Special Sequence III Surveillance Special Panel Meeting For Review of Data and Consideration of an "Out of Control" vote. Teleconference

January 25, 2017 09:00 - 11:00 CST

Agenda

Concern has been voiced about the Chevron corporate WebEx disclaimer shown below in black which says that the WedEx system allows recording of the proceedings:

NOTICE TO ALL ATTENDEES REGARDING THE POTENTIAL RECORDING OF THIS CONFERENCE SESSION: CHEVRON'S WEBEX CONFERENCING SOLUTION ALLOWS MEETING HOSTS AND OTHER AUTHORIZED USERS TO RECORD CONFERENCE SESSIONS. PART OR ALL OF THIS CONFERENCE SESSION MAY BE RECORDED BY THE HOST AND/OR OTHER AUTHORIZED PERSONS, AND YOUR PARTICIPATION IN THIS CONFERENCE SHALL CONSTITUTE YOUR CONSENT TO THE RECORDING OF THIS CONFERENCE SESSION. IF YOU HAVE QUESTIONS OR CONCERNS ABOUT THE POTENTIAL RECORDING OF THIS CONFERENCE SESSION, PLEASE CONTACT THE MEETING HOST PRIOR TO JOINING THE CONFERENCE.

As the host, I have not in the past and will not in the future record any ASTM meeting and there are no "authorized persons" that may record an ASTM meeting. As a reminder to everyone the recording of ASTM meetings is prohibited.

1.0) <u>Attendance</u>

The attendance is shown in Attachment 1. Jorge Agudelo has replaced Sydelle Elshenawy as the BP representative.

2.0) Chairman Comments

The primary purpose of today's meeting is a continuation of an out-of-control discussion initiated during the January 11, 2017 meeting; to review the relevant presentations and formally address the Out of Control vote per the guidelines shown in Attachment 2.

3.0) Approval of minutes

3.1) Minutes from 01/18/2017 WebEx Conference The minutes were approved without objection.

4.0) Data Review –followed by a "test out of control vote"

4.1) IAR BC3 Experiment. Schweitzer.

Addison Schweitzer presented IAR's experiment, Attachment 3.

4.2) SwRI BC2 BC3 blowby experiment. Chaudhry.

Ankit Chaudry presented SwRI's experiment, Attachment 4.

4.3) Batch 3 piston data analysis. Martinez.

Jo Martinez presented her analysis, Attachment 5.

4.4) Lubrizol presentation. Szappanos.

George Szappanos shared Lubrizol's analysis, Attachment 6.

4.4) Infineum presentation. Ritchie.

Andy Ritchie shared Infineum's analysis, Attachment 7.

4.5) Out-of-Control Discussion

Following the review of presentations, a long discussion ensued regarding possible paths forward. Near the conclusion of the discussion, the following motion was made:

Motion:	The Seq. III Surveillance Panel recommend to the Passenger Car Class Panel
	that the IIIH test be declared out of control (Matasic, Altman).
Tally:	8 affirmative, 6 negative, 5 abstentions
Result:	The motion failed to carry the required 75% needed.

Discussion resumed focusing on the future actions of the hardware task force being led by Jason Bowden. That group is expected to meet next week and will report back to the surveillance panel in the near future.

5.0) Old Business

Update on pistons and the new task force. **Bowden** The task force is expected to meet next week.

8.0) <u>Next Meeting</u>

Two to three weeks depending on available information from the task force.

9.0) Meeting Adjourned

The meeting adjourned at 11:30 a.m CST.

ATTACHMENT 1

ASTM Sequence III Surveillance Panel (23 Voting members)

date:

Name/Address				uale.	
Name/Address			Phone/Fax/Email		Signature
🥧 Jorge Agudelo 🛛 7	san	r	jorge.agudelo@bp.com	Voting Member	Present_V
🚬 Ed Altman	Y		ed.altman@aftonchemical.com	Voting Member	Present_
- Jeff Betz NV per	H	ais	jeff.betz@fcagroup.com	Voting Member	Present
_ Jason Bowden	in	e	jhbowden@ohtech.com	Voting Member	Present
Timothy L. Caudill	> 2	2	ticaudilit@ashland.com	Voting Member	Present
Richard Grundza	7		reg@astmtmc.cmu.edu	Voting Member	Present
Jeff Hsu, PE	N		j.hsu@shell.com	Voting Member	PresentKARI~
Teri Kowalski	N		teri.kowalski@tema.toyota.com	Voting Member	Present_
- Dan Lanctot W/	in		dlanctot@tei-net.com	Voting Member	Present
Service Patrick Lang	Y		<u>plang@swri.org</u>	Voting Member	Present_/
- Dave Passmore (//	1-la	i.	dpassmore@imtsind.com	Voting Member	Present_/
- Prasad Tumati	Ja	n	ptumati@haltermann.com	Voting Member	Present
Michael Raney			michael.p.raney@gm.com	Voting Member	Present
- Andrew Ritchie	Y		andrew.ritchie@infineum.com	Voting Member	Present
- Ron Romano	N		rromano@ford.com	Voting Member	Present
Cliff Salvesen	Y.		clifford.r.salvesen@exxonmobil.com	Voting Member	Present
🎖 — Addison Schweitzer	4		addison.schweitzer@intertek.com	Voting Member	Present_
Greg Shank			greg.shank@volvo.com	Voting Member	Present
Kaustav Sinha, Ph.D.	N		LFNQ@chevron.com	Voting Member	Present
Thomas Smith	Y		trsmith@ashland.com	Voting Member	Present
- Scott Stap 🧯			scott.stap@tgidirect.com	Voting Member	Present_
— George Szappanos	Y		george.szappanos@lubrizol.com	Voting Member	Present
🕻 — Haiying Tang	N		HT146@chrysler.com	Voting Member	Present
			YN	11	Wains
	ner				C
	12		8 - 0		\sim
	Ce		L.	Austa	
	D		motion	ymis	
Page 1 of 4	5t		motion meeting z	water	1/25/17

ASTM Sequence III Surveillance Panel (23 Voting members)

date:

	(Lo voting members)		date:
Name/Address	Phone/Fax/Email	Sig	nature
Ricardo Affinito	affinito@chevron.com	N-V Member	Present
Art Andrews	arthur.t.andrews@exxonmobil.com	N-V Member	Present
Robert Bacchi	robert.bacchi@basf.com	N-V Member	Present
Terry Bates	batesterryw@aol.com	N-V Member	Present
Doyle Boese	doyle.boese@infineum.com	N-V Member	Present_
Adam Bowden	adbowden@ohtech.com	N-V Member	Present
Dwight H. Bowden	dhbowden@ohtech.com	N-V Member	Present
Matt Bowden	mjbowden@ohtech.com	N-V Member	Present
Jerome A. Brys	jerome.brys@lubrizol.com	N-V Member	Present
Jessica Buchanan	jessica.buchanan@lubrizol.com	N-V Member	Present
Bill Buscher III	william.buscher@intertek.com	N-V Member	Present
Bob Campbell	bob.campbell@aftonchemical.com	N-V Member	Present
Jim Carter	jcarter@gageproducts.com	N-V Member	Present
Chris Castanien	chris.castanien@nesteoil.com	N-V Member	Present
Martin Chadwick	martin.chadwick@intertek.com	N-V Member	Present
Ankit Chaudhry	ankit.chaudhry@swri.org	N-V Member	Present_
Jeff Clark	jac@astmtmc.cmu.edu	N-V Member	Present
Sid Clark	sidney.clark@swri.org	N-V Member	Present_/
Tim Cushing	VALVILIN C timothy.cushing@gm.com	N-V Member	Present
Phil Davies	daviesjp@bp.com	N-V Member	Present
Todd Dvorak	todd.dvorak@aftonchemical.com	N-V Member	Present_/
Frank Farber	fmf@astmtmc.cmu.edu	N-V Member	Present
Joe Franklin	joe.franklin@intertek.com	N-V Member	Present
Gordon Farnsworth	gordon.farnsworth@infineum.com	N-V Member	Present_/
David L. Glaenzer	dave.glaenzer@aftonchemical.com	N-V Member	Present
Rolfe Hartley	rolfehartley@gmail.com	N-V Member	Present
Karin E. Haumann	karin.haumann@shell.com	N-V Member	Present
Martin Heimrich	martin.heimrich@swri.org	N-V Member	Present

Page 2 of 4

ASTM Sequence III Surveillance Panel (23 Voting members)

date:

	G	date.	
Name/Address	Phone/Fax/Email	Signature	
Jason Holmes	jason.holmes@basf.com	N-V Member	Present
Travis Kostan	travis.kostan@swri.org	N-V Member	Present
Walter Lerche	walt.lerche@gm.com	N-V Member	Present
Charlie Leverett	charlie.leverett@yahoo.com	N-V Member	Present
Jim Linden	lindenjim@jlindenconsulting.com	N-V Member	Present
Scott Lindholm	scott.lindholm@shell.com	N-V Member	Present
Michael Lochte	Michael.lochte@swri.org	N-V Member	Present
Jo Martinez	JoMartinez@chevron.com	N-V Member	Present
James Matasic	james.matasic@lubrizol.com	N-V Member	Present
Mike McMillan	mmcmillan123@comcast.net	N-V Member	Present
Bob Olree	<u>olree@netzero.net</u>	N-V Member	Present
Kevin O'Malley	kevin.omalley@lubrizol.com	N-V Member	Present
Dave Passmore	dpassmore@imtsind.com	N-V Member	Present
Christian Porter	christian.porter@aftonchemical.com	N-V Member	Present
Phil Rabbat	phil.rabbit@basf.com	N-V Member	Present
Scott Rajala	srajala@ilacorp.com	N-V Member	Present
Jim Rutherford	jaru@chevron.com	N-V Member	Present
Bob Salgueiro	bob.salgueiro@infineum.net	N-V Member	Present
Elisa Santos	elisa.santos@infineum.com	N-V Member	Present
Hirano Satoshi	satoshi hirano aa@mail.toyota.co.jp	N-V Member	Present
Amol Savant	acsavant@valvoline.com	N-V Member	Present
Philip R. Scinto	prs@lubrizol.com	N-V Member	Present
Don Smolenski	Donald.smolenski@evonik.com	N-V Member	Present_
Robert Stockwell	robert.stockwell@chevron.com	N-V Member	Present
Chris Taylor	chris.taylor@vpracingfuels.com	N-V Member	Present
Ben Weber	bweber1@sat.rr.com	N-V Member	Present
Angela Willis	angela.p.willis@gm.com	N-V Member	Present

.n3

ASTM Sequence III Surveillance Panel (23 Voting members)

	(23 Voting members)	(date:	
Name/Address	Phone/Fax/Email	Signa	iture	
Tom Wingfield	wingftm@cpchem.com	N-V Member	Present	

al Lopezy

to the

Rich Junt

Dave Dlaerza

(Cham & ame & Alabolia)

Lisa Dingwell V

ATTACHMENT 2

AUTHORITY TO SUSPEND INDUSTRY WIDE LABORATORY CALIBRATION STATUS WHEN A TEST IS JUDGED TO BE GIVING UNINTERPRETABLE PERFORMANCE

BACKGROUND

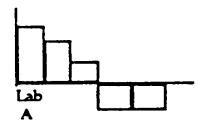
The Classification Panels request the authority to suspend industry wide laboratory calibration status when a test is judged to be out of control. This is needed to get immediate industry expertise solely focused on solving the test problem and prevent the continued approval of oils based on suspect data. To assure that any decision to temporarily suspend testing is justified, the following analysis process will be used and documented. This process also includes a method for determining when the test is back in control and calibrated testing can resume. This process was developed to address the concerns expressed during the earlier balloting of this subject.

FLOW PLAN

- <u>Step 1:</u> An action alarm at the industry level must trigger on the Exponentially Weighted Moving Average (EWMA) plots, for either precision or severity, using the ASTM Reference Monitoring System.
- <u>Step 2a:</u> The test surveillance panel must consider the scope and size of the problem:
 - Is the problem due to an identifiable cause?
 - Is it affecting precision and/or severity?
 - If the problem only affects severity, can a temporary correction be applied?
 - Is the problem reference oil specific?
 - Is it test lab or stand specific?
 - When did the problem start?
 - Are critical, non-critical, or both types of parameters involved?
 - Does the problem transcend test type?
 - What tools (statistical) were used to assess the problem?
 - Was the problem a gradual one or an abrupt one?
 - Does existing candidate oil experience support any reference oil trends?
 - Has the problem been defined clearly?
 - Has the available data been analyzed in a logical and methodical manner?

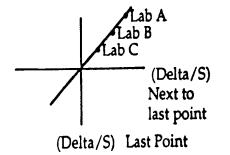
<u>Step 2b:</u> The following tools will be used, as a minimum, in the analysis of the problem:

- 1. All charts (lab, stand) should be made available for the Test Parameter which has gone out.
- 2. Mark on charts when Industry changed parts, fuel batches, etc.
- 3. Plot each lab's last EWMA for the affected parameter:

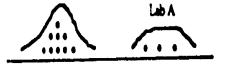

- 1. Time trends and changes, start of problem.
- 2. Special Cause.
- 3. Scope of Problem, Special Cause.

- 4. Provide a list of coded labs (or stands) which have had out of control signals on the Test Parameter within the last three months.
- 5. Plots of known problem parameters (e.g. sludge/wear).
 - Lab B (Delta/S) Wear

Lab A


(Delta/S) Sludge

- 4. Scope of Problem, Special Cause.
- 5. Problem discrimination.



- 6. EWMA charts with $\lambda = 0.1$ (detects small shifts)
- 6. Gradual vs. Step change.

- 7. Youden plot of labs' last two points:
- 7. Precision vs. Severity, Scope, Special cause.

- 8. Dot plot of all data in last three months.
- 8. Special Cause.

- <u>Step 3a:</u> The Surveillance Panel decision to recommend to the appropriate Classification Panel that a test to be declared out of control will require a ³/₄ approval vote of voting members (or their alternates) present at a special Surveillance Panel meeting held to review all data developed. All negative votes must be resolved (declared non-persuasive, persuasive, or non-germane). For purposes of determining persuasiveness of a negative, a 2/3 majority vote of members present (or their alternates) will be used. The final vote plus all persuasive arguments and an action plan with timetable will be forwarded to the appropriate Classification Panel.
- <u>Step 3b:</u> Within two weeks of such a Surveillance Panel decision, the appropriate Classification Panel will meet to determine if the test is out of control.

Step 3c:If the Classification Panel decides the test is out of control it may temporarily suspend
calibrated testing. A technical memorandum will be issued immediately by the TMC
(advising that calibration status for the appropriate test type cannot be technically
supported in all previously calibrated laboratories effective for each stand prior to the start
of the next test). This memorandum will be issued to all members of the Surveillance
Panel involved, all calibrated test labs, the appropriate classification panel, and all
members of Subcommittee B.

This memorandum will provide the background on the Surveillance Panel's decision, as well as a proposed action plan with timetable and milestones. A comment period will be extended for 30 days after the memorandum. Comments will go to the Subcommittee B Chairman who will determine if they are of sufficient quality to call a special session of B within 30 more days. TMC calibration status will continue to be suspended during this period unless the test has been declared back in control (see step 4a).

<u>Step 3d:</u> Any external communication (outside of ASTM Subcommittee B see notification list below) will be sent through the Chairman of Subcommittee B. All stake holders shown below are to be sent a letter by the Chairman of Subcommittee B notifying them of this action and stating that the performance category XX as stated in ASTM D4485 can no longer be measured until further notice. The reason that this performance can no longer be measured is that the calibration status of the uninterruptable test cannot be technically supported.

Organization	Position
	D02.B0 Chairman
	Test Monitoring System Executive Committee Chairman
	Test Monitoring Center Director
ASTM	PCEOCP Chairman
ASTM	HDEOCP Chairman
	D02.B0.01 Chairman
	D02.B0.02 Chairman
	Membership of Effected Surveillance Panel
ACC	Product Approval Protocol Task Group Manager
Acc	MAAG Chairman
API	EOLCS Manager
	EOLCS Chairman
Auto Alliance	
JAMA	
EMA	EMA Staff
AOAP	Chairman
DEOAP	Chairman
ACC-MA	Manager

Notification List

Notification

From the TMC website (<u>http://www.astmtmc.cmu.edu/TestStatusNotification.aspx</u>) a notification email can be generated with the current notification member emails. The Subcommittee B chairman will need to append a letter describing the situation using the current D02 letterhead (a link is on the TMC notification page) and a notification comment to the body of the email prior to sending.

<u>Step4d:</u> Determination that the test is back in control will be made by the Surveillance Panel or when the industry EWMA charts for precision and severity are back within the defined control limits whichever occurs first. At that point, an information memorandum will be immediately issued by TMC to the same distribution outlined in Step 3c. Any requirements, if necessary, to resume calibrated testing will be defined in this memorandum. ATTACHMENT 3

Valued Quality. Delivered.

IIIH Batch Code 3 Piston Experiments

Addison Schweitzer

Overview

- Two experimental IIIH tests were performed on TMC RO 438-1 at IAR on BC3 Pistons to gauge impact on test severity
- IIIH 182-3-42
 - Performed on BC3 pistons with a PCV valve without a camshaft seal to allow for improved blowby condensate drain back
- IIIH 182-4-43
 - Performed on BC3 pistons with modified piston ring gaps
 - Top Ring Gap = 0.020" (IIIH Spec 0.025" ± 0.001 ")
 - Second Ring Gap = 0.030" (IIIH Spec 0.035" ± 0.001")

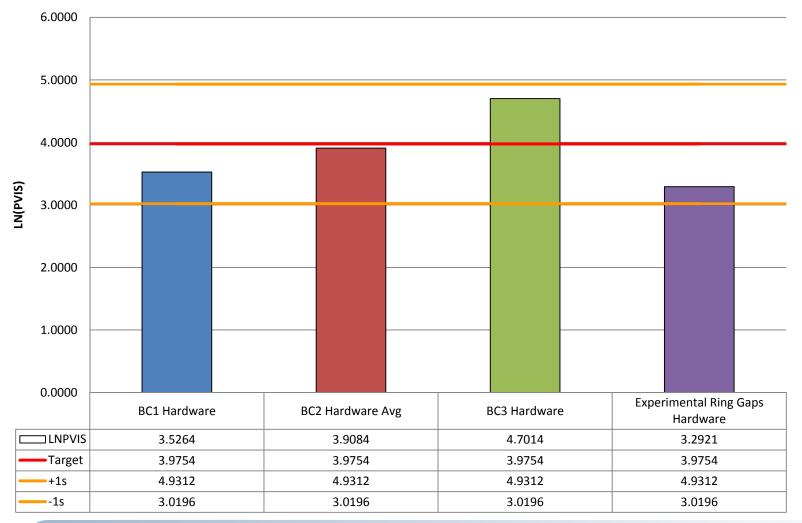
IIIH 182-3-42 Results (Modified PCV Valve)

- WPD = 3.36 (about 0.7 standard deviations severe)
 - APV = 9.57
 - Hot Stuck Rings = None
- PRET = 81.13 (about 1.5 standard deviations mild)
- MRV = 24,900 cP with no YS at -30° C (about 0.33 standard deviations severe)
- OC = 2.54 L (high oil consumption is a concern)
 - Initial Blowby = 79.5 LPM
 - AVG Blowby = 42.9 LPM
 - Both of these blowby values are higher than historic performance on previous hardware batches.

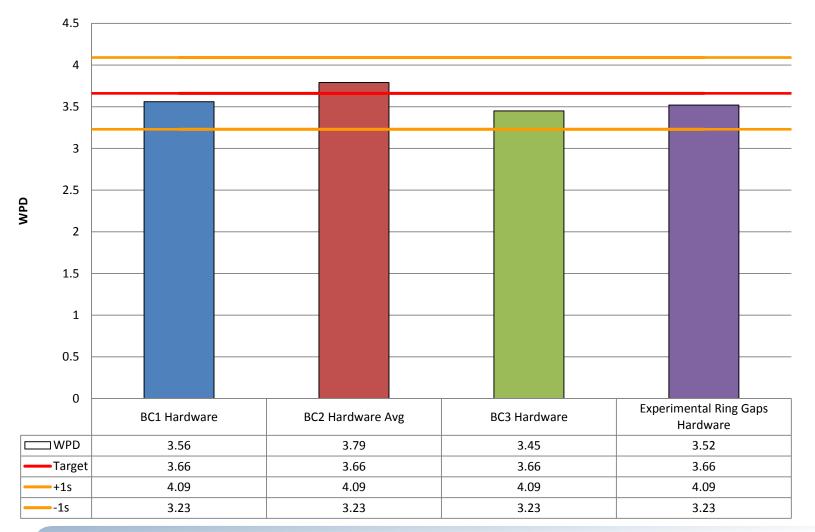
Intertek

Valued Quality. Delivered.

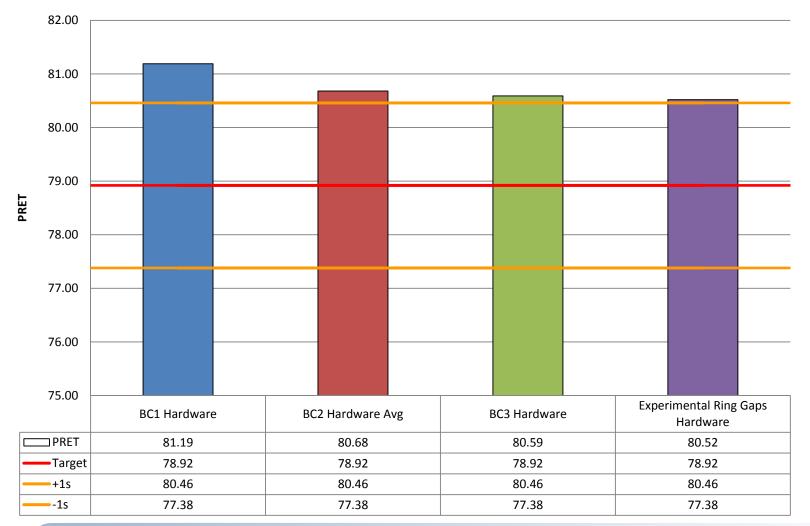
IIIH 182-4-43 Results (Modified Ring Gaps)



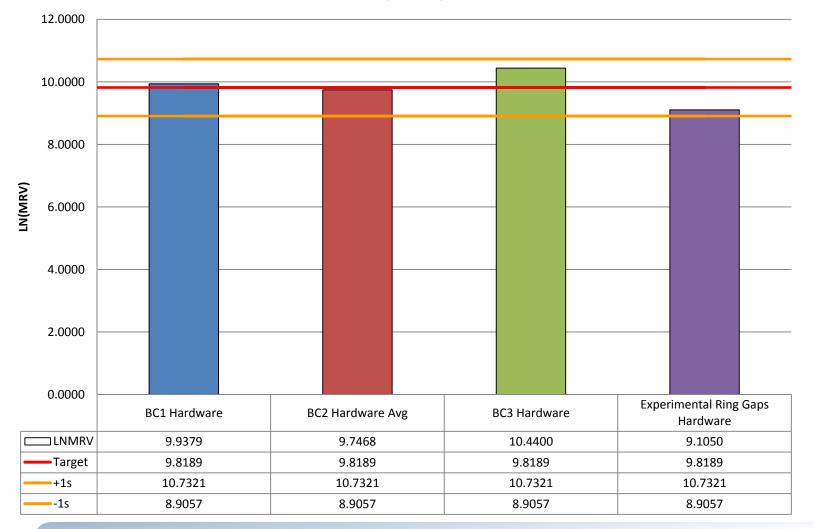
- PVIS = 26.9% (about 0.71 standard deviations mild)
- WPD = 3.52 (about 0.04 standard deviations severe)
 - APV = 9.73
 - Hot Stuck Rings = None
- PRET = 80.52 (about 1.04 standard deviations mild)
- MRV = 9,000 cP with no YS at -30° C (about 0.78 standard deviations mild)
- OC = 1.49 L
 - Initial Blowby = 56.9 LPM
 - AVG Blowby = 35.4 LPM
 - Both of these blowby values are in the range of historic performance on previous hardware batches on TMC RO 438-1

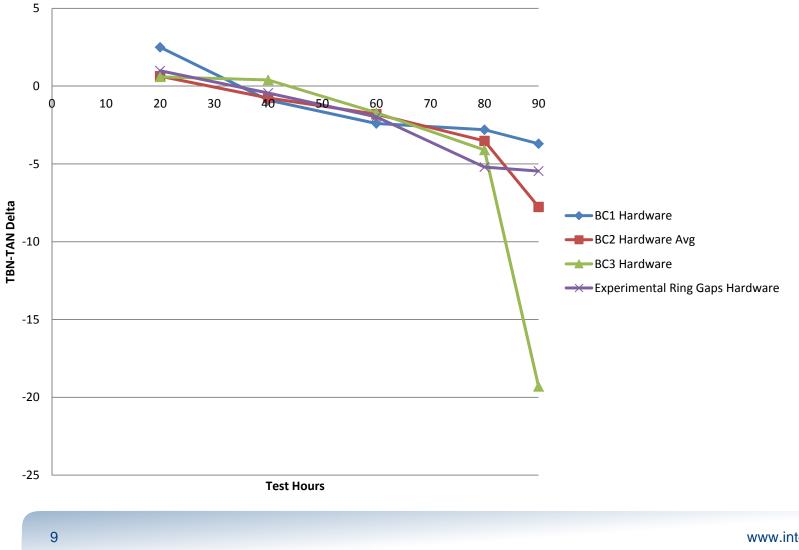

IIIH Batch Code Data Comparison LN(PVIS)

WPD


IIIH Batch Code Data Comparison WPD

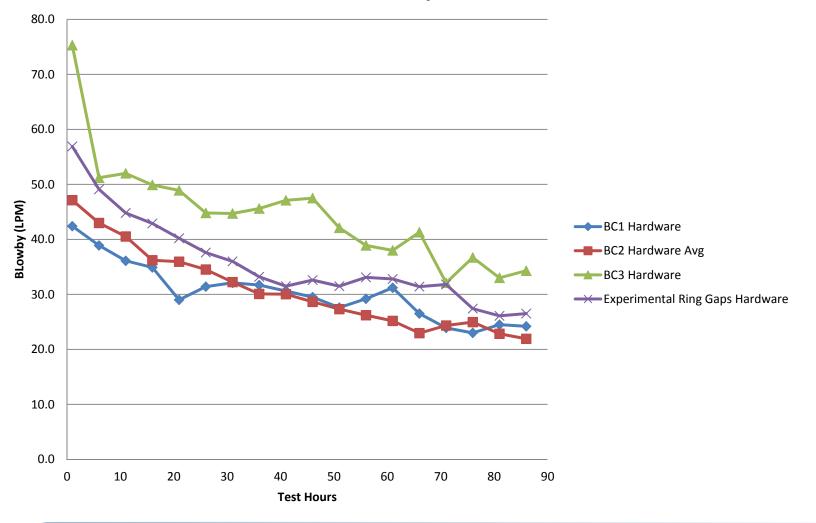
PRET


IIIH Batch Code Data Comparison PRET

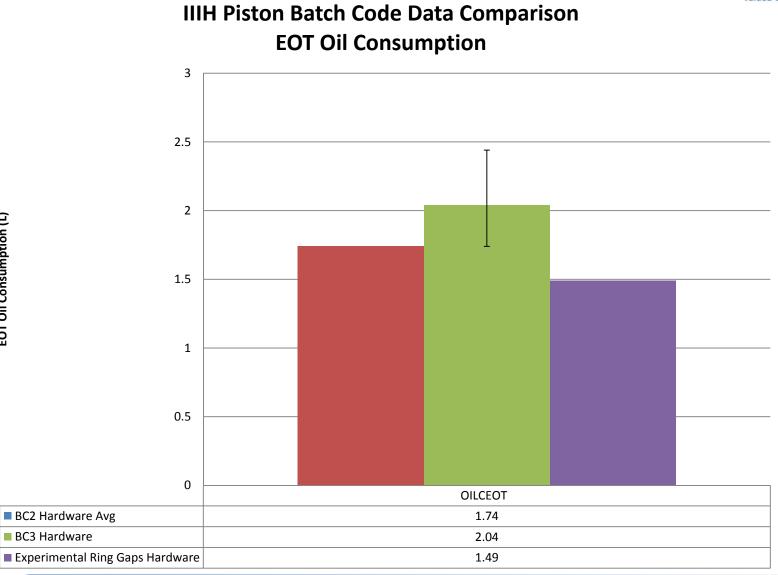

IIIH Batch Code Data Comparison LN(MRV)

TBN-TAN Delta

IIIH Piston Batch Code Comparison TBN-TAN Delta



Blowby



IIIH Piston Batch Code Comparison Blowby

EOT Oil Consumption

EOT Oil Consumption (L)

Recommendation

- IAR recommends to the Sequence III Surveillance Panel and Chrysler that additional testing be performed with modified IIIH piston ring gaps (Top = 0.020", Second = 0.030") on BC3 pistons
- Ideally the BC4 piston rings from OHT have not been cut to size and can be modified for use on BC3 pistons.
- In the event that BC4 piston rings have already been gapped by OHT, production pistons rings have been confirmed to be available as an alternate option for use on BC3 pistons after being gapped by a CPD.

ATTACHMENT 4

BC 2 / BC 3 Blow-by Comparison

Southwest Research Institute®

Ankit Chaudhry Project Engineer January 2017

FUELS & LUBRICANTS RESEARCH

1

Batch Code 3 Piston repeat

- 7th Iteration
 - Slave engine was rebuild with ultrasonic cleaned batch code 3 pistons and batch code 2 rings. <u>These</u> are the same pistons and rings used in iteration 3.
 - NOTE: One of the original BC 3 piston was damaged in handling. It was replaced with another used BC3 piston. It was measured and critical dimensions were in the same range as the original pistons.
 - Goal: To determine if there is an effect of engine hours on blow-by measurements.

2

Blow-by Measurements (1 to 7 Iteration)

Blow-by measurements

FUELS & LUBRICANTS RESEARCH

swri.org

Blow-by Measurements (Avg.)

Average Blow-by for each Iteration

FUELS & LUBRICANTS RESEARCH

swri.org

For Additional Information

Ankit Chaudhry Research Engineer Gasoline Lubricant Evaluations Section

Southwest Research Institute Engine Lubricants Research Department, Fuels and Lubricants Research Division

6220 Culebra Road P.O. Drawer 28510 San Antonio, TX USA 78228-0510 (210) 522-2820

Visit us on the world wide web at: http://www.swri.edu/4org/d08/d08home.htm

5

ATTACHMENT 5

Sequence IIH Batch 3 Piston Data Review

Statistics Group

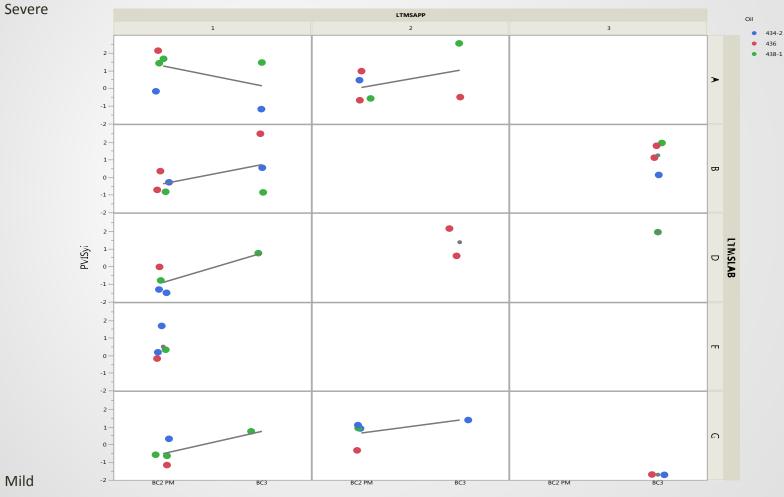
Dec. 6, 2016

1

Statistics Group

- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Elisa Santos, Infineum
- Jim Rutherford, Chevron Oronite
- Jo Martinez, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

Conclusions

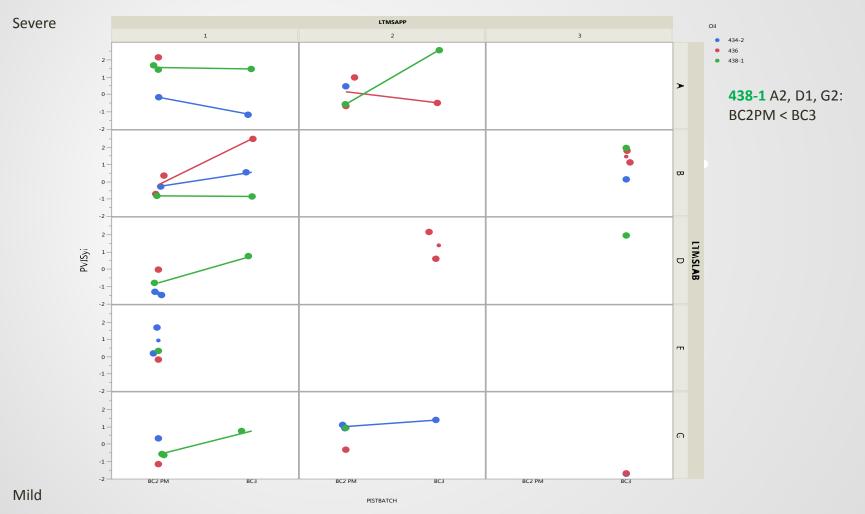

- Analyzed with BC2PM, BC2 PostPM and BC3 pistons.
- Piston Batch Severity
 - PVIS
 - BC3 is marginally severe than BC2PM, p=0.10
 - BC3, BC2PM > BC2PostPM
 - WPD
 - BC3 is not significantly different than BC2PM, p=0.15
 - BC3, BC2PM < BC2 PostPM
 - MRV
 - BC3 is not significantly different than BC2PM, p=0.14
 - BC3, BC2PM > BC2PostPM
 - Blowby1: BC3 > BC2PM, BC2PostpM
 - Blowby6: BC3 > BC2PM, BC2PostpM
 - OCEOT: BC3 > BC2PM, BC2PostpM
- Not all stands affected by Batch 3 Piston ei alarm
 - 2 out of 9 stands PVIS ei alarms most likely triggered by Batch 3
 - 1 out of 9 stands WPD ei alarm most likely triggered by Batch 3
 - 3 out of 9 stands MRV ei alarms most likely triggered by Batch 3
- Inconsistent oil response to BC3 pistons
 - Lost PVIS discrimination between 434-2 and 436 and between 434-2 and 438-1
 - Appears to have 434-2 and 438-1 PVIS ranking reversal
 - Lost MRV discrimination among the oils

IIIH Piston Data

	Piston Batch			
Oil	BC3	BC2	BC2 PM	BC2 Post-PM
434-2	5	20	10	10
436	7	14	9	5
438-1	7	16	9	7
Total	19	50	28	22

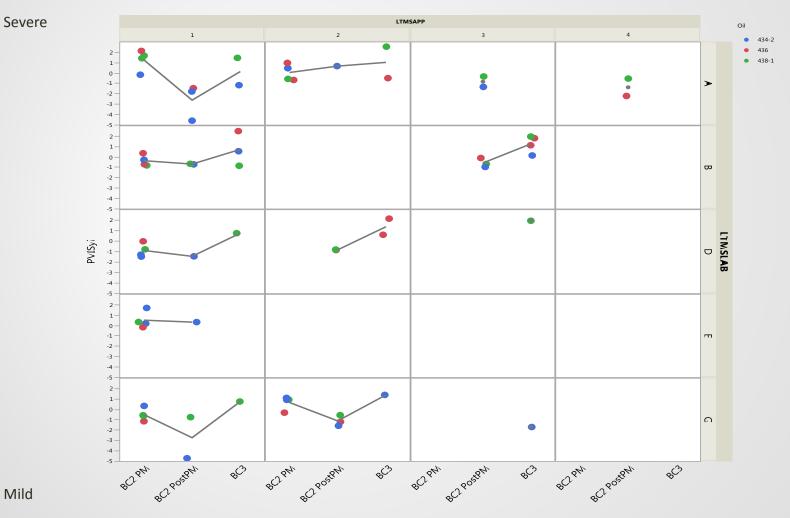
4

PVISyi (Batch 3 vs Target Batch 2)



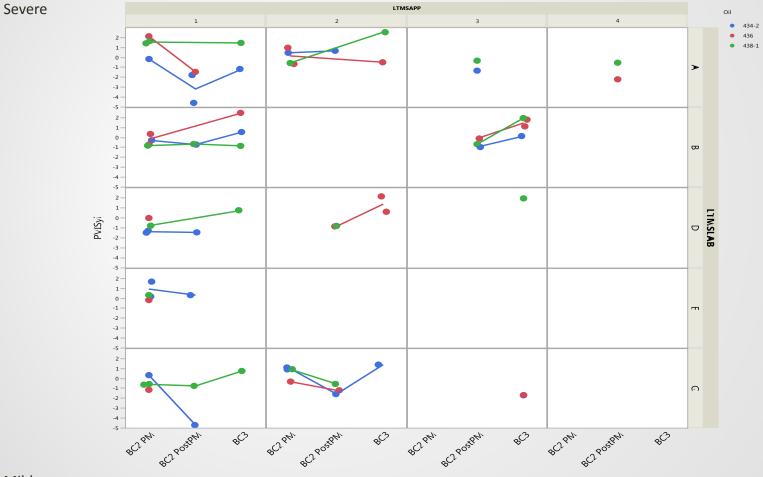
PISTBATCH

5


Mild

PVISyi by Oil (Batch 3 vs Target Batch 2)

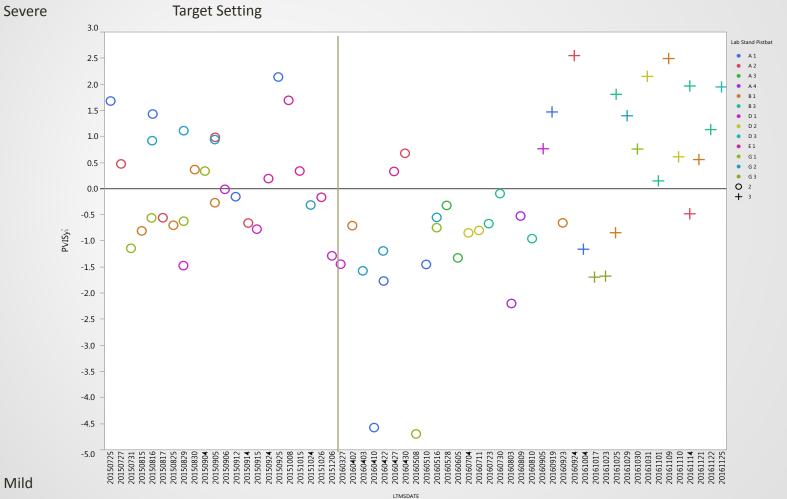
6


PVISyi (Batch 3 vs All Batch 2)

PISTBATCH

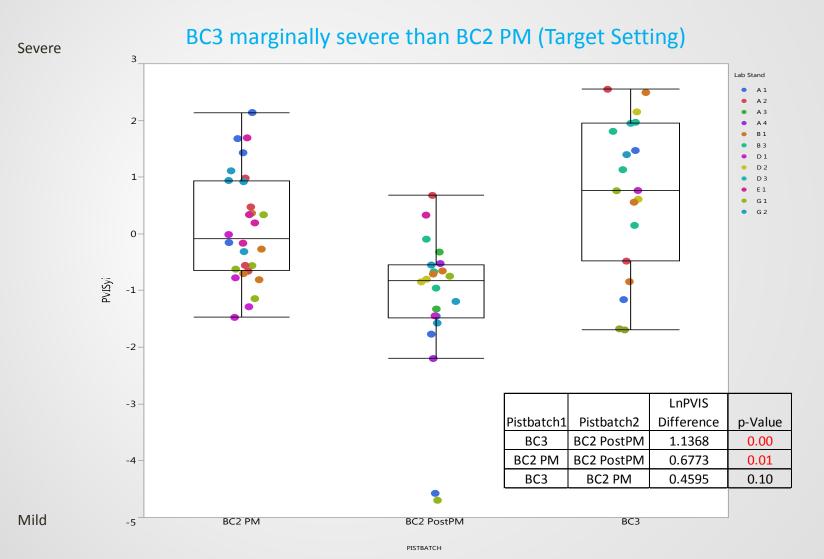
Mild

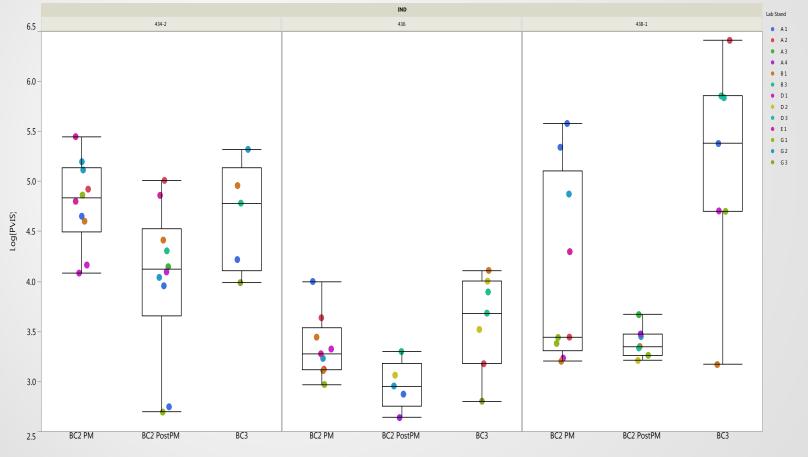
PVISyi by Oil (Batch 3 vs All Batch 2)



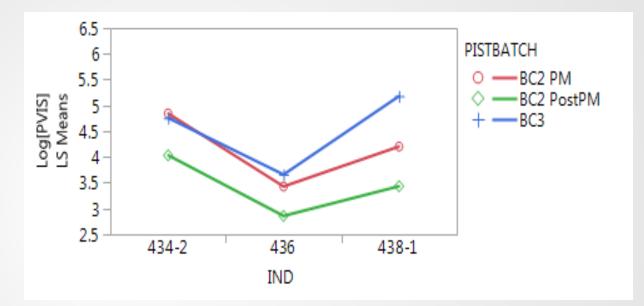
PISTBATCH

8


Mild


Mild

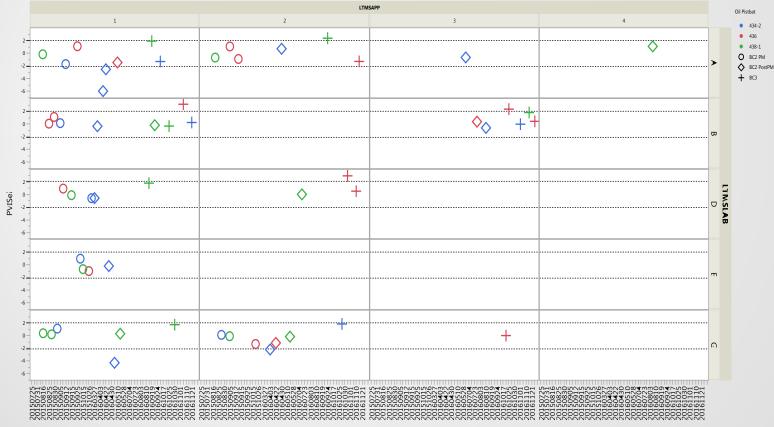
PVISyi by Piston Batch


PVIS by Oil and Piston Batch

Appears to have a ranking reversal of 434-2 and 438-1 with BC3.

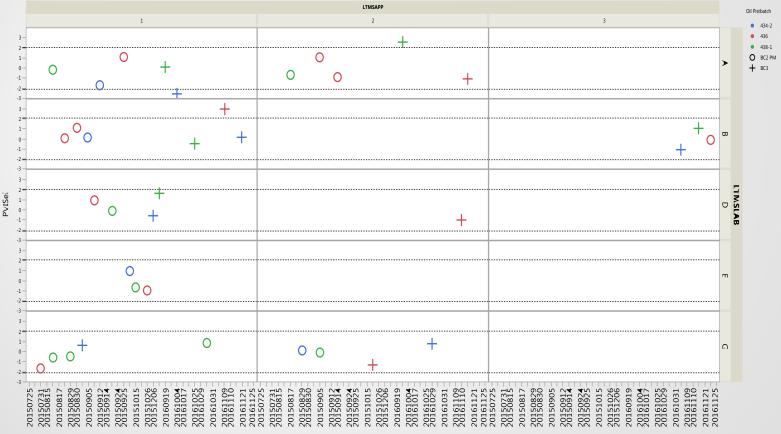
PISTBATCH

PVIS Oil Discrimination

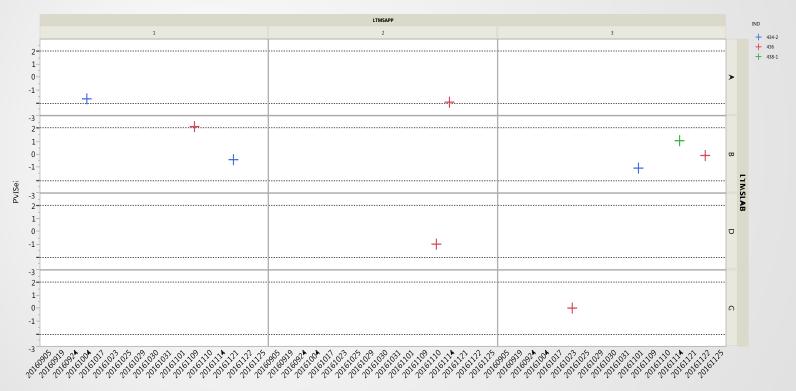

Level				Least Sq Mean
BC3,438-1 BC2 PM,434-2 BC3,434-2 BC2 PM,438-1 BC2 PostPM,434-2 BC3,436 BC2 PostPM,438-1 BC2 PM,436 BC2 PostPM,436	B B	C C	D D D	5.1814 4.8463 4.7601 4.2047 4.0350 3.6615 3.4351 3.4306 2.8596

Levels not connected by same letter are significantly different.

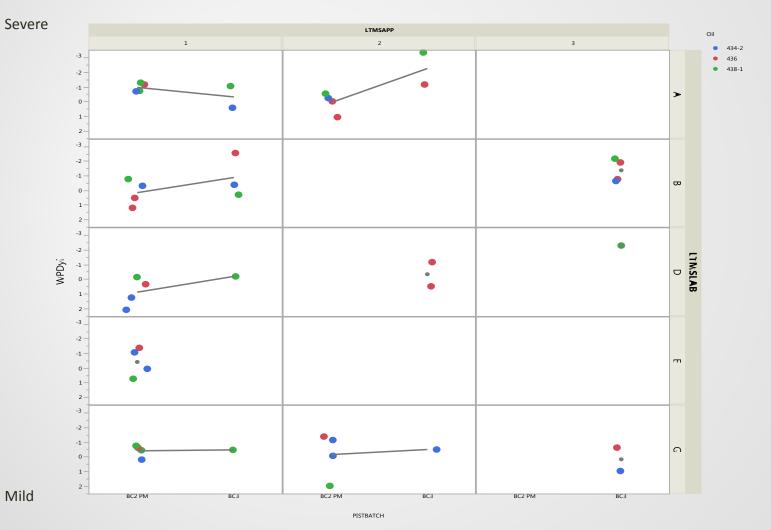
<u>BC2PM</u> 434-2, 438-1 > 436 <u>BC2PostPM</u> No discrimination <u>BC3</u> 438-1 > 436 $\frac{434-2}{No batch}$ differences $\frac{436}{No batch}$ differences $\frac{438-1}{BC3 > BC2 PostPM}$


PVISei

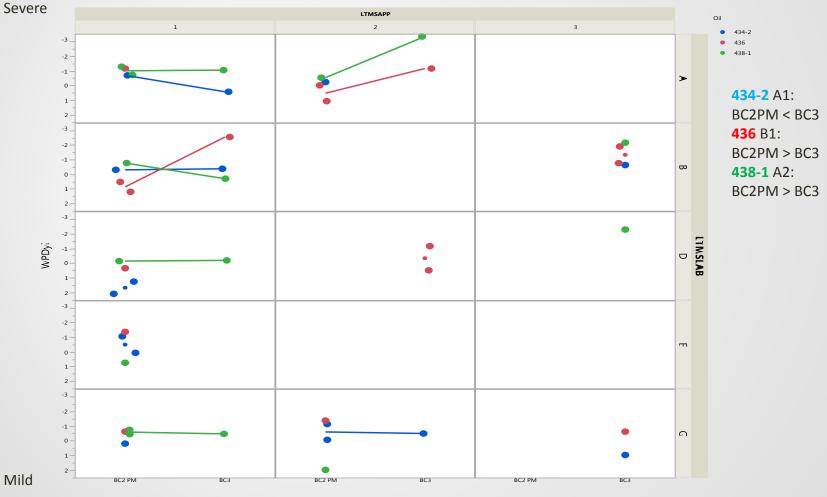
- 7 out of 9 stands triggered ei alarm with Batch 3 Piston
- 6 out of 7 ei alarms went back to normal after 2nd test
- 1 out of 7 ei alarm triggered at 2nd run with Batch 3 Piston


PVISei (Removing BC2 PostPM)

- 3 out of 9 stands triggered ei alarm with Batch 3 Piston
- 2 out of 3 ei alarms went back to normal after 2nd test
- 2 out of 3 ei alarm triggered at 2nd run with Batch 3 Piston


PVISei (Resetting to Batch 3)

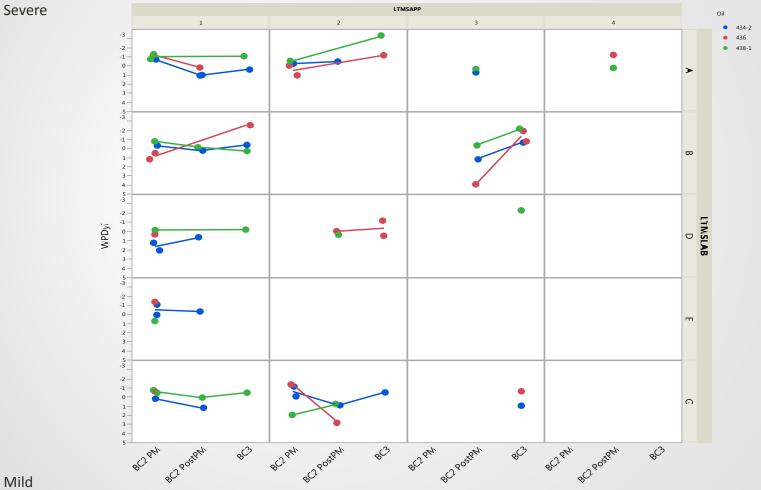
- 2 out of 6 stands triggered ei alarm with Batch 3 Piston



LTMSDATE

WPDyi (Batch 3 vs Target Batch 2)

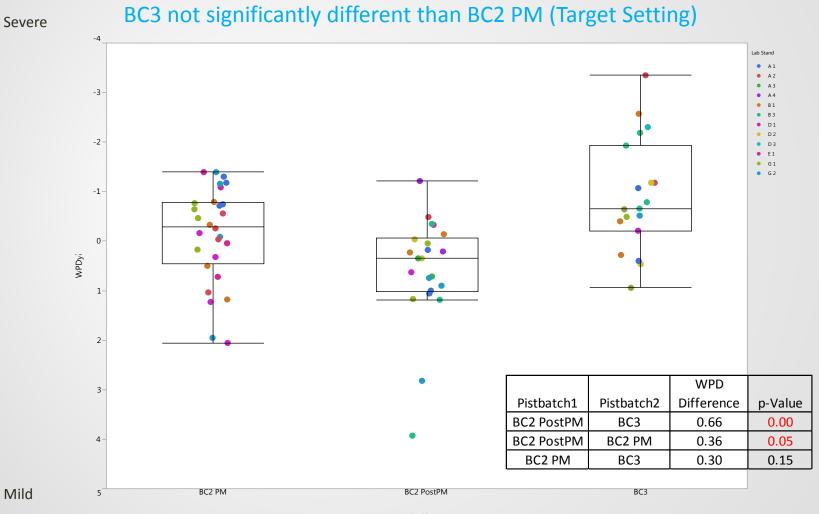
WPDyi by Oil (Batch 3 vs Target Batch 2)


PISTBATCH

WPDyi (Batch 3 vs All Batch 2)

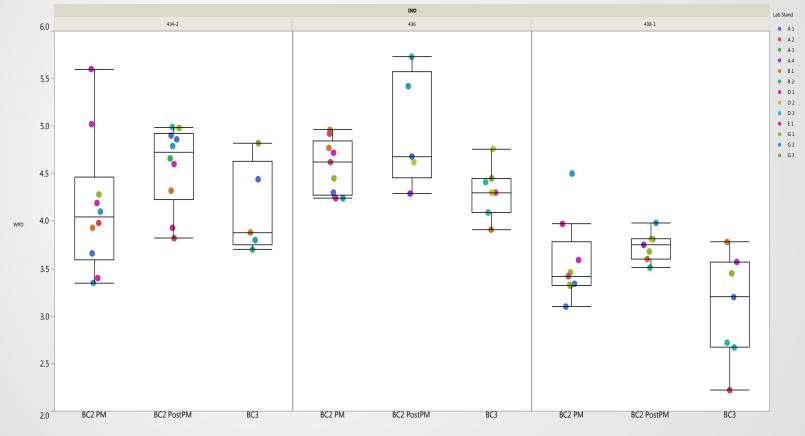

PISTBATCH

WPDyi by Oil (Batch 3 vs All Batch 2)

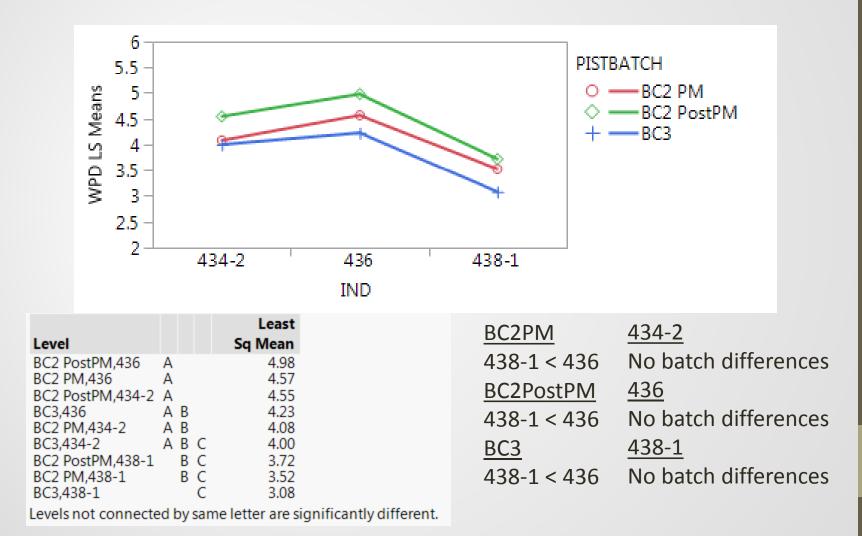

PISTBATCH

WPDyi

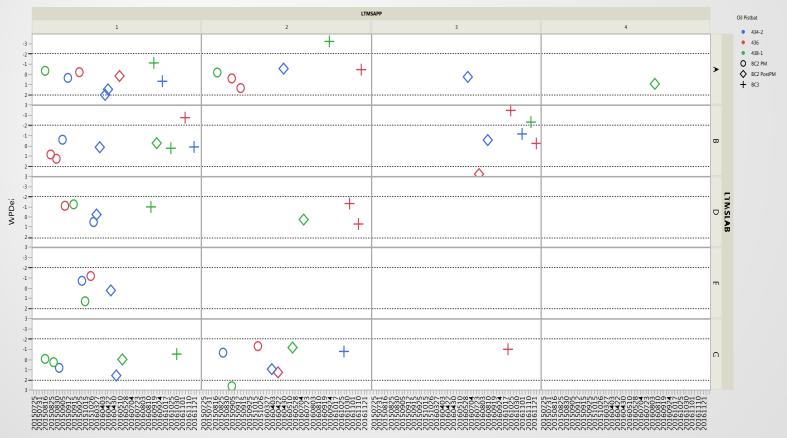
LTMSDATE


WPDyi by Piston Batch

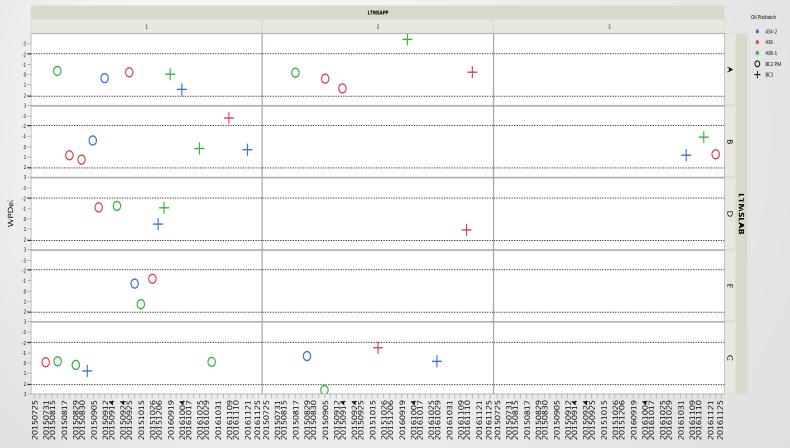
21


PISTBATCH

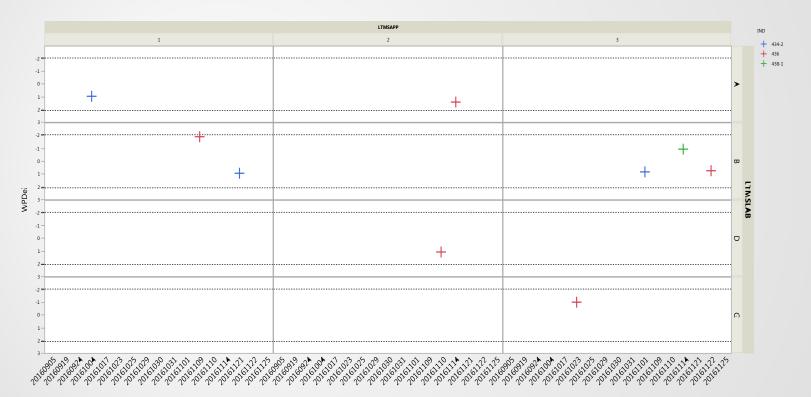
WPD by Oil and Piston Batch


PISTBATCH

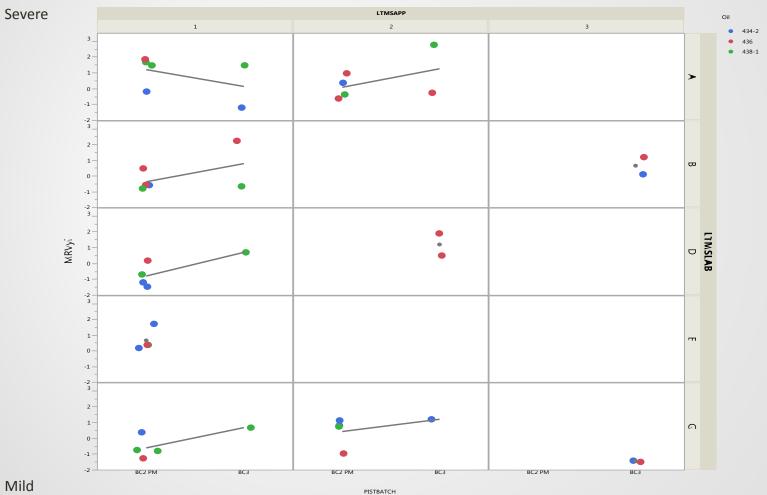
WPD Oil Discrimination


WPDei

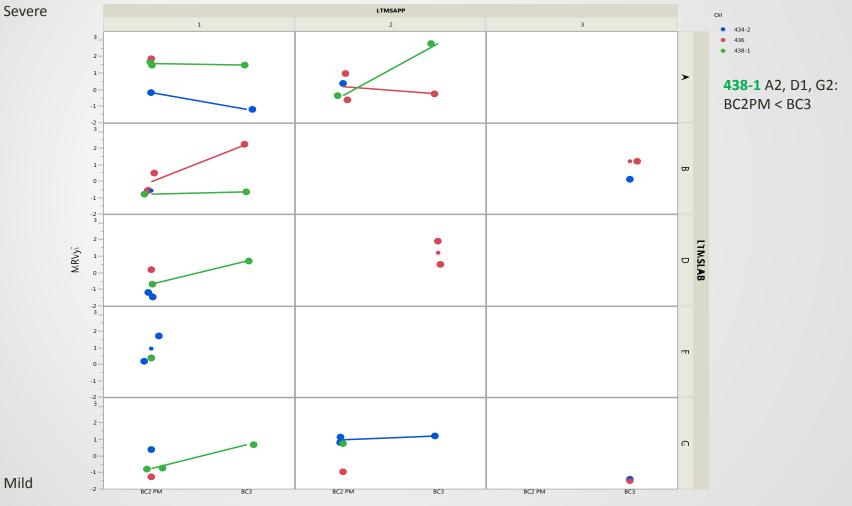
- 4 out of 9 stands triggered ei alarm with Batch 3 Piston
- 4 out of 4 ei alarms went back to normal after 2nd test
- 1 out of 2 ei alarms triggered at 2nd run with Batch 3 Piston


WPDei (Removing Batch 2)

- 2 out of 9 stands triggered ei alarm with Batch 3 Piston
- 2 out of 2 ei alarms went back to normal after 2nd test
- 1 out of 2 ei alarms triggered at 2nd run with Batch 3 Piston

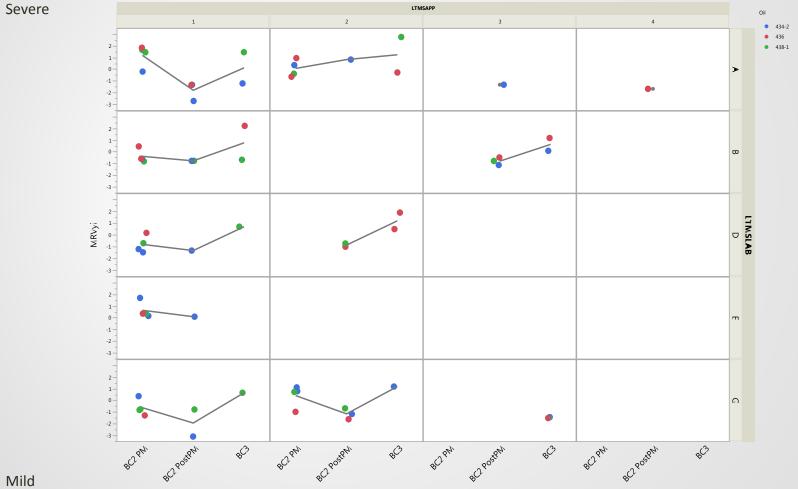

WPDei (Resetting to Batch 3)

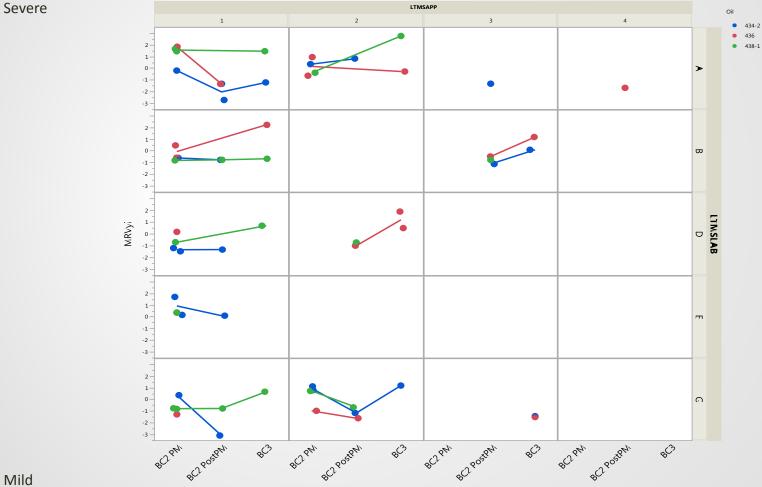
- 1 out of 6 stands triggered ei alarm with Batch 3 Piston



LTMSDATE

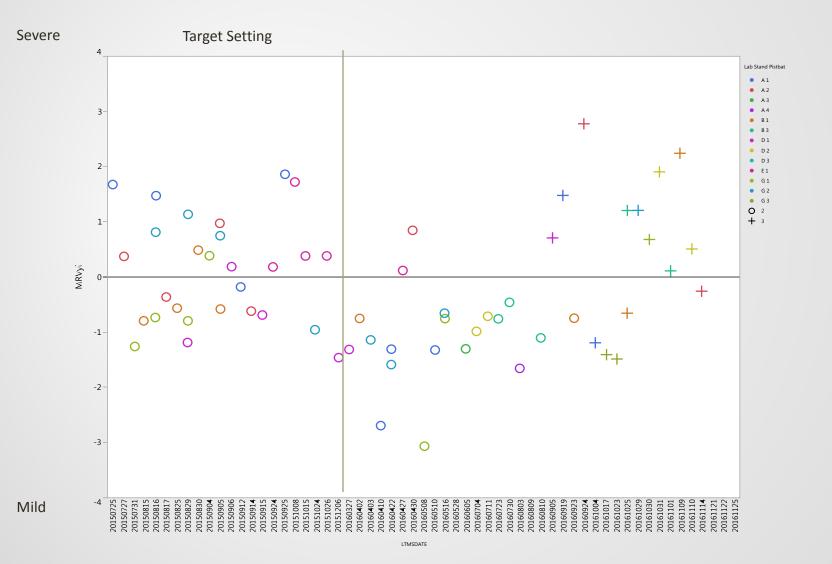
MRVyi (Batch 3 vs Target Batch 2)

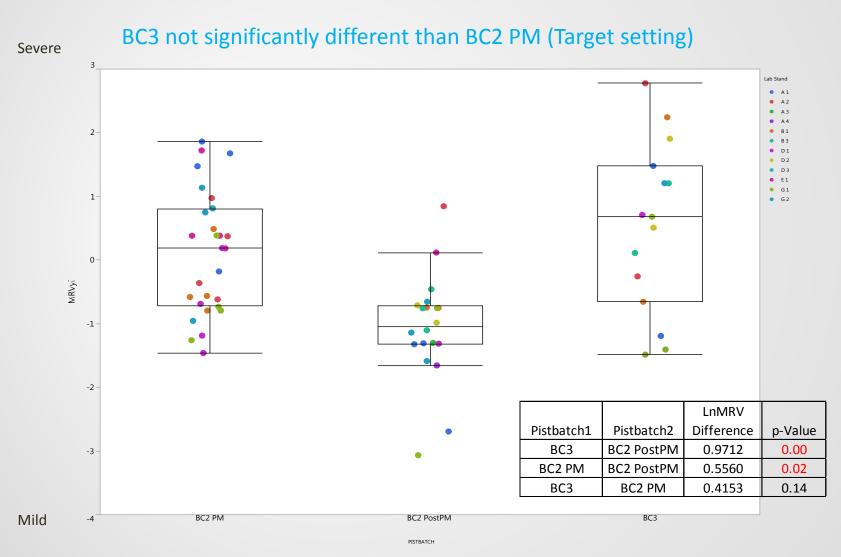

MRVyi by Oil (Batch 3 vs Target Batch 2)


28

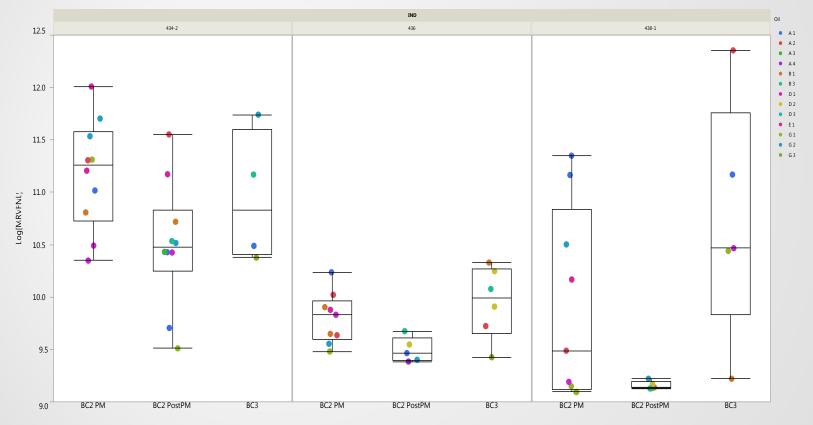
PISTBATCH

MRVyi (Batch 3 vs All Batch 2)

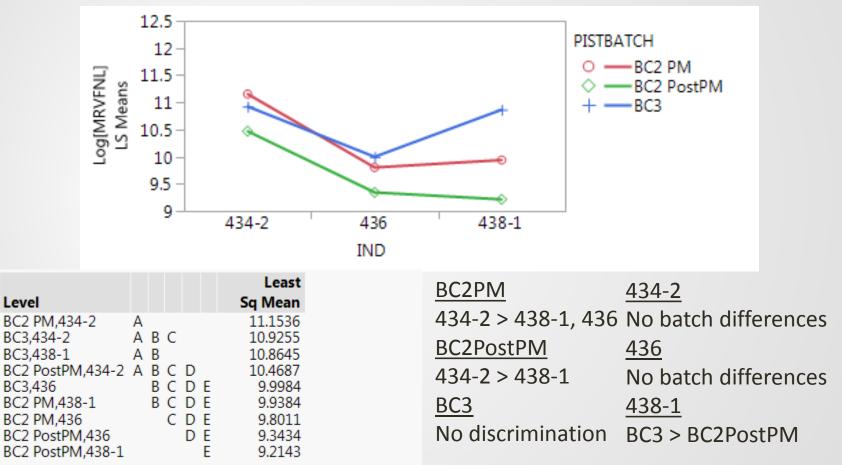

MRVyi by Oil (Batch 3 vs All Batch 2)


30

Mild



MRVyi by Piston Batch

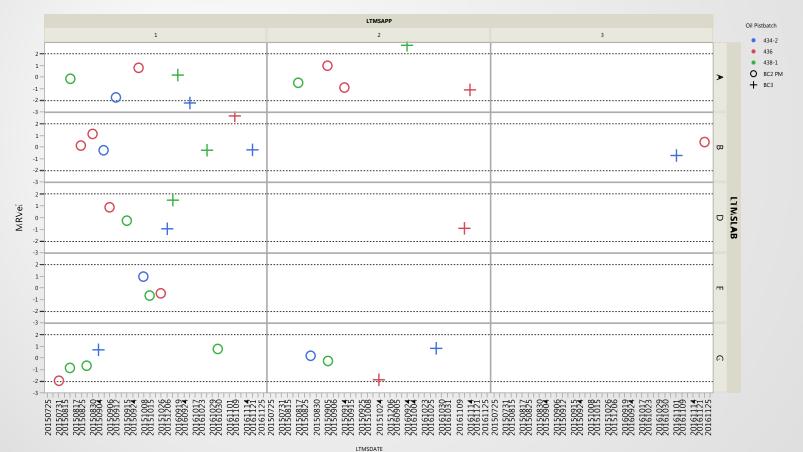


MRV by Oil and Piston Batch

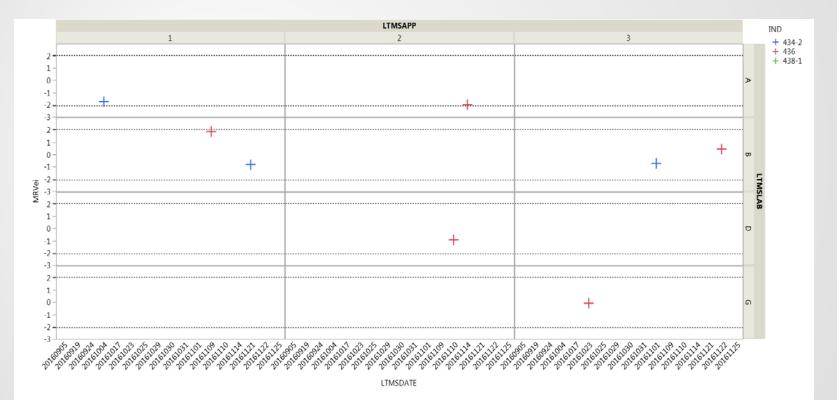
PISTBATCH

MRV Oil Discrimination

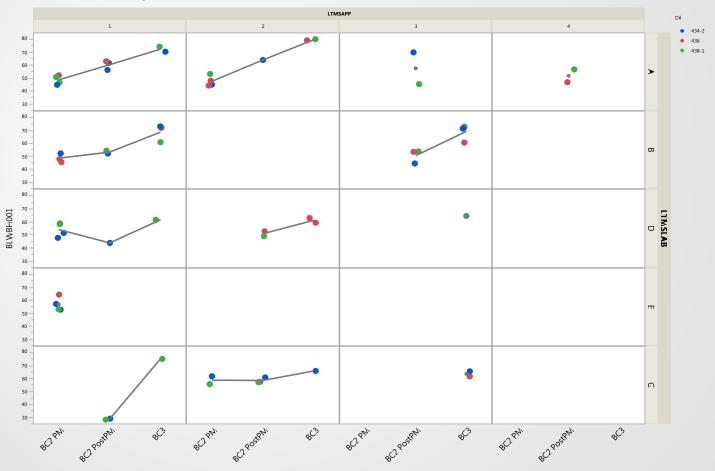
Levels not connected by same letter are significantly different.


MRVei

- 6 out of 9 stands triggered ei alarm with Batch 3 Piston
- 5 out of 7 ei alarms went back to normal after 2nd test
- 1 out of 7 ei alarm triggered at 2nd run with Batch 3 Piston

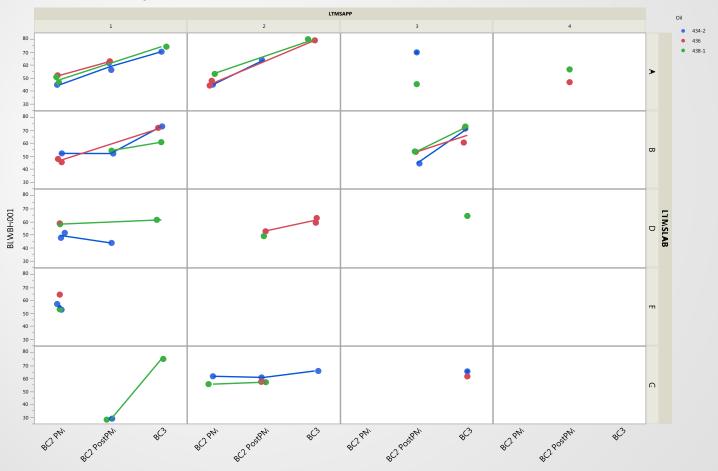

MRVei (Removing Batch 2)

- 3 out of 9 stands triggered ei alarm with Batch 3 Piston
- 2 out of 3 ei alarm triggered at 2nd run with Batch 3 Piston
- 2 out of 3 ei alarm triggered at 2nd run with Batch 3 Piston


MRVei (Resetting to Batch 3)

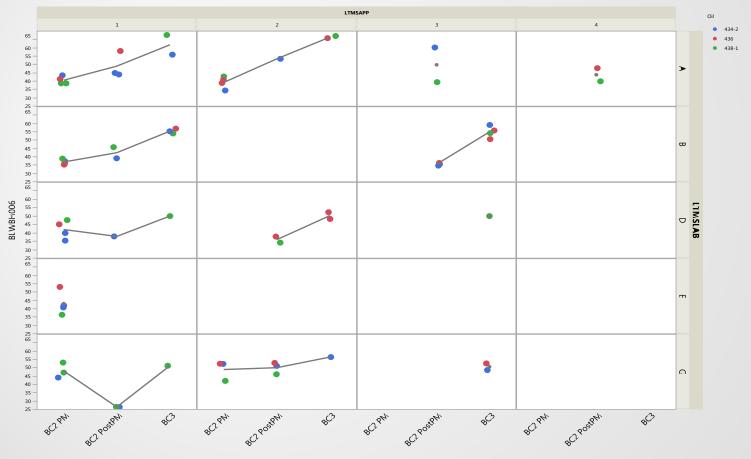
- 3 out of 6 stands triggered ei alarm with Batch 3 Piston

BLWBH001

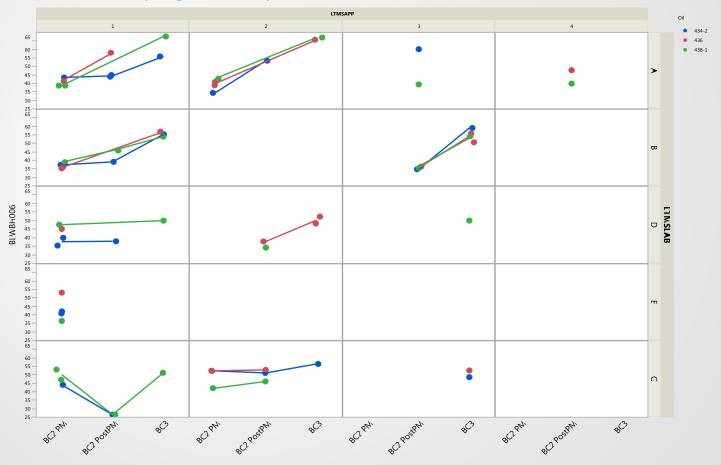

- BC3 is significantly higher than BC2 PM
- Blowby correlates with WPD

PISTBATCH

BLWBH001 by Oil


- BC3 is significantly higher than BC2 PM
- Blowby correlates with WPD

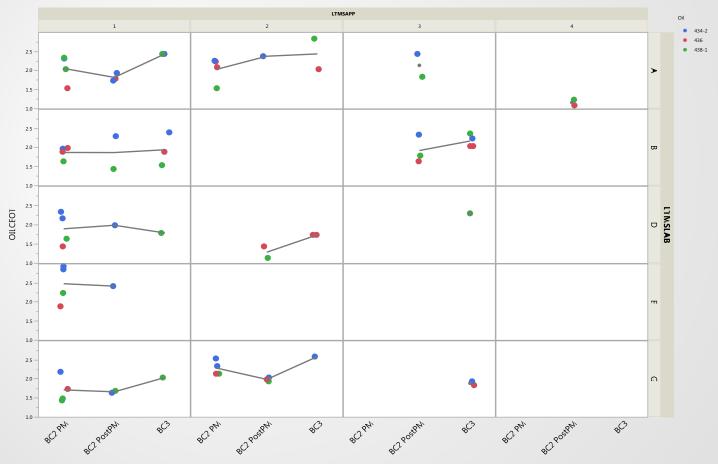
PISTBATCH


BLWBH006

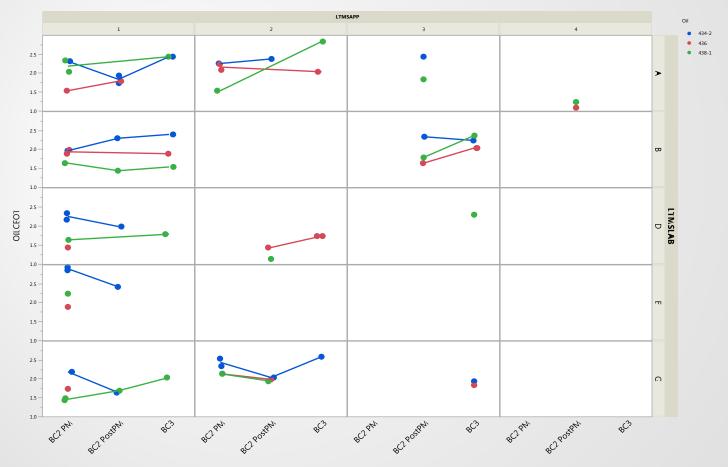
- BC3 is significantly higher than BC2 PM
- Blowby significantly affects WPD

BLWBH006 by Oil

- BC3 is significantly higher than BC2 PM
- Blowby significantly affects WPD



PISTBATCH


OILCEOT

- BC3 is significantly higher than BC2 PM
- OCEOT correlates with PVIS

OILCEOT by Oil

- BC3 is significantly higher than BC2 PM
- OCEOT correlates with PVIS

Option 1: Do nothing. Current LTMS is working.

Average Yi after applying severity adjustment is worse than the average Yi of BC3

	Average Yi						Average Yi for Comparison with Severity Adjusted Yi	
All Oils	PVIS WPD n	Piston Batch	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n Piston Batch PVISyi WPDyi MRVyi	MRV n
	14	BC2 PM	0.0617	0.04	-0.004	14	14 BC2 PM -0.167 0.38 -0.3434	14
	14	BC2 PostPM	-1.3792	0.64	-1.1052	14	14 BC2 PostPM -1.396 0.26 -0.9732	14
	16	BC3	0.7316	-0.91	0.9147	12	16 BC3 1.0634 -1.09 1.454	12
	44	All	0.9575	-0.97	-0.1138	40	44 All -0.111 -0.19 -0.0246	40
434-2	PVIS WPD n	Piston Batch	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n Piston Batch PVISyi WPDyi MRVyi	MRV n
	4	BC2 PM	-0.3426	0.09	-0.4588	4	4 BC2 PM -0.2505 0.2 -0.4161	4
	9	BC2 PostPM	-1.6350	0.6	-1.1565	9	9 BC2 PostPM -1.7738 0.56 -1.1683	9
	4	BC3	0.2360	-0.29	0.0423	3	4 BC3 0.1895 -0.31 0.2665	3
436	PVIS WPD n	Piston Batch	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n Piston Batch PVISyi WPDyi MRVyi	MRV n
	6	BC2 PM	0.3920	-0.3	0.3552	6	6 BC2 PM -0.1598 0.26 -0.4134	6
	2	BC2 PostPM	-1.3214	1.5	-1.4545	2	2 BC2 PostPM -1.2798 0.16 -1.045	2
	6	BC3	1.285	-1.21	1.4653	4	6 BC3 1.3849 -1.34 2.5364	4
100.1			51.46					
438-1	PVIS WPD n		PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n Piston Batch PVISyi WPDyi MRVyi	MRV n
	4	BC2 PM	-0.0295	0.51	-0.0881	4	4 BC2 PM -0.0941 0.74 -0.1657	4
	3	BC2 PostPM	-0.6502	0.22	-0.7184	3	3 BC2 PostPM -0.3400 -0.57 -0.3400	3
	6	BC3	1.1110	-1.17	0.9977	5	6 BC3 1.3245 -1.37 1.3004	5

44

Option 2: Apply Constant ICF for BC3

- Average Yi after applying constant factor is close to Target across oils
- 434-2 after correction is farther from Target

BC3 Average Yi						BC3 After Co	rrection			
Oil	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n
All	19	0.7316	-0.92	0.5299	17	19	-0.0052	0.18	-0.1173	17
	ICF	0.3395	-0.43	0.2504						
Oil	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n
434-2	5	-0.1500	-0.05	-0.2325	5	5	-0.9377	0.57	-0.7121	5
436	7	0.8622	-1.13	0.7404	7	7	-0.2197	0.40	-0.2930	6
438-1	7	1.2307	-1.33	0.9977	5	7	0.8755	-0.33	0.7234	5

Option 3: Apply Fast Start (Reset LTMS to BC3)

Average Zi after applying fast start is close to average Yi of BC3

BC3 Average Yi						BC3 Average Zi				
Oil	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n	PVISZi	WPDZi	MRVzi	MRV n
All	15	0.6021	-0.93	0.4581	14	15	0.6148	-0.98	0.5160	14
Oil	PVIS WPD n	PVISyi	WPDyi	MRVyi	MRV n	PVIS WPD n	PVISZi	WPDZi	MRVzi	MRV n
434-2	4	-0.5367	0.07	-0.5924	4	4	0.0242	-0.54	-0.0299	4
436	7	0.8622	-1.13	0.7404	7	7	0.7918	-1.01	0.6752	7
438-1	4	1.2856	-1.58	1.1999	3	4	0.8955	-1.36	0.8725	3

Concern and Recommendation

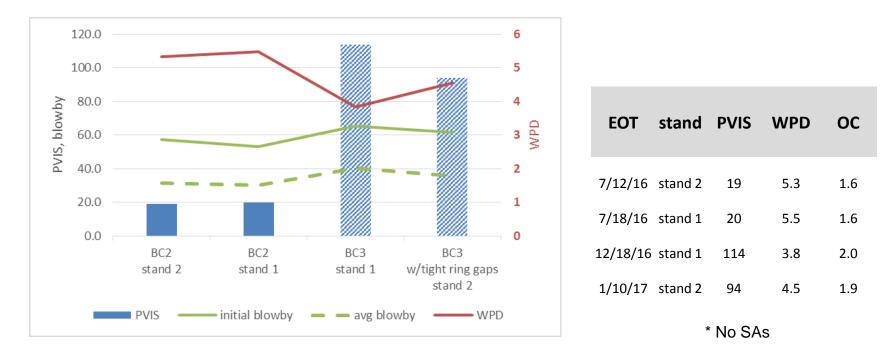
- Applying correction factors or severity adjustments cannot overcome the PVIS ranking reversal of 434-2 and 438-1.
- None of the mathematical options are recommended at this time.
- Recommend further investigation of the root cause at this time.

ATTACHMENT 6

IIIH data on Lubrizol internal reference oil Shift between BC2 & 3 pistons

1/25/2017

background


SUCCESS

- Internal "reference" oil
- Run internally, and externally
- 10+ runs to date
- Nominal WPD of 5.0
- Nominal PVIS of 33%

Severity shift between BC2 and BC3

- Significant shift in performance
- Delta of ~90% PVIS
- Delta of ~1.5 merit in WPD
- Slight improvement when tightening ring gap (by 0.005")

Take away messages

- Oils respond differently to this severity change
- Higher performing oils (vs ref) may not be adequately severity adjusted

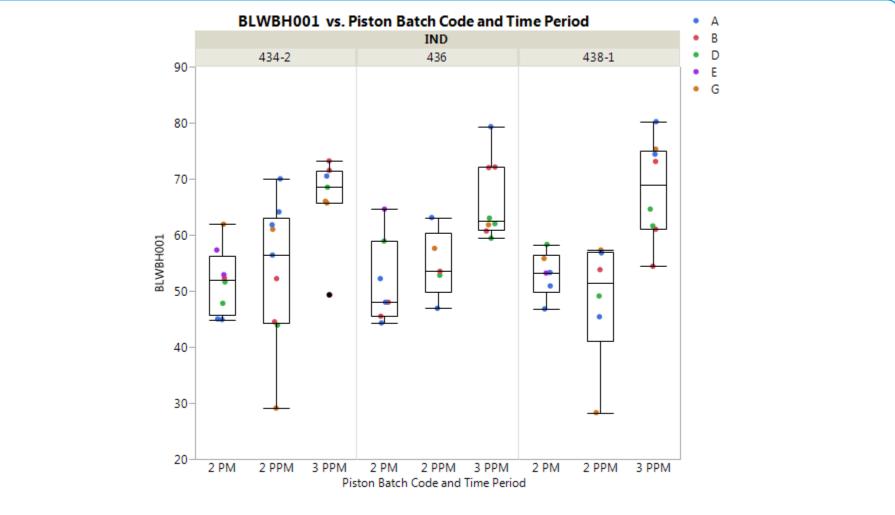
IIIH DATA REVIEW WITH BC3 PISTONS

ATTACHMENT 7

January 11th 2017

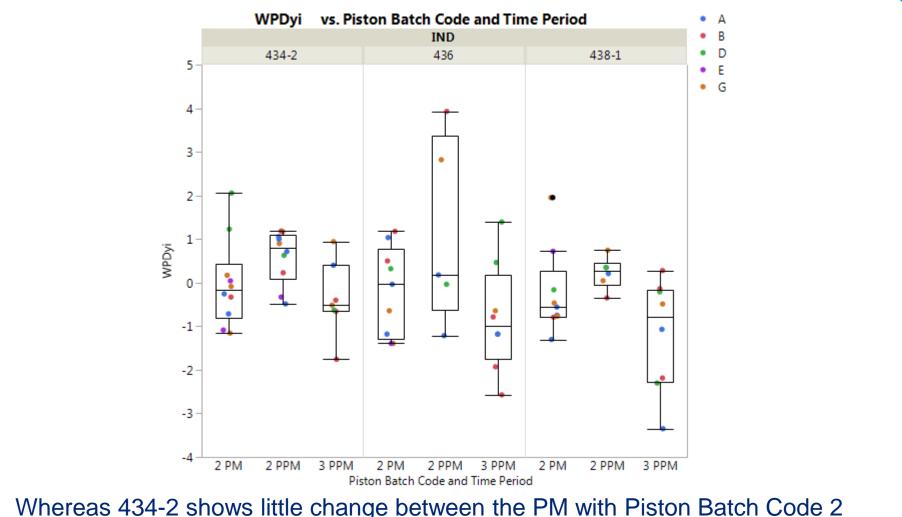
Performance you can rely on.

© INFINEUM INTERNATIONAL LIMITED 2016. All rights reserved.


IIIH Reference Data with BC3 Pistons

- Reference data can be divided into 3 distinct groups:
 - The PM data using Batch 2 pistons.
 - Post matrix data using Batch 2 pistons but after each of the labs made small changes to become more uniform. These changes were supposedly not to change the severity of the test but the results (WPD and PVIS) were obviously shifted mild.
 - Batch 3 pistons. This data is consistently severe of the Post Matrix data with Batch 2 and in some cases severe of the PM data and in other cases equivalent to the PM data.
 - 23 valid reference oil tests using the Batch 3 pistons were available.
- Most of the stands show a severity shift relative to the PM but others do not.
- There appears to be minimal difference between the PM Batch 2 results and the Batch 3 results for 434-2.
- The PVis ranking of RO 434-2 and 438-1 for Piston Batch 3 have reversed relative to the PM data using Batch 2.
 - The Statisticians Group does not recommend mathematical adjustments as practical adjustments will not yield the proper ranking.

IIIH Initial (Hour 1) Blow-by by Piston Batch Code (Includes 23 Batch Code 3 Valid Calibration Results)

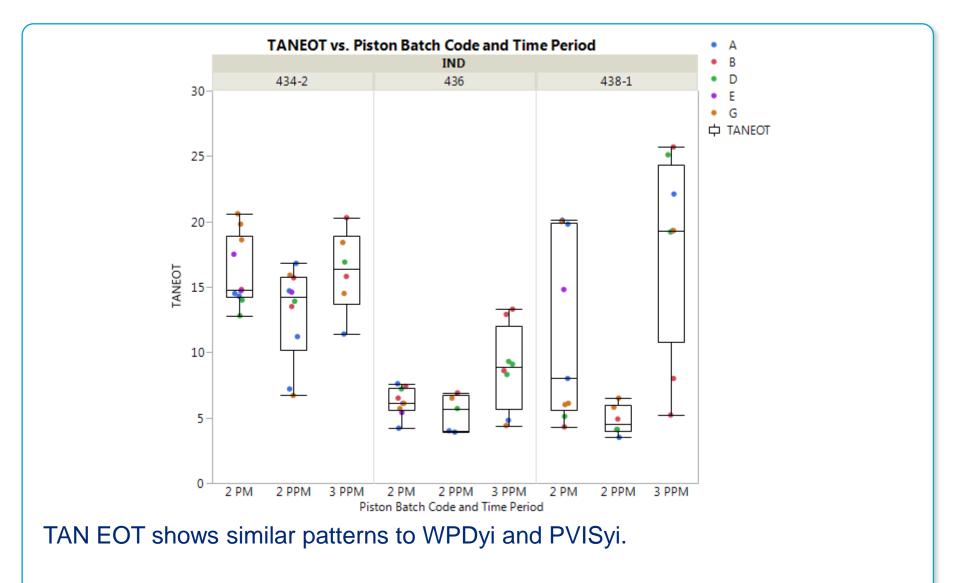


PM is Precision Matrix and PPM is Post Precision Matrix.

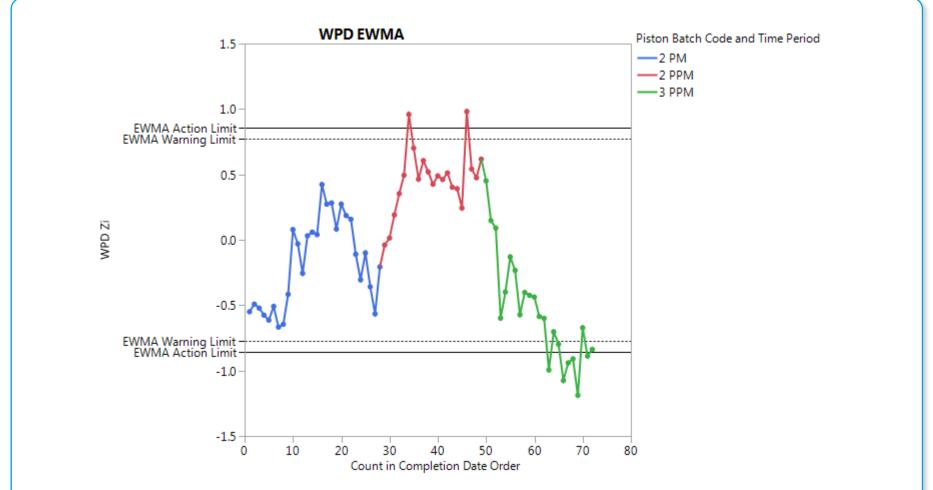
WPDyi (number of standard deviations from target with negative numbers being severe)

Whereas 434-2 shows little change between the PM with Piston Batch Code 2 and Batch Code 3, 436 and 438-1 have become more severe.

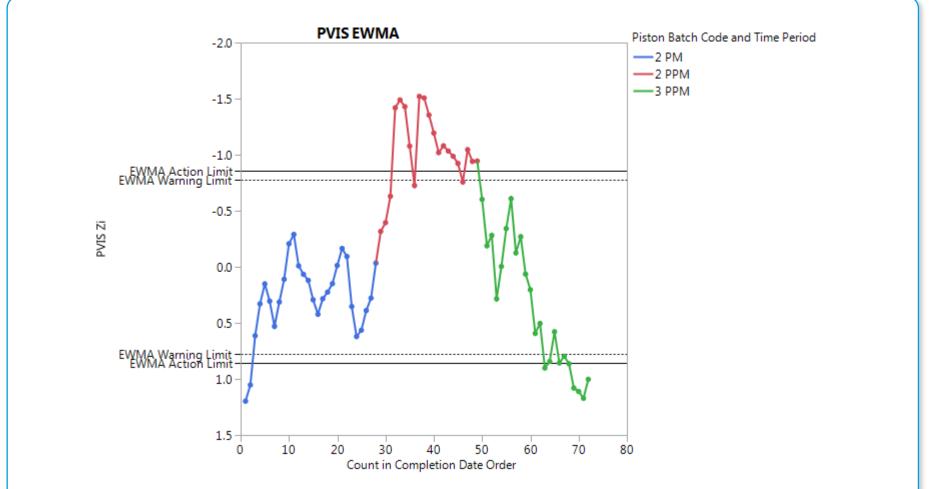
PVISyi (number of standard deviations from target with positive numbers being severe)



 Similar to WPD, PVISyi for Piston Batch Code 3 with 434-2 appears similar to the PM results with Batch Code 2 whereas 436 and 438-1 are more severe.

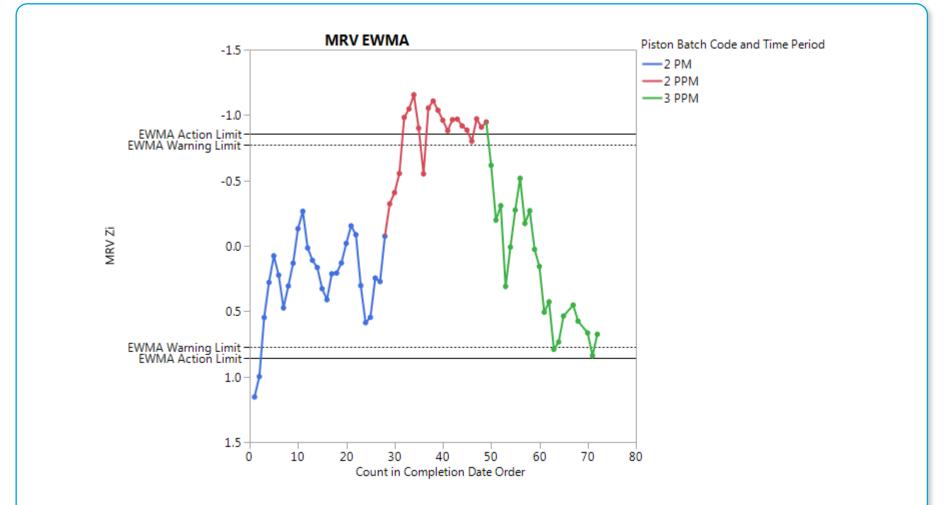

TAN EOT

WPD EWMA Chart



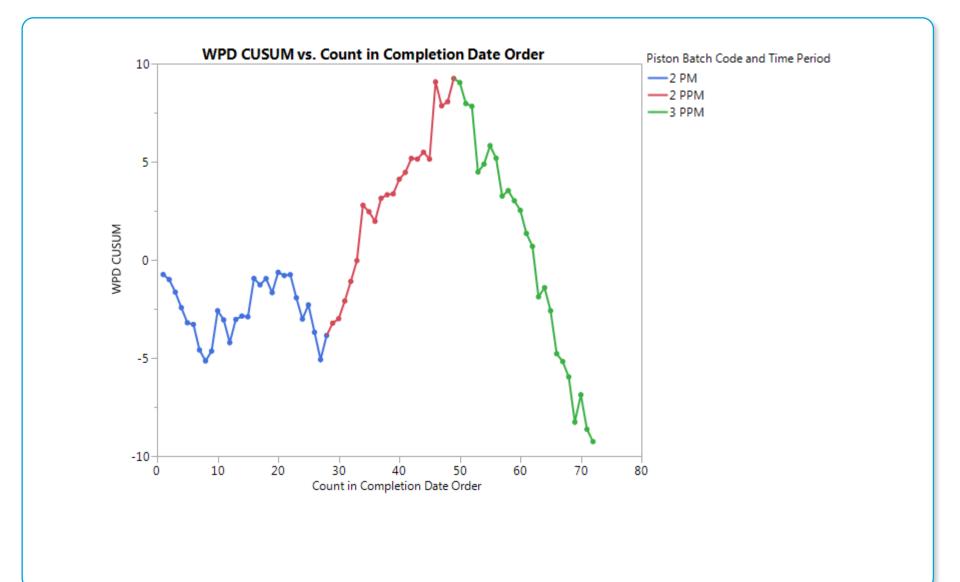
• 6 of the last 10 results have exceeded the EWMA Action Limit.

PVIS EWMA Chart

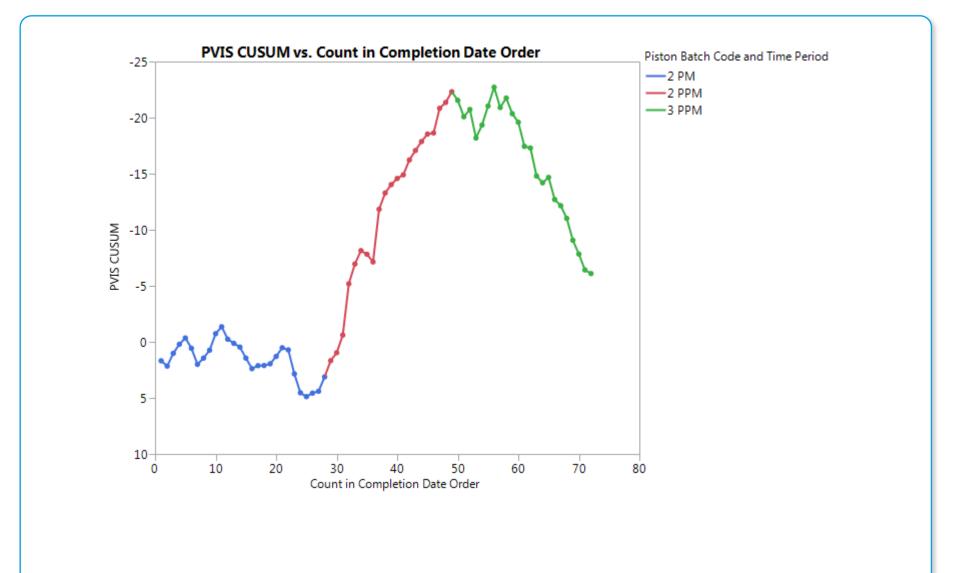


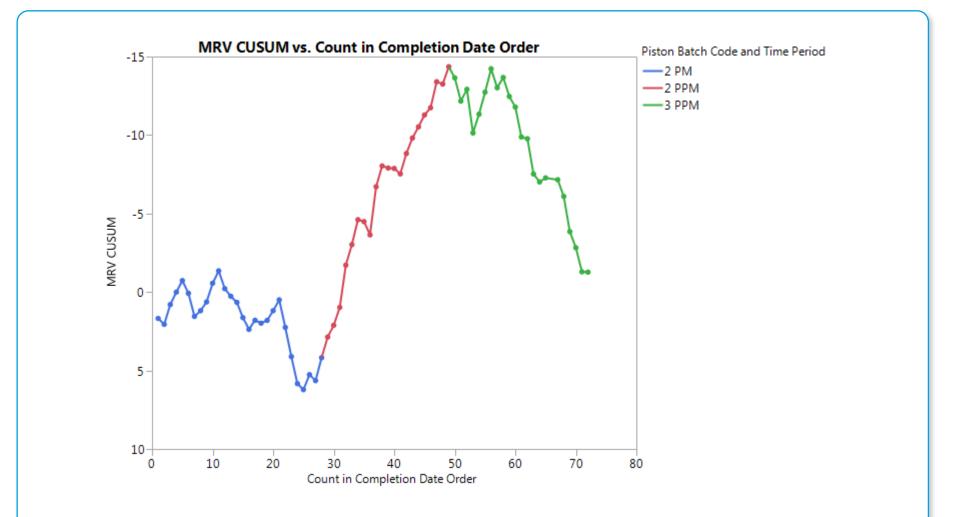
• 5 of the last 9 results have exceeded the EWMA Action Limit.

MRV EWMA Chart



• The MRV EWMA Chart is similar to PVIS but slightly less extreme.


WPD CUSUM


PVIS CUSUM

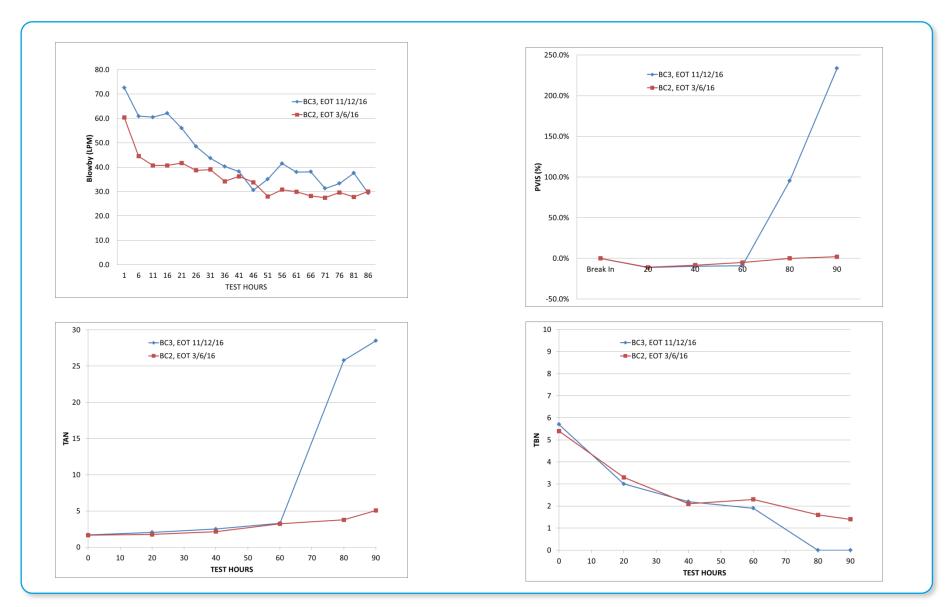
MRV CUSUM

The MRV plot follows the same trend as WPD and PVIS.

Summary of observations from the IIIH LTMS control charts

- 1. PVIS: Tests on BC3 Pistons and Rings are trending severe and in the EWMA Action Alarm.
- 2. WPD: Tests on BC3 Pistons and Rings trending severe and are bouncing between the EWMA Warning and Action Alarms.
- 3. MRV: Tests on BC3 Pistons and Rings trending severe (approaching the EWMA Warning Alarm).
- 4. CUSUM plots demonstrate a distinct shift at the beginning of the Batch 2 PPM tests and then again, reversing direction, at the beginning of the Batch 3 PPM tests.

BC3 Blowby and PVIS shift is also observed with candidate oils Infine

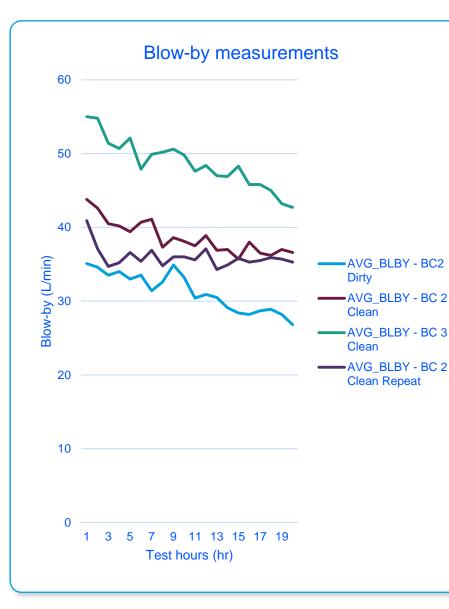

- The same batch of oil was run twice at the same lab
 - First run EOT 3/6/16, with BC2 pistons
 - Second run EOT 11/12/16, with BC3 pistons
- There was a disparity in IIIH performance between the two runs (no adjustment)

	EOT 3/6/16, BC2	EOT 11/12/16, BC3
PVIS	2.1	246
WPD	4.21	3.07

- The cumulative blow-by is ~25% higher for BC3 pistons
- With BC2 pistons, the PVIS remained low and stable throughout the test
- With BC3 pistons, a dramatic increase in PVIS appeared after 60 hours
- Both TAN and TBN are very similar between the two runs up to 60 hours
 - With BC2 pistons after 60 hours TAN gradually increases and TBN gradually decreases
 - With BC3 pistons after 60 hours TAN increases dramatically and TBN drops to zero

IIIH: Same oil, same lab, different BC batch pistons Infineur

Experimental data to show BC3 Pistons are responsible for the blowby severity shift



- SwRI reported the results of their experiments at the November 15th IIIH Surveillance Panel meeting.
- Experiments were conducted with a slave IIIH engine 0-20 hour blow-by measurements with the following sequence and results:

Run Order	Description	Blow-by levels		
1	BC2 Pistons Dirty	Lowest		
2	BC2 Pistons Cleaned	Higher		
3	BC3 pistons	Highest		
4	Repeat of 2	Similar to 2)		

SwRI BC2 & BC3 Piston Blow-by Comparison

- Slave engine
 - Engine had approximately 90 hours.
 - Engine was built with batch code 2 rings and pistons.
 - Aborted test at approximately 65 hours due to extended down time.
- 1st iteration
 - Slave engine ran with batch code 2 pistons and rings.
 - Goal: Establish a base line for dirty pistons and rings.
- 2nd Iteration
 - Slave engine was rebuilt with ultrasonic-cleaned batch code 2 pistons and rings.
 - Goal: To obtain data on used but cleaned batch code 2 pistons and rings
- 3rd Iteration
 - Slave engine was rebuilt with ultrasonic-cleaned batch code 3 pistons and batch code 2 rings.
 - Goal: To make sure that the pistons are the only thing that influenced the blow-by measurements.
- 4th iteration
 - Slave engine was rebuilt with ultrasonic-cleaned batch code 2 pistons and rings. <u>These are the same</u> <u>pistons and rings used in iteration 2.</u>
 - Goal: To get back to same blow-by values as iteration 2.

Summary of conclusions

- Urgent action is needed to address the current situation with BC3 pistons. Corrective action is needed to return the blowby levels and PVIS, WPD and MRV data associated with the calibration oils back to those recorded for the Precision Matrix tests.
- The 434 and 438 PVIS averages are reversed between the PM and subsequent BC3 datasets, making any proper mathematical adjustments impossible.
- The Industry LTMS control charts show EWMA action alarms for PVIS.
 - WPD bounces between warning and action alarms. MRV is approaching the warning alarm.
- The IIIH test is out of control.
- MOTION TO SURVEILLANCE PANEL (January 11th 2017):
 - The IIIH and IIIHA tests are declared out of control.