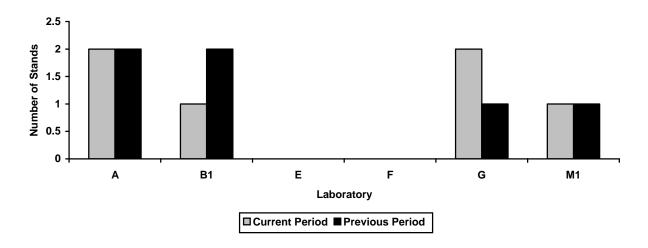
Memorandum: 06-016

Date: April 12, 2006

To: William M. Nahumck, Chairman, Sequence IIIF Surveillance Panel

From: Richard E. Grundza

Subject: Sequence IIIF Semiannual Report: October 1, 2005 through March 31, 2006

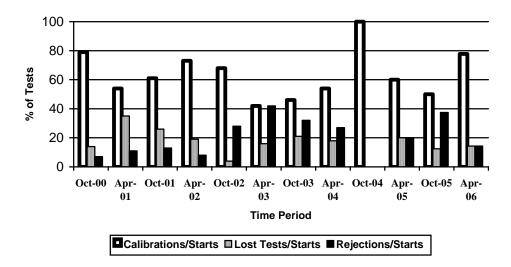

The following is a summary of Sequence IIIF reference tests that were reported to the Test Monitoring Center during the period October 1, 2005 through March 31, 2006.

Lab/Stand Distribution

	Reporting Data	Calibrated as of March 31, 2006
Number of Laboratories:	4	3
Number of Test Stands:	6	5

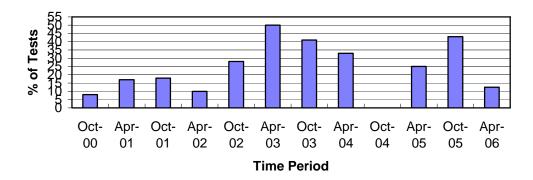
The following chart shows the laboratory/stand distribution:

Laboratory/Stand Distribution


The following summarizes the status of the reference oil tests reported to the TMC:

Calibration Start Outcomes	TMC Validity Codes	No. of Tests
Operationally and Statistically Acceptable	AC	7
Failed Acceptance Criteria	OC	1
Operationally Invalid (Laboratory Judgment)	LC	1
Total		9

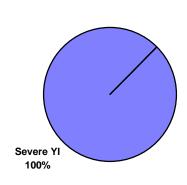
Donated & Industry Support Outcomes	TMC Validity Codes	No. of Tests
Decoded Oil	OG	0
Total		0

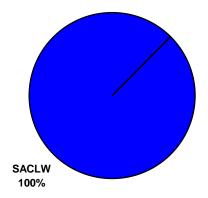

Calibrations per start, lost tests per start and rejection rates are summarized below:

Calibration Attempt Summary

The calibration per start rate and lost test per start rates have increased, while the rejected test rate has decreased with respect to the previous period. All rates for the period compare well with historical rates.

Rejected Test Rate for Operationally Valid Tests



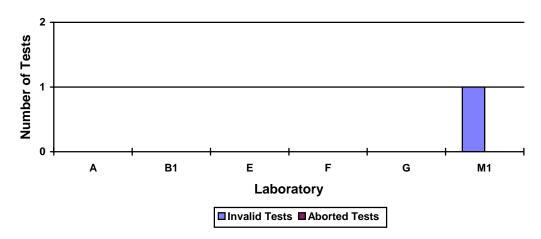

The rate of rejection of operationally valid tests has decreased from last period.

One test failed acceptance criteria this period. The following charts summarize the reasons and breakdown by parameter for the failed test:

Distribution of LTMS Stand Alarms

Distribution of Stand Alarms by Parameter

There were no LTMS Deviations written this period. There have been four deviations from the LTMS since its introduction in June of 2000.


No Sequence IIIF lab visits were performed this period.

Lost Test Summary

One test was lost this period. The reason for the lost test is shown in the following table:

Lab	Reason for Lost Test	Number of Tests	Breakdown of Tests (LC/RC/XC/MC)
M1	Load Cell Calibration Error	1	1/0/0/0

Information Letters

Sequence IIIF Information Letter No. 05-3 Sequence No. 19, was issued during the period on November 29, 2005, and contained: Revisions to requirements for attendance to rater workshops and allows the use of torque wrench ETW-E180.

Severity and Precision Analysis

Below is a summary of the average Δ /s, pooled standard deviation, and average Δ in reported units for the tests reported during this period. Also below is a summary of the average Δ /s value, by parameter, for all laboratories reporting data during this period.

	Industry Severity Summary					
Parameter	Average Δ/s	Pooled standard deviation (degrees of freedom)	Average Δ , in reported units			
PVIS	0.701	0.016 (df=7)	79.5% Viscosity Increase ¹			
APV	0.095	0.22 (df=7)	0.02 Merits			
WPD	0.883	0.22 (df=7)	0.19 Merits			
PV60 ²	-1.084	0.17 (df=7)	-49.6% Viscosity Increase ³			

¹ At the GF-3 Pass Limit of 275% Viscosity Increase

² Not a pass/fail parameter in the Sequence IIIF test; Sequence IIIFHD use only

³ At the CH-4 Pass Limit of 295% Viscosity Increase @ 60 Hours; Sequence IIIFHD use only.

Average Δ/s Results, by Laboratory				
Laboratory	PVIS	APV	WPD	PV60
A	-0.53	-0.86	0.51	0.13
B1	1.05	0.72	0.75	-1.61
Е	-	-	-	-
F	-	-	-	-
G	1.15	-0.45	0.77	-0.81
M1	1.13	0.97	1.50	-2.05

Percent Viscosity Increase (PVIS)

The industry severity and precision were in control for the period (see Figure 1). Industry performance was mild for the period, with an average Δ /s value of 0.701 for the period (see Figures 1 & 5), which equates to a shift of 79.5 % in reported units. Precision for the period has degraded with respect to the previous period (see Figure 9).

Weighted Piston Deposits (WPD)

The industry began the period within limits for severity, but ended the period with four warning alarms (see Figure 2). Industry began the period with two precision warning alarms, but came back in control for the remainder. Industry was mild for the period with an average Δ /s value of 0.883, or 0.19 merits (see Figure 6). Precision for the period has improved when compared with the previous period with a pooled standard deviation of 0.22 (see Figure 10).

Average Piston Skirt Varnish (APV)

Industry severity was in control for the period. With the exception of a warning alarm at the beginning of the period, precision was in control for the period. (see Figure 3). The industry was on or near target 0.02 merits mild for the period with an average Δ /s value of 0.095 (see Figure 7). Precision has improved with respect to the previous period with a standard deviation of 0.22 (see Figure 11).

Average Camshaft-plus-Lifter Wear (ACLW)/Screened Average Camshaft-plus-Lifter Wear (SACLW)

One test failed during the period on SACLW in the severe direction

Percent Viscosity Increase at 60 Hours

The industry control chart for PV60 is shown in Figure 4. The average Δ /s and pooled standard deviation for this period, and previous report periods, are shown in Figures 8 and 12 respectively. This parameter is not a pass-fail parameter in the Sequence IIIF test and is used only in Sequence IIIFHD testing. Therefore, the industry control charts are presented for information purposes only and any alarms shown on those charts do not require action by the Sequence IIIF Surveillance Panel. A review of Figure 4 shows that the industry trended mild for the period, in severity warning or action alarm the entire period.

QI Deviations

There were no QI Deviations written this period. There have been a total of 25 QI Deviations written since the test was introduced in June of 2000.

Hardware

No significant hardware change occurred this report period

Reference Oils

Oil	TMC Inventory,	TMC Inventory,	Laboratory	Estimated life
	in gallons	in tests (4 gal/test)	Inventory, in tests	
1006	43	10	10	Not currently used in IIIF ¹
1006-2	4,681	1170	5	~3+ years ¹
1007	474	118	9	Not currently used in IIIF ²
1008	29	7	8	No longer shipped ¹
1008-1	1,445	361	3	~3+ years ¹
1009	834	208	11	Not currently used in IIIF ¹
432	118	29	10	Not currently used in IIIF
433	10	2	2	No longer shipped
433-1	467	141	6	~3+ years

¹ Multiple test area reference oil; total TMC inventory shown ² Not reblendable

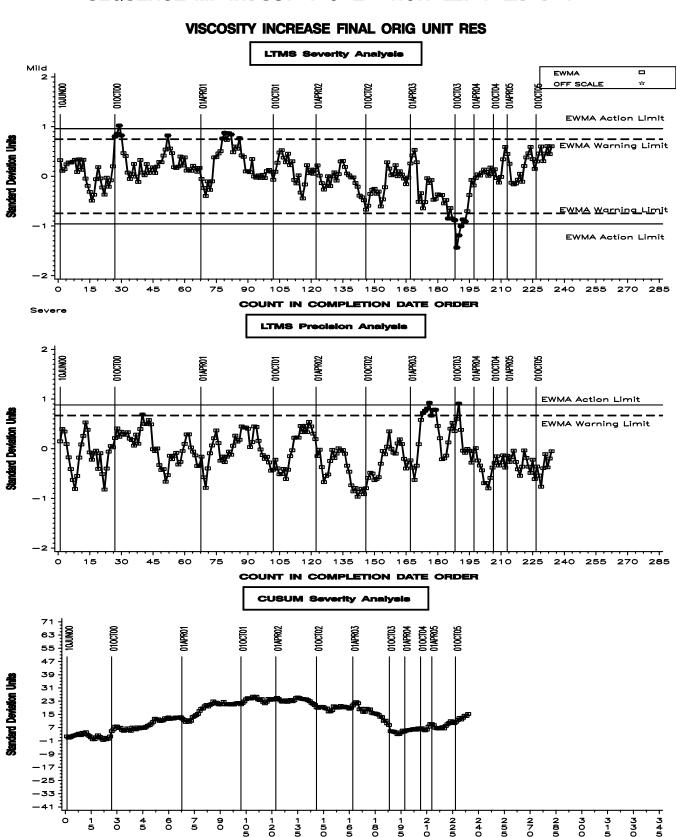
Introduction of the GF-3 Category Oil, Reference Oil 1009, has been tabled indefinitely.

REG/reg

Attachments

c: F. M. Farber, TMC

Sequence IIIF Surveillance Panel


ftp://ftp.astmtmc.cmu.edu/docs/gas/sequenceiii/semiannualreports/IIIF-04-2006.pdf

Distribution: Electronic Mail

List of Figures

- Figures 1, 2, 3, and 4 are EWMA severity and precision control charts and also the CUSUM Δ/s plots of PVIS, WPD, APV, and PV60, annotated with date lines, using the same data set as the EWMA severity and precision control charts. Transformed units are used, when appropriate.
- Figures 5, 6, 7, and 8 are bar charts of average Δ /s, by report period, for PVIS, WPD, APV, and PV60.
- Figures 9, 10, 11, and 12 are bar charts of pooled standard deviation, by report period, for PVIS, WPD, APV, and PV60.
- Figure 13 is the Sequence IIIF Timeline.

Figure 1

COUNT IN COMPLETION DATE ORDER

TMC 05APR06:15:08

Figure 2

AVERAGE WEIGHTED PISTON DEPOSITS FNL ORIG UNIT RES

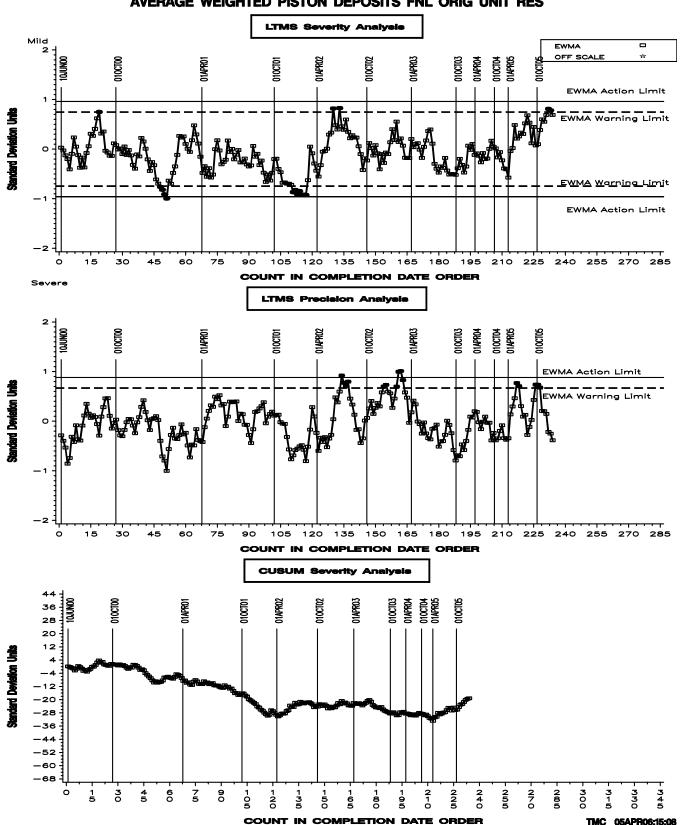


Figure 3

AVERAGE PISTON SKIRT VARNISH FINAL ORIG UNIT RES LTMS Severity Analysis

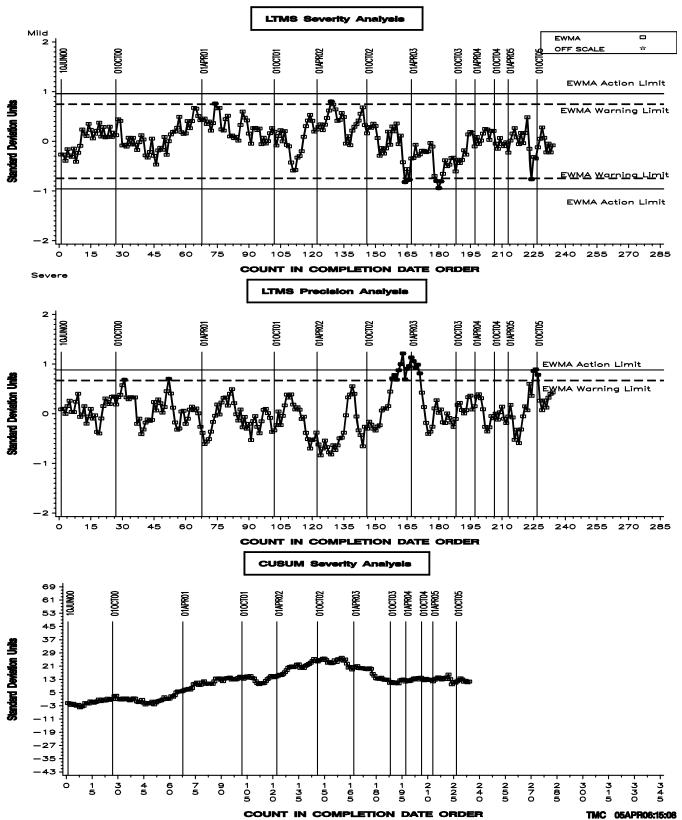
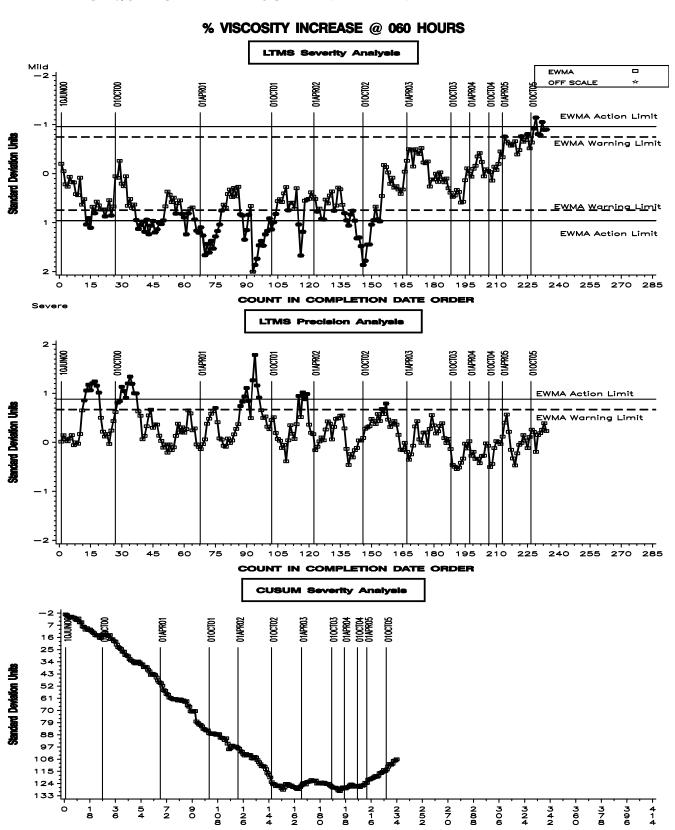
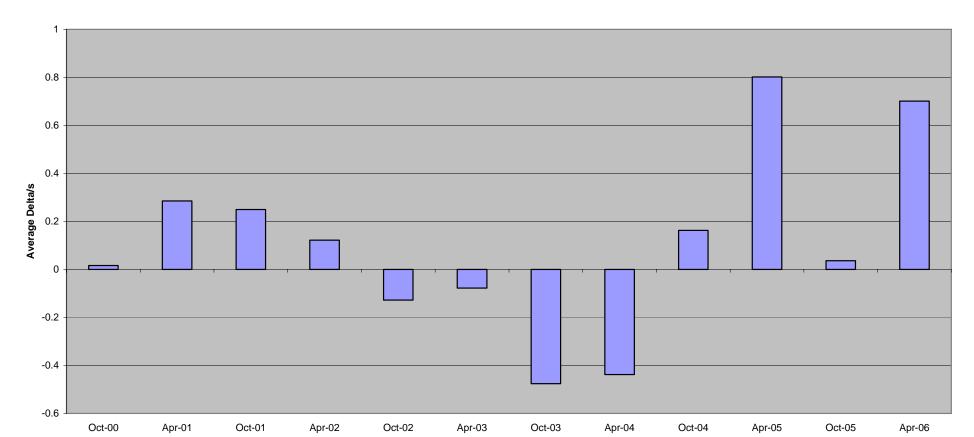
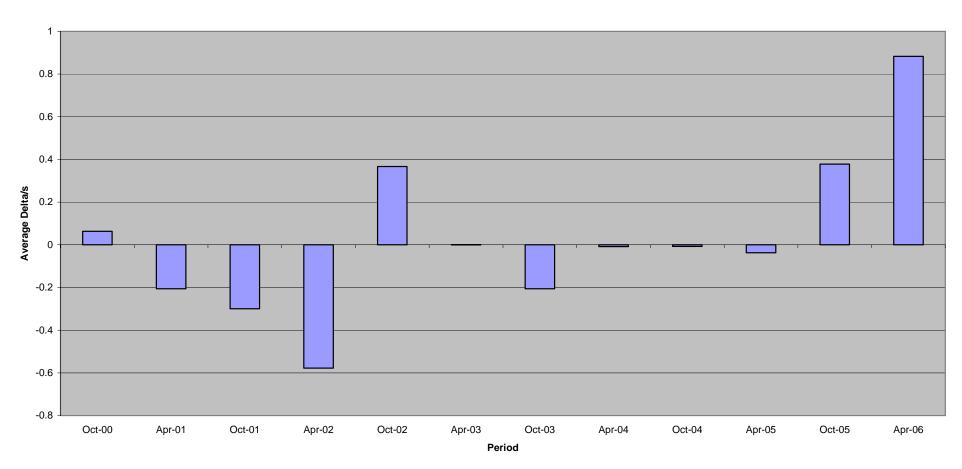




Figure 4

COUNT IN COMPLETION DATE ORDER


TMC 12APR06:09:40

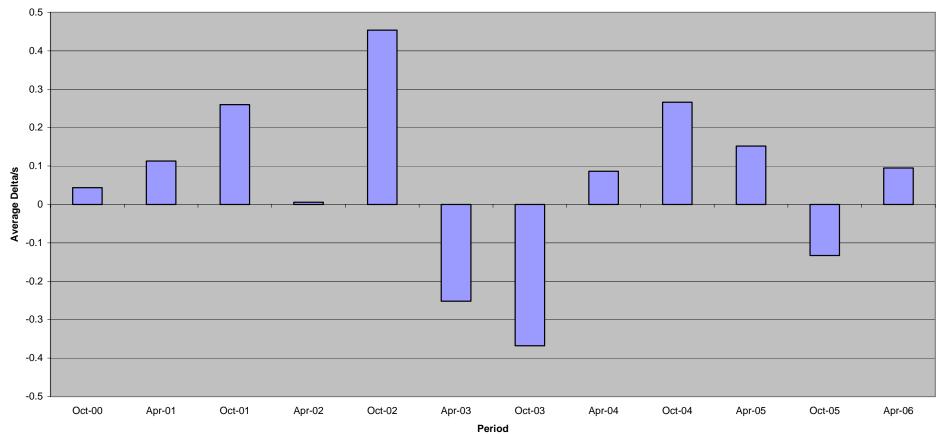
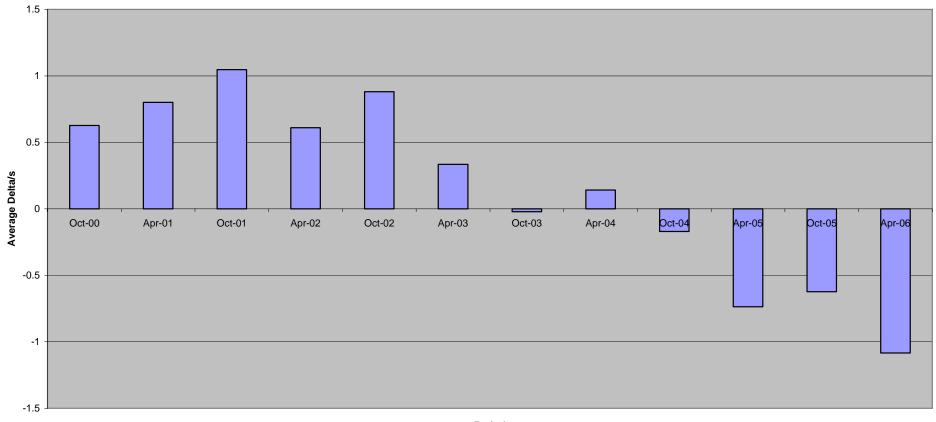
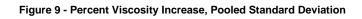
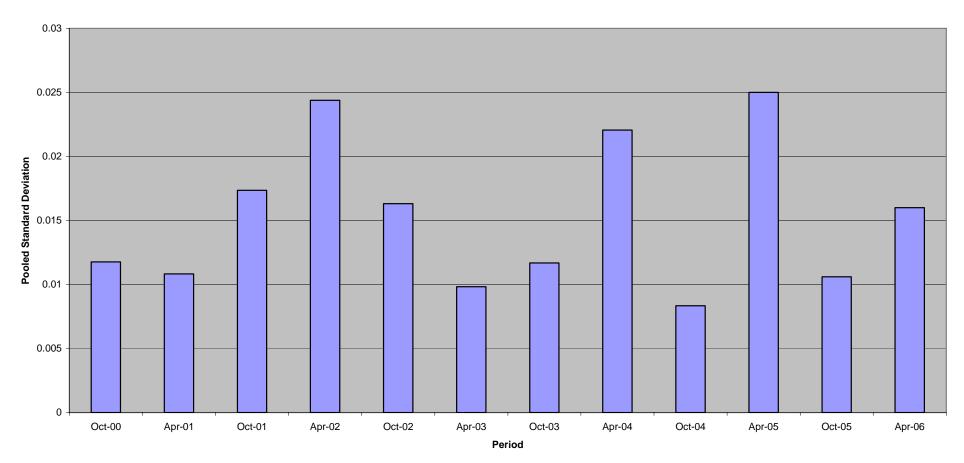
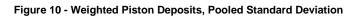
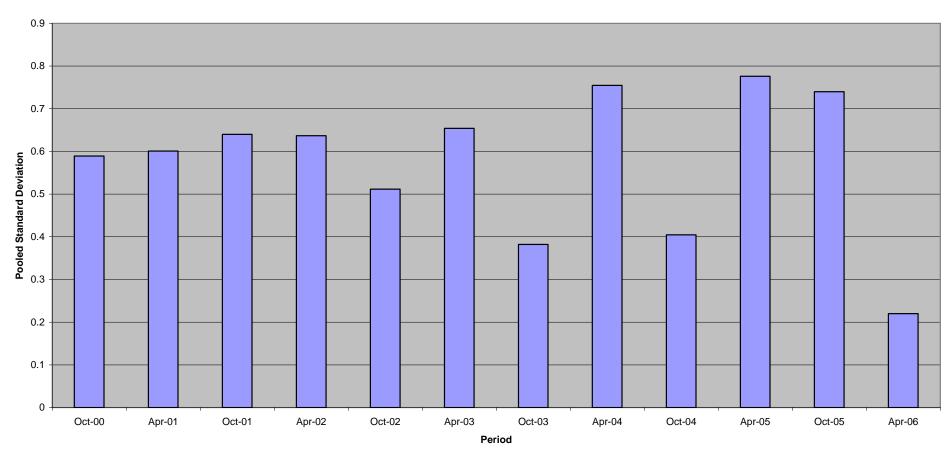

Period

Figure 5 - Percent Viscosity Increase, Average Delta/s


Figure 8 - Percent Viscosity Increase @ 60 Hours (Sequence IIIFHD), Average Delta/s

Period

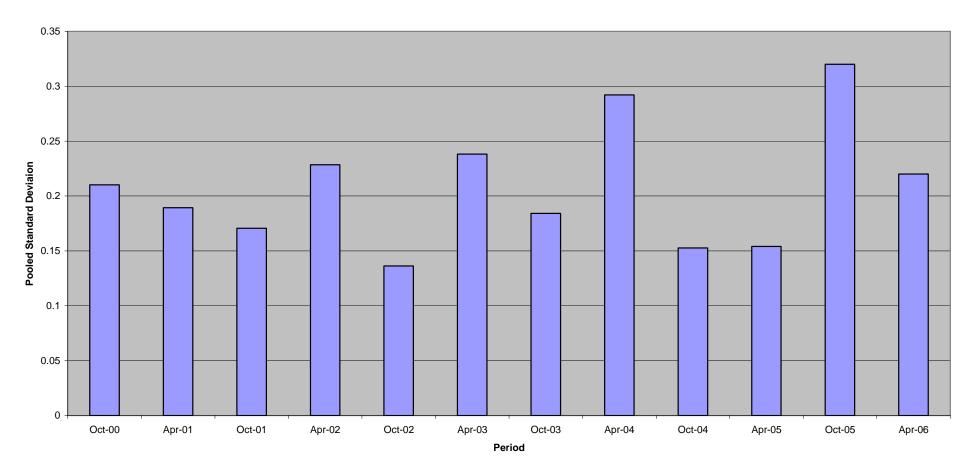
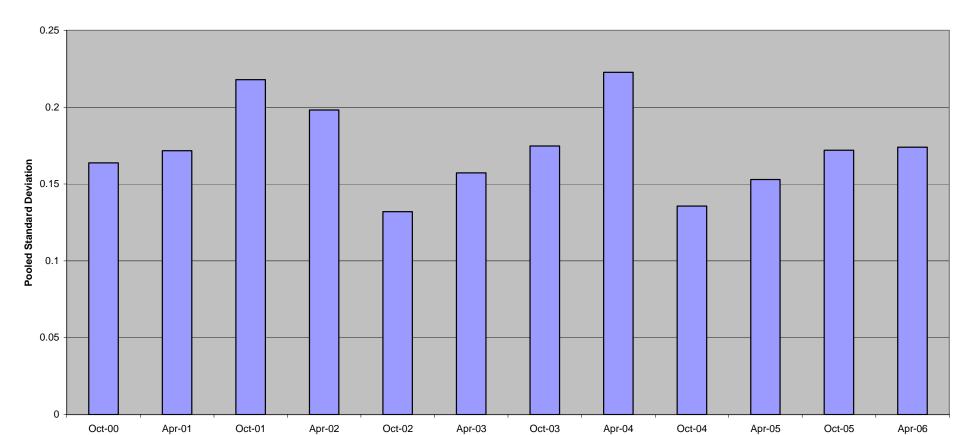



Figure 11 - Average Piston Skirt Varnish, Pooled Standard Deviation

Period

Figure 12 - Percent Viscosity Increase @ 60 Hours (Sequence IIIFHD), Pooled Standard Deviation

Figure 13 – Sequence IIIF Timeline

		Information
Date	Topic	Letter
6/10/2000		00-2
7/25/2000	·	00-2
8/28/2000	First occurence of LC camshafts in LTMS data	
9/8/2000	·	00-1
9/27/2000	MRV & CCS Testing of used oil samples added	00-2
9/27/2000	Valve train assembly using build up oil implemented	00-2
10/4/2000	New QI U&L Values implemented	00-2
10/8/2000	First occurence of Valve train assembly using build up oil in LTMS	00-2
12/6/2000	Oil Consumption as a test interpretability criteria added	00-3
4/25/2001	First occurence of MB camshafts in LTMS data	
5/23/2001	Condenser Flow QI requirements dropped	01-1
5/23/2001	New oil addition at EOT dropped	01-1
5/23/2001	Condenser part number corrected	01-1
5/23/2001	Revised dipstick calibration curve implemented	01-1
5/23/2001	Revised MRV & CCS test procedures	01-1
5/23/2001	Upper limit of 8000cSt for viscosity measurements established	01-1
	Reexamination of Engine Speed and Condenser Coolant Out Temperature QI U&L values	
5/23/2001	performed; no changes made	01-1
	Screened Average Cam-plus-lifter Wear (SACLW) replaces Average Cam-plus-lifter Wear	
9/8/2001	(ACLW) as pass/fail parameter	01-2
9/8/2001	Valve train assembly using test oil reintroduced into IIIF test	01-2
9/12/2001	First occurence of engine builds using test oil for valvetrain lubrication in LTMS	
11/28/2001	Sequence IIIF-HD Test Procedure Published	01-3
3/1/2002	Revised Sequence IIIF Test Procedure Published	02-1
	Sequence IIIFHD Test Procedure added to Revised Sequence IIIF Test Procedure. Editorial	
3/15/2002	changes to IIIF Test Procedure also made and do	02-2
4/23/2002	Oil Filter and Oil Cooler Replacement Guidelines issued	02-3
	External Oil Bypass Valve System & Modified Oil Filter Adapter	02-4
	New Honing Procedure approved and added to Assembly Manual	
	New Oil Filter	03-1
	New Front Cover and Oil Filter Housing	03-1
	Sequence IIIG Dipstick	03-1
	Calibrated Flask for Initial Oil Charge	03-1
	New Solvent Specifications	03-1
	Revised Fuel Pressure Specification	03-3
	Automatic Parts Washing Machine Maintenance Requirement	03-3
	Main Bearing Bore Mandrel Procedure made optional	03-3
	Piston Ring Cleaning Requirements	03-3
	Additional Allowable RTV Sealing Compounds	03-3
	Main Bearing Cap Bolt Replacement Specification	03-3
	Revised Camshaft Measurement Procedure	03-3
	Revised Camshaft Lubrication & Installation Procedure	03-3
	Revised Oil Consumption Reporting Procedure	03-3
	Fluid Conditioning Module Equipment Specifications	03-3
	Revised Camshaft Measurement Equipment Specifications	03-3
	Rating Workshop Attendance Requirement	03-3
	Revised Intake Manifold Gasket	04-1
	Additional Allowable Sealing Materials	04-1
	Undercrown Rating Area Definition Clarification	04-1
	Flow Meter Specifications	04-2
	MRV Reporting	04-2
	Amount of Test Oil used for Camshaft & Lifter Lubrication	04-2 04-2
	Torque Specs for Powered Metal Rods Editorial Changes to Province Statements	04-3
11/4/2004	Editorial Changes to Precision Statements	04-3

Memo 06-016 Page 21

11/4/2004	New Front and Rear Main Seals	04-3
11/4/2004	New Exhaust Valves	04-3
11/4/2004	New Oil Pan Gasket	04-3
1/7/2005	Updated Precision Statements	05-1
1/7/2005	Engine Build Worksheets	05-1
1/7/2005	Clarification of Solvent Specifications	05-1
1/7/2005	Provisions for Adjustment to Calibration Period for Donated Oil Test Programs	05-1
8/10/2005	Corrections to Table A7.1	05-2
12/16/2006	Revised Rating Workshop Attendance Requirements	05-3
12/16/2006	Acceptance of Torque Wrench ETW-E180	05-3