

IVB Prove-Out Review Operational Data & Average Intake Lifter Area Loss

Kevin O'Malley The Lubrizol Corporation Feb 2016

Data Overview

- Operational data were collected from 101 to 102 hours of each test.
 - Each test hour contains 120 cycles (each cycle is 30 seconds)
 - Each cycle consists of 4 stages:
 - Stage 1 (7 seconds)
 - Stage 12: the transition from stage 1 to stage 2 (8 seconds)
 - Stage 2 (7 seconds)
 - Stage 21: the transition from stage 2 to stage 1 (8 seconds)
- Appendix A contains exhaust and intake lifter area and volume loss results by test
- Appendix B includes correlation plots between average intake lifter area loss studentized residuals and summarized operational data metrics
- Appendix C contains plots of the operational data

Most predominant lab differences possibly contributing to stand-to-stand severity differences:

1. There is a 1 to 2 second offset between SwRI tests and both LZ tests & early IAR tests (100-0-1, 100-0-2, 101-0-1, 102-0-1, and 102-0-2). These offsets are observed in how the following operational parameters ramp up and down throughout the cycle:

General trend depicted by lab-stand

- Engine speed & engine power
 - » There is a slower increase at LZ in these operational parameters at the beginning of the transition from stage 1 to stage 2. Mid way through this transition the rate at which these operational parameters ramp up increases and LZ becomes more similar to the other labs by the beginning of stage 2.
 - » Note: Some IAR tests (including early tests listed above) don't exhibit a ramp up and down in engine power (causes general trend depicted on the left to be lower or flat).

Most predominant lab differences possibly contributing to stand-to-stand severity differences:

1. (cont.) There is a 1 to 2 second offset between SwRI tests and both LZ tests & early IAR tests (100-0-1, 100-0-2, 101-0-1, 102-0-1, and 102-0-2). These offsets are observed in how the following operational parameters ramp up and down throughout the cycle:

- Oil gallery pressure
- Intake manifold pressure
 - » Step changes in pressure are also more gradual at LZ than other labs.
- Fuel flow rate
 - » The fuel flow rate of IAR stand 165 does not ramp as high as all other stands in the transition from stage 1 to stage 2; fuel flow in stage 2 is lower as well.
 - » Step changes in flow rate are generally more gradual at LZ than other labs.

Most predominant labs differences possibly contributing to stand-to-stand severity differences:

- The dip observed in each of the following operational parameters does not occur at the 2. same time within the test cycle across labs.
 - Oil sump temperature
 - At IAR and SwRI, the dip occurs at the end of the transition from stage 1 to stage 2.
 - At LZ, the dip occurs in stage 2.
 - LZ also has the lowest sump temperature on average.
 - Oil gallery temperature
 - LZ dips at the end of the transition from stage 1 to stage 2.
 - IAR and SwRI generally dip in the middle of this transition with IAR's dip generally occurring about 1 to 2 seconds after SwRI.
 - SwRI tends to have the highest average gallery temperature, followed IAR and then I Z with the lowest.
 - IAR stand 102 temp cycles differently than other stands.
 - Exhaust gas temperature •
 - The dip at IAR occurs ~3 seconds prior to LZ and SwRI (with the exception of stand 165 which tracks 1 or 2 seconds behind LZ and SwRI).
 - LZ and SwRI17 have the steepest stage 1 and 2 slopes.

5 © 2015 The Lubrizol Corporation, all rights reserved

Most predominant lab differences possibly contributing to stand-to-stand severity differences:

General trend depicted by lab-stand

3. At LZ the air fuel ratio generally spikes up and then back down in the transition from stage 2 to stage 1 while at SwRI the air fuel ratio spikes up at the end of the transition and then spikes down at the beginning of stage 1.

There is also a spike in air fuel ratio at IAR and SwRI at the beginning of the transition from stage 1 to stage 2 whereas LZ spikes a few seconds later.

4. The spike in crankcase gas pressure in the transition from stage 1 to 2 generally happens a few seconds sooner at IAR than LZ and SwRI.

Most predominant lab differences possibly contributing to stand-to-stand severity differences:

General trend depicted by lab-stand

5. The spike in engine torque at LZ occurs in the middle of the transition from stage 1 to stage 2 and in some tests is much higher than the spike observed at the other labs.

SwRI's torque spikes the first second of the transition from stage 1 to stage 2 while IAR is generally 1 second behind.

LZ also has a dip in torque at the beginning of stage 1 (this is not observed at the other labs).

Average Intake Lifter Area Loss

8 © 2015 The Lubrizol Corporation, all rights reserved. Data can be found in Appendix A

To better understand if operational parameters affect stand-to-stand variability, let's first remove the variability associated with oil differences and test length.

Average Intake Lifter Area Loss - Residuals

Studentized residual is a measure of the remaining variability in data after oil differences and the test length effect are taken into account.

9 © 2015 The Lubrizol Corporation, all rights reserved.

Summary Table of Possible Operational Differences Affecting Average Intake Lifter Area Loss (More Detail in Appendix B)

Stage 1	Lab Stand	Average Engine Speed (Dyno) 807.2	Average Engine Speed Median (Dyno) 798.6	Average Engine Speed Std dev (Dyno) 56.3	Average Engine Speed Slope (Dyno) -6.6	AverageE ngine Speed (Flywheel) 807.8	Average Engine Speed Median (Flywheel) 801.2	Average Engine Speed Std Dev (Flywheel) 58.0	Average Engine Speed Slope (Flywheel) -6.51	Average Engine Oil Sump Temp 62.3	Average Engine Oil Sump Temp Median 62.4	Average Engine Oil Sump Temp Std Dev 0.231	Average Engine Oil Sump Temp Slope -0.077	Average Engine Oil Gallery Temp Std Dev 0.82	Average Engine Oil Gallery Temp Slope -0.40
1	IARIVB101	807.0	804.8	34.5	-0.2	806.8	806.2	38.7	0.07	62.5	62.6	0.418	-0.168	0.58	-0.27
1	IARIVB102	836.3	822.5	49.8	-9.3	685.6	670.1	83.1	0.60	62.5	62.5	0.280	-0.088	0.50	-0.08
1	IARIVB165	790.3	794.1	19.8	3.8	790.0	793.7	23.3	3.59	63.7	63.7	0.410	-0.158	0.99	-0.47
1	LZ347	877.8	835.0	124.7	-42.4	879.2	836.2	125.0	-42.59	60.5	60.5	0.132	0.004	0.58	-0.28
1	SWRI17	812.8	806.0	41.5	-7.7					61.3	61.4	0.288	-0.073	1.02	-0.49
1	SWRI18	832.1	820.7	35.0	-9.4					61.8	61.8	0.362	-0.146	0.76	-0.36
1	SWRI19	814.3	812.2	21.0	-2.7					61.5	61.4	0.415	-0.177	1.01	-0.49
1	SWRI20	806.6	798.3	51.9	-10.1					62.7	62.7	0.417	-0.178	0.85	-0.41
				_							-				_
12	IARIVB100	2420.9	2491.8	1075.1	467.3	2423.7	2496.7	1075.3	467.37	61.3	61.3	0.396	-0.151	1.15	0.28
12	IARIVB101	2560.9	2611.3	1066.4	464.0	2564.0	2614.4	1067.0	464.33	61.2	61.1	0.390	-0.112	0.90	0.08
12	IARIVB102	2425.0	2483.0	1047.2	455.1	2402.1	2486.0	1083.6	471.09	61.5	61.5	0.512	-0.185	0.71	0.20
12	IARIVB165	2629.3	2670.9	1045.8	455.2	2630.3	2671.6	1045.9	455.26	62.2	62.1	0.573	-0.188	1.19	0.27
12	LZ347	2029.8	1750.1	1106.8	470.2	2033.9	1753.6	1109.3	471.31	60.3	60.3	0.275	-0.095	1.07	-0.33
12	SWRI17	2404.0	2391.0	995.9	434.4					60.5	60.5	0.421	-0.133	1.27	0.40
12	SWRI18	2386.6	2371.0	989.0	431.3					60.9	60.9	0.262	-0.046	0.97	0.25
12	SWRI19	2439.4	2432.7	1020.0	444.8					60.7	60.7	0.315	0.015	1.32	0.44
12	SWRI20	2358.2	2338.4	1000.4	436.2					61.6	61.6	0.292	-0.071	1.09	0.31
2	IARIVB100	4290.7	4294.9	24.5	4.9	4292.1	4296.2	24.3	4.86	61.7	61.7	0.425	0.204	0.38	0.18
2	IARIVB101	4296.4	4301.4	18.6	3.4	4298.4	4303.3	18.5	3.39	62.2	62.3	0.546	0.261	0.37	0.17
2	IARIVB102	4300.4	4306.3	22.5	3.9	4301.7	4307.4	22.2	3.84	62.2	62.2	0.466	0.225	0.46	0.22
2	IARIVB165	4292.7	4293.5	12.0	1.3	4293.8	4294.6	11.9	1.32	62.7	62.8	0.500	0.236	0.43	0.19
2	L2347	4267.5	4298.4	96.0	23.9	4276.3	4307.1	96.0	23.89	59.1	59.0	0.246	-0.032	1.05	0.48
4	SWRIT	4298.9	4305.5	19.1	4.6					60.7	60.8	0.380	0,169	0.37	0.16
4	SWRIIO	4292.0	4302.7	20.1	3.4					01.3	62.0	0.607	0.231	0.27	0.03
2	SWRID	4303.3	4312.5	14.5	1.3					62.0	62.1	0.534	0.252	0.31	0.13
2	- SWRIZU	4234.0	4303.5	20.1	r.o					02.0	02.3	0.00	0.340	0.55	0.15
21		2655.0	2620.7	1006.5	-439.6	2655.1	2621.2	1006.5	-439.65	62.4	62.4	0.172	0.026	0.19	_0.04
21	IABIVE 100	2000.0	2502.2	997.2	-435.0	2538.9	2500.4	998.0	-435.05	63.1	63.1	0.172	-0.020	0.10	-0.04
21		2000.0	2002.2	9915	-433.0	2694.9	2000.4	9925	-433.03	62.9	62.0	0.200	-0.001	0.11	-0.01
21	IABIVB102	2000.4	2000.0	1003.7	-437.5	2004.0	2034.0	1004.0	-437.62	63.9	63.9	0.133	0.020	0.51	0.13
21	17347	3040.3	3087.9	9817	-425.0	3046.3	3093.9	983.8	-425.92	59.8	59.8	0.200	0.000	0.13	0.00
21	SW817	2772.4	2787.0	957.3	-417.5	3040.3	3033.3	303.0	423.32	615	615	0.010	0.013	0.10	0.00
21	SWB18	2787.4	2810.5	978.1	-426.3					62.9	62.9	0.314	-0.080	0.18	0.07
21	SWRI19	2749.4	2772.2	975.1	-425.2					62.6	62.6	0.337	-0 117	0.10	0.02
21	SWBI20	2813.0	2842.8	974.4	-424.7					63.9	64.0	0.328	-0.073	0.10	0.01
	0111120	2010.0	2012.0	014.4	767.1					00.0	0.0	0.020	0.010	0.11	0.01

Sections highlighted in yellow refer to instances in which observed operational differences correlate to average intake lifter area loss studentized residuals. Results in red refer to the difference(s) observed within each section Lubrizo

Summary Table of Possible Operational Differences Affecting Average Intake Lifter Area Loss (More Detail in Appendix B)

												_		_		
												Averag	e Average	•		Average
			Average	Average	Average		Average	Average			Average	Exhaus	a Exhaus	t 👘	Average	Fuel
		Average	Oil Gallery	Oil Gallery	Oil Gallery		Intake	Engine		Average	Engine	Gas	Gas		Fuel	Flow
		Oil Gallery	Pressure	Pressure	Pressure		Manifold	Power		Engine	Torque	Temp	Temp		Flow	Rate
Stage	Lab Stand	Pressure	Median	Std Dev	Slope		Pressure	Std Dev		Torque	Median	Std De	v Slope		Rate	Slope
1	IARIVB100	123.8	123.6	7.2	-0.32		36.7	0.03		24.6	24.6	6.7	-3.3		0.67	0.06
1	IARIVB101	113.9	114.4	8.6	0.57		38.4	0.04		25.0	25.0	6.3	-3.0		0.70	0.05
1	IARIVB102	128.6	128.5	8.7	-0.96		38.1	0.01		25.0	24.9	7.1	-3.4		0.60	0.06
1	IARIVB165	128.2	128.2	4.2	1.21		38.3	0.07		25.0	25.0	9.5	-4.6		0.66	0.05
1	LZ347	134.3	122.6	23.1	-9.53		31.2	0.29		24.1	24.4	9.2	-4.4		0.64	0.06
1	SWRI17	117.4	117.7	3.5	0.05		36.6	0.09		25.0	25.0	10.7	-5.2		0.66	0.07
1	SWRI18	121.9	121.1	4.3	-0.59		35.6	0.09		24.9	25.0	6.3	-3.1		0.70	0.05
1	SWRI19	125.5	125.3	3.0	-0.20		36.3	0.27		25.0	25.1	6.5	-3.2		0.69	0.06
1	SWRI20	121.4	120.9	4.7	-0.57		35.8	0.13		25.0	25.0	6.8	-3.3		0.72	0.06
						_								_		
12	IARIVB100	253.7	292.9	74.2	29.57		69.9	0.04		25.4	25.4	11.8	4.9	4	3.59	0.80
12	IARIVB101	250.7	281.0	66.4	25.40		72.0	1.03		25.1	25.1	13.4	5.7		3.81	0.79
12	IARIVB102	252.7	286.4	69.6	27.36		70.9	0.01		25.1	25.1	11.9	5.0		3.51	0.79
12	IARIVB165	264.0	290.2	60.6	22.81		68.9	2.72		25.2	25.1	3.9	0.8		3.03	0.30
12	LZ347	197.0	174.1	74.2	30.91		63.8	3.40		26.5	26.4	9.5	2.9		3.04	0.91
12	SWRI17	240.1	274.6	68.4	27.96		64.3	2.59		25.2	25.2	5.1	1.4		3.74	0.81
12	SWRI18	251.2	287.2	75.5	31.02		61.9	2.57		25.2	25.1	6.5	2.2		3.37	0.74
12	SWRI19	255.3	292.9	74.8	30.52		64.4	3.14		25.2	24.8	7.9	3.0		3.72	0.81
12	SWRI20	245.5	280.9	72.6	29.83	j.	62.1	2.61		25.2	25.2	7.6	2.8		3.54	0.79
						_			_					_		
2	IARIVB100	322.8	324.1	8.3	-0.52		43.5	0.01		25.2	25.2	10.3	5.1		5,19	-0.40
2	IARIVB101	305.8	308.0	12.0	-0.42		44.7	0.02		25.0	25.0	9.2	4.5		5,19	-0.34
2	IARIVB102	316.7	319.7	8.6	-0.49		44.0	0.02		25.0	25.0	9.8	4.8		5.22	-0.42
2	IARIVB165	314.4	312.8	11.3	-0.18		43.0	0.10		25.0	25.0	11.6	5.6		3.56	0.13
2	LZ347	312.3	312.5	1.4	0.05		47.5	0.40		25.1	25.1	13.4	6.5		5,19	-0.38
2	SWRI17	306.3	306.0	1.7	-0.76		44.3	0.17		25.0	25.0	14.8	7.4		5.11	-0.39
2	SWRI18	327.0	326.9	1.3	-0.54		44.6	0.14		25.0	25.0	10.4	5.2		5.00	-0.36
2	SWRI19	326.9	326.7	1.3	-0.50		42.2	1.82		25.0	24.5	9.1	4.5		4.96	-0.38
2	SWRI20	318.9	318.8	1.2	-0.50	j.	44.2	0.16		25.0	25.0	9.8	4.8		4.97	-0.37
						_								_		
21	IARIVB100	272.1	295.7	53.9	-21.16		16.4	0.02		24.8	24.8	17.2	-7.4		1.46	-0.59
21	IARIVB101	253.2	278.0	56.3	-21.89		17.5	0.99		24.9	24.9	17.8	-7.7		1.57	-0.52
21	IARIVB102	274.5	292.1	45.8	-17.68		16.3	0.02		24.9	24.9	16.7	-7.1		1.43	-0.59
21	IARIVB165	260.4	284.4	55.3	-21.50		17.0	2.63		24.8	24.8	6.2	-1.8		1.26	-0.35
21	LZ347	291.4	304.0	27.2	-10.07		21.5	2.95		24.3	24.4	14.5	-5.5		1.83	-0.74
21	SWRI17	266.2	288.1	45.7	-17.56		16.9	2.51		24.8	24.8	9.7	-3.5		1.42	-0.47
21	SWRI18	282.8	305.9	50.3	-19.39		19.2	2.57		24.8	24.8	11.6	-4.7		1.65	-0.50
21	SWRI19	282.6	305.4	50.5	-19.53		17.7	3.17		24.8	24.1	11.5	-4.7		1.44	-0.47
21	SWRI20	279.0	299.1	45.8	-17.50		19.3	2.55		24.9	24.9	11.3	-4.6		1.57	-0.47

Sections highlighted in yellow refer to instances in which observed operational differences correlate to average intake lifter area loss studentized residuals. Results in red refer to the difference(s) observed within each section

Summary Table of Other Possible Operational Differences Affecting Average Intake Lifter Area Loss (More Detail in Appendix B)

					Aueroge	
				Aueropa	Pooker	
				Peeker	Course	0
		A	0	Cover	Cover	Crackage
		Average Av Evol	Evel Dell	Cover	Out	Cankcase
		Deste	Tama	Looiant	T	Deserves
0	1-1-0	- Hatio	Cod Door	in remp	Cud David	Pressure
Stage		O 77		Stalley	Stalley	
	IARIVE IUU	0.77	0.35	0.22	0.25	0.536
		0.33	0.14	0.23	0.22	0.534
		0.78	0.05	0.32	0.32	0.468
	IARIVB I65	1.06	0.35	0.45	0.45	0.565
	L2347	0.43	0.07	0.03	0.03	0.091
1	SWRI17	1.21	0.17	0.34	0.34	0.096
1	SWRI18	1.92	0.39	0.32	0.33	0.049
1	SWRI19	2.00	0.27	0.14	0.13	0.097
1	SWRI20	2.08	0.30	0.20	0.19	0.188
12	IARIVB100	1.17	0.35	0.22	0.25	0.993
12	IARIVB101	1.10	0.14	0.23	0.22	1.300
12	IARIVB102	0.95	0.06	0.33	0.33	1.020
12	IARIVB165	0.93	0.28	0.46	0.46	1.412
12	LZ347	0.37	0.07	0.03	0.03	0.239
12	SWRI17	0.57	0.18	0.34	0.34	0.090
12	SWRI18	0.64	0.40	0.33	0.33	0.153
12	SWRI19	0.56	0.28	0.16	0.15	0.144
12	SWRI20	0.62	0.31	0.21	0.20	0.172
2	IARIVB100	0.28	0.36	0.22	0.25	0.838
2	IARIVB101	0.29	0.15	0.24	0.23	0.939
2	IARIVB102	0.26	0.06	0.33	0.33	0.774
2	IARIVB165	0.28	0.41	0.44	0.44	0.996
2	LZ347	0.14	0.06	0.03	0.03	0.142
2	SWRI17	0.23	0.16	0.34	0.34	0.059
2	SWRI18	0.20	0.39	0.32	0.34	0.069
2	SWRI19	0.25	0.28	0.15	0.14	0.106
2	SWRI20	0.25	0.29	0.19	0.19	0,143
21	IARIVB100	3.17	0,36	0.22	0.25	1.004
21	IARIVB101	2.25	0.14	0.23	0.23	1.362
21	IABIVB102	3.09	0.06	0.33	0.33	1.069
21	IABIVB165	2.28	0.45	0.43	0.43	1.473
21	LZ347	3.93	0.07	0.03	0.03	0.091
21	SWBI17	137	0.17	0.33	0.34	0.053
21	SWB118	1.99	0.39	0.33	0.33	0.071
21	SWBI19	2.23	0.28	0.14	0.14	0.086
21	SWBI20	2 44	0.20	0.20	0.19	0.192
1	JWHIZU	2.77	0.00	0.20	0.10	0.132

Sections highlighted in yellow refer to instances in which observed operational differences correlate to average intake lifter area loss studentized residuals. Results in red refer to the difference(s) observed within each section

There appears to be an offset in the engine speed (Dyno) cycles among the labs; LZ generally 1 to 2 seconds behind SwRI; some early IAR tests one second behind SwRI. **Lubrizol**

Analyses suggest differences in engine speed may affect test severity. In particular, LZ has:

- Highest average engine speed in stages 1, and 21
- Lowest average engine speed in stage 12
- Highest within test cycle variability in stage 2
- Much different slopes in stages 1 and 2; stage 12 slope is steeper as well

There appears to be an offset in the engine speed (flywheel) cycle among the labs; some early IAR tests one second behind others.

Analyses suggest differences in engine speed may affect test severity. In particular, LZ has:

- Higher average engine speed in stages 21
- Lowest average engine speed in stage 12
- Highest within test cycle variability in stages 1 and 2
- Much different slopes in stages 1, 2, and 21

16 © 2015 The Lubrizol Corporation, all rights reserved.

- Compared to the other labs, there is a slower increase in engine power at LZ at the beginning of the transition from stage 1 to stage 2. Mid way through the transition the engine power ramps up at LZ and the engine power among the labs is similar by the beginning of stage 2.
- One LZ test has much higher engine power.
- The engine power of some IAR tests appears to be fairly constant across the stages.

Analyses suggest differences in engine power may affect test severity. In particular, LZ has higher within cycle variability in stage 1

There appears to be an offset in the oil gallery pressure cycle among the labs; LZ ~2 seconds behind SwRI; some early IAR tests are one second behind SwRI.

Analyses suggest differences in gallery pressure may affect test severity. In particular, LZ has:

- Lower stage 12 average pressure
- More within test cycle variability in stage 1; less in stage 21
- Steepest slope in stage 1; smallest slope in stage 21
- These differences are affected by the differences in pressure cycles among the labs (prior slide Lubrizo)

- There appears to be a difference in how the intake manifold pressure cycles at LZ compared to the other labs; it is generally delayed by a second and the step changes in pressure are more gradual. ubrizo
- Early IAR tests also track 1 second behind SwRI tests.

Analyses suggest differences in intake manifold pressure may affect test severity. In particular, LZ has lower stage 1 average pressure.

- The fuel flow rate of IAR165 does not ramp as high as all other stands in the transition from stage 1 to stage 2.
- A couple LZ tests have a steeper fuel flow rate in the transition from stage 1 to stage 2.
- LZ fuel flow rate changes are not as linear as the other labs.
- Most LZ tests and early IAR tests lag a second behind SwRI tests.

The dip in oil sump temp occurs at a different time within the cycle at LZ than the other labs. At IAR and SwRI, this dip occurs at the end of the transition from stage 1 to stage 2. At LZ, the dip in sump temp occurs in stage 2.

Analyses suggest differences in sump temp may affect test severity. In particular, LZ has:

- Lower average stage 2 and 21 oil sump temp
- Less within test cycle variability in stage 1 and 2
- Little change in oil sump temp throughout stages 1 and 2 whereas the other labs slightly decrease in stage 1 and increase in stage 2
 - These differences are affected by the sump temp dip differences across at the labs

- The dip in oil gallery temp occurs at a different time at the labs.
- LZ dips at the end of the transition from stage 1 to stage 2. IAR and SwRI generally dip in the middle of the transition with IAR's dip generally occurring about 1 to 2 seconds after SwRI.
- The dip in oil gallery temperature is not consistent within IAR tests. Most notable are tests run on stand 102.

Analyses suggest differences in gallery temp may affect test severity. In particular, LZ has:

- More within test cycle variability in stage 2
- Differing slopes than other labs within stages 12 and 2
- These differences are affected by the inconsistency of when the gallery temp dips at the labs

The dip in exhaust gas temp at IAR occurs ~3 seconds prior to LZ and SwRI (with the exception of stand 165 which tracks 1 or 2 seconds behind LZ and SwRI).

Analyses suggest differences in exhaust gas temp may affect test severity. In particular, LZ and SwRI17 have:

- Steep stage 1 and 2 slopes
- Most within cycle variability in stages 1 and 2

The air fuel ratio tracks differently at SwRI than the other labs in stage 1 and the transition from stage 2 to 1.

In particular, LZ has lowest within cycle variability in stage 2.

generally happens a few seconds sooner at IAR than LZ and SwRI.

Compared to LZ and SwRI, IAR has the highest within test variability among all stages of the test. Lubrizol

- The spike in engine torque at LZ occurs in the middle of the transition from stage 1 to stage 2 and in some tests is much higher than the spike observed at the other labs.
- SwRI's torque spikes the first second of the transition while IAR is generally 1 second behind.
- LZ also has a dip in torque at the beginning of stage 1 (this is not observed at the other labs).

ubrizol.

Analyses suggest differences in engine torque may affect test severity. In particular, LZ has:

- Higher average torque in the transition from stage 1 to stage 2 (caused by higher torque in a few tests)
- Slightly lower average torque in stages 1 and 21

Analyses suggest differences in fuel rail temp may affect test severity. In particular, LZ and IVB102 have the lowest within cycle variability in stage 2 and the transition from stage 2 to stage 1.

36 © 2015 The Lubrizol Corporation, all rights reserved.

Analyses suggest differences in rocker cover coolant in temp may affect test severity. In particular, LZ has the lowest within cycle variability in all stages of the test.

Analyses suggest differences in rocker cover coolant out temp may affect test severity. In particular, LZ has the lowest within cycle variability in all stages of the test.

Appendix A Results by test

Appendix A – Results by Test

Lubrizol

Final Prove- out test?	Lab	Stand	Oil	Test	Exhaust Bucket Lifters Average Area Loss, μm2	Exhaust Bucket Lifters Average Volume Loss, mm3	Average intake lifter area loss	Average intake lifter volume loss
No	IAR	IVB100	REO1006-2	IVB100-0-5			97132.831	
No	IAR	IVB100	REO300	IVB100-0-1			99565.631	
No	IAR	IVB100	REO300	IVB100-0-2			26430.975	
No	IAR	IVB101	REO1006-2	IVB101-0-11			282302.105	3.243
No	IAR	IVB101	REO1006-2	IVB101-0-19				
No	IAR	IVB101	REO300	IVB101-0-1			91561.825	
No	IAR	IVB102	REO1006-2	IVB102-0-4			139121.873	
No	IAR	IVB102	REO300	IVB102-0-1			119989.675	
No	LZ	347	REO300	TRNS9TF7C				
No	SWRI	18	REO 300	18-0-2			145353.88	
No	SWRI	18	REO 300	18-0-3			63792.838	
No	SWRI	19	1006-2	19-0-33			146385.944	1.119859703
No	SWRI	19	REO 300	19-0-31			171083.063	
No	SWRI	19	REO 300	19-0-32			69919.619	
No	SWRI	20	1006-2	20-0-21			37271.438	
No	SWRI	20	1006-2	20-0-24			81906.875	
No	SWRI	20	REO 300	20-0-29			168959.4	1.54

Appendix A – Results by Test

		-
sı	ICCE	SS
ΤÕ	GETH	ÊR

Final Prove- out test?	Lab	Stand	Oil	Test	Exhaust Bucket Lifters Average Area Loss, um2	Exhaust Bucket Lifters Average Volume Loss, mm3	Average intake lifter area loss	Average intake lifter volume loss
Yes	IAR	IVB100	REO1006-2	IVB100-0-3	106951.9		179553.814	
Yes	IAR	IVB100	REO3	IVB100-0-6	81629.484	1.105	102010.707	0.704
Yes	IAR	IVB101	REO1006-2	IVB101-0-17	208444.448	2.064243265	256481.937	2.364
Yes	IAR	IVB101	REO1006-2	IVB101-0-18	131544.454	0.956906187	200097.992	1.592
Yes	IAR	IVB101	REO3	IVB101-0-8	59174.488	0.61	116375.183	0.982
Yes	IAR	IVB101	REO300	IVB101-0-5	83197.74		239274.467	
Yes	IAR	IVB101	REO300	IVB101-0-9	143407.848	1.724	265339.906	2.51
Yes	IAR	IVB102	REO1006-2	IVB102-0-2	82004.91		145893.659	
Yes	IAR	IVB102	REO1006-2	IVB102-0-3	103052.31		171764.073	
Yes	IAR	IVB165	REO1006-2	IVB165-0-1	85838.184	0.846680813	153717.036	1.337
Yes	IAR	IVB165	REO300	IVB165-0-7	71669.706	0.742	123761.196	1.14
Yes	LZ	347	REO1006-2	TRNHRJKCD	113196.5625	1.47377436	279284	2.683
Yes	LZ	347	REO1006-2	TRNRCV08C	130022.4375	1.771258125	261655	2.799
Yes	LZ	347	REO1006-2	TRNXN0P3C	168046.6875	2.38	268600	2.807
Yes	LZ	347	REO1006-2	TRNBHTJXB	176535.6875	2.29025	292911	3.037
Yes	LZ	347	REO3	TRNWVQKSC		2.089375		3.881
Yes	LZ	347	REO300	TRNX713KB	172282.2238	2.367856633	378016	4.272
Yes	LZ	347	REO300	TRNTZHLGB	133624.6875	1.834625	353890	3.746
Yes	SWRI	17	1006-2	17-0-4	108780	0.76	363430.67	3.72
Yes	SWRI	17	1006-2	17-0-6	125168.49	1.25	307683.39	3.13
Yes	SWRI	18	REO 300	18-0-6	104167.79	0.74	301517.988	2.934891747
Yes	SWRI	20	1006-2	20-0-28	85558.62	0.85	203830.314	1.804
Yes	SWRI	20	REO 300	20-0-26	107097.99	0.87	244466.725	1.875 🖌
Yes	SW/RI	20	REO 300	20-0-27	122576 406	1 04	286161 088	1 75

Т

Т

41 © 2015 The Lubrizol Corporation, all rights reserved.

Appendix B

Correlation to Average Intake Area Loss

- Operational data were collected from 101 and 102 hours of each test.
 - Each test contains 120 cycles (each cycle is 30 seconds)
 - Each cycle consists of 4 stages:
 - Stage 1 (7 seconds)
 - Stage 12: the transition from stage 1 to stage 2 (8 seconds)
 - Stage 2 (7 seconds)
 - Stage 21: the transition from stage 2 to stage 1 (8 seconds)
- Within each stage of each test, the mean, median, standard deviation, and slope (where applicable) were calculated across the 120 cycles.
- Variability in average intake area loss attributed to oil and test length differences was removed.
 - Studentized residuals were calculated. These represent the remaining variability in the data after oil differences and the test length effect are taken into account.
- The studentized residuals were then correlated with the summarized operational data metrics to identify operational differences potentially affecting test severity.
- Plots of these correlations are included in this appendix.

Possible **Stage 1 to Stage 2 Transition** Operational Differences Affecting Average Intake Lifter Area Loss

Possible **Stage 2 to Stage 1 Transition** Operational Differences Affecting Average Intake Lifter Area Loss

Possible Stage 2 to Stage 1 Operational DifferencesAffecting Average Intake Lifter Area Loss

Possible Stage 2 to Stage 1 Operational DifferencesAffecting Average Intake Lifter Area Loss

Appendix C Operational Data Plots

Operational Data

- Operational data were collected from 101 to 102 hours of each test.
 - This contains 120 cycles (each cycle is 30 seconds)
 - Each cycle consists of 4 stages:
 - Stage 1 (7 seconds)
 - Stage 12: the transition from stage 1 to stage 2 (8 seconds)
 - Stage 2 (7 seconds)
 - Stage 21: the transition from stage 2 to stage 1 (8 seconds)
- Cycles of each test are overlaid on plots in this appendix
- On plots in which each test is shown in its own pane:
 - Tests are ordered by time within lab on the plots
 - Those in red are from earlier development work
 - Those in green represent the latest prove-out tests
- Erroneous data have been removed from the plots

Operational Data Plots Controlled Parameters

Current Control Limits

Sequence IVB - Test Sequence							
		Ramp to		Ramp to			
Parameter	Units	Stage 1	Stage 1	Stage 2	Stage 2		
Duration	s	8	7	8	7		
Engine Speed	rpm	4300 to 800	800 ± 25	800 to 4300	4300 ± 25		
Engine Torque	N-m	25 ± 2	25 ± 2	25 ± 2	25 ± 2		
Coolant Temperature Into Engine	°C	49 ± 3	49 ± 3	49 ± 3	49 ± 3		
Coolant Delta Temperature	°C	5 to 2	2 ± 1	2 to 5	5±1		
Engine Oil Gallery Temperature	°C	55 to 53	53 ± 3	53 to 55	55 ± 3		
Intake Air Temperature	°C	32 ± 3	32 ± 3	32 ± 3	32 ± 3		
Rocker Cover Coolant Out Temperature	°C	20 ± 2	20 ± 2	20 ± 2	20 ± 2		
Fuel Rail Temperature	°C	24 ± 3	24 ± 3	24 ± 3	24 ± 3		
Load Cell Temperature	°C	45 ± 3	45 ± 3	45 ± 3	45 ± 3		
Intake Air Pressure	kPa	0.07 ± 0.07	0.07 ± 0.07	0.07 ± 0.07	0.07 ± 0.07		
Intake Air Humidity	g/kg	11.5 ± 0.5	11.5 ± 0.5	11.5 ± 0.5	11.5 ± 0.5		
Exhaust Pressure	kPa(a)	104.5 to 103.5	103.5 ± 1	103.5 to 104.5	104.5 ± 1		
Engine Coolant Pressure	kPa	70 ± 10	70 ± 10	70 ± 10	70 ± 10		
Fuel Rail Pressure	kPa	335 ± 10	335 ± 10	335 ± 10	335 ± 10		
Air Fuel Ratio	AFR	record	14.5 ± 0.5	record	14.5 ± 0.5		

Coolant Delta

96 © 2015 The Lubrizol Corporation, all rights reserved.

Intake Air Temperature

Lubrizol

Cycle Time

102 © 2015 The Lubrizol Corporation, all rights reserved.

Cycle Time

V IVB102-0-4

W IVB100-0-5

X IVB101-0-5

Y IVB100-0-6

Z IVB101-0-8

a IVB101-0-9

b IVB101-0-11

c IVB101-0-17

d IVB101-0-18 e IVB101-0-19

f IVB165-0-1

g IVB165-0-7

h TRNS9TF7C

i TRNX713KB

k TRNRCV08C

m TRNBHTJXB

n TRNTZHLGB

o TRNWVQKSC

— IAR IVB100

— IAR IVB101

— IAR IVB102

— IAR IVB165

----- LZ 347

—— SWRI 19

— SWRI 20

i

1

TRNHRJKCD

TRNXN0P3C

Lab	Stand		
•	IAR IVB100	V	IVB102-0-4
•	IAR IVB101	W	IVB100-0-5
•	IAR IVB102	Х	IVB101-0-5
•	IAR IVB165	Y	IVB100-0-6
•	LZ 347	Z	IVB101-0-8
•	SWRI 17	a	IVB101-0-9
•	SWRI 18	b	IVB101-0-11
	SWRI 19	с	IVB101-0-17
•	SWRI 20	d	IVB101-0-18
Α	18-0-2	e	IVB101-0-19
В	19-0-31	f	IVB165-0-1
С	18-0-3	g	IVB165-0-7
D	20-0-21	h	TRNS9TF7C
E	19-0-32	i	TRNX713KB
F	20-0-24	j	TRNHRJKCD
G	19-0-33	k	TRNRCV08C
н	18-0-6	- I	TRNXN0P3C
1	20-0-26	m	TRNBHTJXB
J	20-0-27	n	TRNTZHLGB
K	20-0-28	0	TRNWVQKSC
L	20-0-29		IAR IVB100
M	17-0-4		IAR IVB101
N	17-0-6		IAR IVB102
0	IVB100-0-1		IAR IVB165
Ρ	IVB100-0-2		LZ 347
Q	IVB101-0-1	_	SWRI 17
R	IVB102-0-1		SWRI 18
S	IVB102-0-2	_	SWRI 19
Т	IVB100-0-3		SWRI 20
U	IVB102-0-3		

V IVB102-0-4

W IVB100-0-5

X IVB101-0-5

Y IVB100-0-6

Z IVB101-0-8

a IVB101-0-9

b IVB101-0-11

c IVB101-0-17

d IVB101-0-18

e IVB101-0-19

f IVB165-0-1

g IVB165-0-7

h TRNS9TF7C

î.

i

L

TRNX713KB

TRNHRJKCD

TRNXN0P3C

k TRNRCV08C

m TRNBHTJXB

n TRNTZHLGB

o TRNWVQKSC

— IAR IVB100

— IAR IVB101

— IAR IVB102 — IAR IVB165

— LZ 347

—— SWRI 19

a IVB101-0-9

b IVB101-0-11

c IVB101-0-17

d IVB101-0-18

e IVB101-0-19

TRNX713KB

TRNHRJKCD

k TRNRCV08C

I TRNXN0P3C

- SWRI 17

i.

i

f IVB165-0-1

Lab Stand V IVB102-0-4 IAR IVB100 IAR IVB101 W IVB100-0-5 • X IVB101-0-5 IAR IVB102 • IAR IVB165 Y IVB100-0-6 ٠ LZ 347 Z IVB101-0-8 SWRI 17 a IVB101-0-9 SWRI 18 b IVB101-0-11 ٠ SWRI 19 c IVB101-0-17 SWRI 20 d IVB101-0-18 A 18-0-2 e IVB101-0-19 f IVB165-0-1 В 19-0-31 С 18-0-3 g IVB165-0-7 D 20-0-21 h TRNS9TF7C 19-0-32 TRNX713KB Е i. 20-0-24 TRNHRJKCD F 19-0-33 k TRNRCV08C G H 18-0-6 TRNXN0P3C 1 1 20-0-26 m TRNBHTJXB n TRNTZHLGB J 20-0-27 20-0-28 o TRNWVQKSC ĸ — IAR IVB100 20-0-29 L M 17-0-4 — IAR IVB101 N 17-0-6 — IAR IVB102 — IAR IVB165 0 IVB100-0-1 LZ 347 Ρ IVB100-0-2 Q IVB101-0-1 – SWRI 17 R IVB102-0-1 S IVB102-0-2 —— SWRI 19 T IVB100-0-3 U IVB102-0-3

Operational Data Plots Uncontrolled Parameters

Barometric Pressure

123 © 2015 The Lubrizol Corporation, all rights reserved.

Lab Stand IAR IVB100 V IVB102-0-4 IAR IVB101 W IVB100-0-5 X IVB101-0-5 IAR IVB102 IAR IVB165 Y IVB100-0-6 LZ 347 Z IVB101-0-8 SWRI 17 a IVB101-0-9 SWRI 18 b IVB101-0-11 SWRI 19 c IVB101-0-17 SWRI 20 d IVB101-0-18 18-0-2 e IVB101-0-19 А В 19-0-31 f IVB165-0-1 C 18-0-3 g IVB165-0-7 D 20-0-21 h TRNS9TF7C TRNX713KB E 19-0-32 i. F 20-0-24 TRNHRJKCD G 19-0-33 k TRNRCV08C H 18-0-6 TRNXN0P3C 1 m TRNBHTJXB 1 20-0-26 J 20-0-27 n TRNTZHLGB K 20-0-28 o TRNWVQKSC L 20-0-29 — IAR IVB100 M 17-0-4 — IAR IVB101 — IAR IVB102 N 17-0-6 — IAR IVB165 O IVB100-0-1 P IVB100-0-2 — LZ 347 Q IVB101-0-1 — SWRI 17 R IVB102-0-1 —— SWRI 18 S IVB102-0-2 —— SWRI 19 T IVB100-0-3 — SWRI 20 U IVB102-0-3

V IVB102-0-4

W IVB100-0-5

X IVB101-0-5

Y IVB100-0-6

Z IVB101-0-8

a IVB101-0-9

b IVB101-0-11

c IVB101-0-17

d IVB101-0-18

e IVB101-0-19

f IVB165-0-1

g IVB165-0-7

h TRNS9TF7C

i TRNX713KB

k TRNRCV08C

m TRNBHTJXB

n TRNTZHLGB

o TRNWVQKSC

— IAR IVB100

— IAR IVB101 — IAR IVB102

— IAR IVB165

— LZ 347

—— SWRI 19

1

TRNHRJKCD

TRNXN0P3C

•	IAR IVB100	V	IVB102-0-4
•	IAR IVB101	W	IVB100-0-5
•	IAR IVB102	Х	IVB101-0-5
•	IAR IVB165	Y	IVB100-0-6
•	LZ 347	Z	IVB101-0-8
•	SWRI 17	a	IVB101-0-9
•	SWRI 18	b	IVB101-0-11
	SWRI 19	с	IVB101-0-17
٠	SWRI 20	d	IVB101-0-18
А	18-0-2	e	IVB101-0-19
В	19-0-31	f	IVB165-0-1
С	18-0-3	g	IVB165-0-7
D	20-0-21	h	TRNS9TF7C
Ε	19-0-32	i.	TRNX713KB
F	20-0-24	j	TRNHRJKCD
G	19-0-33	k	TRNRCV08C
н	18-0-6	1	TRNXN0P3C
I.	20-0-26	m	TRNBHTJXB
J	20-0-27	n	TRNTZHLGB
Κ	20-0-28	0	TRNWVQKSC
L	20-0-29		IAR IVB100
М	17-0-4		IAR IVB101
Ν	17-0-6		IAR IVB102
0	IVB100-0-1		IAR IVB165
Ρ	IVB100-0-2		LZ 347
Q	IVB101-0-1		SWRI 17
R	IVB102-0-1		SWRI 18
S	IVB102-0-2		SWRI 19
Т	IVB100-0-3		SWRI 20
U	IVB102-0-3		

Intake Manifold Pressure

 IAR IVB100 V IVB102-0-4 W IVB100-0-5 IAR IVB101 IAR IVB102 X IVB101-0-5 IAR IVB165 Y IVB100-0-6 LZ 347 Z IVB101-0-8 SWRI 17 a IVB101-0-9 b IVB101-0-11 SWRI 18 c IVB101-0-17 SWRI 19 SWRI 20 d IVB101-0-18 A 18-0-2 e IVB101-0-19 B 19-0-31 f IVB165-0-1 C 18-0-3 g IVB165-0-7 D 20-0-21 h TRNS9TF7C 19-0-32 i TRNX713KB 20-0-24 i. TRNHRJKCD G 19-0-33 k TRNRCV08C H 18-0-6 I TRNXN0P3C 20-0-26 m TRNBHTJXB J 20-0-27 n TRNTZHLGB o TRNWVQKSC K 20-0-28 L 20-0-29 — IAR IVB100 M 17-0-4 —— IAR IVB101 — IAR IVB102 N 17-0-6 O IVB100-0-1 — IAR IVB165 P IVB100-0-2 -LZ 347 —— SWRI 17 Q IVB101-0-1 — SWRI 18 R IVB102-0-1 S IVB102-0-2 —— SWRI 19 T IVB100-0-3 U IVB102-0-3

 IAR IVB100 V IVB102-0-4 IAR IVB101 W IVB100-0-5 IAR IVB102 X IVB101-0-5 IAR IVB165 Y IVB100-0-6 LZ 347 Z IVB101-0-8 SWRI 17 a IVB101-0-9 SWRI 18 b IVB101-0-11 SWRI 19 c IVB101-0-17 SWRI 20 d IVB101-0-18 A 18-0-2 e IVB101-0-19 f IVB165-0-1 19-0-31 18-0-3 a IVB165-0-7 D 20-0-21 h TRNS9TF7C E 19-0-32 i TRNX713KB F 20-0-24 TRNHRJKCD i. G 19-0-33 k TRNRCV08C H 18-0-6 I TRNXN0P3C 1 20-0-26 m TRNBHTJXB J 20-0-27 n TRNTZHLGB K 20-0-28 o TRNWVQKSC 20-0-29 — IAR IVB100 M 17-0-4 ----- IAR IVB101 — IAR IVB102 N 17-0-6 O IVB100-0-1 —— IAR IVB165 -LZ 347 P IVB100-0-2 Q IVB101-0-1 R IVB102-0-1 —— SWRI 18 S IVB102-0-2 T IVB100-0-3 —— SWRI 20 U IVB102-0-3

Working together, achieving great things

When your company and ours combine energies, great things can happen. You bring ideas, challenges and opportunities. We'll bring powerful additive and market expertise, unmatched testing capabilities, integrated global supply and an independent approach to help you differentiate and succeed.

