

100 Barr Harbor Drive ■ PO Box C700 ■ West Conshohocken, PA 19428-2959 Telephone: 610-832-9500 ■ Fax: 610-832-9555 ■ e-mail: service@astm.org ■ Website: www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

 Chairman: W. JAMES BOVER, ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, PO Box 971, Annandale, NJ 08801-0971, (908) 730-1048, FAX: 908-730-1197, EMail: wjbover@erenj.com
 First Vice Chairman: KENNETH O. HENDERSON, Cannon Instrument Co, PO Box 16, State College, PA 16804, (814) 353-8000, Ext: 0265, FAX: 814-353-8007, EMail: kenohenderson@worldnet.att.net
 Second Vice Chairman: SALVATORE J. RAND, 221 Flamingo Drive, Fort Myers, FL 33908, (941) 481-4729, FAX: 941-481-4729
 Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co LP, PO Box 206, Wilmington, IL 60481, (815) 458-0216, FAX: 815-458-0217, EMail: macvarlen@aol.com
 Assistant Secretary: JANET L. LANE, ExxonMobil Research and Engineering, 600 Billingsport Rd, PO Box 480, Paulsboro, NJ 08066-0480, (856) 224-3302, FAX: 856-224-3616, EMail: janet_Llane@email.mobil.com
 Staff Manager: DAVID R. BRADLEY, (610) 832-9681, EMail: dbradley@astm.org

Originally Issued: May 19, 2010

Reply to: Richard Grundza ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 Phone: 412-365-1031 Fax: 412-365-1047 Email: reg@astmtmc.cmu.edu

Unapproved Minutes of the May 12, 2010 Sequence IV Surveillance Panel Meeting held in San Antonio, TX

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

A copy of the Agenda is included as Attachment 1

The signed attendance sheet is included as Attachment 2.

Minutes from May 6, 2009 Surveillance panel meeting were approved with no changes.

Action Item Review: Action items from the November 19, 2009 meeting were reviewed and their status is documented below.

Motions and Action Items

As Recorded at the Meeting by Bill Buscher

1. Action Item – SwRI to provide information (schematic and equipment list) on how they monitor injector pulse width and ignition timing.

Done. SwRI to submit today. To be included in 11/19/09 meeting minutes.

- Action Item SwRI to provide information on their load cell enclosure and blanket heater.
 Open. SwRI working on. To be included in 11/19/09 meeting minutes.
- Action Item Severity task force to evaluate the load cell range specification currently included in the Sequence IVA test procedure.
 Done. Dropped at last severity task force meeting.
- 4. Action Item Labs to start conducting ICP analysis on the Flush 1 and Flush 2 oil samples, for all reference tests, and report in comment section of test report. Evaluate data at next surveillance panel meeting.
 Open. Anyone bring data to review at today's meeting? Lubrizol has been doing, other labs have not. Other labs will start doing this.
- Action Item –Sequence IVA SAE paper number to be included in 5/6/09 meeting minutes.
 Done.
- 6. Motion Modify Sequence IVA test procedure to remove the requirement to conduct valve spring free length and squareness measurements and to require vacuum checks of the cylinder head after assembly. Effective 5/6/09.

Bill Buscher / Al Lopez / Passed Unanimously Done. TMC issued Sequence IVA Information Letter 09-1 on 6/18/09.

 Motion – Considering that the oil cooler assembly (p/n 21305-03E00) and distributor assembly (p/n 22100-40F00RE) are no longer available from Nissan, modify Sequence IVA test procedure to eliminate the number of allowed runs criteria on these two parts and to allow for replacement of distributor caps (p/n 22162-40F00) and rotors (p/n 22157-21E01). Effective 5/6/09.

Bill Buscher / Greg Seman / Passed Unanimously Done. TMC issued Sequence IVA Information Letter 09-1 on 6/18/09.

8. Motion – Modify Sequence IVA test procedure to add record only measurements for fresh air flow rate to the front cover, rocker cover coolant in temperature, rocker cover coolant out temperature, and to add coolant system

pressure measurement and control to 70 ± 5 kPa (in a manner similar to the Sequence VG and VIB). Modify test report forms and data dictionary accordingly. Implement by 8/1/09.

Al Lopez / Bill Buscher / Passed 10-0-1 Done. TMC issued Sequence IVA Information Letter 09-1 on 6/18/09. Report forms issued on 8/1/09.

 Motion – Modify Sequence IVA test procedure to allow for 32 (from 20) runs per engine assembly and 16 (from 10) runs per cylinder head assembly. Effective 5/6/09.

Bill Buscher / Al Lopez / Passed 8-0-3 Done. TMC issued Sequence IVA Information Letter 09-1 on 6/18/09.

10.Motion – Modify Sequence IVA test procedure to require the 1/8" needle valve (as per SwRI's set-up) in the PVC system and to allow for both blowby measurement methods, using either the Sequence III or Sequence V blowby cart (a previous motion that never made it into the test procedure). Test procedure to indicate that the valve position is to be wide open for all test conditions except when a blowby measurement is being taken.

Tabled for refinement, and will Eballot by 6/1/09. **Open. Refine motion and vote on at today's meeting.**

11.Action Item – Chairman to contact Todd Dvorak to see if he would be available to perform similar analysis on KA24E Green fuel data as he did on EEE fuel data.

Done. To review at May 2010 SP meeting.

Fuel Suppliers Report.

Copy of the report is included as attachment 3. Todd Dvorak reviewed work he had done on fuel batches and suggested that many of the parameters were highly correlated. He did note that age may have had an effect earlier in the test, but now that fuel batches are blended as needed, there seems to be little effect on test results. A copy of Todd's analysis is included as attachment 4.

TMC Report

There was no report given. A copy of the TMC report can be accessed via the following link. <u>ftp://ftp.astmtmc.cmu.edu/docs/gas/sequenceiv/semiannualreports/IVA-04-2010.pdf</u>

ACC Report.

A copy of the report is available via the following link. There were no questions on the report. <u>https://acc-ma.org/docs/pcmo/iva/SemiAnnualReports/2010APR_IVA.pdf</u> May 12, 2010 IV Minutes San Antonio, TX

Test Hardware Report

Bill Buscher reviewed the hardware status to date. There appear to be no hardware shortages. 2008 kits have been received and no labs were shorted parts. 2009 kits are being processed and should be available late this year early next year. Bill noted that Nissan may be able to supply kits through 2020, so life extension of the IVA test may be feasible. Labs have been stock piling engines and heads which were removed after 10 and 20 runs. Some labs may need to redistribute some of these parts. Throttle bodies and distributers may need to be reworked to be used in the future, as these parts are no longer available.

LTMS Version 2

Doyle Boese presented the LTMS Task Forces recommendations for changes to the Sequence IVA LTMS. The panel decided to form a small group to review he LTMS changes and make recommendations to the panel, the group will report back to the panel within 6 weeks. A copy of the presentation is included as attachment 5.

Scope and Objectives

The scope and objectives were reviewed and updated and are included as attachment 6.

New Business

The panel reviewed two potential GF-5 reference oils and deemed both acceptable, summaries of the oil properties and test results are included as attachment. The panel expressed a preference for the oil which provided 18 um in the IVA test. Copies of the test results summaries supporting GF-5 performance are included as attachments 7 and 8.

A listing of the action items from this meeting are included as attachment 9.

The meeting was adjourned at 12:20 pm.

Attachment 1

Sequence IVA Surveillance Panel San Antonio, TX Southwest Research Institute May 12, 2010 10:30 a.m. - 12:00 p.m.

AGENDA

- 1. Chairman comments Attendance sign-in sheet distribution 2. Membership changes 3. 4. Motion and Action recorders Approval of minutes for 11/19/2009 5. All Review action items from last meeting Buscher 6. Fuel supplier report KA24E Green Fuel 7. Carter 8. TMC report Grundza ACC report 9. Clark Test hardware report Buscher 10. 11. LTMS 2nd Edition Review Boese Review Scope & Objectives 12. All Old business 13. 14. New business 15.
- Next meeting
- Adjourn 16.

Attachment 2

MEMBERSHIP ASTM IVA SURVEILLANCE PANEL

May 12, 2010

		May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Altman, Ed	Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23217-2158 Phone No.: 804-788-5279 Fax No.: 804-788-6358 Email: ed.altman@aftonchemical.com	lg.
Bowden, Dwight	OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 Phone No.: 440-354-7007 Fax No.: 440-354-7080 Email: <u>dhbowden@ohtech.com</u>	zMS
Brys, Jerome	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 440-347-2631 / 440-943-1200 Fax No.: 440-943-9013 Email: jabs@lubrizol.com	Jas
Buscher III, Bill	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-6802 or 210-240-8990 cell Fax No.: 210-684-7523 Email: william.buscher@swri.org	Walter Bahur
Buscher, Jr., Bill	Buscher Consulting ServicesP.O. Box 112Hopewell Jct., NY 12533Phone No.: 914-897-8069Fax No.: 914-897-8069Email: buschwa@aol.com	
Carter, James	Haltermann Products 2296 Hulett Okemos, MI 48864 Phone No.: 517-347-3021 Fax No.: 517-347-1024 Email: jecarter@dow.com JHALIGRMANN.com	JEC
Caudill, Timothy	Ashland Inc. 22 nd & Front Streets Ashland, KY 41114 Phone No.: 606-329-1960 x5708 Fax No.: 606-329-2044 Email: <u>tlcaudill@ashland.com</u>	ike
Glaenzer, Dave	Afton Chemical Corporation500 Spring StreetP.O. Box 2158Richmond, VA 23217-2158Phone No.: 804-788-5214Fax No.: 804-788-6358Email: dave.glaenzer@aftonchemical.com	M

MEMBERSHIP ASTM IVA SURVEILLANCE PANEL

	ASTM IVA SURVEILLANCE PANE	May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Grundza, Rich	ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 Phone No.: 412-365-1031 Fax No.: 412-365-1047 Email: reg@astmtmc.cmu.edu	REDER
Knight, Clayton	Test Engineering, Inc.12718 Cimarron PathSan Antonio, TX 78249Phone No.: 210-862-5987 cellFax No.: 210-690-1959Email: cknight@tei-net.com	
Linden, James	GM Powertrain Mail Code 483-730-322 823 Joslyn Rd. Pontiac, MI 48340-2920 Phone No.: 586-986-1888 Fax No.: 248-857-4425 Email: james.l.linden@gm.com	
Liu, Eric	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-5937 or 210-416-9024 cell Fax No.: 210-684-7523 Email: eric.liu@swri.org	3.
Lopez, Al	Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238-1993 Phone No.: 210-862-7935 Fax No.: 210-523-4607 Email: <u>al.lopez@intertek.com</u>	Alforenter
Miranda, Timothy	BP Castrol 1500 Valley Road Wayne, NJ 07470 Phone No.: 973-305-3334 Fax No.: 973-686-4039 Email: <u>timothy.miranda@bp.com</u>	In
Mosher, Mark	ExxonMobil Research & Engineering Co. 600 Billingsport Road P.O. Box 480 Paulsboro, NJ 08066-0480 Phone No.: 856-224-2132 Fax No.: 856-224-3628 Email: <u>mark.r.mosher@exxonmobil.com</u>	MIRIU
Mabuchi, Yutaka	Nissan Motor Co., Ltd. Email: <u>y-mabuchi@mail.nissan.co.jp</u>	

MEMBERSHIP ASTM IVA SURVEILLANCE PANEL

NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Romano, Ron	Ford Motor Company Email: <u>rromano@ford.com</u>	
Ritchie, Andrew	Infineum USA L.P. 1900 E. Linden Avenue Linden, NJ 07036-0536 Phone No.: 908-474-2097 Fax No.: 908-474-3637 Email: <u>andrew.ritchie@infineum.com</u>	ANC
Seman, Greg	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 440-347-2153 Fax No.: 440-347-4096 Email: greg.seman@lubrizol.com	Ay C
Sutherland, Mark	Chevron Oronite Company LLC 4502 Centerview Dr., #210 San Antonio, TX 78228 Phone No.: 210-867-8357 cell Fax No.: 210-731-5699 Email: <u>msut@chevron.com</u>	1
	Bruce Matthews Phone No.: Fax No.: Email:	13 el
	Todd Dvorak Afton Chems con Phone No.: Fax No.: Email: - Codd, dvorak Daffonchomicae. Com	And
	Fax No.: Email: - Codd. dvorat Dathonchomica. Com IS Muther Phone No.: Fax No.: Email:	Ň
	Phone No.: Fax No.: Email:	

May 12, 2010

እፒል እ «፲ን	COMDANIV ADDREGG DIJONE DAV DAAM	May 12, 2010 SIGNATURE
NAME Ayutsede, Jonathan	COMPANY-ADDRESS-PHONE-FAX-EMAIL Infineum USA L.P.	SIGNATURE
Ayuiseue, jonainan	1900 E. Linden Avenue	
	Linden, NJ 07036-0536	
	Phone No.: 908-474-2916	
	Fax No.: 908-474-3637	
	Email: jonathan.ayutsede@infineum.com	
Deser Desla	Infineum USA L.P.	
Boese, Doyle	1900 E. Linden Avenue	$h \approx 0.4$
	Linden, NJ 07036-0536	Hun Store
	Phone No.: 908-474-3176	γ
	Fax No.: 908-474-3637	
	Email: <u>doyle.boese@infineum.com</u>	
	Eman. <u>doyle.bosse@immedin.com</u>	
Bowden, Adam	OH Technologies, Inc.	
	9300 Progress Parkway	
	P.O. Box 5039	
	Mentor, OH 44061-5039	
	Phone No.: 440-354-7007	
	Fax No.: 440-354-7080	
	Email: <u>adbowden@ohtech.com</u>	
Bowden, Jason	OH Technologies, Inc.	
	9300 Progress Parkway	
	P.O. Box 5039	1
	Mentor, OH 44061-5039	$\left(/ M \right)$
	Phone No.: 440-354-7007	
	Fax No.: 440-354-7080	
	Email: jhbowden@ohtech.com	
Bryant, Don	Lubrizol Corporation	
	29400 Lakeland Blvd.	
	Wickliffe, OH 44092	
	Phone No.: 440-943-1200	
	Fax No.: 440-943-9013	
	Email:	
Carlson, Jon	Lubrizol Corporation	
,	14602 Huebner, Suite 116-PMB 198	
	San Antonio, TX 78230	
	Phone No.: 210-391-8838 cell	
	Fax No.: 210-522-0391	
	Email: jomc@lubrizol.com	
Clark, Sid	GM Powertrain	
Clark, Slu	Mail Code 483-730-322	
	823 Joslyn Rd.	
	Pontiac, MI 48340-2920	
	Phone No.: 248-857-9959	
	Fax No.: 248-857-4425	
	Email: <u>sidney.l.clark@gm.com</u>	
Farber, Frank	ASTM Test Monitoring Center	
raidel, riallk	6555 Penn Avenue	
	Pittsburgh, PA 15206	
	Phone No.: 412-365-1030	
	Fax No.: 412-365-1030	
	Email: $\underline{\text{fmf}(@astmtmc.cmu.edu}$	

	ASTM IVA SURVEILLANCE PANEL	May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Farnsworth, Gordon	Infineum USA L.P. 1900 E. Linden Avenue Linden, NJ 07036-0536 Phone No.: 570-934-2776 Fax No.: 908-474-3637 Email: gordon.farnsworth@infineum.com	
Ferner, Mark	Pennzoil / Quaker State Company 1520 Lake Front Circle The Woodlands, TX 77380 Phone No.: 713-363-8190 Fax No.: 713-363-8002 Email:	
Galbraith, Robert	Imperial Oil Limited 453 Christina St. South P.O. Box 3002 Sarnia, Ontar, Canada N7T8C8 Phone No.: Fax No.: Email: <u>rob.galbraith@iol.sprint.com</u>	
Hsu, Jeffery	Pennzoil / Quaker State Company 1520 Lake Front Circle (77380) P.O. Box 7569 The Woodlands, TX 77387 Phone No.: 281-363-8177 Fax No.: 281-363-8002 Email: JefferyHsu@PZLQS.com	
Ishikawa, Masa	Infineum USA L.P. 1900 East Linden Avenue Linden, NJ 07036 Phone No.: 908-474-2384 Fax No.: 908-474-3597 Email: masa.ishikawa@infineum.com	
Kelly, Jack	Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092 Phone No.: 216-943-1200 Fax No.: Email: jack@lubrizol.com	
Lang, Patrick	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-2820 or 210-240-9461 cell Fax No.: 210-684-7523 Email: patrick.lang@swri.org	
Martinez, Jo	Chevron Oronite Company LLC 100 Chevron Way, 60-1211 P.O. Box 1627 Richmond, CA 94802-0627 Phone No.: 510-242-5563 Fax No.: 510-242-1930 Email: jogm@chevrontexaco.com	

	ASTM IVA SURVEILLANCE PANEL	May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Olree, Robert	GM Powertrain Mail Code 483-730-322 823 Joslyn Rd. Pontiac, MI 48340-2920 Phone No.: 248-857- Fax No.: 248-857-4425 Email: robert.olree@gm.com	
Roby, Stephen	Email:robert.olree@gm.comChevron Oronite Company LLC100 Chevron WayP.O. Box 1627Richmond, CA 94802-0627Phone No.:510-242-1273Fax No.:510-242-3173Email:hrby@chevrontexaco.com	
Rutherford, Jim	Chevron Oronite Company LLC 100 Chevron Way, 60-1211 P.O. Box 1627 Richmond, CA 94802-0627 Phone No.: 510-242-3410 Fax No.: 510-242-1930 Email: jaru@chevrontexaco.com	Ju
Scinto, Phil	Lubrizol Corporation 29400 Lakeland Blvd. Mail Drop 152-A Wickliffe, OH 44092 Phone No.: 440-347-2161 Fax No.: 440-347-9031 Email: prs@lubrizol.com	
Simkins, Russell	Conoco Inc. 1000 South Pine, 6617RW P.O. Box 1267 Ponca City, OK 74602-1267 Phone No.: 580-767-6758 Fax No.: 580-767-4534 Email: russell.e.simkins@usa.conoco.com	
Sutherland, Robert	Shell Global Solutions3333 Highway 6 SouthHouston, TX77082Phone No.: 281-544-8620Fax No.: 281-544-8150Email: r.sutherland@shell.com	
Thompson, Hap	Phone No.: 908-287-9596 Fax No.: Email: <u>Hapjthom@aol.com</u>	
Weber, Ben	Southwest Research Institute 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510 Phone No.: 210-522-5911 Fax No.: 210-684-7523 Email: <u>benjamin.weber@swri.org</u>	

	ASTM IVA SURVEILLANCE PANE	May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
Zalar, John	ASTM Test Monitoring Center	
	6555 Penn Avenue	
	Pittsburgh, PA 15206	
	Phone No.: 412-365-1005	
	Fax No.: 412-365-1047	
	Email: jlz@astmtmc.cmu.edu	
Zaweski, Ed	BP Amoco Oil	
	150 W. Warrenville Rd.	
	Mail Code C-6	
	Naperville, IL 60563	
	Phone No.: 630-420-5026	
	Fax No.: 630-420-4866	
والمنابق	Email: <u>ed_f_zaweski@amoco.com</u>	
Jeff Clark		
lett Clark		
	Phone No.: 412 -365 - 1032	
	Fax No.: Email: : jaca astm fmc. c	my adv
	Email: : jaca astm fmc. c	<u>invv.cav</u>
	OH Technologies	
Adam Bowden	9	
Mann Doublien	Phone No.:	
	Fax No.:	$\left(\right) \sqrt{3}$
	Email: adbowden@ohtech. com	
	Dinami do 1500 dene ortieori. Levri	
MATTHEW LOWDEN	OH TECHNOLOGIES	1
	Phone No.:	
	Fax No ·	
	Email: mi bowcen COHTECH, Com	
1.11		
Art Andrews	EXXM Mobil	
·		
		MAtom Kuls
	Phone No.:	104
	Fax No.:	
	Email: : arthur.t.andrews@exxonno	sil.com
	Phone No.:	
	Fax No.:	
	Email: :	
	Phone No.:	
	Fax No.:	
	Email: :	

	ASTM IVA SURVEILLANCE PANEL	May 12, 2010
NAME	COMPANY-ADDRESS-PHONE-FAX-EMAIL	SIGNATURE
	Phone No.:	
	Fax No.: Email:	
	Phone No.:	
	Fax No.:	
	Email:	
	Phone No.: Fax No.:	
	Email:	
	Phone No.:	
	Fax No.:	
	Email:	
	Phone No.:	
	Fax No.: Email:	
	Phone No.:	
	Fax No.:	
	Email:	
	Phone No.:	
	Fax No.: Email:	
	Phone No.:	
	Fax No.:	
	Email:	

PRODUCT Haltermann							Attachment 3	
	T (281) 457	-2768		31) 457-1469	2			
PRODUCT:	KA24E TEST FU	(2)			Datab Na i	XK2321GP02	XK0921GP01	XH1721GP01
PRODUCT:	Seq. IV & VIII				TMO No.:	800506	MTS	800388
	Seq. IV & VIII				Batch Size:	7088	8186	4302
PRODUCT CODE:	HF0008				Tank No.:	52	52	27
				A	nalysis Date:	11/25/2009	11/19/2009	8/19/2009
TEST	METHOD	UNITS		PECIFICATION		RESULTS	RESULTS	RESULTS
		~	MIN	TARGET	MAX	00		0.1
Distillation - IBP	ASTM D86	۴ ۴	75		95	92	93	94
5% 10%		۴	120		105	112	118	119
10% 20%		۴	120		135	125	129	130
20% 30%		۴				144	148	150
30% 40%		۴				169	172	175
		۴				200	203	204
50%			200		230	220	222	221
60%		۴ ۴				230	231	230
70%						239	240	237
80%		۴				255	256	253
90%		۴	300		325	312	315	313
95%		۴	005		-	341	343	339
Distillation - EP		۴	385		415	403	407	410
Recovery Residue		vol % vol %		Report		96.9	98.2	98.8
		111000		Report		0.9 2.2	1.0	1.0
Loss Gravity	10711 D 1050	vol % %Pl	58.7	Report	61.2	59.7	0.8	0.2
Density	ASTM D4052	kg/l	0.734		0.744	0.739	0.739	0.740
Reid Vapor Pressure	ASTM D4052 ASTM D5191	psi	8.8		9.2	8.8	9.1	9.1
Carbon	ASTM DS191 ASTM E191	wt fraction	0.8580		0.8667	0.8592	0.8626	0.8602
Carbon	ASTM E191 ASTM D3343	wt fraction	0.0500	Report	0.0007	0.8592	0.8641	0.8660
Sulfur	ASTM D3343 ASTM D2622	wt %	0.01	Report	0.04	0.8043	0.0041	0.000
Lead	ASTM D2622 ASTM D3237	g/gal	0.01		0.04	< 0.02	<0.013	< 0.013
Oxygen	ASTM D3237 ASTM D4815	y/yai wt%			0.05	<0.01	<0.01	<0.01
Composition, aromatics	ASTM D4815 ASTM D1319	vol %			35.0	27.7	27.6	30.8
Composition, alofnatics	ASTM D1319 ASTM D1319	vol %	5.0		10.0	5.0	6.4	5.8
Composition, saturates	ASTM D1319 ASTM D1319	vol %	5.0	Report	10.0	67.2	66.0	63.4
Oxidation Stability	ASTM D1319 ASTM D525	minutes	1440	Report		>1440	>1440	>1440
Copper Corrosion	ASTM D525 ASTM D130	minates	1440		1	21440 la	1440 1a	21440 la
Gum content, washed	ASTM D130 ASTM D381	mg/100ml			5	<0.5	<0.5	<0.5
Research Octane Number	ASTM D2699		96.0		97.5	96.7	96.6	97.5
Motor Octane Number	ASTM D2699 ASTM D2700		00.0	Report	07.0	90.7 87.4	87.5	87.5
R+M/2	D2699/2700			Report		92.1	92.1	92.5
Sensitivity	D2699/2700		7.5	Report		9.3	92.1	10.0
Net Heat of Combustion	ASTM D240	btu/lb	1.0	Report		18284	18284	18325
Color	Visual	Diano		Green		Green	Green	Green

THIS INFORMATION IS OFFERED FOR YOUR CONSIDERATION, INVESTIGATION, AND VERIFICATION. IT SHOULD NOT BE CONTRUED AS A WARRANTY, GUARANTY NOR AS APERMISSION OR RECOMMENDATION TO PRACTICE ANY PATENTED INVENTION WITHOUUT A LICENSE.

Attachment 4

Investigating the relationships of the KA24E Fuel Batch Properties on the Seq. IVA ACW Parameter Test Results

May 11, 2010 By: Todd Dvorak

Analyzed data included:

- 110 "Chartable" Results with matching known fuel batch properties (229 total Chartable results with 28 different fuel batches)
- ▲ 14 different fuel batches (with known C of A properties)
- ▲ The estimated fuel batch age factor
- ▲ Labs A, B, B1, C, E1, F, and G & Oils 1006, 1007, and 1009

- Fuel Batch Age factor estimate is based on the difference between the fuel batch (decoded) manufacturing date and the LTMS start date.
- Two of the initial KA24E fuel batch codes could not be decoded (11769 and 109688). For these two batches, the first LTMS start date was selected as the initial manufacturing date for the corresponding batch.

- Performed stepwise regression and GLM modeling of class variable data to investigate the possible effects of the fuel factor variable data on the ACW parameter
 - Stepwise regression included an analysis of indicator (lab & oil) and fuel property data
 - GLM analysis of Lab and Oil class variables was performed with follow-on diagnostic checks of the residuals w.r.t. the fuel property factors
 - "Residuals" are defined as the difference of the observed and predicted value
 - Possible correlations of fuel property variables with the residuals can provide some insight into factors that may be affecting the test.
 - Caution correlation does not necessarily mean causality

Stepwise Regression Analysis Summary

Stepwise regression results:

 Fuel Age and Distillation_80% are identified as possible factors that are related to the ACW parameter test results

Dependent Variable: ACW

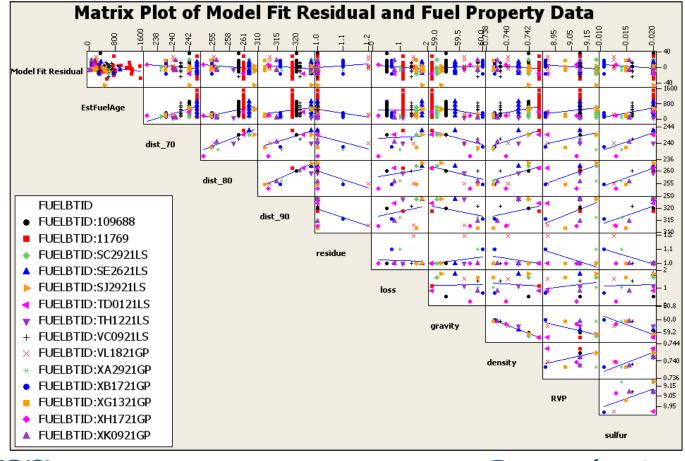
Number of Observations Read	110						
Number of Observations Used	110	1					
Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	7	126055	18008	139.82	<.0001		
Error	102	13137	128.79529				
Corrected Total	109	139192					
Root MSE	11.3488	R-Square	0.9056			1	
Dependent Mean	72.26964	Adj R-Sq	0.8991				
Coeff Var	15.70342						
	Param	neter Estima	ites				
	Param						
		Parameter	Standard			Variance	
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Inflation	
Intercept	DF	Parameter Estimate 423.49434	Standard Error 124.4148	3.4	0.001	Inflation 0	
	DF	Parameter Estimate	Standard Error			Inflation	
Intercept	DF	Parameter Estimate 423.49434	Standard Error 124.4148	3.4	0.001	Inflation 0	
Intercept LabC	DF 1 1	Parameter Estimate 423.49434 10.97173	Standard Error 124.4148 4.60916	3.4 2.38	0.001 0.0192	Inflation 0 1.08115	
Intercept LabC LabB	DF 1 1 1	Parameter Estimate 423.49434 10.97173 8.81932	Standard Error 124.4148 4.60916 3.21316	3.4 2.38 2.74	0.001 0.0192 0.0072	Inflation 0 1.08115 1.15213	
Intercept LabC LabB LabG	DF 1 1 1 1	Parameter Estimate 423.49434 10.97173 8.81932 23.57102	Standard Error 124.4148 4.60916 3.21316 6.08887	3.4 2.38 2.74 3.87	0.001 0.0192 0.0072 0.0002	Inflation 0 1.08115 1.15213 1.63292	
Intercept LabC LabB LabG Oil1006	DF 1 1 1 1 1 1 1	Parameter Estimate 423.49434 10.97173 8.81932 23.57102 20.30492	Standard Error 124.4148 4.60916 3.21316 6.08887 2.53327	3.4 2.38 2.74 3.87 8.02	0.001 0.0192 0.0072 0.0002 <.0001	Inflation 0 1.08115 1.15213 1.63292 1.28145	

Passion for Solutions.

GLM Modeling Results (of Chartable data with Fuel C of A's):

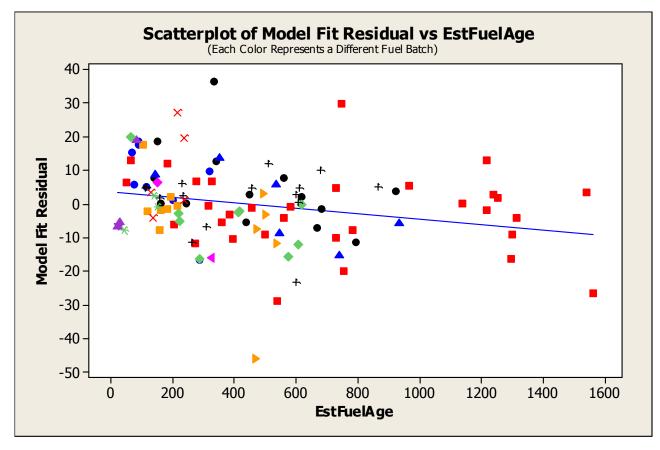
▲ Model fit residuals will be used for follow-on (diagnostic) analysis

Class L]				
Class	Levels	Values	1		
RefOil	3	Oil_1006 Oil_1007 Oil_1009	1		
LTMSLAB	7	A B B1 C E1 F G	1		
			Mean		
Source	DF	Sum of Squares	Square	F Value	Pr > F
Model	8	123597.2617	15449.658	100.06	<.0001
Error	101	15594.7907	154.4039		
Corrected Total	109	139192.0524			
R-Square	Coeff Var	Root MSE	ACW Mean		
0.887962	17.19385	12.42594	72.26964		
Source	DF	Type III SS	Square	F Value	Pr > F
RefOil	2	115265.6579	57632.829	373.26	<.0001
LTMSLAB	6	2465.945	410.9908	2.66	0.0194
			Standard		
Parameter	Estimate		Error	t Value	Pr > t
Intercept	23.850304	В	5.8200804	4.1	<.0001
RefOil Oil_1006	84.315305	В	3.1549096	26.73	<.0001
RefOil Oil_1007	64.418478	В	3.1046904	20.75	<.0001
RefOil Oil_1009	0	В	· ·		
LTMSLAB A	-7.3763588	В	5.4949296	-1.34	0.1825
LTMSLAB B	-3.2289129	В	5.9599207	-0.54	0.5892
LTMSLAB B1	-0.1698983	В	7.2507859	-0.02	0.9814
LTMSLAB C	-4.3590681	В	6.9407134	-0.63	0.5314
LTMSLAB E1	-14.353096	В	6.5731766	-2.18	0.0313
LTMSLAB F	-14.813803	В	5.8849972	-2.52	0.0134
LTMSLAB G	0	В			

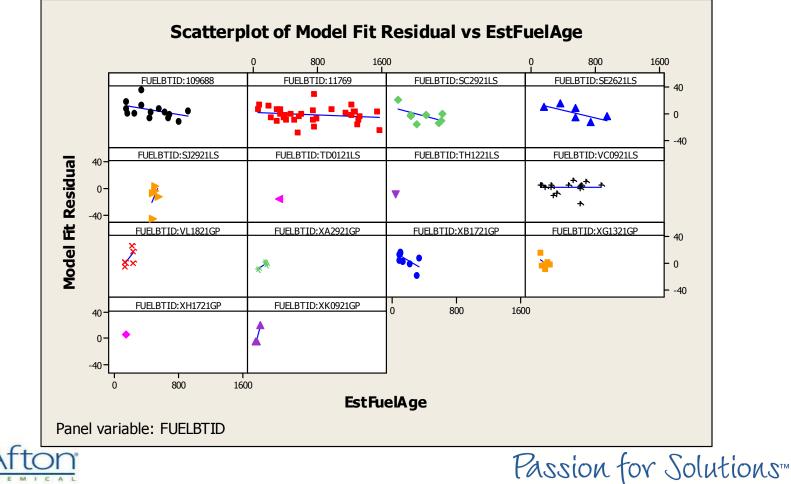


Correlation summary of the model fit residuals with the identified fuel property and age factors:

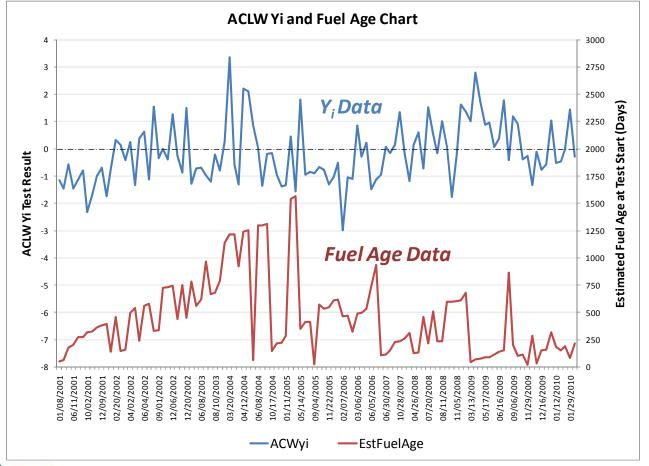
	Pairwise
	Relationship with
Factor	"Model Fit Residual"
EstFuelAge (Cor. Coef.)	-0.25
p value	0.009
dist_70 (Cor. Coef.)	-0.19
p value	0.047
dist_80 (Cor. Coef.)	-0.271
p value	0.004
dist_90 (Cor. Coef.)	-0.23
p value	0.015
residue (Cor. Coef.)	0.221
p value	0.02
loss (Cor. Coef.)	-0.191
p value	0.046
gravity (Cor. Coef.)	0.214
p value	0.025
density (Cor. Coef.)	-0.198
p value	0.038
RVP (Cor. Coef.)	-0.266
p value	0.005
sulfur (Cor. Coef.)	-0.249
p value	0.009



Matrix plot of identified fuel factors with model fit residuals:

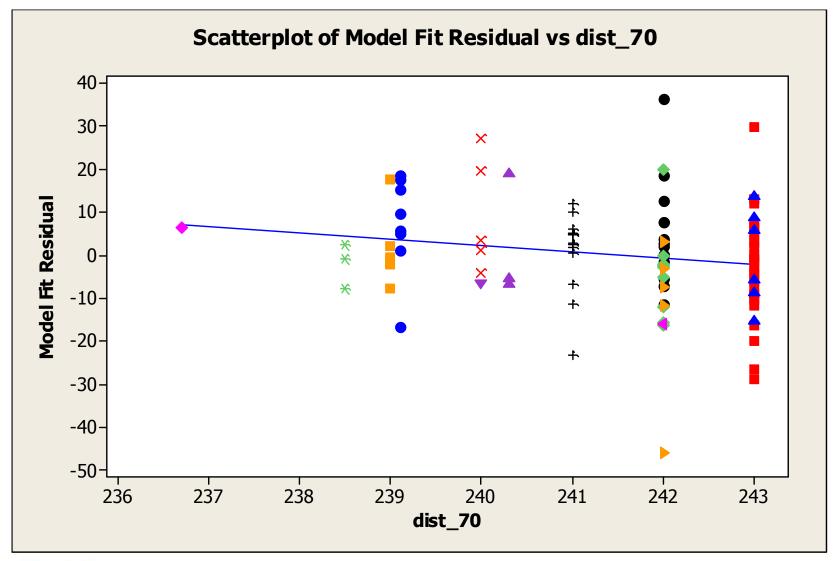


Model Fit Residuals and Estimated Fuel Age variable Plot:

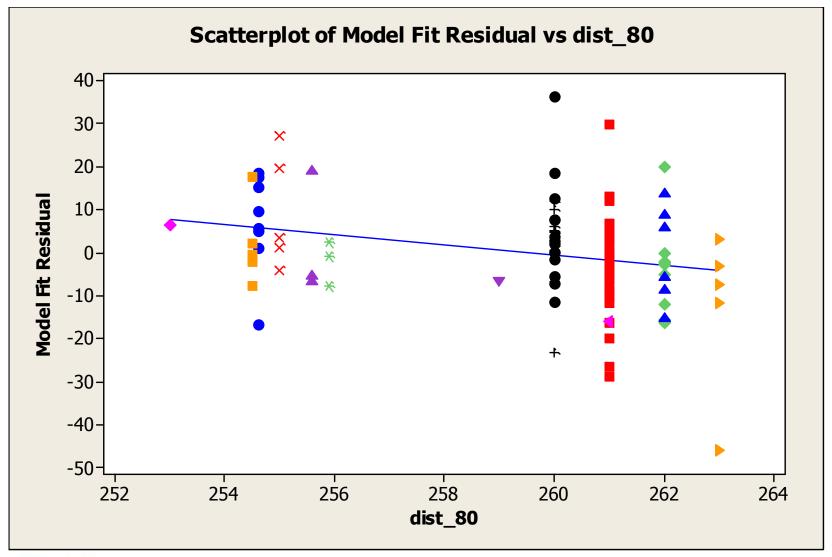


Model Fit Residuals and Estimated Fuel Age variable Plot (by fuel batch):

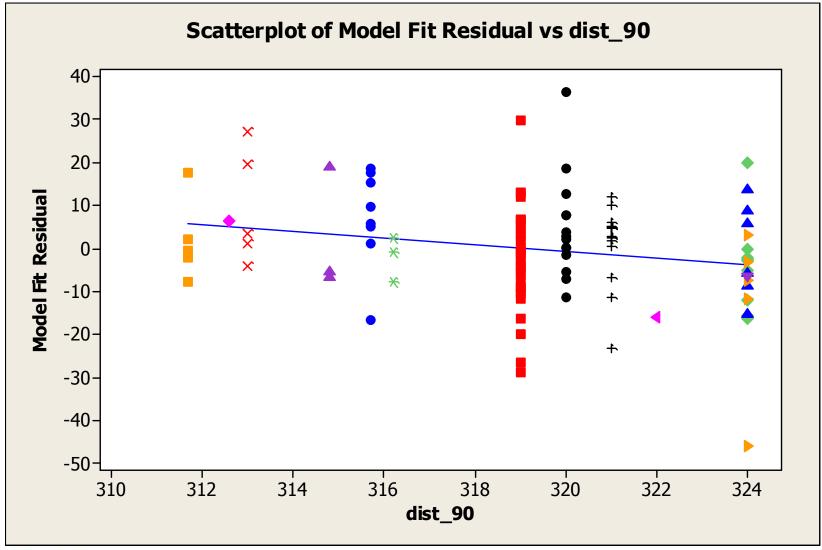
Plot of Fuel Age and ACW Y_i by test date:

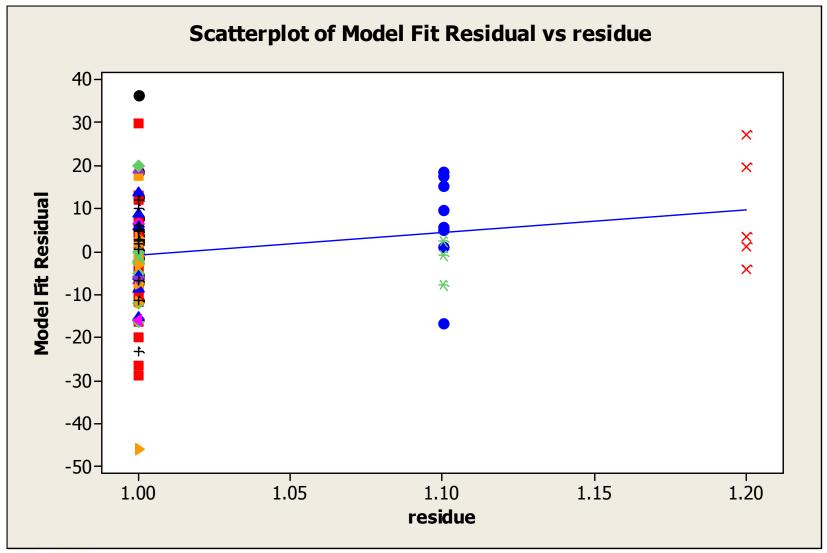

Summary

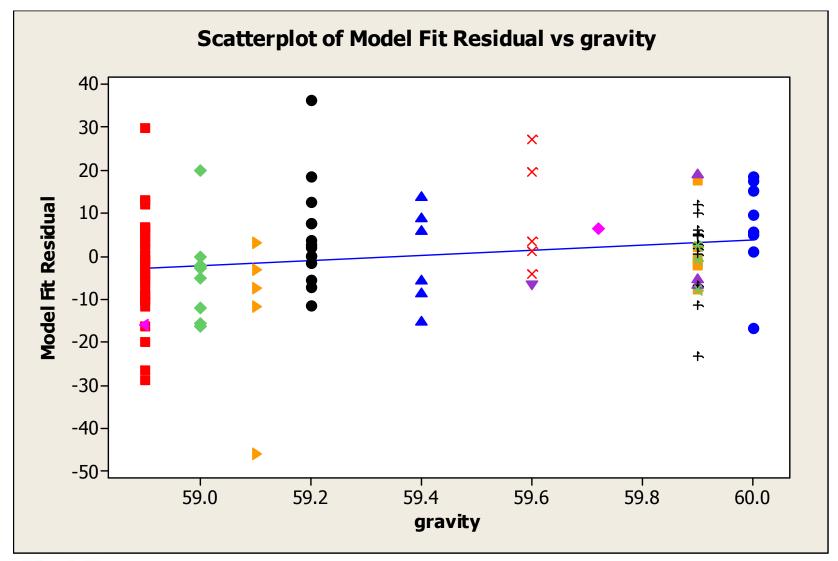
- Model fit residuals and stepwise regression results suggest that there may be some possible relationship between the fuel properties and the ACW parameter test results
- Even though correlation exists, it does not necessarily mean causality
- If factors such as fuel age affect the test, the reduction in the fuel age during the past several years of tests should minimize the effect of this factor.



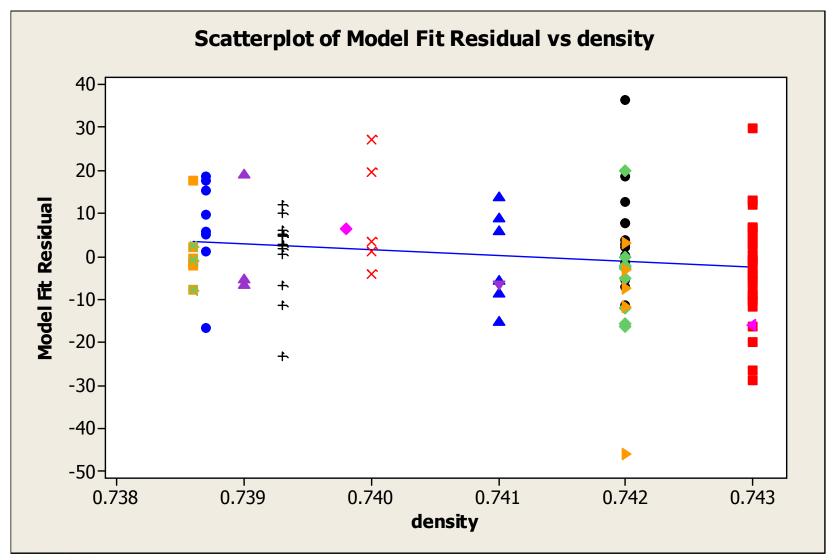
Appendix A – Additional Plots of Fuel Factor and Residuals Data

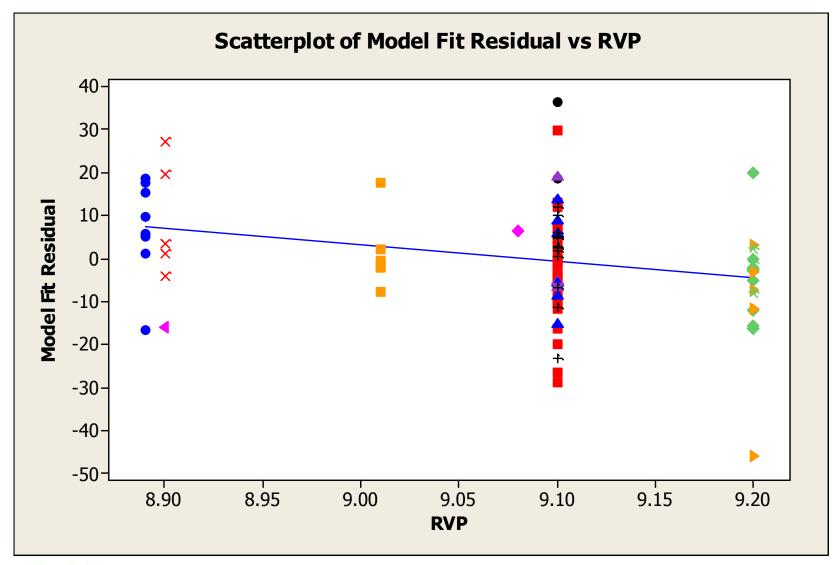


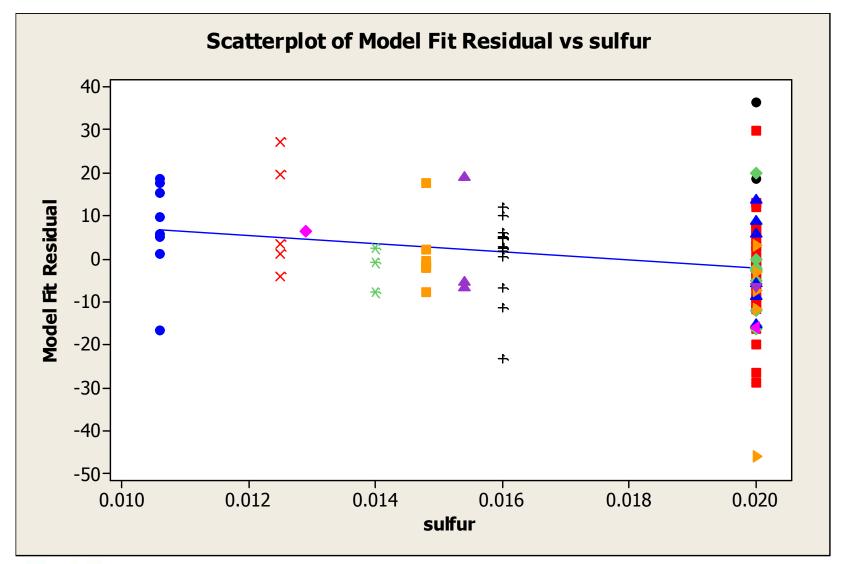








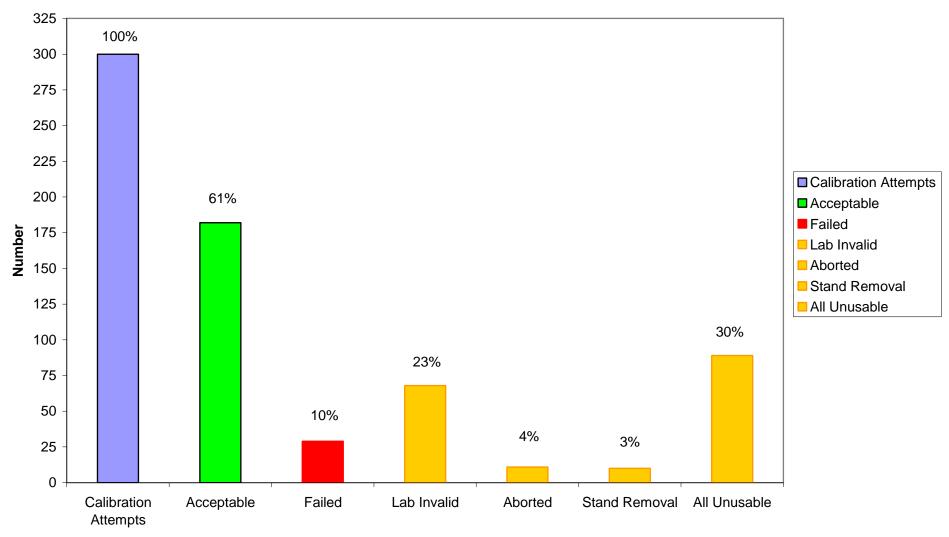


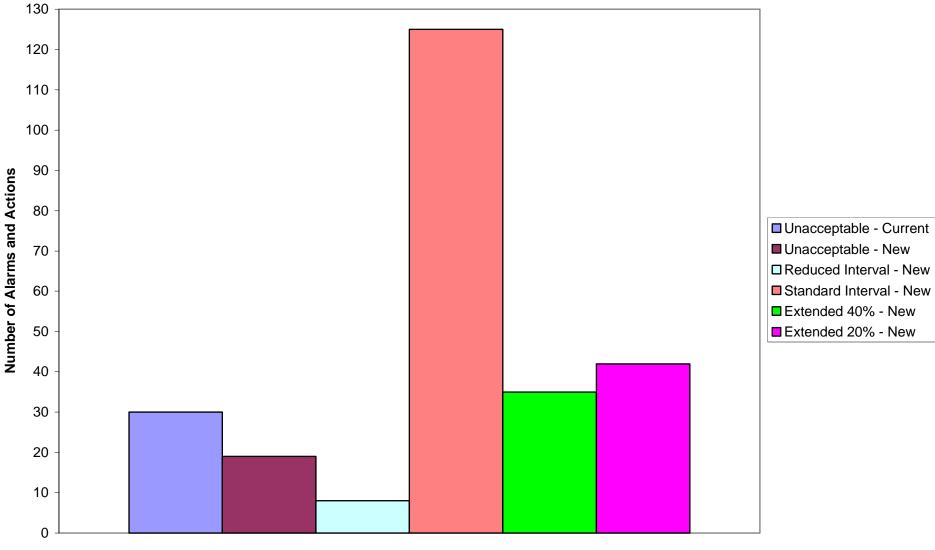


Application of Current and Proposed Version 2 LTMS to Sequence IVA

LTMS TF SS May 11, 2010

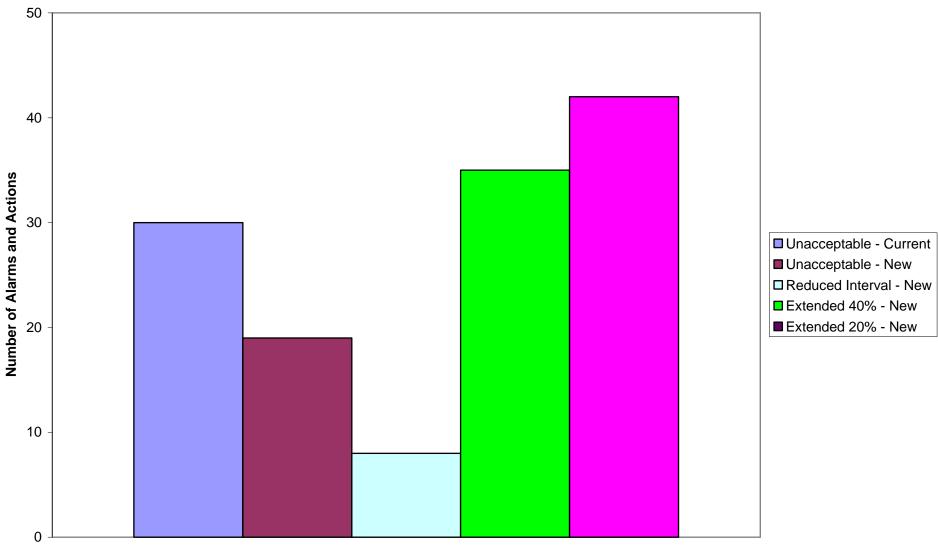
Data


- Sequence IVA LTMS reference oil results as of April 26, 2010
- Plots include only chartable data: n = 229

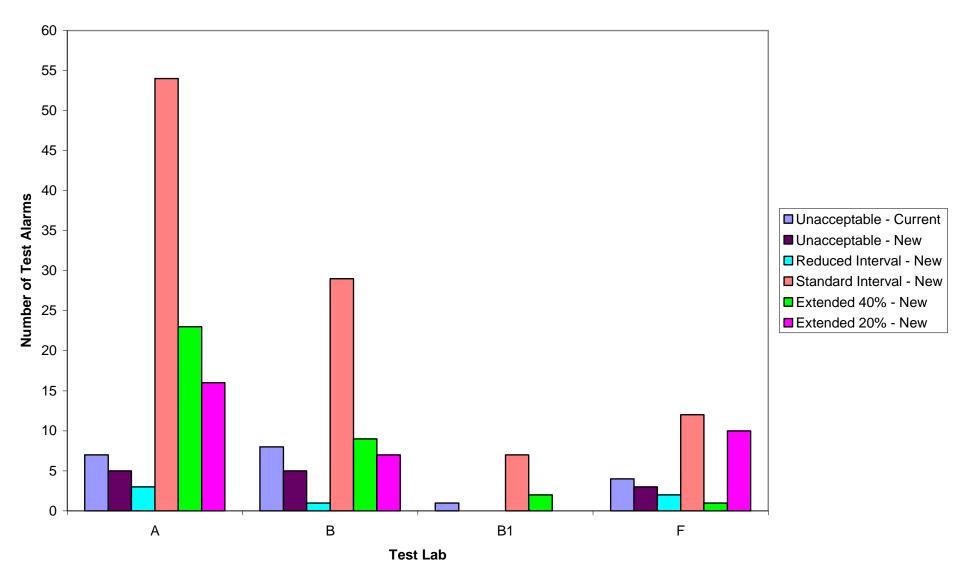

LTMS Version 2

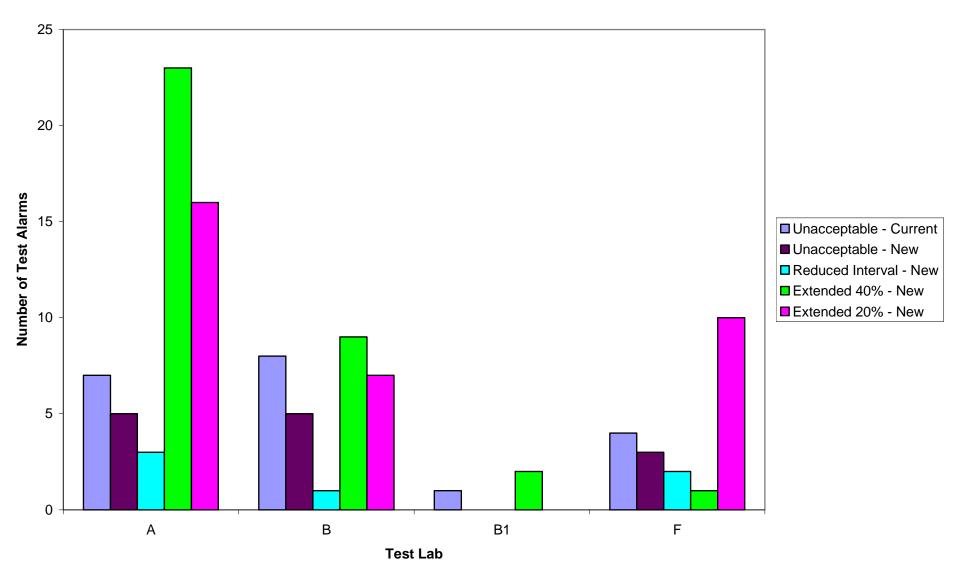
Shewhart Chart of Prediction Error				
$e_i = Y_i - Z_{i-1}$				
Limit Type	K	Limit		
Level 3	1.960	2.126		
Level 2	1.645	1.784		
Level 1	1.282	1.390		

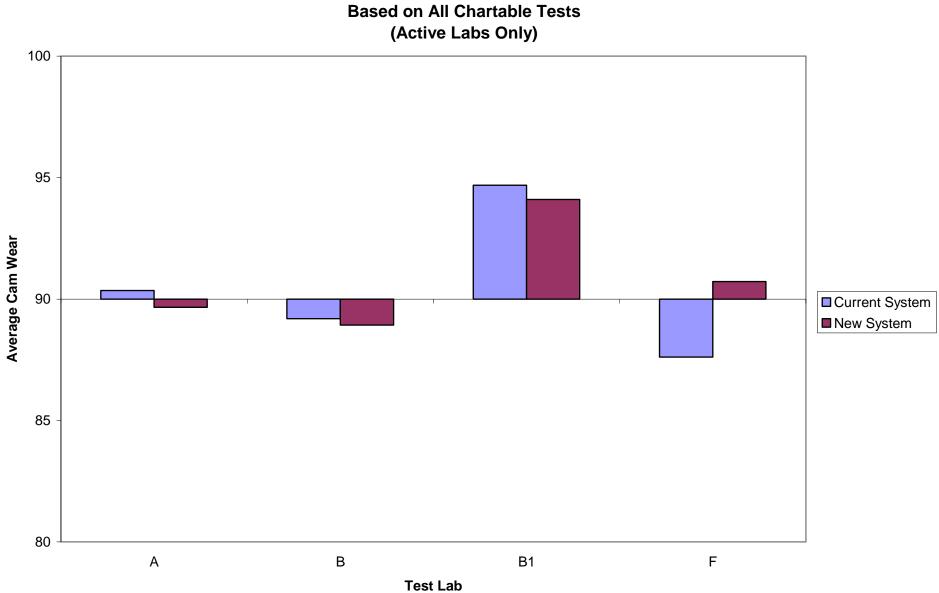
EWMA of Standardized Test Result: Z _i					
Limit Type	mit Type Lambda Limit				
Limit 2 Upper	0.3	TBD by SP			
Limit 2 Lower	0.3	TBD by SP			
Level 1	0.3	0			


Fate of IVA Calibration Attempts According to TMC Semi-Annual Reports (Oct '00 - Apr '10)

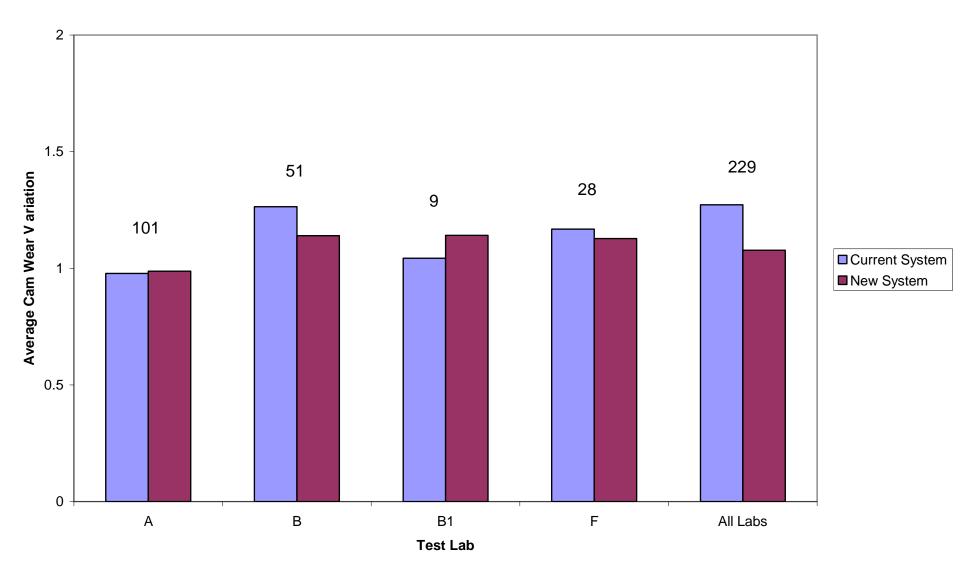
LTMS Alarms and Actions in the Sequence IVA Based on Chartable Tests Only (All Labs)

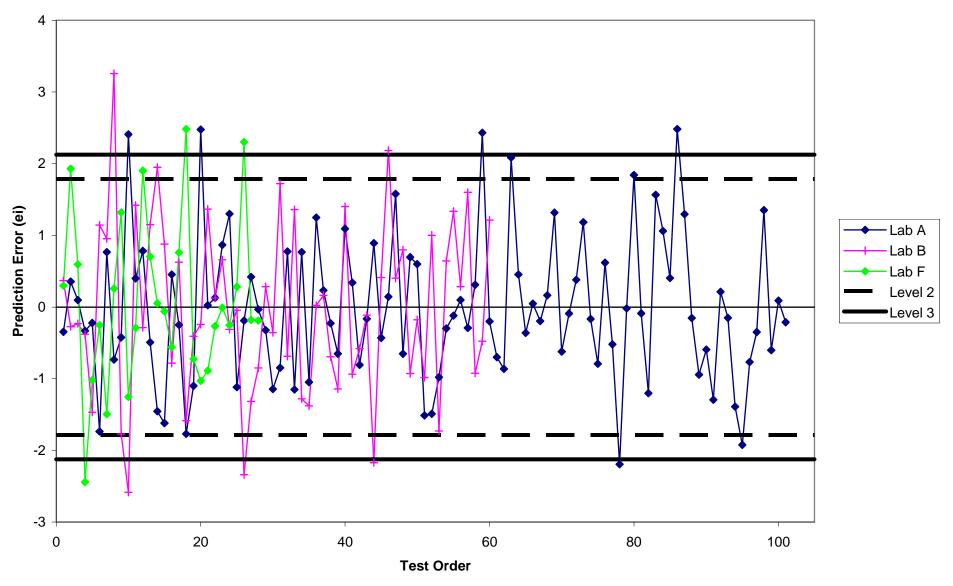

IVA ACW


LTMS Alarms and Actions in the Sequence IVA Based on Chartable Tests Only (All Labs)

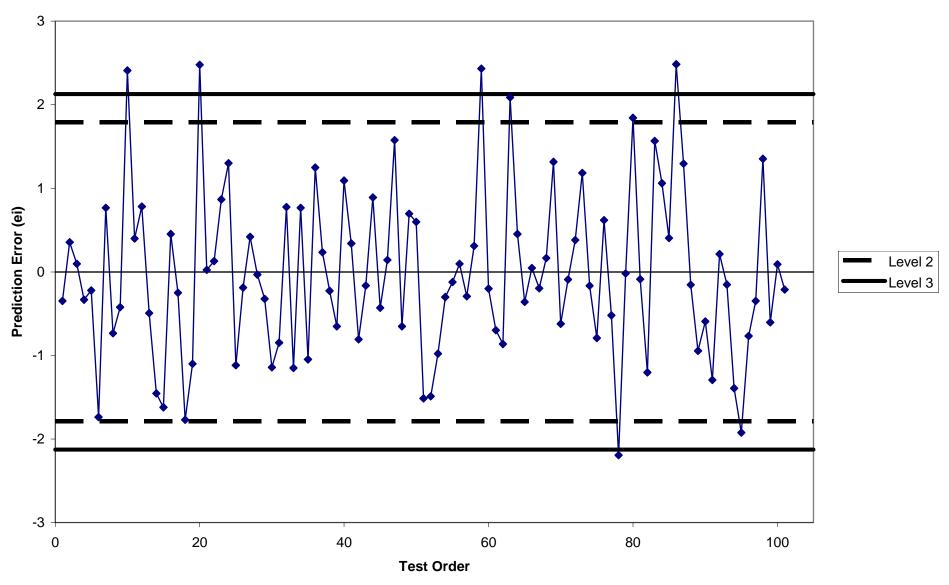

IVA ACW

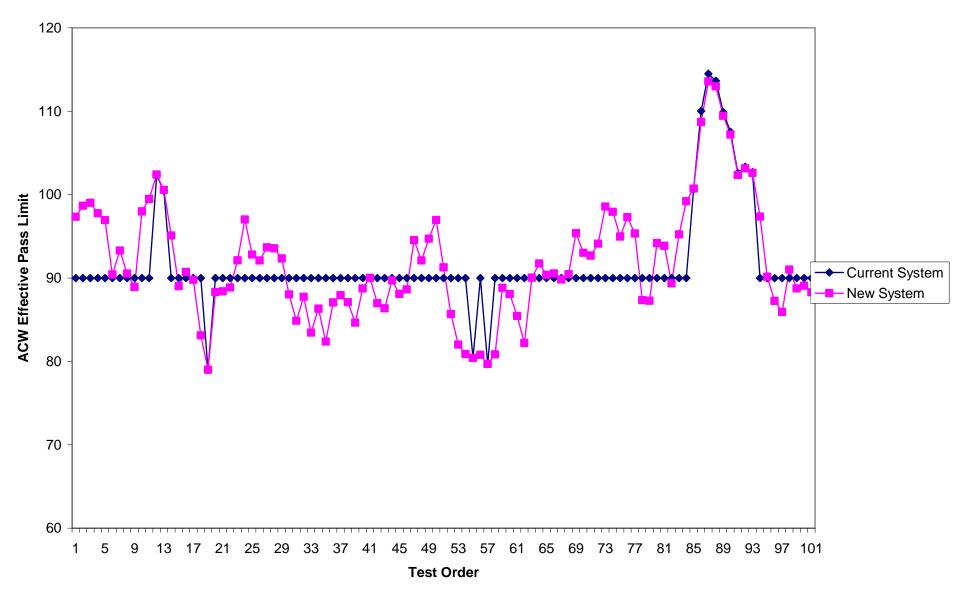
LTMS Alarms in the Sequence IVA Test Based on Chartable Tests Only (Active Labs Only)


LTMS Alarms in the Sequence IVA Test Based on Chartable Tests Only (Active Labs Only)

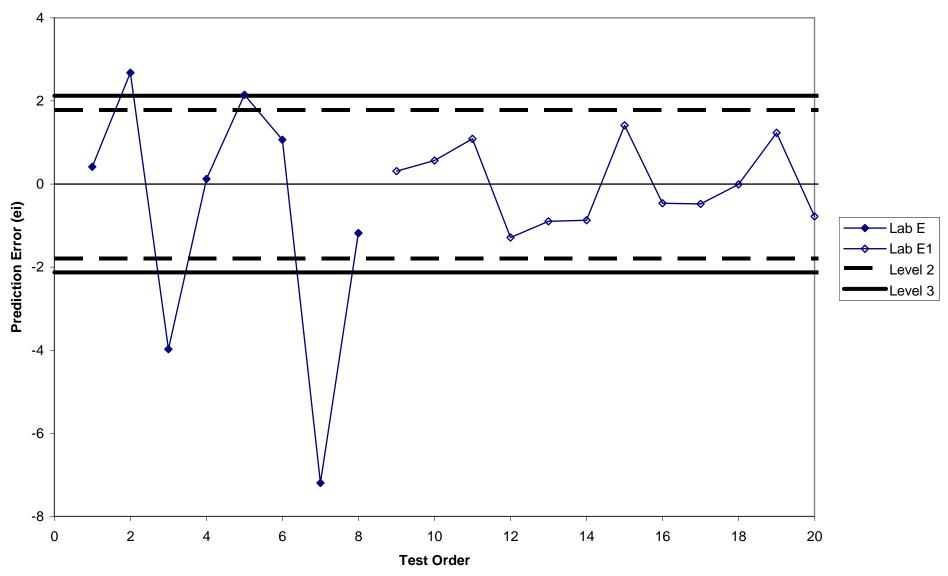


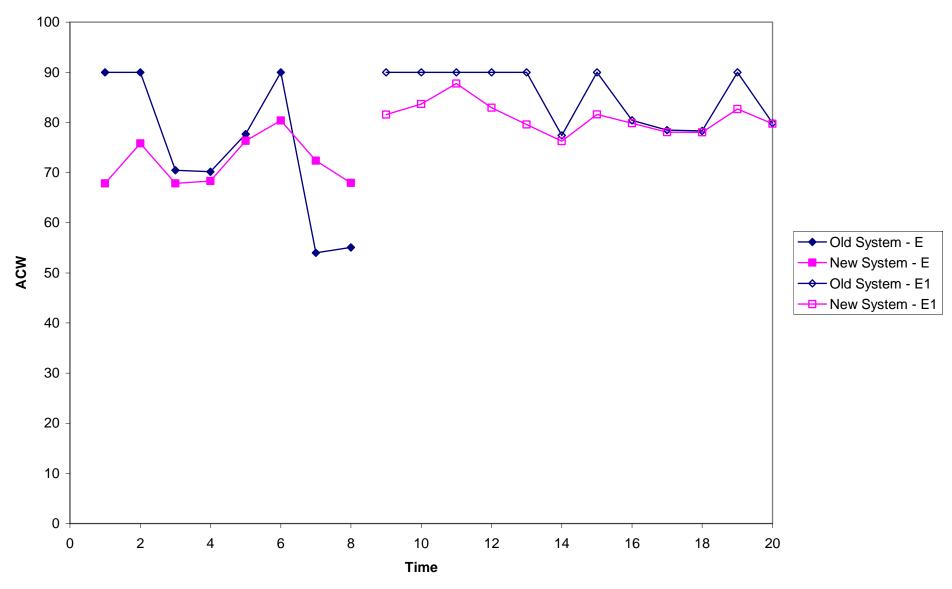
Average Relative Candidate Test Result in the Sequence IVA


Candidate Oil Test Result Target Variation in the Sequence IVA Based on All Chartable Tests



Prediction Error Chart - All Active Labs

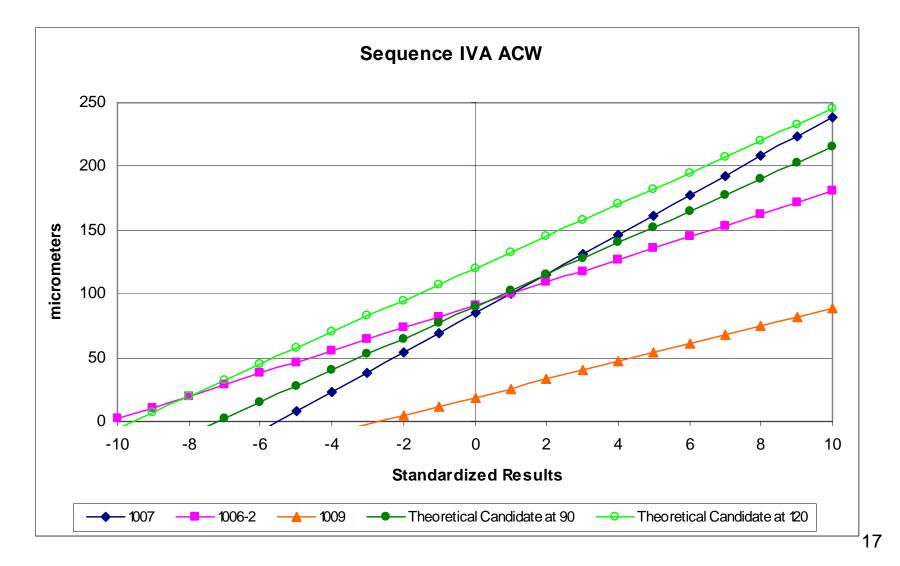

Prediction Error Chart for Lab A



Effective Pass Limit Given Severity Adjustment for Lab A

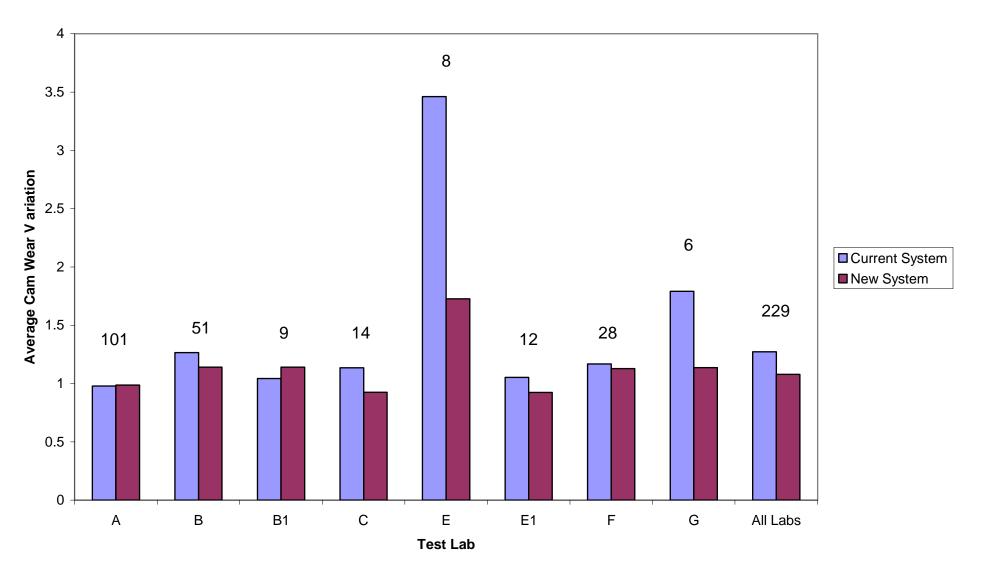
Prediction Error Chart for Lab E and E1

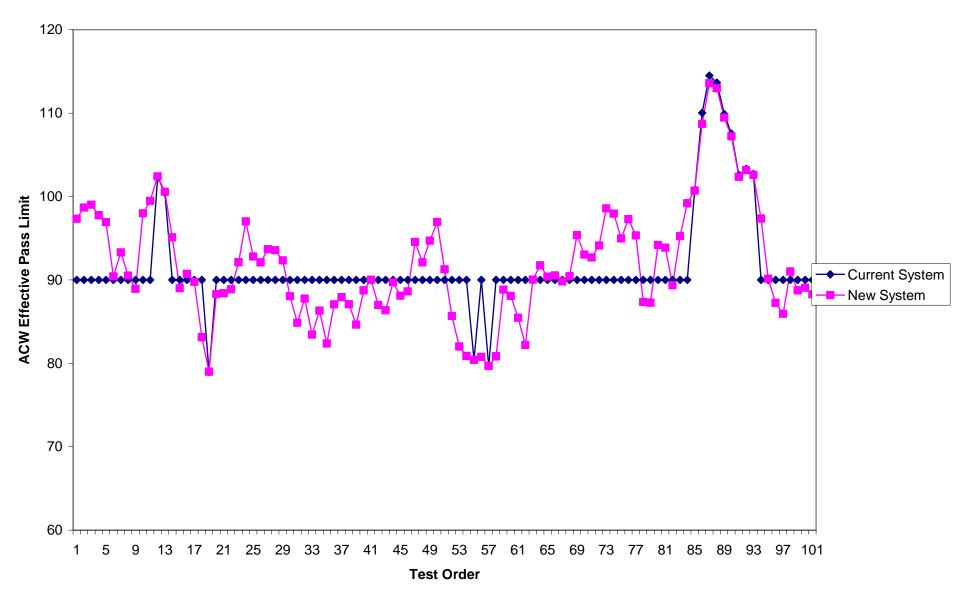
Effective Pass Limit Given Severity Adjustment for Lab E and E1


LTMS Version 2 Statistics

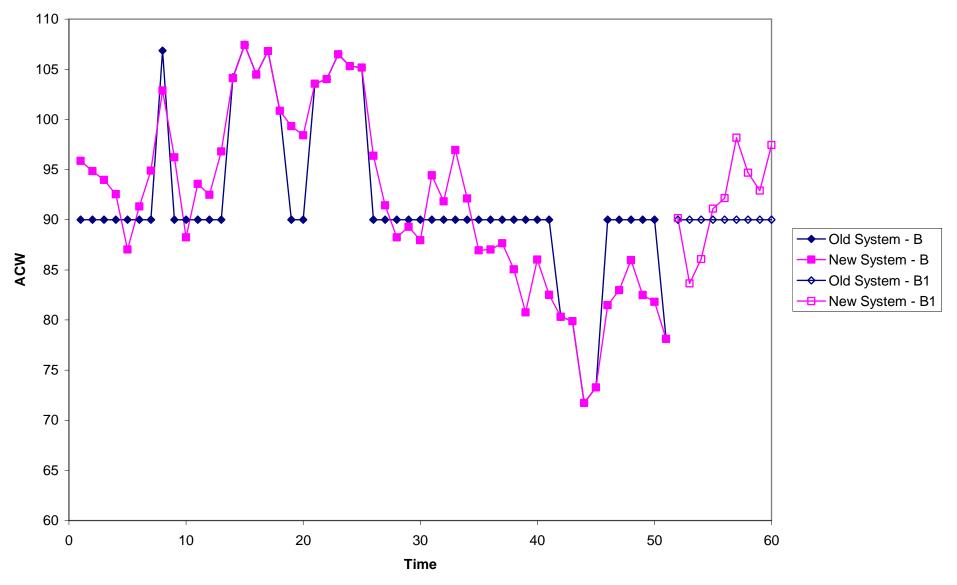
Lab	n	Average % of Normal	Z _i Range	
		Reference Period	Lower	Upper
А	101	112%	-0.88	1.88
В	60	110%	-1.46	1.39
С	14	105%	-0.70	1.68
E	20	106%	-1.77	-0.18
F	28	108%	-1.54	0.02
G	6	96%	0.95	2.79
All	229	110%	-1.77	2.79

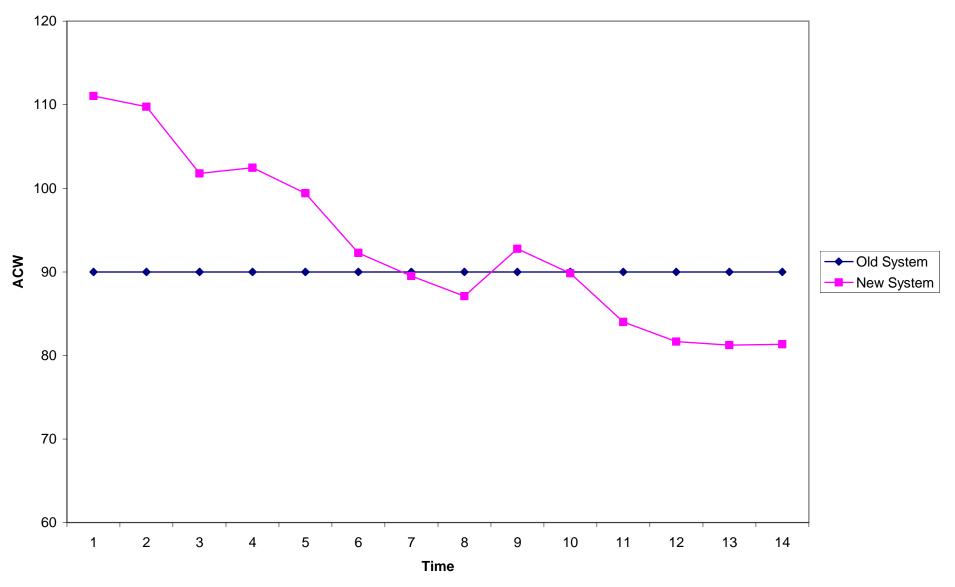
LTMS Version 2 Statistics for Sequence IVA

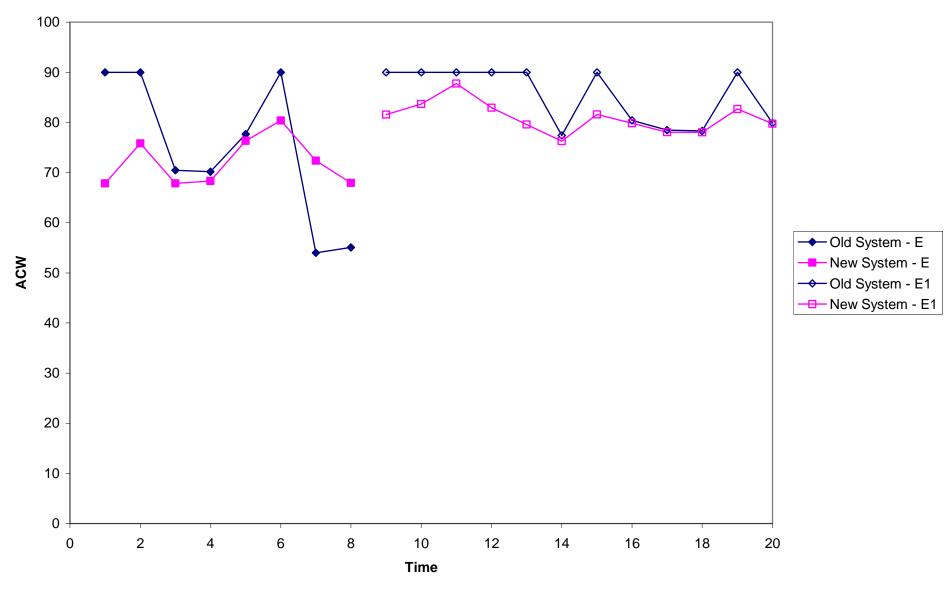

- Average % of Normal Reference Period is a weighted average % of the reference periods following a reference pass taking into account reduced (80%), standard (100%) and extended (120% and 140%) reference periods.
 - If the standard reference period is 15 tests, the average reference period for All Labs would have been 16.5 tests.
- The Z_i Range can be used to develop EWMA Z_i Level 2 limits.

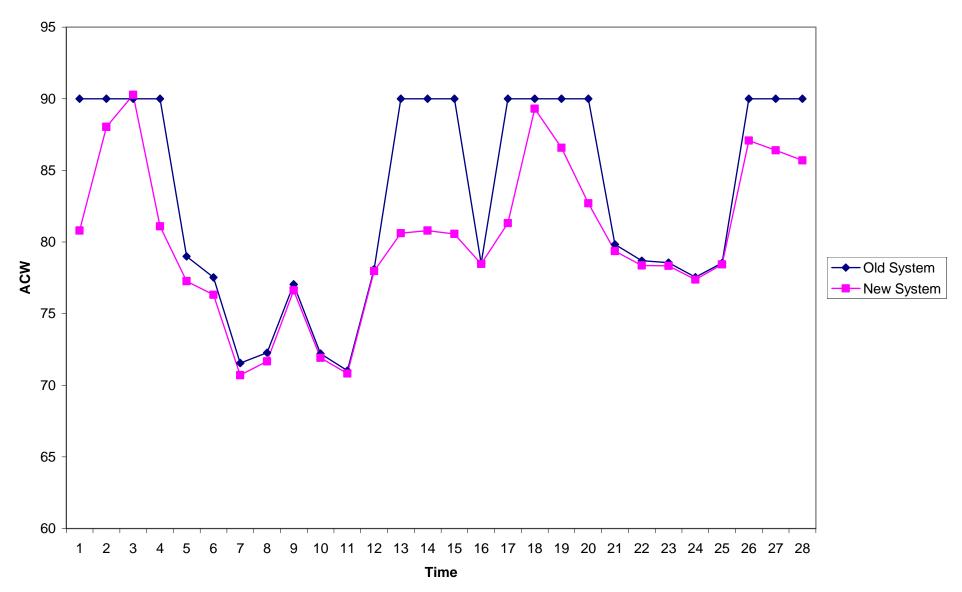

Level 2 Z_i Limits Consideration

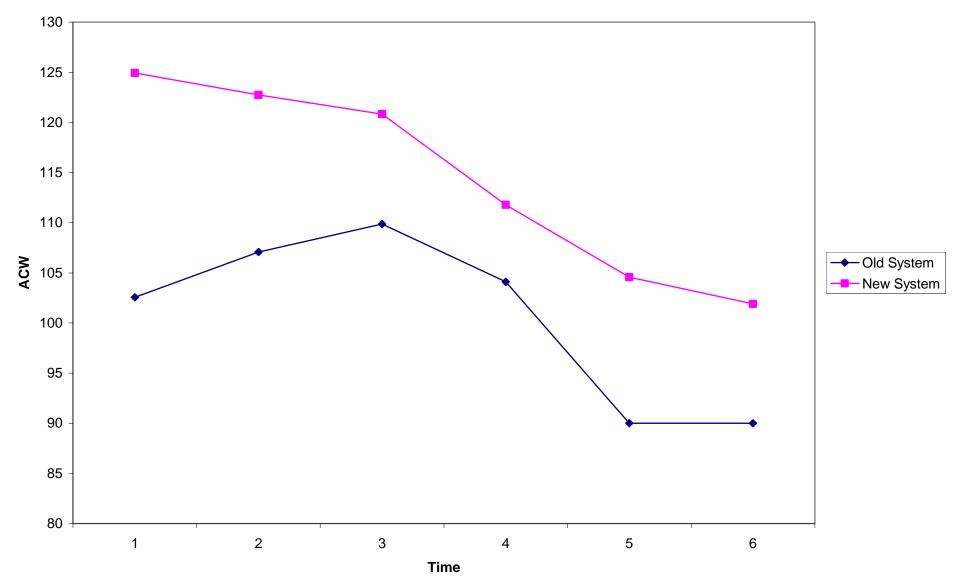
Additional Slides


Candidate Oil Test Result Target Variation in the Sequence IVA Based on All Chartable Tests

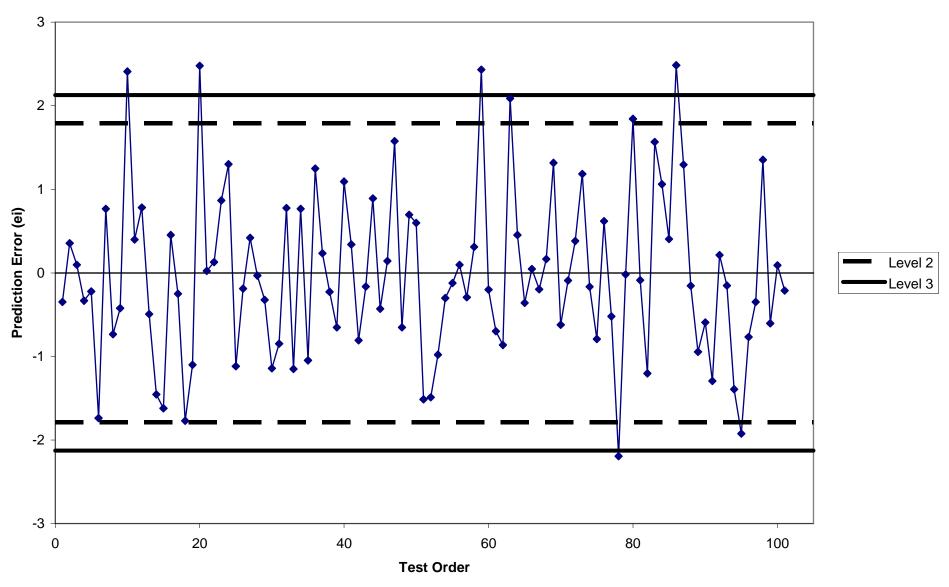


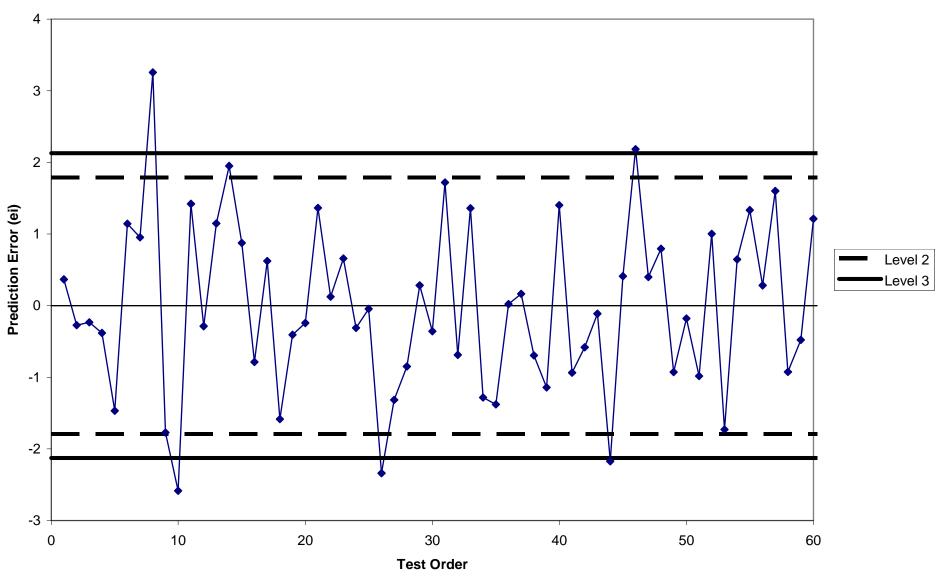

Effective Pass Limit Given Severity Adjustment for Lab A

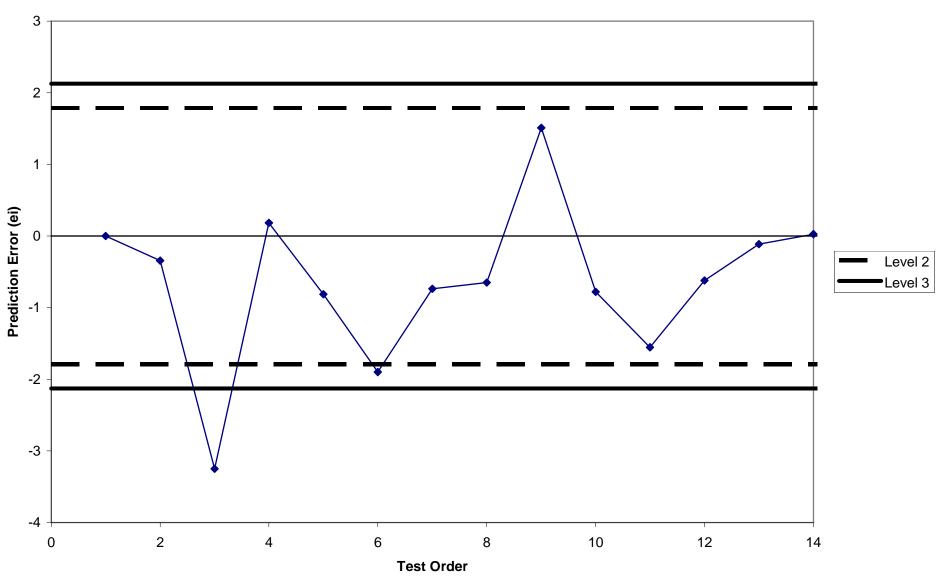

Effective Pass Limit Given Severity Adjustment for Lab C

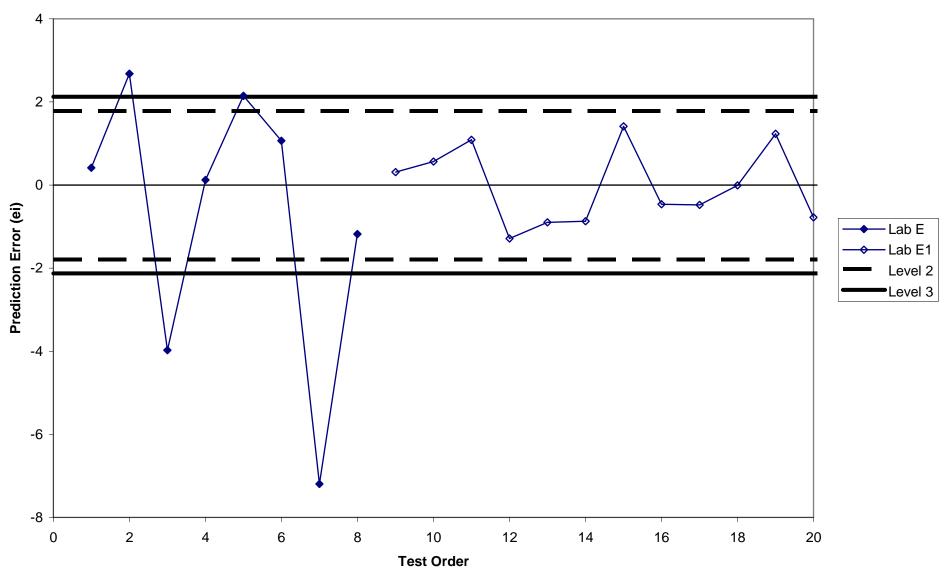


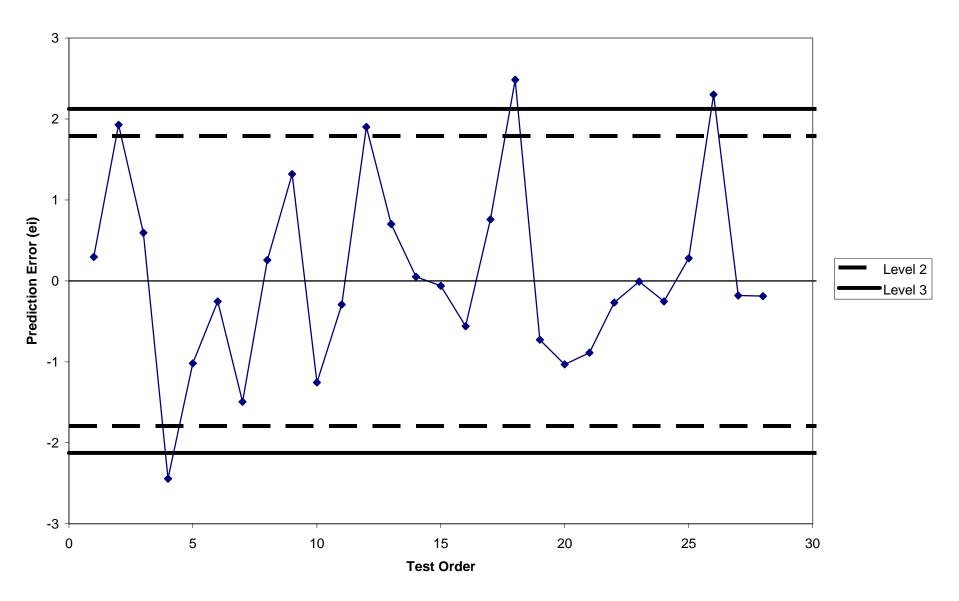
Effective Pass Limit Given Severity Adjustment for Lab E and E1

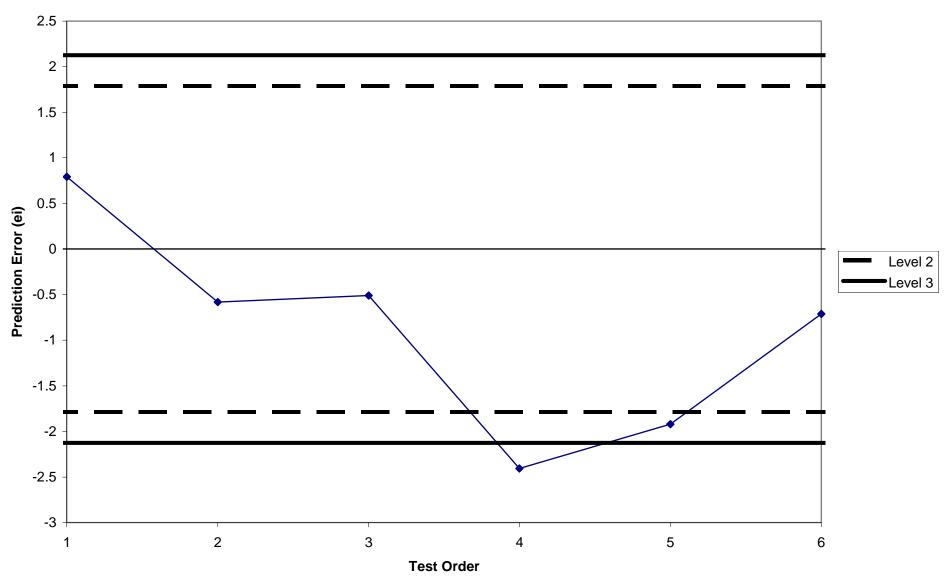





Prediction Error Chart for Lab A


Prediction Error Chart for Lab B


Prediction Error Chart for Lab C


Prediction Error Chart for Lab E and E1

Prediction Error Chart for Lab F

Prediction Error Chart for Lab G

May 12, 2010 IV Minutes San Antonio, TX

Attachment 6

ASTM Sequence IVA Surveillance Panel

Scope and Objectives

<u>Scope</u>

The Sequence IVA Surveillance Panel is responsible for the surveillance and continued improvement of the Sequence IVA test documented in Test Method D 6891 as updated by the Information Letter system. Data on test precision and laboratory versus field correlation will be solicited and evaluated at least every six months. Improvements in wear measurement technique, test operation, test monitoring and test validation will be accomplished through continual communication with the Test Sponsor and Parts Distributor, ASTM Test Monitoring Center, ASTM Committee D02.B0.01 and the ASTM Passenger Car Engine Oil Classification Panel. Actions to improve the process will be recommended when deemed appropriate based on input from the proceeding. The Panel will review development and correlation of updated test procedures with previous test procedures. This process will provide a suitable test procedure for evaluating an automotive lubricant's effect on controlling cam lobe wear for overhead valvetrain equipped engines with sliding cam followers.

Objectives	Target Date
1. Ensure a secure supply of Nissan KA24E hardware is available to accommodate testing beyond GF-5, anticipating the need for additional parts solicitations	On-going
from Nissan.2. Solicit a GF-5 reference oil producing wear results around 50 microns.	Nov 2010
William A. Buscher III, Chairman Sequence IVA Surveillance Panel	Updated: May 2010

Potential GF-5 Reference Oil Test Data	
--	--

Test Method	Parameter	Unit	Limit		Test Result		
lest method	Parameter	Onit			5W-20	5W-30	
Sequence VIII - D6709	10 h Stripped Viscosity	cSt	stay in grade 26 max.		VGRA	9.7	
Sequence vill - Doros	Total Bearing Weight Loss	mg				20	
Sequence IIIGB - D7320	Phosphorus Retention	%	79		VGRA	88	
Sequence IVA - D6891	Average Cam Wear	μm	90 max.		VGRA	6	
			XW20	XW30	10W30		
Sequence VID - D7589	FEI Sum	%	2.6	1.9	1.5 min	2.7	N/A
	FEI2	%	1.2	0.9	0.6 min	1.3	N/A
	Kinematic Viscosity Increase @40 °C	%		150 max.			66
	Average Piston Skirt Varnish	merits	report 4.0 min 60 max. None		VGRA	9.5	
Sequence IIIG - D7320	Weighted Piston Deposits	merits				4.4	
	Avg. Cam and Lifter Wear	μm				24	
	Hot Stuck Rings					none	
	Oil Consumption	Liters		Report			3.5
Sequence VG - D6593	Average Engine Sludge	merits		8.0 min.			9.1
	Rocker Cover Sludge	merits		8.3 min.] [9.4
	Average Piston Skirt Varnish	merits		7.5 min.			8.1
	Average Engine Varnish	merits		8.9 min.			9.0
	Oil Screen Sludge	%	15 max.		VGRA	2	
	Hot Stuck Compression Rings		none			none	
	Cold Stuck Rings			report			1
	Oil Screen Debris	%	report			20	
	Oil Ring Clogging	%	report			0	
	Average Follower Pin Wear	μm		max. (Ford s			3.9
	Average Ring Gap Increase	μm	225	max. (Ford s	spec)		76
Ball Rust Test - D6557	Average Gray Value			100 min.		VGRA	131

Attachment 8

Ford Motor Company Ford Customer Service Division Service Engineering Office Diagnostic Service Center II 1800 Fairlane Drive Allen Park, mi. 48101

May 6, 2010

Thom Smith PCEOCP Chairman The Valvoline Company P.O. Box 14000 VL-2 Lexington, Ky. 40512-4001

Dear Thom,

At the last PCEOCP meeting the group requested the submission of a candidate for a GF-5 reference oil that met at least the Sequence VID and Sequence IIIG ILSAC GF-5 limits. I'd like to submit the attached data from a candidate oil for consideration. This is an SAE 5W-20 oil that passes both the Sequence IIIG and VID and most of the other GF-5 tests. This oil doesn't meet the emulsion retention requirements of ILSAC GF-5. The test data provided are single tests, but we're confident in the data as we've run a number of tests on this DI chemistry with passing results on the Sequence VID, IIIG, VG, IVA, etc. The additional data is proprietary and can not be shared.

Please circulate this information to the PCEOCP members and Surveillance Panel chairs for consideration and discussion at the next meeting.

If you have any question please contact me.

Sincerely

A. Roman

Ron Romano Service Lubricants Technical Expert

SAE 5W-20 GF-5 Reference Oil Candidate

Performance Requirements	Specification	Test Results
ASTM Ball Rust (ASTM D6557) Average Gray Value	100 min	124
Sequence IIIG Viscosity Increase at 40 °C Weighted Piston Deposits Hot Stuck Piston Rings Cam Plus Lifter Wear, Average	150% max 4.0 min 0 60 μm max	81 4.0 0 12
Sequence IIIGA Aged oil CCS Viscosity at -30°C MRV TP-1, cP Yield Stress, Pa	Report 1 grade up max <35 max	7200 11400@ -30°C <35
Sequence IIIB Phosphorus Retention, %	79 min	85
Sequence IVA (ASTM D6891) Average Cam Wear (7 position average)	90 µm, max	18
Sequence VG (ASTM D6593) Average Engine Sludge Rocker Arm Cover Sludge Average Engine Varnish Piston Skirt Varnish Oil Screen Clogging Hot Stuck Compression Rings Cold Stuck Rings	8.0 min 8.3 min 8.9 min 7.5 min 15% max 0 Report	9.5 9.6 9.1 8.1 1 0
Sequence VID (ASTM D7589)		
<u>SAE 5W-20</u> FEI SUM * FEI 2 at 100 Hours	2.6% min 1.2% min	2.79 1.41
* FEI SUM = FEI at 16 hours + FEI at 100 hours		
Sequence VIII (ASTM D6709) Bearing Weight Loss	26 mg, max	1
TEOST MHT-4 (ASTM D7097) Deposit Weight	35 mg, max	35
TEOST 33C (ASTM D6335) Deposit Weight	30 mg, max	15

SAE 5W-20 GF-5 Reference Oil Candidate

Physical/Chemical Property Requirements	Specification	<u>Results</u>
Viscosity at 100 °C (ASTM D445), mm²/s, 5W-20	5.6 - <9.3	8.3
Viscosity at -30 °C (ASTM D5293), mPa.s	6600 max	3500
Low Temp. Pumping Viscosity at -35°C, mPa.s Volatility	60,000 max	10,000
Evap. Loss, 1 hr at 250 °C (ASTM D5800), %	15.0 max	14
Dist. by GC at 371 °C (ASTM D6417), %	10.0 max	5
Gelation Index (ASTM D5133)	12.0 max	5
HTHS Viscosity, mPa-sec at 150 °C & 10 ⁶ 1/sec (ASTM D4741 or ASTM D4683)	2.6 min	2.6
Filterability with short heating (ASTM D6795), %	50 max	-26
Filterability with long heating (ASTM D6794), %	50 max	-10
Foaming (ASTM D892) (after 1 minute settling time for all t		0/0
Sequence I, mL* Sequence II, mL*	10/0 max 50/0 max	0/0 0/0
Sequence II, IIL	50/0 max	0/0
Sequence III, mL*	10/0 max	0/0
High Temperature Foaming (ASTM D6082), mL*	100/0 max	50/0
Phosphorus, (ASTM D4951), % mass	0.06 - 0.08	0.077
Sulfur, (ASTM D4951 or D5453), % mass Emulsion Retention,(ASTM D7563)	0.50 max	0.3
0°C, 24 hours	No water separation	Water separation
25°C, 24 hours	No water separation	Water separation
Homogeneity and Miscibility (ASTM D6922)	No Separation	No Separation
Elastomer Compatibility (ASTM D7216 ANNEX A2)		
a. Polyacrylate Rubber (ACM-1)		
Volume (ASTM D471), $\%\Delta$	-5, 9	0.51
Hardness (ASTM D2240), pts.	-10, 10	-2
Tensile Strength (D412), $\%\Delta$	-40, 40	-12.5
b. Hydrogenated Nitrile Rubber (HNBR-1)		
Volume (ASTM D471), $\%\Delta$	-5, 10	-1.79
Hardness (ASTM D2240), pts.	-10, 5	0
Tensile Strength (D412), $\%\Delta$	-20,15	10.1
c. Silicone Rubber (VMQ-1)		
Volume (ASTM D471), $\%\Delta$	-5, 40	22.98
Hardness (ASTM D2240), pts.	-30,10	-20
Tensile Strength (D412), $\%\Delta$	-50, 5	-45.5
d. Fluorocarbon Rubber (FKM-1)		
Volume (ASTM D471), $\%\Delta$	-2, 3	-0.52
Hardness (ASTM D2240), pts.	-6, 6	-1
Tensile Strength (D412), $\%\Delta$	-65, 10	-12.9
e. Ethylene Acrylic Rubber (AEM-1)		
Volume (ASTM D471), $\%\Delta$	-5, 30	14.47
Hardness (ASTM D2240), pts.	-20,10	-7
Tensile Strength (D412), $\%\Delta$	-30, 30	-4.4

Attachment 9

Sequence IVA Surveillance Panel May 12, 2010 10:30AM – 12:00PM Southwest Research Institute San Antonio, TX

Motions and Action Items As Recorded at the Meeting by Bill Buscher

- 1.Action Item Labs to provide a list of what connectors are failing on the engine wiring harnesses, so that OHT can attempt to procure replacement connectors to allow for repair of existing wiring harnesses. Labs to respond to OHT within two weeks of today's meeting.
- 2.Action Item Labs to draft a maintenance procedure and interval for engine mounts and driveline. Submit a recommendation to the surveillance panel by 7/1/10.
- 3.Motion Form a task force to develop a recommendation to the surveillance panel for adopting LTMS 2nd Edition to the Sequence IVA. Task force to report to surveillance panel within six weeks of today's meeting.

Bill Buscher / Jason Bowden / Passed 12-0-0

- 4.Action Item Accept both potential reference oils as GF-5 category reference oils. Consider using oil # 2 (ACW = 18μ m) for the Sequence IVA and replacing reference oil 1009. Conduct a follow-up surveillance panel conference call to develop a plan for adopting one or both of these potential reference oils.
- 5.Action Item Include Todd Dvorak's analysis report on KA24E Green fuel data in today's meeting minutes.