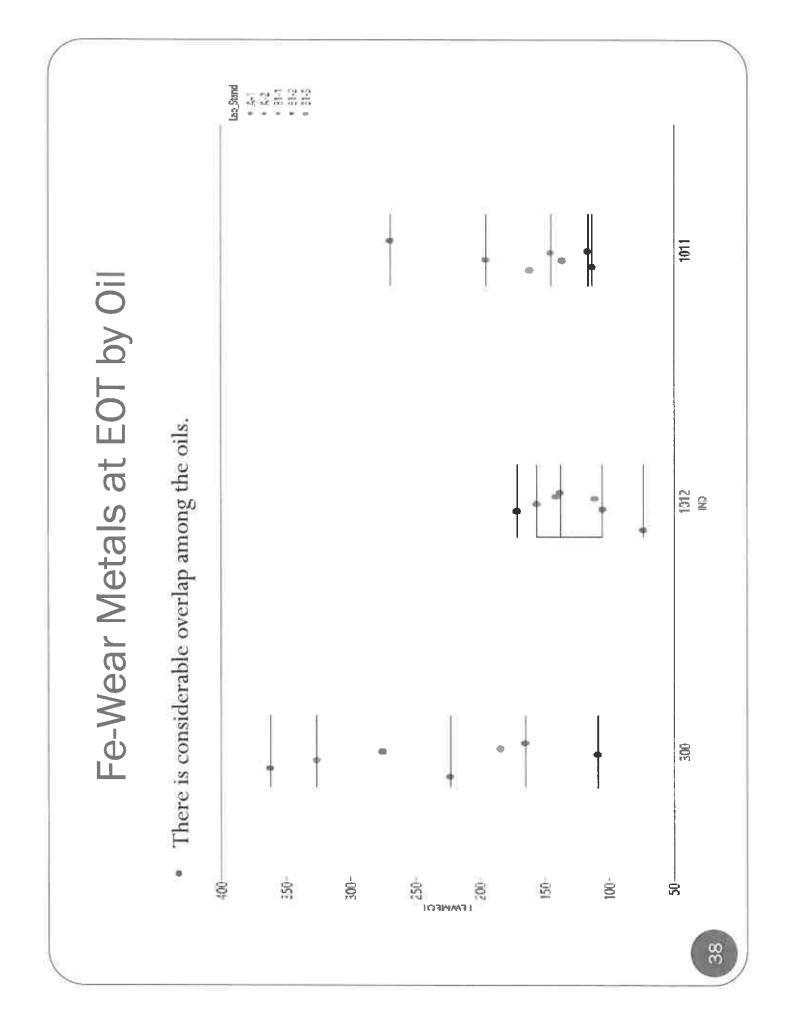
|--|

Image OliTarget TestsTarget Mean Target MeanTarget Standard DeviationOliTests $In(FEWMEOT)$ FEWMEOT FEWMEOTDeviation Deviation30075.30952020.4204101274.81461230.2859101175.01721510.3064Same concerns with AVLI are seen in Fe analysis (discrimination not consistent among stands, test precision is large compared to the observed range of measurements)	5.3095 202 4.8146 123	Target Mean Target Mean Ln(FEWMEOT) FEWMEOT	Target	ans and standard deviations	$^{T}EWMEOT) = 0.9499$	rix (PM) Analysis Highlights: ed within a stand test precision (r; ASTM repeatability)		 M) Analysis Highli MEOT) = 0.6381 MEOT) = 0.6381 st precision across l MEOT) = 0.9499 d standard deviatio d standard deviatio d standard deviatio d standard deviatio n standard deviatio a standard deviatio
 Ln(FEWMEOT) = 0.9499 Oil means and standard deviations 	rget Mean EWMEOT		Ln(FEWMEOT) = 0.9499 means and standard deviations	Ln(FEWMEOT) = 0.9499		Ln(FEWMEOT) = 0.6381	 Precision Matrix (PM) Analysis Highlights: Estimated within a stand test precision (r; ASTM repeatability) Ln(FEWMEOT) = 0.6381 	st precision across l
imated test precision across labs and stands (R; ASTM reproducibility $Ln(FEWMEOT) = 0.9499$ means and standard deviations	Ln(FEWMEOT) = 0.9499 Ln(FEWMEOT) = 0.9499 means and standard deviations Number of Target Mean Target Standard OI Tests Ln(FEWMEOT) FEWMEOT Ln(FEWMEOT)	imated test precision across labs and stands (R; ASTM reproducibility) Ln(FEWMEOT) = 0.9499 means and standard deviations Target	 Estimated test precision across labs and stands (R; ASTM reproducibility) Ln(FEWMEOT) = 0.9499 Oil means and standard deviations 	imated test precision across labs and stands (R; ASTM reproducibility) Ln(FEWMEOT) = 0.9499	imated test precision across labs and stands (R; ASTM reproducibility)		Matrix (PM) Analysis Highlights: mated within a stand test precision (r: ASTM repeatability)	MEOT) = 0.6381
Target Target arget Mean Standard arget Mean Deviation Total Deviation Total Deviation 202 0.4204 123 0.2859 151 0.3064 151 0.3064 1 Deviation			Target	IS		hts: cision (r; ASTM repeatability)	mary	

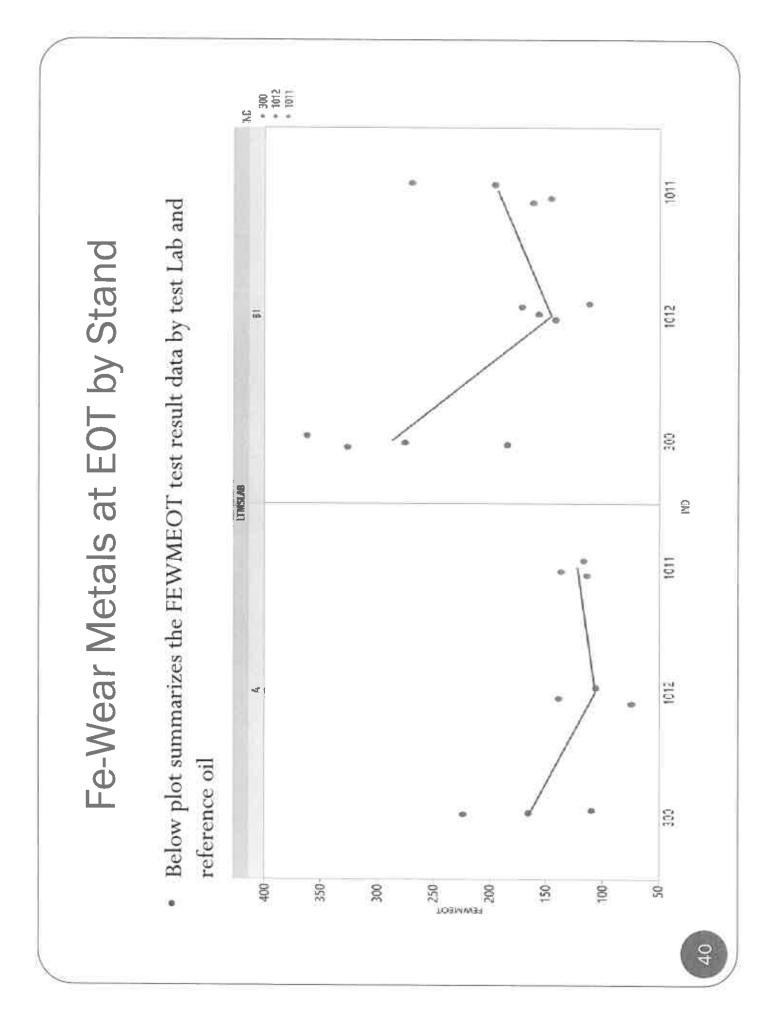
Data Utilized

- Precision Matrix Data:
- 2 Labs {A, B1}, independent labs only
- 3 Reference Oils {300, 1012, and 1011}
- 5 Stands {A-1, A-2, B1-1, B1-2, B1-3}
- Total number of tests = 21
- Precision Matrix Data Table from Rich Grundza's 20180115 IVB Matrix update.

Run order	B1-1	B1-2	B1-3	A-1	A-2	F	6-1	R
84	1012 127173-MB	300 129759-IVB	1011 125879-IVB	300 129752-IVB	1012 125882-IV8		101	2
2	1011 129762-IVB	129766-tvB	1012 129767-IVB	1011 109201-IVB 1011* 125881-IVB	300 130948-IVB	110)		HO
rð.	300 129760-IVB	10	300 129761-IVB 300 130939-IVB	1012 129755-IVB	1011 125880-IVB	J. A.		300
4	1012 129768-IVB	300 300 - 100	1011 129764-IVB	300 131277-IVB	1012 129756-IVB		300# 130940-IVB	
Reported			Invalid					


* Laboratory is running additional test because of Lean AFR and lower fuel flow on original matrix test

Additional test donated by lab


ross GF-6	oil across GF-6 test types. The median of other tests is approx. 3.55 and the mean (without PHOS) is 3.99.	dian of other te	sts is approx. 3.5.	oil across GF-6 test types. The median of other tests is approx. 3.55 and the mean (without PHOS) is 3.99.	without PHOS) is 3.99.
Test	Parameter	0il 1	0112	Range	Test s_r	SDs of Separation
HII	Ln(PVIS)	4.7191	3.3289	1.3902	0.4641	3.0
HII	MPD	4.63	3.66	0.97	0.47	2.1
IIIHA	Ln(MRV)	11.1107	9.7854	1.3253	0.4214	3.1
IIIHB	SOHG	94.15	78.92	15.23	1.53	10.0
VIE	FEI 1	2.56	1.3	1.26	0.29	4.3
VIE	FEI 2	1.82	1.41	0.41	0.12	3.4
VIF	FEI 1	2.23	1.45	0.78	0.21	3.7
VIF	FEI 2	2.25	1.41	0.84	0.19	4.4
IX (LSPI)	Sqrt(AvPIE + 0.5)	4.2644	3.3819	0.8825	0.2856	3.1*1
ΗΛ	AES	8.43	6.47	1.96	0.5	3.9
НЛ	Ln(10-RCS)	0.9155	-0.5294	1.4449	0.2194	6.6
HV	AEV50	9.26	8.77	0.49	0.25	2.0
НЛ	APV50	8.67	7.35	1.32	0.53	2.5
X (CW)	Ln(CHST)	-2.10574	-2.63174	0.526	0.14148	3.7*2
IVB	Sqrt(AVLI)	1.4306	1.1104	0.3202	0.1657	1.9
IVB	Ln(FEWMEOT)	5.3095	4.8146	0.4949	0.2302	11

DIA MIN AZZ 1 5 น้าม n *2:271 vs. 1011

37

+ 300 + 1012 + 1011 It appears that oil discrimination is not consistent among the stands; Stands -15 Fe-Wear Metals at EOT by Lab . Let Stand NB ×-2 rank oils differently 1-12 LEWMEDT •

Statistically significant differences:

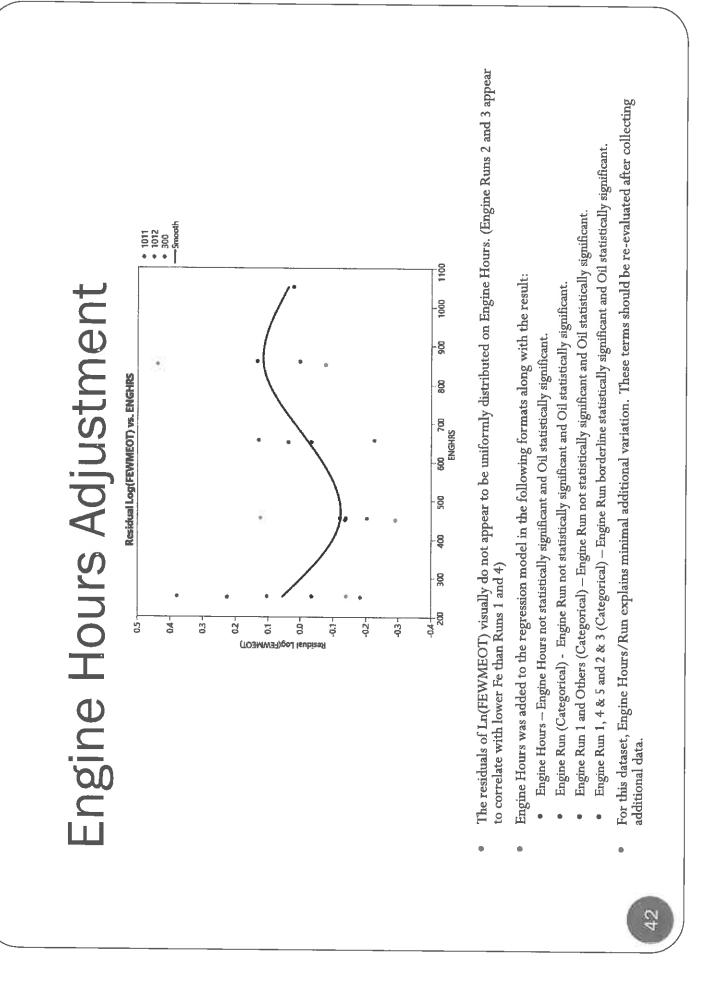
- Oil Lab

<u>Not significantly different:</u>

Stands within Labs

RSquare Adj 0.772531 RSquare Adj 0.675045 Root Mean Square Error 0.230183 Mean of Resnonse 5.084252
--

O	***	
Ŭ		
5	ł.	ļ
	ł	
	i	
>	to the last of the contract of the second second of the second se	
-	ţ	
O	i.	
Ch.	ļ	
1	ł	
2	ł	
-	ł.	
0		
•		


		Sum of		
Source	ų	Squares	Mean Square	F Ratio
Model	9	2.5192333	0.419872	7.9245
Error	14	0.7417780	0.052984	0.052984 Prob > F
C. Total	20	3.2610112		0.0007*

Parameter Estimates

Terms	Estimate	Std Error t Ratio Prob> t	t Ratio	Prob> [t]
Intercept	5.0471138	0.05094	99.08	<.0001*
IND[300]	0.2623813	0.072759	3.61	0.0029*
IND[1012]	-0.232514	0.074003	-3.14	0.0072*
LTMSLAB[A]	-0.226712	0.05094	-4.45	0.0005*
LTMSLAB[A]:LTMSAPP[1]	0.0997597	0.078981	1.26	0.2272
LTMSLAB[81]:LTMSAPP[1]	-0.094059	0.095776	-0.98	0.3427
LTMSLAB[B1]:LTMSAPP[2] 0.2217766	0.2217766	0.095716	2.32	0.0362*
CLEAR TANK				

Leftect Tests

			Sum of		1
Source	Nparm	IJ	Squares	F Ratio	F Ratio/Prob >
ONI	2	2	0.8113142	7.6562	0.0057*
TMSLAB	*	-	1.0494905	19.8076	0.0005*
TMSAPP[LTMSLAB]	ŝ	ŝ	0.3660636	2.3030	0.1216

	101		p-Value	0.00	0.28
ences	300 1012	LSMeans Differences Between Oils	Ln(FEWMEOT) LSMean Difference	0.4949 0.2922	0.2026
Ln(FEWMEOT) Oil Differences	Subshirt Plot	s Differences	Oil2	1012 1011	1012
EOT) Oil	Oil, Lab, Stand(Lab) lifferent and 1012 LSMeans by Oil, ntervals		Oil1	300	1011
EWME	 T) ~ Oil, I antly differe atistically sig a 300 and 10 EOT) LSMee ence interva 		FEWMEOT LSMean	202 123	151
Ln(F	 Model is Ln(FEWMEOT) ~ Oil, Lab, Stand Oils significantly differ Oil 300 is significantly different than oil 1012 Oil 1011 is not statistically significantly different than oils 300 and 1012 Plot shows Ln(FEWMEOT) LSMeans by Oil with 95% confidence intervals 	<u>y Oil</u>	Ln(FEWMEOT) LSMean	5.3095 4.8146	5.0172
	Model is L Oils signifi • Oil 3(than • Oil 1(diffe Plot shows with	<u>LSMeans by Oil</u>	Oil	300 1012	1011
	• • •				

	rvals				<u>abs</u>	p-Value	0.00		
ces	nfidence inte				<u>LSMeans Differences Between Labs</u>	Ln(FEWMEOT) LSMean Difference	0.4534		
fferen	th 95% co B1				Difference	Lab2	A		
ab Di	and(Lab) by Lab, wi t than Lab			B1 AB	LSMeans	Lab1	81		
OT) L	 ~ Oil, Lab, Stand(Lab) EOT) LSMeans by Lab, w icantly different than Lab 			ALTMSLAB			1	ŢŢ	
WME	OT) ~ O /MEOT) gnificantl	6	رت برت برت بر بر بر بر بر			FEWMEOT	124	195	
Ln(FEWMEOT) Lab Differences	Model is Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT) LSMeans by Lab, with 95% confidence intervals Lab A is statistically significantly different than Lab B1 _§	t LS Means Plot	لمورا ب بن LO3MWE4TJ LS Means		Lab	Ln(FEWMEOT)	4.8204	5.2738	
	Model is Plot belc Lab A is				<u>LSMeans by Lab</u>	<u>-</u>	A	B1	
	• • •								44

CeS ntervals		p-Value	0.27	0.72		
-n(FEWMEOT) Stand within Lab Differences Model is Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab) Plot below of Ln(FEWMEOT) LSMeans by Stand, with 95% confidence intervals Stands within labs are not statistically significantly different from each other	[B1]1 [B1]2 [B1]3 Sapp[LTMSLAB] LSMeans Differences Between Labs	Ln(FEWMEOT) LSMean Difference	0.3495	0.1995	0.0337	
<pre> 7 Lab [9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</pre>	Differences I	Stand2	[B1]3 [B1]1	[A]2	[B1]3	
Stand within ~ Oil, Lab, Stand(Lab) OT) LSMeans by Stand statistically significantly		Stand1	[B1]2 [B1]7	[A]1	[B1]1	
Stanc ~ Oil, Lab OT) LSMe tatistically						
EOT) SMEOT) AMEOT) are not s	Log[FEWMEOT] Log[FEWMEOT]	FEWMEOT LSMean	112	1/8	172	
Ln(FEWMEOT) Model is Ln(FEWMEOT) Plot below of Ln(FEWME Stands within labs are not		Ln(FEWMEOT) LSMean 4 9202	4.7206	5.1798 5.4956	5.1461	
Ln(F Model Plot be Stands	LSMeans by Stand	Stand I A11	[A]2	[B1]1 [B1]2	[B1]3	
• • •						45

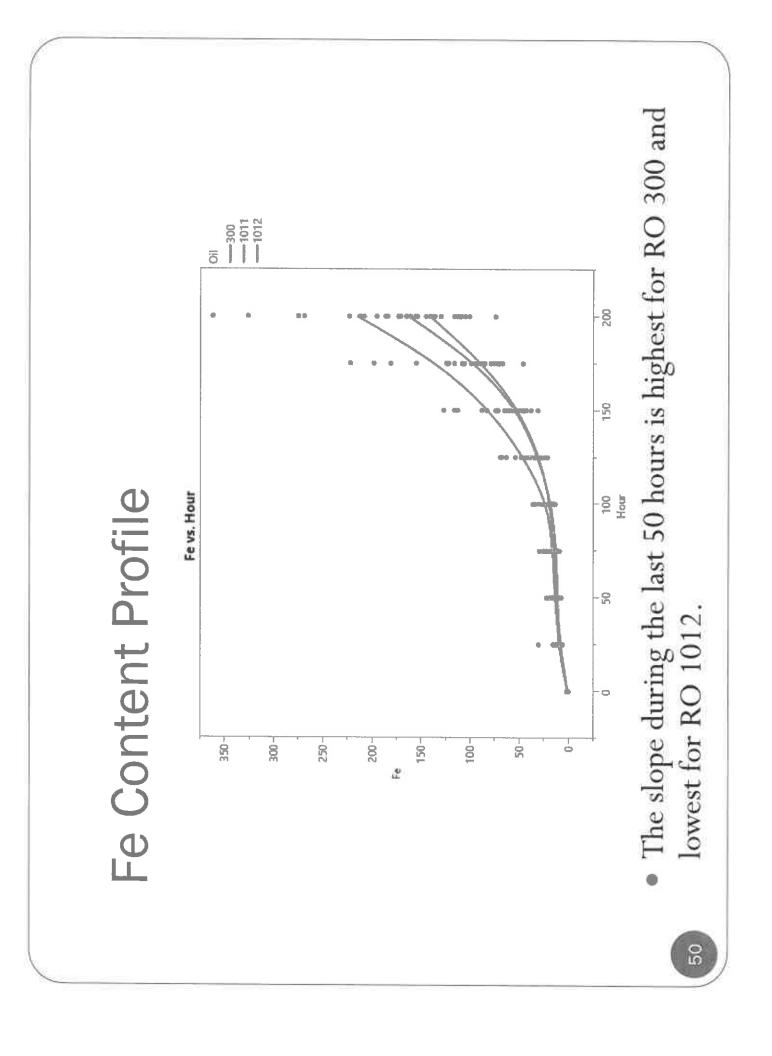
cision Lab, Stand(Lab) T) ~ Oil	Reproducibility • $S_R = 0.3427$ • $R = 0.9499$	d deviation (S_r) and ifficant difference 200 and 379.	
Ln(FEWMEOT) Precision Repeatability Model: Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab) Reproducibility Model: Ln(FEWMEOT) ~ Oil	Repeatability • Sr = 0.2302 • r = 0.6381	Based upon the FEWMEOT pooled standard deviation (S_r) and ASTM's repeatability (r), there is no significant difference between an FEWMEOT <i>result</i> ¹ of 200 and 379.	Note 1:An FEWMEOT result of 200 was arbitrarily selected for comparison
Lr Repeatability I Reproc	• $S_T = 0.2302$	Based upon the F ASTM's repeat between a	46 Note 1:An FEWMEOT result of 20

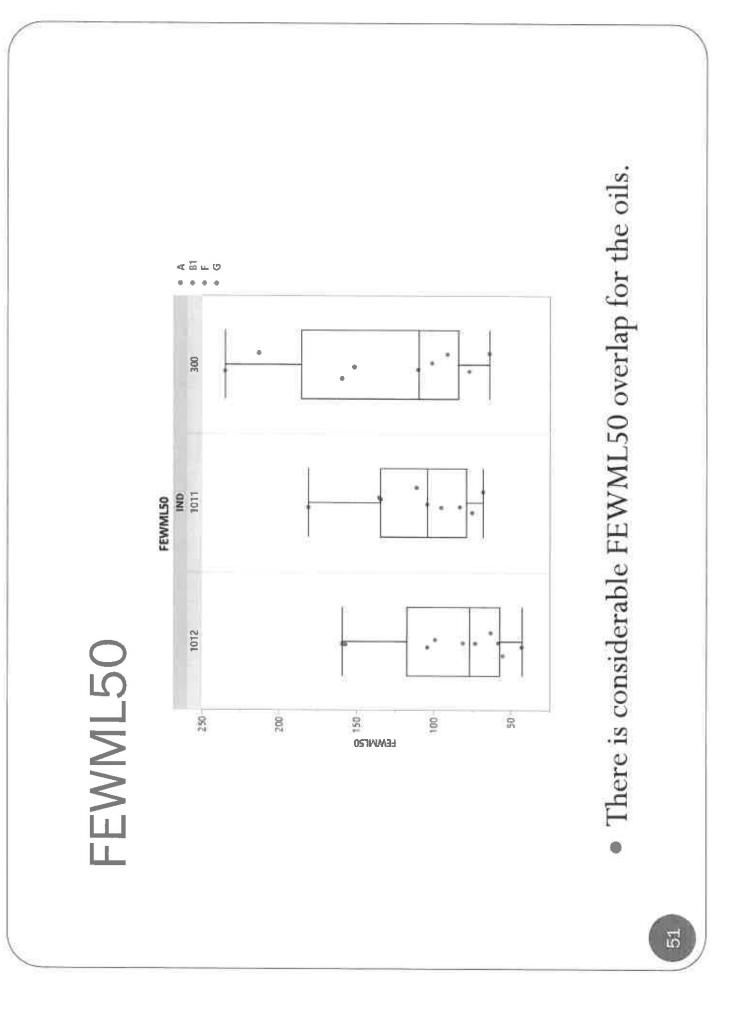
Reference Oil Targets

Model: Ln(FEWMEOT) ~ Oil, Lab, Stand(Lab)

Iron at EOT (FEWMEOT)

Unit of Measure: Ln(FEWMEOT)


St. Dev	0.4204	0.2859	0.3064
Target Mean FEWMEOT	202	123	151
Target Mean Ln(FEWMEOT)	5.3095	4.8146	5.0172
Ref. Oil	300	1012	1011


Target Means are the Oil LSMeans from the Model and Standard Deviations are calculated straight from Ln(FEWMEOT).

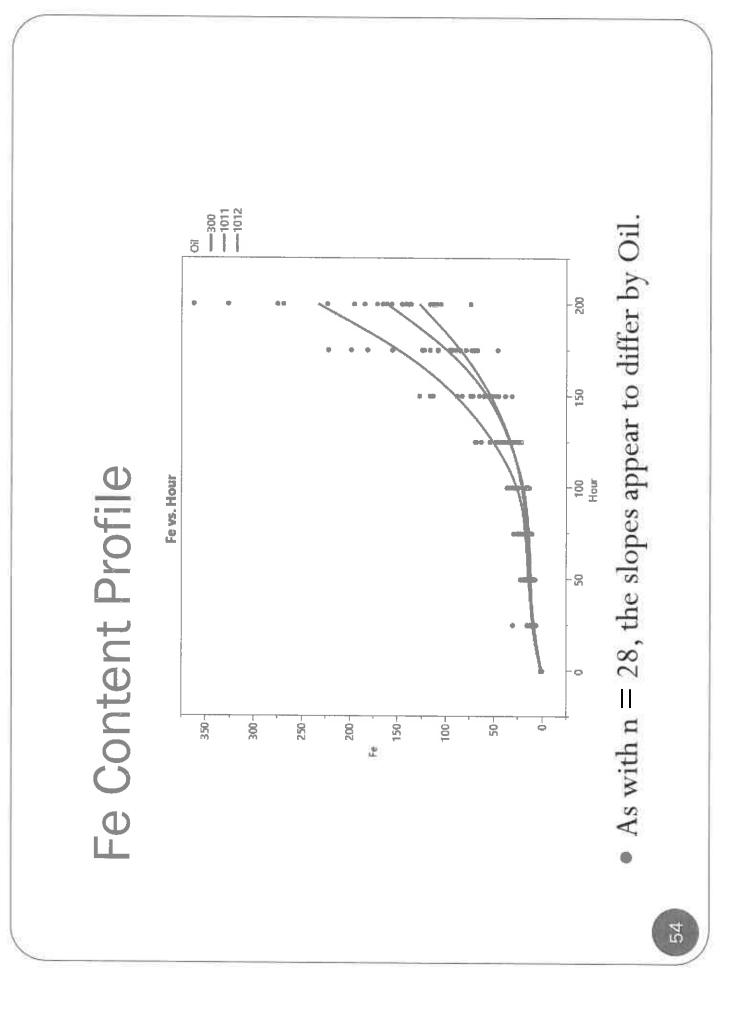
Residual Square Root[AVI I] 2 Residual 1 og[FFWMFOT] 2 1.0000 0 6108 0 6108 1.0000 -0.1 0 0.1 0.2 0.3 0.4 Log[FEWMEOT] 2 Residual Appendix K Section A.3 Parameter Redundancy: Correlation between sqrt(AVLI) and Ln(FEWMEOT) is statistically significant. These two ņ 2.0 5 Residual Square parameters are closely related in repeat tests within oils. Root[AVLI] 2 Residual Square Root[AVLJ] 2 Residual Log[FEWMEOT] 2 ¢ * Scatterplot Matrix -0.2 -0.1 (Correlations 40--0-1-0 0.1 -0 5 0.3 00 0.1 0.0 20m C--0-7 ö ņ <u>6</u> -05 Ŵ ŝ Log(FEWMEOT) ŵ Correlation 0.8502 Square Koot[AVL] Eag[FEWMEOI] and the second 45 . . 1.0000 1.6 Root(AVU) 17 Square d Correlations Scatterplot Matrix Ņ Square Root[AVLi] Logi+EWMEUT . 0.8 'n 1.6 Ż 12 -0,8 ហួ 45 48

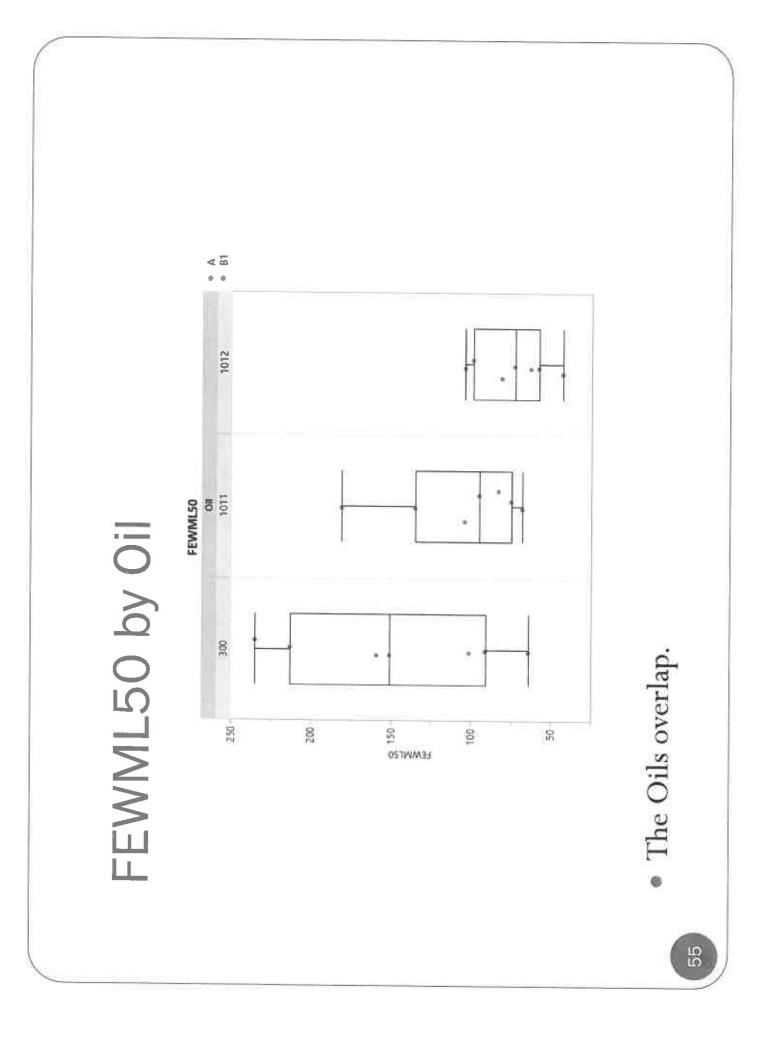
Appendix B: FEWML50 (n=28)

Change in Fe-Wear Metals over last 50 hours

FEWML50 Regression Analysis

• Ln(FEWML50) is regressed

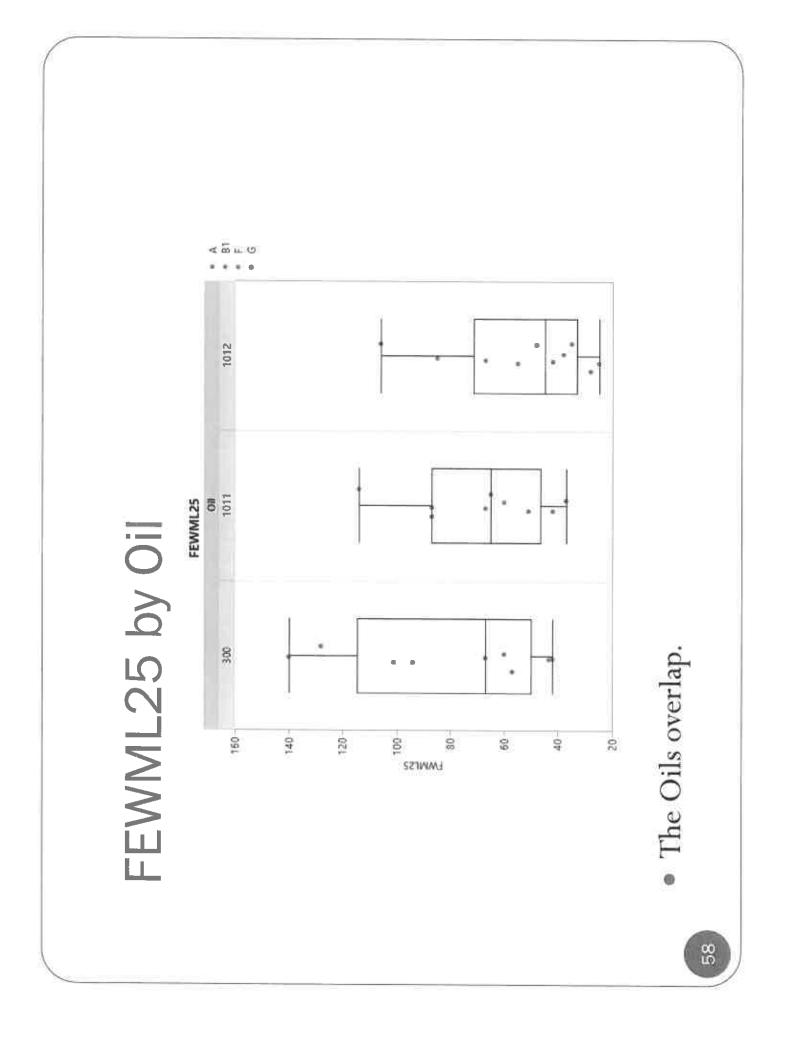

on:


- Lab
- Stand[Lab]
- Oil
- Oil discrimination of FEWML50 (p-Value = 0.1507) is worse than FEWMEOT (p-Value = 0.0559).

	_		
p-Value	0.0165	0.3006	0.1507
DF	3	3	2
Effect	Lab	Stand[Lab]	Oil

Appendix C: FEWML50 (n=21)

Change in Fe-Wear Metals over last 50 hours



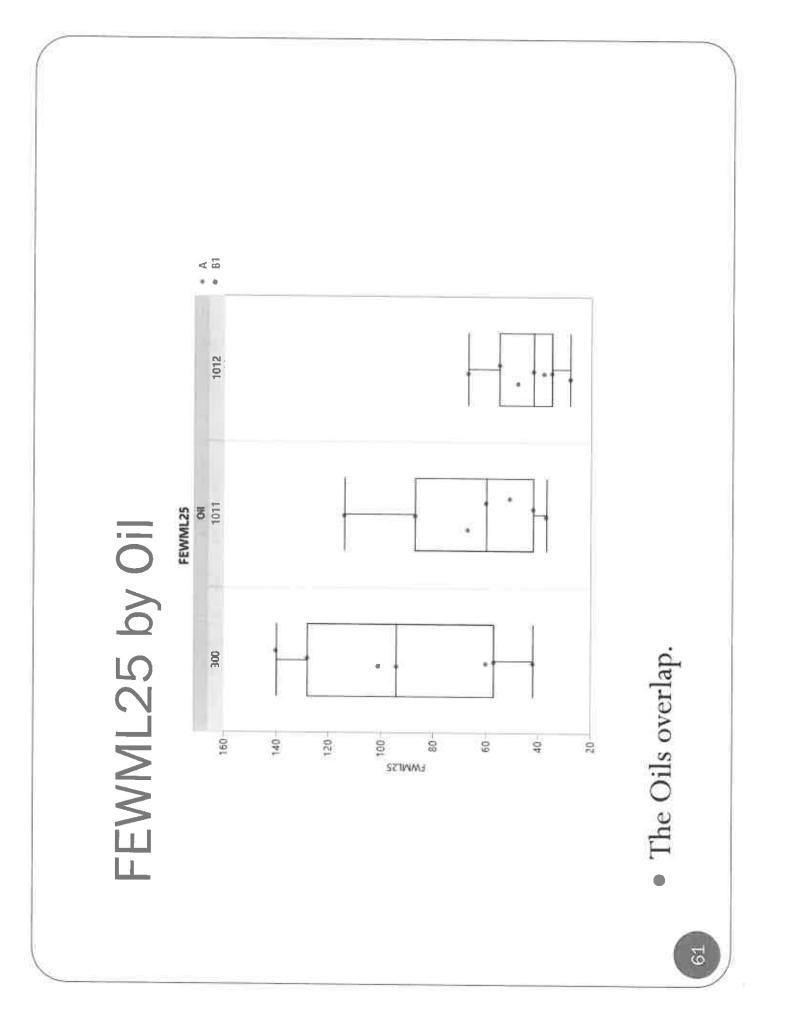
FEWML50 Regression Analysis

- Ln(FEWML50) is regressed on:
- Lab
- Stand[Lab]
- Oil
- Oil discrimination of FEWML50 (p-Value =
- FEWML50 (p-Value = 0.0101) is slightly worse than FEWMEOT (p-Value = 0.0057).

alue	01	193	01
p-Value	0.001	0.2493	0.0101
DF	Ł	က	2
Effect	ab	Stand[Lab]	Dil

Change in Fe-Wear Metals over last 25 hours Appendix D: FEWML25 (n=28) 57

FEWML25 Regression Analysis


- Ln(FEWML25) is regressed on:
- Lab
- Stand[Lab]
- Oil
- Oil discrimination of FEWML25 (p-Value = 0.1430) is worse than FEWMEOT (p-Value = 0.0559).

en	ရွ	59	8
p-Value	0.0189	0.4659	0.1430
DF	e	e	2
Effect	Lab	Stand[Lab]	Oil

Appendix E: FEWML25 (n=21)

Change in Fe-Wear Metals over last 25 hours

60

FEWML25 Regression Analysis

- Ln(FEWML25) is regressed on:
- Lab
- Stand[Lab]
- Oil
- Oil discrimination of FEWML25 (n-Value =

FEWML25 (p-Value = 0.0098) is slightly worse than FEWMEOT (p-Value = 0.0057).

_			
p-Value	0.0015	0.4006	0.0098
DF	1	3	2
Effect	Lab	Stand[Lab]	Oil