ASTP

100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19428-2959
Telephone: 610-832-9500
Fax: 610-832-9555
e-mail: service@astm.org
Website: www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman:	W. JAMES BOVER, ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, PO Box 971, Annandale, NJ 08801-0971, (908) 730-1048, FAX: 908 730 1197, EMail: wibover@erenj.com
First Vice Chairman:	KENNETH O. HENDERSON, Cannon Instrument Co, PO Box 16, State College, PA 16804,
	(814) 353-8000, Ext: 0265, FAX: 814-353-8007, EMail: kenohenderson@worldnet.att.net
Second Vice Chairman:	SALVATORE J. RAND, 221 Plamingo Drive, Fort Myers, FL 33908, (941) 481 4729,
	FAX: 941-481-4729
Secretary:	MICHAEL A. COLLIER, Petroleum Analyzer Co LP, PO Box 206, Wilmington, IL 60481,
	(815) 458-0216, FAX: 815-458-0217, EMail: macvarlen@aol.com
Assistant Secretary:	JANFT L. LANF, ExxonMobil Research and Engineering, 600 Billingsport Rd, PO Box 480,
	Paulsboro, NJ 08066-0480, (856) 224-3302, FAX: 856-224-3616,
	EMail: janet_l_lane@email.mobil.com
C. (C.14	
Staff Manager:	DAVID R. BRADLEY, (610) 832-9681, EMail: dbradley@astm.org

Originally Issued: November 16, 2015

Reply to:

Jason H. Bowden OH Technologies, Inc. P.O. Box 5039 Mentor, OH 44061-5039 Phone: 440-354-7007 Fax: 440-354-7080 Email: jhbowden@ohtech.com

Unapproved Minutes of the Seq. III Surveillance Panel held on October 29, 2015 Sequence III Surveillance Panel Meeting held in Southfield, MI

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

Agenda (Attachment 1)

Membership / Attendance (Attachment 2)

Gordon Farnsworth, Jerry Brys, Andy Ritchie and Matt Bowden are on conference call.

The following voting membership changes have been recorded: Cliff Salvesen will be replacing Mark Mosher Addison Schweitzer will be replacing Charlie Leverette Marty Heimrich will be replacing Pat Lang Dan Lanctot will be replacing Zack Bishop

> Jason Bowden-Secretary Bill Buscher-Motion and Action Items Recorder

Chairman's Comments were provided by Dave Glaenzer

There have been a few items resolved by e-ballot since our last meeting.

- Sequence IIIF TCR form change has been approved.
- Sequence IIIGB LTMS has been updated.
- Sequence IIIF/IIIG Build manual has been updated for size 7 & 8 pistons/rings.
- Alternate chemical for use in Ultra-Sonic parts cleaner approved. (Attachment 3)

Approval of Prior Minutes

06/02/2015, San Antonio, TX.

08/24/2015 Teleconference

Motion: Jason Bowden / Rich Grundza- Motion passed unanimous.

Previous Action Item Review

The following previous action item was open: GM Performance to provide an update on the availability of non-modified heads in inventory. Additionally, they will try to determine if they will be able to install new seats in used heads.

GM Performance notified the Seq. III Surveillance Panel that they will not accept used heads for valve seat replacement. This item is closed.

They have also ordered 1,200 additional connecting rods.

All previous action items are closed.

Old Business

Equivalency of IIIF/IIIG results when using size 7 & 8 pistons/rings as compared to all other sizes. Sizes 9 & 10 have been approved for use in IIIF/IIIG. The stats group will be reviewing this as additional reference data is generated.

Part # 17120601 fuel injectors for Sequence IIIF/IIIG tests

Bruce Matthews reported that the current fuel injectors are no longer available and cannot be purchased. There is a cleaning procedure that worked on the current injector that stopped the dripping and made the spray pattern better. Labs estimated that we need an additional 200 injectors to meet the end of the IIIG. All labs currently flow the injectors. The same rig that is used for flow checking current injectors can be used for cleaning injectors. Ron Romano stated that in the Seq. VG they tried to look at a large quantity of aftermarket injectors and there were large differences and batch variability in the aftermarket material. He recommended that we conduct a very thorough review of the current flow procedure against the manufactures spec for the fuel injectors.

<u>Review of remaining critical hardware for Sequence III tests</u>. Dave Glaenzer reviewed the latest industry inventory summary. (Attachment 4)

Labs obtain 2-3 uses out of he heads and are saving them as well. Summary of prior period testing was provided: 38 ACC IIF 164 IIIG ACC 202 Total tests in prior period. Total of approximately 436 each tests per year would give us 8-10 months' worth of remaining hardware.

New Business

Update on IIIH Precision Matrix provided by Karin Haumann (Attachment 5)

The two outstanding tests are complete, Lab E and Lab G reran oil 436.

Joe Martinez Presented the Seq. IIIH Precision Matrix Results (Attachment 6)

There have been 26 out of 28 tests validated from the matrix. The two additional 436 tests have not been included in this analysis. Joe provided the summary and supporting data for the matrix tests. With regards to PVIS, the data shows statistically significant differences for both lab and stand affect. Lab D is significantly lower than lab A and E. Stand A2 is significantly lower than stand A1 and stand G1 is significantly lower than stand G2. One result from Lab D is influential on the 434-2 PVIS data. Oil 434-2 and oil 438 shown a larger range on PVIS than oil 436.

IIIH PVIS precision, based upon the Seq. III Precision, is 150%-689% for IIIH and 150%-337% for IIIG. The 150% is an arbitrary number that was selected. If the number turns out to be lower the range will decrease as well.

With regards to WPD, the oils discriminate and there are no lab or stand differences.

MRV shows oil 436 is significantly lower than 434-2, 438-1 is significantly lower than 434-2. There are statistically significant lab differences for MRV. Lab D is significantly lower than A, E and G. There are significant stand differences, as stand A2 is lower than stand A1.

Phosphorus retention shows that oil 436 is significantly higher than oil 438-1 and 434-2. There are no significant differences between labs or stands. There is also a correlation between PVIS and MRV.

Based upon the current matrix data, Joe recommends a stand based LTMS as being appropriate for the Seq. IIIH, but the last two results need to be included and the stats group needs to talk more about this topic.

Joe presented the calculated targets for IIIH based off of the matrix data. She also presented concerns based off of this data.

-PVIS Concern1 (slide 43) - Labs do not Discriminate the same for PVIS. Lab D and Lab B do not discriminate the same as Labs A, E and G at this time. -PVIS Concern2 (slide 44)- If 434-2 is meant to be a failing oil, then will PVIS and/or MRV be adequate parameters to ensure failing oil won't pass and passing oil won't fail? Is the test severe enough to ensure that poor oils do not pass?

Ron Romano asked if the labs have looked at this data to determine why the PVIS is so different. The task force has looked at operational data and believe that at least the stand to stand difference could be influenced by the variability of 438-1. Oil pressure dips with viscosity. Bob Campbell stated there is a concern as well that we may not be using the correct metric to look at oxidation. Kevin O'Malley stated that we need to be measuring %PVIS at increased intervals in order to capture the change. Chrysler and Oronite stated that oil 438-1 was only added to the matrix to show discrimination on WPD only. Bob C. commented that oil 438-1 is the most well behaved oil in the IIIG and concerned with this data because it may be very real and allow candidates to pass that should not. Teri Kowalski is concerned as well with regards to this problem. She is concerned that once limits are applied based off of this matrix data, candidates that should not pass may pass.

Karin Haumann asked if Phosphorus retention can be reviewed. Jim Linden said that this does not have any correlation with oxidation, so we should not be discussing this. Ron Romano agreed that we should focus on PVIS.

Dave Glaenzer asked Joe if a different transformation would help this situation. Joe M. stated that the Ln transformation is the most suitable for this. Dave G. commented that there is something fundamentally wrong with allowing labs to run in the range that this data shows. Bob Campbell commented that here is a passing result from Lab D when the oil broke. This should not happen. Teri K. and Ron R. agree.

Bob Campbell asked for the group to look at the oxidation data and determine if there is a different parameter we should be looking at that does not show the dip in viscosity.

Ron R. commented that we had a large data range for 434 in the matrix. If we use the data as presented, we will have to set the PVIS limit very low in order to protect the industry. Haiying Tang stated that we have good repeatability and reproducibility. Ron R. disagreed, stating that if you look at these charts, there is not good repeatability or reproducibility and the AOAP will never accept the low limit that ILSAC would have to put in place for PVIS.

Action Item 1- Precision matrix labs to provide the FTIR peak height oxidation and nitration data from all Sequence IIIH precision matrix tests, and all oil samples (i.e. 80 hours, 90 hours...) to the Sequence IIIH Task Force and the industry statisticians group.

Karin-we looked at hours to PVIS in the spring, but there was not a model that fit. It may not be as easy to take the same methodology as the diesel because the specter is different. We also need to make sure the processes are standardized at the labs. Bob C. informed the group that the T13 looks at the EOT oxidation and they did increase the sample frequency at the end of these to make sure they are seeing the correct curve. Pat Lang mentioned that we need to look at the nitration as well as oxidation because it is a pretty good predictor on the IIIG as it will change about 24 hours before oxidation.

Michael Conrad wants to caution about not accepting the test if we do not show any additional data that can tighten precision because we are only trying to replace the IIIG and this has shown relatively the same precision as the IIIG. Ron R. and Teri K. replied that they do not want bad oils passing and good oils failing.

Action Item 2- Sequence IIIH Task Force, along with the industry statisticians group, to evaluate all alternate suggestions for possible replacement for PVIS as the Sequence IIIH oxidation pass/fail parameter. Suggestions include hours to a certain PVIS value, hours to a certain FTIR oxidation and/or nitration value, including both peak height and area under the curve data, an FTIR area under the curve oxidation and/or nitration limit and an FTIR peak height oxidation and/or nitration limit.

Action Item 3- At some point, yet to be determined, the precision matrix labs to provide the FTIR spectra curves to a single lab, yet to be determined, to interpret all FTIR spectra curves the same for peak height and area under the curve.

Action Item 4- A sub-group of the Sequence IIIH Task Force, led by Kevin OMalley to closely evaluate <u>all</u> data from the precision matrix tests which produced influential observations to see if anything can be learned about influences on the test results.

CPD Report

Jason Bowden from OH Technologies, Inc presented the CPD Report **(Attachment 7)** and commented that the wrist pin supply is at approximately 150 each engine sets. The labs should be retaining this inventory.

TMC Report

Rich Grundza from Test Monitoring Center discussed the TMC Report for the prior period and reported that the IIIF has successfully referenced Run 7 & 8 rings in two labs. Pat Lang asked if there are any trends with the higher runs. Rich commented that there is not enough data to draw any conclusions.

Extending specification for cylinder head reuse:

Addison Schweitzer provided a presentation (Attachment 8) with regards to extending the life of the cylinder heads by widening the specifications to obtain additional runs. Intertek recommendation to gain additional uses on the head, increase tolerance for recession from .005" to .010", allow different stones to be used as well. Modify rebuild manual sections shown in the presentation. E&E was able to remove the Stellite seat material without heat and is able to grind these surfaces. The CPD would handle the grinding of this material. Pat Lang commented that he does not agree with lab grinding seat as they have never done this. He would only recommend that a CPD conduct this. Bruce Matthews is also opposed to having labs grind heads.

A discussion with regards to the injectors also occurred and an action item was formed.

Action Item 5- Afton (Ed Altman) to document a cleaning procedure for the Sequence IIIF/G fuel injectors, which will be reviewed and added to the Sequence IIIF/G engine assembly manuals.

With regards to the cylinder heads, it was determined that further work would need to be required before any motions could be made and approved. Dave Glaenzer would like to determine why we selected .005" as the maximum. Sid Clark stated there was a concern with the combustion chamber volume and you will change the valve stem tip clearance. You would account for the spring load with the shimming, but this would change the valve stem clearance.

Addison commented that the valve stems used in this effort are .010" oversize inserts, but it is not Stellite material. Robert Stockwell recommends that we just increase the valve recession limit at this time before we start replacing seats.

Bruce Matthews commented that there are enough heads to support the testing for GF5, but they are not necessarily at the independent labs. We may have to look at a redistribution of heads.

Action Item 6- Form a Sequence IIIF/G Cylinder Head Reuse Task Force, chaired by Addison Schweitzer.

Action Item 7- Labs to start capturing valve seat width data on Sequence IIIF/G engine builds, using a measurement procedure defined by the Sequence IIIF/G Cylinder Head Reuse Task Force.

Action Item 8- Once data is available, the Sequence IIIF/G Cylinder Head Reuse Task Force will analyze the valve seat width data and make recommendations to the Sequence III Surveillance Panel on revisions to the Sequence IIIF/G engine assembly manuals to allow for additional runs to be obtained on the Stellite seat cylinder heads (P/N 24502260S).

Discussion on use of Sequence IIIH test to replace IIIF & IIIG tests for current and prior categories:

There was limited discussion with regards to this topic, based on the discussion with regards to the IIIH precision matrix data that occurred earlier. There is a presentation showing the Seq. IIIG and IIIH oil discrimination that was also provided to the AOAP (Attachment 9)

Sequence IIIG piston ring chamfers

An additional agenda item was added to the agenda at this time. George Szappanos provided a presentation with regards to piston ring chamfers (Attachment 10). George mentioned during his presentation that Lubrizol began measuring piston ring chamfers after they noticed variability with the way they were gapping lab gapped IIIH rings during development of the IIIH. The presentation summarizes observations made at Lubrizol with regards to chamfers on the gap and also a test that was run using a ring package not used in Seq. III testing.

The group inquired as to whether any blowby data was collected and if it would be presented.

Jason Bowden recommended that, in the future, George contact the supplier of this material immediately when there are any questions relating to the products they supply, so that the supplier can help answer any questions they may have prior to the Surveillance Panel meeting.

Jason Bowden also commented that all rings supplied throughout the life of the Seq. III have been manufactured under print tolerances for machining the gap edge due to burs or chips that may occur from the gapping process. These are well established

manufacturing tolerances and practices. There is a maximum allowable tolerance to break the gap edge.

Jason Bowden offered to have sample material from the CPD inventory inspected and confirm that the material meets print. He also offered to determine if tolerances can be tightened on the Seq. IIIF and IIIG material.

Action Item 9- OH Technologies will inspect their inventory of Sequence IIIF/G/H piston rings to insure that the ring chamfers are within the current specifications/tolerances.

Action Item 10- OH Technologies will review the ring chamfer specifications/tolerances with their suppliers of the Sequence IIIF/G/H piston rings to see if the specifications/tolerances can be tightened.

The Panel did not review the Scope and Objectives. Motion and Action Items were reviewed. (Attachment 11)

Next Meeting will be a conference call the week of November 16th.

Meeting Adjourned

Sequence III Surveillance Panel

October 29, 2015 09:00 EDT Southfield, MI Call-in Number is: (712) 432-0927 Participant Passcode: 976140

<u>Agenda</u>

1.0) Attendance

1.1) Any change to voting member status?

2.0) Chairman's Comments

There have been a few items resolved by eballot since our last meeting.

Sequence IIIF TCR form change has been approved.

Sequence IIIGB LTMS has been updated.

Sequence IIIF/IIIG Build manual has been updated for size 7 & 8 pistons/rings. Alternate chemical for use in Ultra-Sonic parts cleaner approved.

3.0) Approval of minutes

3.1) 06/02/2015, San Antonio, TX. 08/24/2015 Teleconference

4.0) Action Item Review

4.1) 06/24, DLG to contact Thom Smith of PCEOCP to notify him that Karin Haumann is Seq. III SP contact for IIIH equivalency determinations. <u>Done.</u> 06/16/2015.

4.2) 06/24, DLG to contact PCEOCP chair and CLOG for input on what is required to show equivalency. <u>Done</u>. 06/16/2015. New business agenda item.

4.3) GM Performance to provide an update on the availability of non-modified heads in inventory. Additionally, they will try to determine if they will be able to install new seats in used heads.

4.4) DLG to report to AOAP when each lab expects hardware to run out. <u>Done</u>. 06/16/2015.

5.0) Old Business

5.1) Equivalency of IIIF/IIIG results when using size 7 & 8 pistons/rings as compared to all other sizes. Sizes 9 & 10 have been approved for use in IIIF/IIIG. <u>Stats Group</u>.

5.2) Part # 17120601 fuel injectors for Sequence IIIF/IIIG tests. <u>Matthews</u>.

5.3) Review of remaining critical hardware for Sequence III tests. <u>Glaenzer.</u>

6.0) New Business

6.1) Update on IIIH Precision Matrix. Haumann.

6.2) CPD Report <u>OH Technologies.</u>

6.3) TMC Report <u>Grundza.</u>

6.4) Extending specification for cylinder head re-use. Schweitzer.

6.5) Discussion on use of Sequence IIIH test to replace IIIF & IIIG tests for current and prior categories. <u>All.</u>

6.6) Update on GMOD test. Matthews.

6.7) IIIG Piston Ring Chamfers. <u>Szapponos.</u>

7.0) Review Scope and Objectives

7.1) <u>All</u>

8.0) Next Meeting

8.1) TBD

9.0) Meeting Adjourned

SOUTHFIEL D, MICH, ASTM Sequence III Surveillance Panel (22 Voting members)

Attachment 2

date: 10/29/15

Phone/Fax/Email Name/Address Signature 804-788-5279 Voting Member Present Ed Altman Afton Chemical Corporation 804-788-6358 500 Spring Street ed.altman@aftonchemical.com Richmond, VA 23219 USA Jeff Betz jeff.betz@fcagroup.com Voting Member Present **Chrysler Mopar Parts** USA Jason Bowden 440-354-7007 Voting Member Present OH Technologies, Inc. 440-354-7080 jhbowden@ohtech.com 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA Present Represented by Amol SAVANT Timothy L. Caudill Voting Member 606-329-1960 x5708 Ashland Oil Inc. 606-329-2044 22nd & Front Streets tlcaudill@ashland.com Ashland, KY 41101 USA **Richard Grundza** 412-365-1031 Voting Member Prese **ASTM Test Monitoring Center** 412-365-1047 6555 Penn Avenue reg@astmtmc.cmu.edu Pittsburgh, PA 15206 USA Jeff Hsu, PE j.hsu@shell.com Voting Member Present Shell Technology Center 3333 Hwy. 6 South, Mail Drop L107C Houston, TX 77082 Tracey King 947-517-4107 Voting Member Present Haltermann Solutions tking@Jhaltermann.com MI USA Teri Kowalski 734-995-4032 Voting Member Present Toyota Motor North America, Inc. 734-995-9049 1555 Woodridge teri.kowalski@tema.toyota.com Ann Arbor, MI 48105 USA 210-522-2820 Voting Member Patrick Lang Presen

Page 1 of 8

3/10/15

ASTM Sequence III Surveillance Panel (22 Voting members)			date:	
Name/Address	Phone/Fax/Email	anter a martin de la companya de la	Signature	
Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-684-7523 plang@swri.edu			
CHANGED (Charlie Leverett) Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	To ADDISON SCHW 210-647-9422 210-523-4607 charlie.leverett@intertek.com	ELTZER Voting Member	Present	
Bruce Matthews GM Powertrain Mail Code 483-730-472 823 Jocyln Avenue Pontiac, MI 48340 USA	248-830-9197 248-857-4441 <u>bruce.matthews@gm.com</u> Test Sponsor Representative	Voting Member	Present	
David Tsui BP Castrol Lubricants USA 1500 Valley Road Wayne, NJ 07470 USA	973-305-2337 David.Tsui@bp.com	Voting Member	Present	
Mark Mosher ExxonMobil Technology Co. Billingsport Road Paulsboro, NJ 08066 USA	856-224-2132 856-224-3628 <u>mark.r.mosher@exxonmobil.co</u> A Memher Chan	0	Present MKUM	
Andrew Ritchie Infineum 1900 East Linden Avenue P.O. Box 735 Linden, NJ 07036 USA	908-474-2097 908-474-3637 <u>Andrew.Ritchie@Infineum.com</u>	Voting Member	Present	
Ron Romano Ford Motor Company Diagnostic Service Center II Room 410. 1800 Fairlane Drive	313-845-4068 313-32-38042 <u>rromano@ford.com</u>	Voting Member	Present	

Page 2 of 8

3/10/15

ASTM Sequence III Surveillance Panel (22 Voting members)			date:
Name/Address	Phone/Fax/Email		Signature
Allen Park, Ml 48101 USA			
Greg Shank Volvo	301-790-5817 greg.shank@volvo.com	Voting Member	Present
Kaustav Sinha, Ph.D. Chevron Oronite Co., LLC 4800 Fournace Place Bellaire, TX 77401 USA	713-432-6642 713-432-3330 <u>LFNQ@chevron.com</u>	Voting Member	Present_4_S
Thomas Smith Valvoline P.O. Box 14000 Lexington, KY 40512-1400 USA	859-357-2766 859-357-7084 <u>trsmith@ashland.com</u> PCEOCP Chair	Voting Member	Present
Scott Stap Chevrolet Performance	<u>scott.stap@tgidirect.com</u>	Voting Member	Present
Mark Sutherland Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-867-8357 <u>mrsutherland@tei-net.com</u>	Voting Member	Present
George Szappanos The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2352 440-347-4096 greg.seman@lubrizol.com	Voting Member	Present_
Haiying Tang Chrysler LLC	248-512-0593 <u>ht146@chrysler.com</u>	Voting Member	Present

١.

ASTM Sequence III Surveillance Panel (22 Voting members)			
Name/Address	Phone/Fax/Email		Signature
Ricardo Affinito Chevron Oronite Co. LLC	affinito@chevron.com	Non-Voting Member	Present
Art Andrews ExxonMobil Products Research	856-224-3013	Non-Voting Member	Present
600 Billingsport Rd. Paulsboro, NJ 08066	arthur.t.andrews@exxonmobil	<u>.com</u>	
USA Zack Dishon Dan Lanetot			Da J. H
Zack Bishop Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-877-0223 210-690-1959 zbishop@tei-net.com	Non-Voting Member	Present Pando
Doyle Boese	908-474-3176	Non-Voting Member	Present A. A. Sola
Infineum 1900 E. Linden Avenue Linden, NJ 07036 USA	908-474-3637 doyle.boese@infineum.com	Non Voting Monison	
Adam Bowden	440-354-7007	Non-Voting Member	Present
OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7080 adbowden@ohtech.com		
Dwight H. Bowden	440-354-7007	Non-Voting Member	Present
OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7080 <u>dhbowden@ohtech.com</u>		
Matt Bowden OH Technologies, Inc.	440-354-7007 440-354-7080	Non-Voting Member	Present
9300 Progress Parkway	mjbowden@ohtech.com		

:>

ASTM Sequence III Survei	llance Panel (22 Voting me	embers)	date:
Name/Address	Phone/Fax/Email		Signature
P.O. Box 5039 Mentor, OH 44061-5039 USA			
Jerome A. Brys	440 347-2631	Non-Voting Member	Present
Lubrizol Corp. 29400 Lakeland Blvd. Wickliffe, Ohio 44092 USA	jerome.brys@lubrizol.com		
Bill Buscher III Southwest Research Institute 6220 Culebra Road P.O. Box 28519	210-522-6802 210-684-7523 william.buscher@swri.org	Non-Voting Member	Present
San Antonio, TX 78228	210-240-8990 william.buschere	testek.com	
USA AR			All
Bob Campbell Afton Chemical Corporation 500 Spring Street Richmond, VA 23219 USA	804-788-5340 804-788-6358 <u>bob.campbell@aftonchemical.</u>	Non-Voting Member <u>com</u>	Present
Chris Castanien	Chris.Castanien@gmail.com	Non-Voting Member	Present
Martin Chadwick Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-706-1543 210-684-6074 <u>martin.chadwick@intertek.com</u>	Non-Voting Member	Present
Jeff Clark ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1032 412-365-1047 j <u>ac@atc-erc.org</u> Sequence III Secretary	Non-Voting Member	Present
Sid Clark Southwest Research 50481 Peggy Lane Chesterfield, MI 48047 USA	586-873-1255 sidney.I.clark@swri.org	Non-Voting Member	Present Sich
J. Michael Conrad, II	440-347-4594	Non-Voting Member	Present

3/10/15

ASTM Sequence III Surveillance Panel (22 Voting members)

.

Name/Address	Phone/Fax/Email		Signature
29400 Lakeland Boulevard Wickliffe, OH 44902-2298 USA	Michael.conrad@lubrizol.com		
Todd Dvorak Afton Chemical Corporation P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788- 6367 804-788- 6388 <u>todd.dvorak@aftonchemical.co</u>	Non-Voting Member <u>n</u>	Present
Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1030 412-365-1047 fmf@astmtmc.cmu.edu	Non-Voting Member	Present
Gordon R. Farnsworth Infineum RR # 5 Box 211 Montrose, PA 18801 USA	570-934-2776 570-934-0141 gordon.farnsworth@infineum.co	Non-Voting Member om	Present
Joe Franklin Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-523-4671 210-523-4607 joe.franklin@intertek.com	Non-Voting Member	Present
David L. Glaenzer Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5214 804-788-6358 <u>dave.glaenzer@aftonchemical.c</u> Surveillance Panel Chairman	Non-Voting Member	Present
Karin E. Haumann Southwest Research Institute Fuels & Lubricants Res. Div.	210-522-6351 210-522-6858 <u>karin.haumann@swri.org</u>	Non-Voting Member	Present
Walter Lerche GM M/C 482-A30-C71 100 Renaissance Center Detroit, MI 48265 USA	313-667-1918 313-667-4095 <u>walt.lerche@gm.com</u>	Non-Voting Member	Present

ASTM Sequence III Surveillance Panel (22 Voting members)

Name/Address	Phone/Fax/Email	an a	Signature
Josephine G. Martinez Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-5563 510-242-3173 jogm@chevrontexaco.com	Non-Voting Member	Present
Mike McMillan	mmcmillan123@comcast.net	Non-Voting Member	Present_M
Bob Olree 5388 Hill 23 Drive	248-689-3078	Non-Voting Member	Present
Flint, MI 48507 USA	olree@netzero.net		
Kevin O'Malley Lubrizol Corp.	kevin.omalley@lubrizol.com	Non-Voting Member	Present_XMM_0UMp
Christian Porter Afton Chemical Corp. 500 Spring Street Richmond, VA 23219 USA	804-788-5837 804-788-6358 <u>christian.porter@aftonchemical</u>	Non-Voting Member .com	Present
Phil Rabbat BASF Corporation 500 White Plains Road Tarrytown, NY 10591-9005 USA	914-785-2217 914-785-3681 phil.rabbat@basf.com	Non-Voting Member	Present
Allison Rajakumar The Lubrizol Corporation Drop 152A 29400 Lakeland Blvd. Wickliffe, OH 44092 USA	440-347-4679 440-347-2014 <u>Allison.Rajakumar@Lubrizol.co</u>	Non-Voting Member <u>m</u>	Present
Scott Rajala Idemitsu Lubricants America Corp	srajala@ilacorp.com o.	Non-Voting Member	Present
Jim Rutherford Chevron Oronite Company LLC 100 Chevron Way	510-242-3410 510-242-3173 jaru@chevrontexaco.com	Non-Voting Member	Present

ASTM Sequence III Surveillance Panel (22 Voting members)

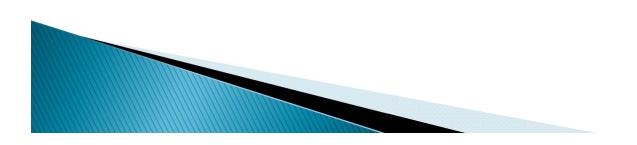
Name/Address	Phone/Fax/Email	Signature
Richmond, CA 94802 USA		
Amol Savant Ashland Engine Lab 121 22 nd St. Ashland, KY 41101 USA	606-320-1960 x5604 acsavant@ashland.com	Non-Voting Member Present Afferrant. Carrying Proxy for Voting Member
Addison Schweitzer Intertek AR		Non-Voting Member Present
Philip R. Scinto The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2161 440-347-9031 prs@lubrizol.com	Non-Voting Member Present
Don Smolenski GM	248-255-7892 donald.j.smolenski@gm.com	Non-Voting Member Present
Ben O. Weber Consultant 9902 Cominsky Park San Antonio, TX 78250 USA	210-241-5313 <u>bweber1@satx.rr.com</u> Sub-Committee D02.B01 Cha	Non-Voting Member Present air Please know Bon Weber (P. Zay)
Tom Wingfield Chevron Phillips Chemical Co. USA	wingftm@cpchem.com	Non-Voting Member Present

10/29/15 AFFILIATION

NAME

EMAIL

	Mike Ranay	GIM	michael. p. raney Ogm.com
	Ryon Rieth	Infineum	Ryon, Rigth @ Infinerra, com
· · · · · · · · · · · · · · · · · · ·	CLIFF SALVESEN	Exxon MOBIL	clifford. F. Salveson Commobil.
	AL LOPEZ	IAR	al. lopez @ intertex.cm
	Jun Linden	TOYOTA	LINDENSIM@JLINDENCONSULTING.COM
	Marty Heimrich	SWRI	mheimrich @ swri, org
	AWKIT CHAUDHRY	SWRI	ANKITCHAUDHRY @ SWRI.ORG
1. matrix 1 arts	Travis Kostan	SWRI	travis. Kostan @ suri.org
	FOBER STOCKWELL	9KONITE	RSTORCHEURON, Cam
	Bolo Olroe	Inverte k	Olree Euretaeve, net
	CHRSS TASLOR	VFRACINGFDE	ELG CHRISOTAYLOR ONPRACINGFUELS, COM
			a a company provide state of the
			<u>, , , , , , , , , , , , , , , , , , , </u>
		- · · ·	
	· · · · · · · · · · · · · · · ·		na ana ang ang ang ang ang ang ang ang a
			1. Let a state a state of a state of the
			<u>, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>
	· · · · · · · · · · · · · · · · ·		
and and a second second			


Attachment 3

Brulin US Solution Sequence III 815 GD and 815 QR-DF

Overview

- Brulin donated US Solutions for a Demonstration at IAR on 8/19/2015.
- TierraTech MOT-500NS Concentration:
 - 815 GD (10 gallons)
 - 815 QR–DF (10 gallons)
 - Approximately 12.5% concentration
- IAR Cleaned an EOT IIIG Engine and Disassembled a GMOD Shakedown Engine for the Demonstration of the Brulin US Solutions.

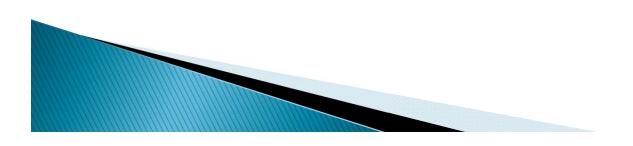
IIIG Hardware and Clean Times

- Cylinder Heads w/ Valves Installed
 - 30 minutes
- Engine Block
 - 60 minutes

Cylinder Heads Before

Cylinder Heads After 30 Mins

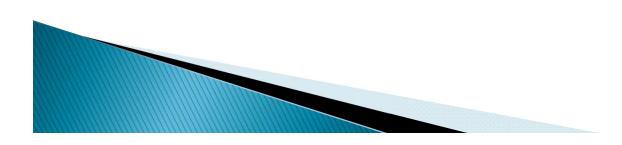
Engine Block Before


Engine Block After 60 Mins

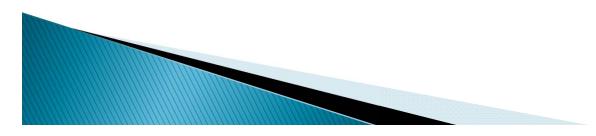
GMOD Hardware and Clean Times

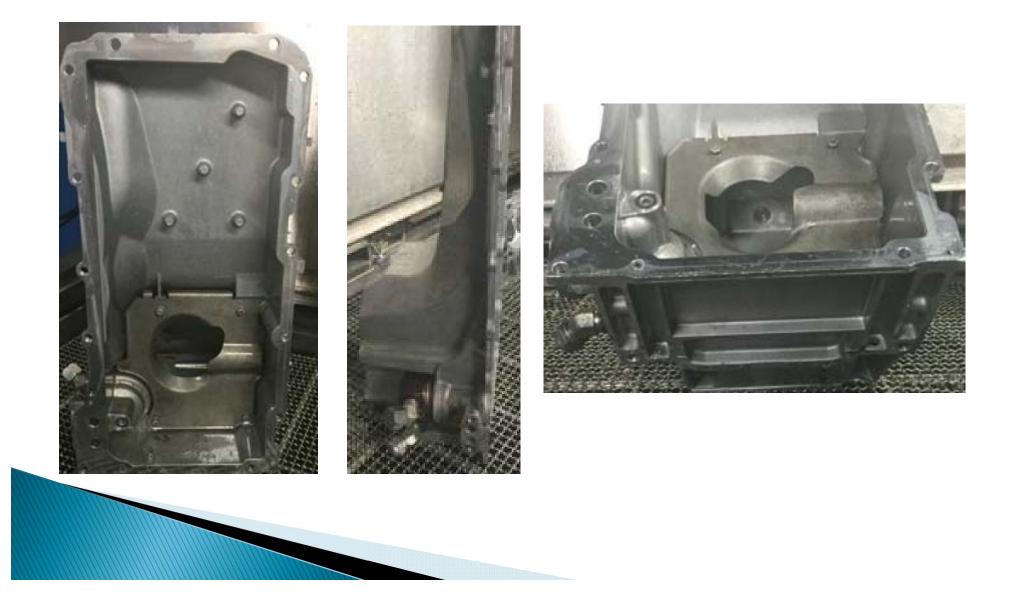
- Cylinder Heads w/ Valves Installed
 - 15 minutes
 - 30 minutes
- Oil Pan
 - 15 minutes
 - 30 minutes
- Engine Block
 - 30 minutes

Cylinder Heads Before


Cylinder Heads After 15 Mins

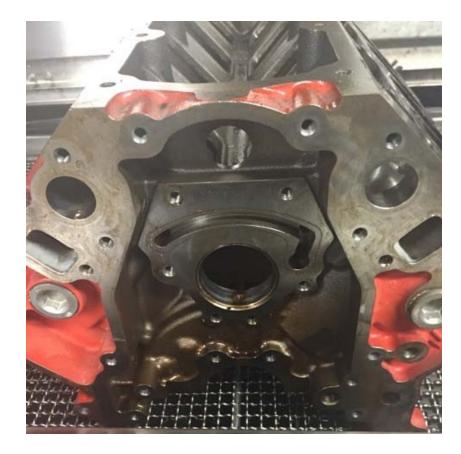
Cylinder Heads After 30 Mins




Oil Pan Before



Oil Pan After 15 Mins




Oil Pan After 30 Mins

Engine Block Before



Engine Block Before

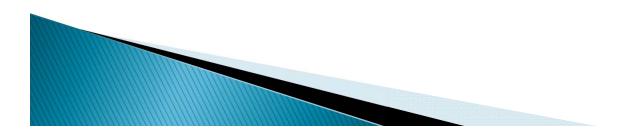
Engine Block After 30 Mins

Engine Block After 30 Mins



Conclusions

- Brulin US Solutions 815 GD and 815 QR-DF
 Clean Equivalent or Better than TierraTech US
 7 and US B Solutions.
- Post Cleaning One Minute Hot Water Spray and 50/50 EF411 and Solvent Spray will not be altered in the Current Procedure.
- Brulin US Solutions are Manufactured Domestically here in the U.S. and are Available Throughout the U.S. at Local Vendors.


Recommendation

- MOTION:
 - IAR recommends that a 50/50 Brulin US Solution of 815 GD and 815 QR-DF be utilized in a 12.5% concentration and allowed as an alternate ultrasonic solution for Sequence III non-reference testing provided that the laboratory has conducted a successful reference oil test.

Questions

- Addison J. Schweitzer
 - Office: (210)-706-1586
 - Mobile: (210)-215-1370

Estimation of Remaining Sequence III Parts

Sequence IIIF & Sequence IIIG

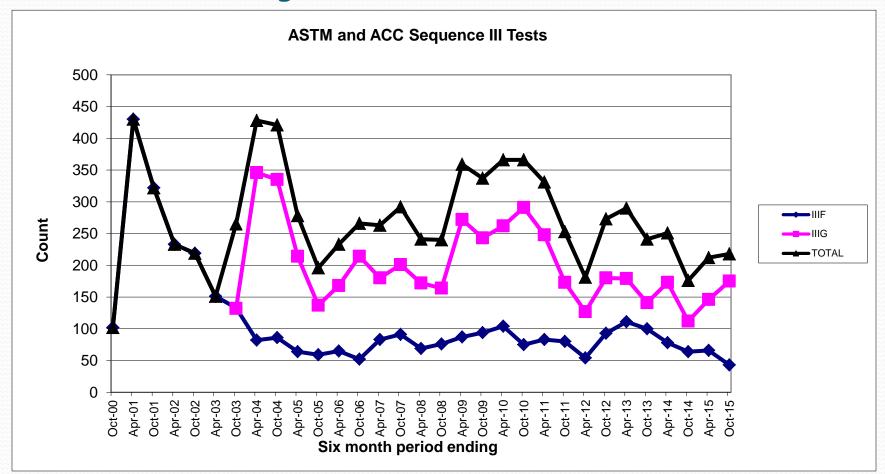
David L. Glaenzer Sequence III Surveillance Panel Chairman October 1, 2015

Laboratories and Chevy Performance Surveyed

- As of October 1, 2015
 - Enough <u>Connecting Rods</u> for 263 tests
 - Chevy Performance ordering 1200 (200 runs)
 - Enough <u>Crankshafts</u> for 294 tests
 - Based on 6 uses per unit; Labs are getting more than six
 - Does not account for "in use" material
 - May become a problem area
 - Enough <u>Cylinder Blocks</u> for 776 tests
 - Includes use for runs 9&10
 - Enough <u>Cylinder Heads</u> for 439 tests
 - Heads that are unused or may be used for additional runs

Estimation of Usage

- April 1, 2015 through September 30, 2015
 - 38 Sequence IIIF tests completed with ACC registration
 - 164 Sequence IIIG tests completed with ACC registration
 - 202 Total ACC tests
 - 5 Sequence IIIF reference oil calibration tests
 - 11 Sequence IIIG reference oil calibration tests
 - 16 Total Calibration tests
 - Six month period
 - Annualized to 436 tests per year


When Will We Run Out of Parts??

- At Current usage rate, 8 to 10 months (August, 2016)
- If usage continues to diminish, later
- Test labs have started to run size 9 & 10 pistons/rings
- Additional supply of connecting rods being secured by Chevy Performance

The Survey Numbers

On or about October 1, 2015	Sum	Runs			
			Rod Runs		
#12593374 connecting rods (unused)	1575	263	263		
#24502168 crankshaft (unused)	49	294	Crank Runs		
			294		
#24502286 cylinder block NEVER UNUSED	17	170			
#24502286 cylinder block USED W/ 1 RUN	0	0			
#24502286 cylinder block USED W/ 2 RUNS	0	0			
#24502286 cylinder block USED W/ 3 RUNS	3	21			
#24502286 cylinder block USED W/ 4 RUNS	2	12			
#24502286 cylinder block USED W/ 5 RUNS	2	10			
#24502286 cylinder block USED W/ 6 RUNS	58	232			
#24502286 cylinder block USED W/ 7 RUNS	51	153			
#24502286 cylinder block USED W/ 8 RUNS	86	172			
#24502286 cylinder block USED W/ 9 RUNS	3	3	Block Runs		
			773		
#24502260B cylinder heads	0				
#24502260S cylinder heads NEVER USED	370	370			
#24502260S cylinder heads USED ONCE, still serviceable	20	10			
#24502260S cylinder heads USED TWICE, still serviceable	102	51			
#24502260S cylinder heads USED THRICE, still serviceable	16	8	Head Runs		
			439		
	.Assumes two uses. May be more				
		Assumes one more use possible, may be more			
cylinder heads USED TWICE, still serviceable	Assumes o	ne more use po	ssible, may be n	nore	

Estimation of Usage

Usag	e N	lum	bers

6 Month		IIIF			IIIG			GRAND
Ending	ACC	REF	TOTAL	ACC	REF	TOTAL	TOTAL	TOTAL
Oct-oo	71	31	102				102	102
Apr-01	366	64	430				430	532
Oct-01	275	47	322				322	854
Apr-02	202	31	233				233	1087
Oct-02	191	28	219				219	1306
Apr-03	112	39	151				151	1457
Oct-03	105	28	133	75	57	132	265	1722
Apr-04	70	12	82	312	34	346	428	2150
Oct-04	76	10	86	308	27	335	421	2571
Apr-05	54	10	64	195	19	214	278	2849
Oct-05	43	16	59	119	18	137	196	3045
Apr-o6	56	9	65	147	21	168	233	3278
Oct-o6	44	8	52	190	24	214	266	3544
Apr-07	68	15	83	165	15	180	263	3807
Oct-07	80	11	91	174	27	201	292	4099
Apr-o8	61	8	69	155	17	172	241	4340
Oct-o8	65	11	76	145	19	164	240	4580
Apr-09	79	8	87	253	19	272	359	4939
Oct-09	81	13	94	220	23	243	337	5276
Apr-10	104	15	104	262	27	262	366	5642
Oct-10	75	9	75	291	27	291	366	6008
Apr-11	83	31	83	236	24	248	331	6339
Oct-11	80	12	80	175	23	173	253	6592
Apr-12	56	9	54	130	16	127	181	6773
Oct-12	77	16	93	164	16	180	273	7046
Apr-13	88	23	111	158	21	179	290	7336
Oct-13	87	13	100	127	14	141	241	7577
Apr-14	66	12	78	154	19	173	251	7828
Oct-14	56	8	64	94	18	112	176	8004
Apr-15	57	9	66	132	14	146	212	8216
Oct-15	38	5	43	164	11	175	218	8434
	Period ends 03/3	31 & 09/30						

Attachment 5

IIIH Task Force Update to the Surveillance Panel

October 29, 2015

Matrix Update

- All but two tests have been reported to the TMC.
- The two outstanding tests are being rerun to ensure a more accurate data set.
- Both tests have completed, but are not included in this analysis.

	Lab-Stand	D-1	E-1	B-1	G-1	G-2	A-1	A-2
	1	434-2 106788-IIIH ✓	438-1 106784-IIIH Low MAP and Fuel Flow	438-1 106796-IIIH Oil Leak	436 106763-IIIH	436 106764-IIIH Low MAP & Erratic Fuel Flow	438-1 106774-IIIH	434-2 106778-IIIH
			438-1 106785-IIIH ✓	438-1 106797-IIIH ✓	✓ · ·	436 111422-IIIH	~	~
Run Order	2	434-2 106789-IIIH Loss of Oil Pressure	436 106782-IIIH Low MAP & Fuel Flow	436 106792-IIIH	438-1 106767-IIIH	434-2 107873-IIIH	438-1 107869-IIIH	438-1 107870-IIIH
8		434-2 106789A-IIIH ✓	436	~	~	~	~	\checkmark
	3	436	434-2	436	438-1	434-2	434-2	436
		106786-IIIH ✓	106781-IIIH ✓	106793-IIIH ✓	106768-IIIH ✓	110227-IIIH ✓	106779-IIIH ✓	106775-IIIH ✓
	4	438-1	434-2	434-2	434-2	438-1	436	436
		106791-IIIH ✓	106780-IIIH ✓	106795-IIIH ✓	110228-IIIH ✓	107872-IIIH ✓	106777-IIIH ✓	106776-IIIH ✓

Indicates operation task force has reviewed operational data and found the test to be operationally valid.

* Indicates operations task force is still discussing operational validity of test.

Test Reported

Test Development Objectives FCA

- The Chrysler test results show repeatability, reproducibility, and discrimination on PVIS and WPD. The precision matrix performed similarly to the prove-out matrix as expected.
- ☐ The Chrysler test meets the test development objectives:

Status	Criteria	Remark
Yes	Stand to stand repeatability	Demonstrated
Yes	Discrimination	Demonstrated
Yes	0W-16 viable	Demonstrated
Yes	Field Correlation	REO 2/3
Yes	Procedure and final hardware available and released	90 hours, 6 oz oil addition every 20 hours
Yes	Long term engine supply and readiness	3800 engines to last through 2022, other parts through CPD
Yes	Lab to lab reproducibility and prove-out matrix	2 independent labs and 2-3 dependent labs

Development of Chrysler Oxidation and Deposit Engine Oil Certification Test

✓ Include:

- \checkmark Borderline oils to identify shifts in test severity over time
- An oil that performs poorly on WPD to maintain test discrimination (438-1)
- An oil that performs poorly on pVis to maintain test discrimination (434-2)
- \checkmark An oil that performs well on both WPD and pVis (436)

- \checkmark 434-2 would discriminate on pVis as a failing oil
- ✓ 436 would perform well on both pVis and WPD
- ✓ 438-1 would discriminate on WPD as a failing oil

Trade-Offs:

- Potentially high variability on pVis for 438-1
- Potentially high variability on WPD for 434-2

On October 23, 2015 the IIIH Task Force voted on the following motion:

The Task Force as a technical group has vetted the precision matrix data reported to date, and determined the tests included are operationally valid. Based on the matrix data the test is capable of measuring PVis and WPD. We recommend to the Surveillance Panel that the matrix data be used to consider the test to be used as an ASTM standardized test.

The motion passed with 9 approves and 3 waives.

The Precision Matrix Stats Group has analysed the data to be reviewed by the Surveillance Panel.

The precision matrix data collected have met the objectives established by the selection of the reference oils.

The Task Force has fulfilled the goal of providing a test that is capable of measuring PVis and WPD while showing discrimination, repeatability and reproducibility.

A HUGE thank you to Jo Martinez and the entire stats group for an expedited analysis of the matrix data.

Attachment 6

Sequence IIIH **Precision Matrix Statistical Analysis** (Preliminary)

Statistics Group

October 26, 2015

reliminary

Statistics Group

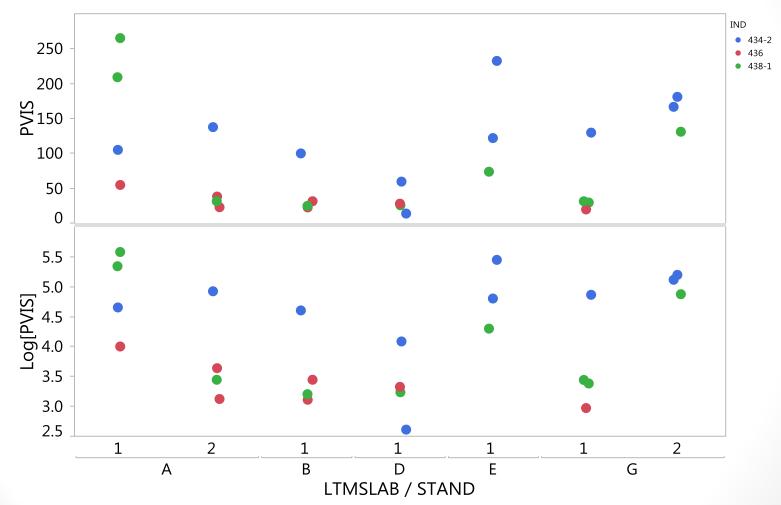
- Arthur Andrews, ExxonMobil
- Doyle Boese, Infineum
- Jo Martinez, Chevron Oronite
- Ricardo Affinito, Chevron Oronite
- Kevin O'Malley, Lubrizol
- Martin Chadwick, Intertek
- Richard Grundza, TMC
- Lisa Dingwell, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

IIIH Matrix Status: 26 out of 28 tests validated

	Lab-Stand	D-1	E-1	B-1	G-1	G-2	A-1	A-2
	1	434-2 106788-IIIH ✓	438-1 106784-IIIH Low MAP and Fuel Flow	438-1 106796-IIIH Oil Leak	436 106763-IIIH	436 106764-IIIH Low MAP & Erratic Fuel Flow	438-1 106774-IIIH	434-2 106778-IIIH
			438-1 106785-IIIH ✓	438-1 106797-IIIH ✓	 ✓ 	436 111422-IIIH	~	~
Run Order	2	434-2 106789-IIIH Loss of Oil Pressure	436 106782-IIIH Low MAP & Fuel Flow	436 106792-IIIH	438-1 106767-IIIH	434-2 107873-IIIH	438-1 107869-IIIH	438-1 107870-IIIH
8		434-2 106789A-IIIH ✓	436	~	~	~	~	~
	3	436	434-2	436	438-1	434-2	434-2	436
		106786-IIIH ✓	106781-IIIH ✓	106793-IIIH ✓	106768-IIIH ✓	110227-IIIH ✓	106779-IIIH ✓	106775-IIIH ✓
	4	438-1	434-2	434-2	434-2	438-1	436	436
		106791-IIIH ✓	106780-IIIH ✓	106795-IIIH ✓	110228-IIIH ✓	107872-IIIH ✓	106777-IIIH ✓	106776-IIIH ✓

✓ Indicates operation task force has reviewed operational data and found the test to be operationally valid.

* Indicates operations task force is still discussing operational validity of test.



Summary

	LnPVIS	WPD	LnMRV	Phos
Lab Difference	D < A, E	No significant difference	D < E, A, G	No significant difference
Stand(Lab) Difference	G1 <g2, a2<a1<="" td=""><td>No significant difference</td><td>A2 < A1</td><td>No significant difference</td></g2,>	No significant difference	A2 < A1	No significant difference
Oil Discrimination	436 < 434-2	436 > 438-1	436, 438-1 < 434-2	436 > 434-2, 438-1
Precision, s, RMSE	0.5500	0.48	0.4478	1.60

. 4

Percent Viscosity Increase n=26

reliminary

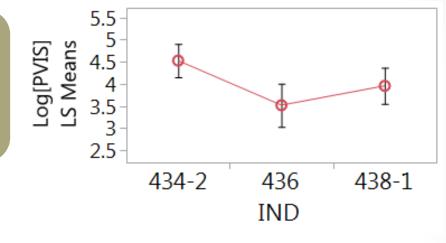
LnPVIS

reliminary

LnPVIS ANOVA

Summary of Fit			
RSquare	0.7475		
RSquare Adj	0.628676		
Root Mean Square Error	0.550034		
Mean of Response	4.104198		
Observations (or Sum Wgts)	26		

Analysis of Variance


		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	8	15.225695	1.90321	6.2908
Error	17	5.143141	0.30254	Prob > F
C. Total	25	20.368836		0.0007*

Effect Tests

		Sum of		
Source	DF	Squares	F Ratio	Prob > F
IND	2	3.5572927	5.8791	0.0115*
LTMSLAB	4	5.1937339	4.2918	0.0140*
LTMSAPP[LTMSLAB]	2	3.6832092	6.0872	0.0101*

LnPVIS Oil Discrimination

436 is significantly lower than 434-2

Oil1	Oil2	Difference	p-Value
434-2	436	1.0095	0.01
434-2	438-1	0.5708	0.10
438-1	436	0.4388	0.32

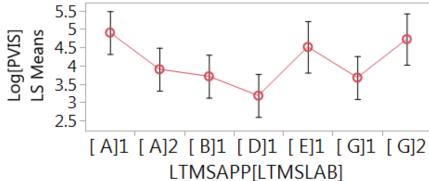
Oil	LnPVIS LS Mean	PVIS LS Mean
434-2	4.5287	93
436	3.5192	34
438-1	3.9580	52

reliminary

LnPVIS Lab Difference

Lab D is significantly lower than Lab A

Lab D is significantly lower than Lab E


Lab1	Lab2	Difference	p-Value
E	D	1.3315	0.04
А	D	1.2218	0.02
G	D	1.0188	0.06
E	В	0.803	0.40
А	В	0.6933	0.29
В	D	0.5285	0.67
G	В	0.4903	0.66
E	G	0.3127	0.92
А	G	0.2031	0.96
E	А	0.1096	1.00

2	2.5 -			1				
		A	١.	В	D	E	I	G
				Ľ	TMSLA	В		
	Lab		LnP\	/IS LS	Mean	PVIS	LS I	Mean
	А		4.4037			82		
	В		3.7103			41		
	D		3.1818			24		
	E		4.5133			91		
	G		4.2006			67		

LnPVIS Stand(Lab) Difference

Stand G1 is significantly lower than Stand G2

Stand A2 is significantly lower than Stand A1

Lab/Stand1	Lab/Stand2	Difference	p-Value
[G]2	[G]1	1.0511	0.03
[A]1	[A]2	1.0024	0.02

Lab/Stand	LnPVIS LS Mean	PVISIS Mean
[A]1	4.9049	135
[A]2	3.9025	50
[G]1	3.6751	39
[G]2	4.7262	113

reliminary

LnPVIS Precision

Model: Oil, Lab, Stand(Lab)

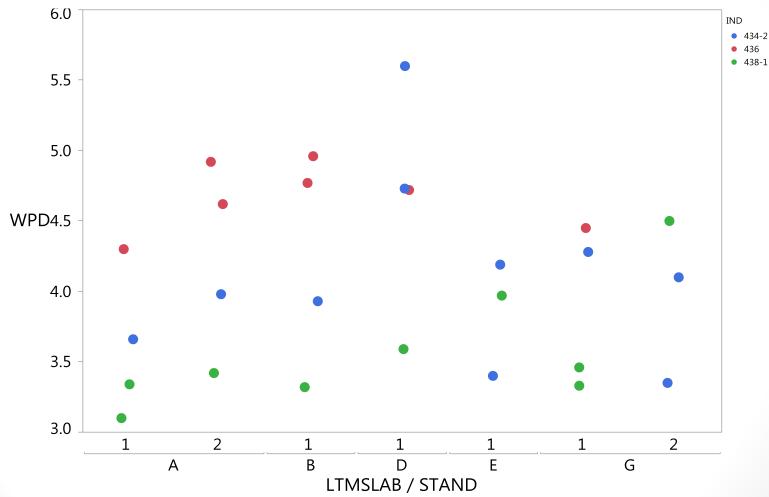
Model RMSE

- s = 0.5500
- IIIH Prove-out s=0.61
- IIIG Precision Matrix s=0.2919
- IIIG recent data s=0.54-0.63

Repeatability

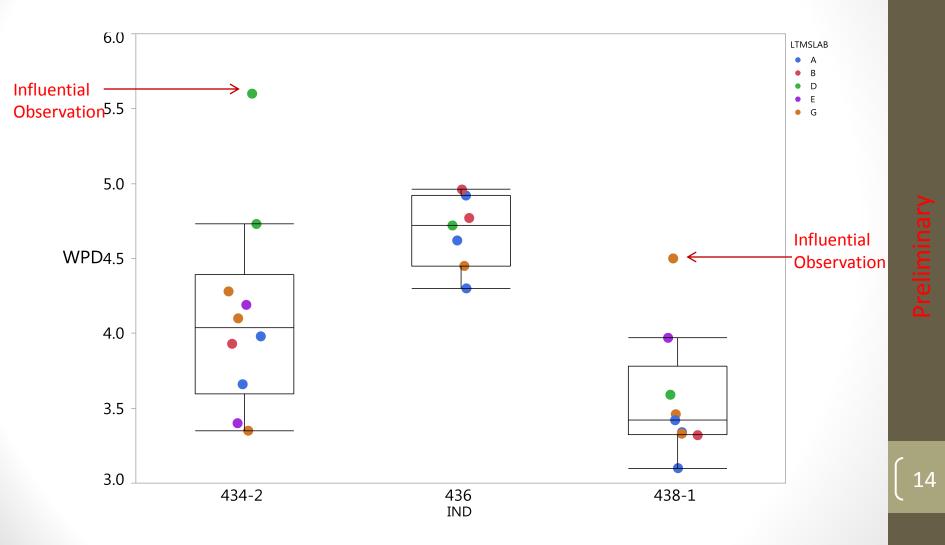
- s = 0.5500
- r = 1.5245

Reproducibility


- s = 0.7761
- R = 2.1512

PVIS Precision

Based upon the Seq. III pooled standard deviations (s_r) and ASTM's repeatability (r) definition for the maximum allowable difference between successive test results, there is no significant difference between a PVIS result¹ of 150% - 689% for the IIIH and 150% - 337% for the IIIG.


Note 1: A PVIS of 150% was arbitrarily selected in the calculations as the lower pass/fail limit.

Weighted Piston Deposit n=26

reliminar

WPD

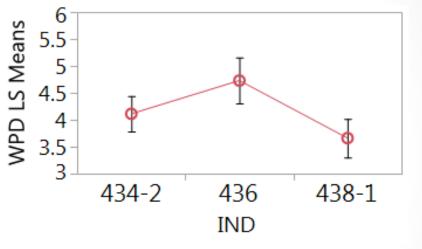
reliminary

WPD ANOVA

Summary of Fit		
RSquare	0.636043	
RSquare Adj	0.464769	
Root Mean Square Error	0.479261	
Mean of Response	4.076538	
Observations (or Sum Wgts)	26	

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	8	6.823846	0.852981	3.7136
Error	17	3.904743	0.229691	Prob > F
C. Total	25	10.728588		0.0110*

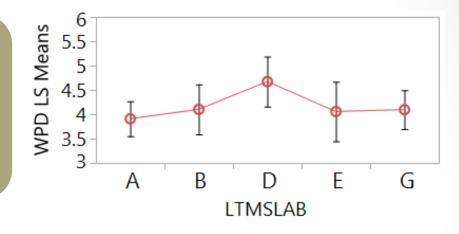

Effect Tests

	Sum of			
Source	DF	Squares	F Ratio	Prob > F
IND	2	4.0097905	8.7287	0.0025*
LTMSLAB	4	1.5619090	1.7000	0.1963
LTMSAPP[LTMSLAB]	2	0.3181248	0.6925	0.5139

. 15

WPD Oil Discrimination

436 is significantly higher than 438-1

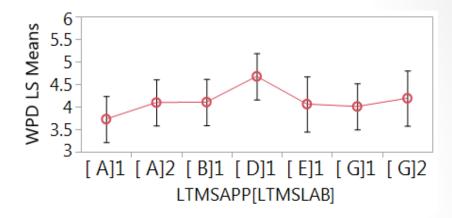

Oil1	Oil2	Difference	p-Value
436	438-1	1.07	0.00
436	434-2	0.62	0.07
434-2	438-1	0.45	0.15

Oil	WPD LS Mean
434-2	4.11
436	4.73
438-1	3.66

reliminary

WPD Lab Difference

No significant lab difference


Lab1	Lab2	Difference	p-Value
D	А	0.76	0.12
D	E	0.61	0.48
D	G	0.58	0.36
D	В	0.57	0.49
В	А	0.19	0.96
G	А	0.19	0.95
E	Α	0.15	0.99
В	E	0.05	1.00
G	E	0.04	1.00
В	G	0.01	1.00

Lab	WPD LS Mean
А	3.91
В	4.10
D	4.67
E	4.06
G	4.10

reliminary

WPD Stand(lab) Difference

No significant stand(lab) difference

Lab/Stand1	Lab/Stand2	Difference	p-Value
[A]2	[A]1	0.37	0.30
[G]2	[G]1	0.18	0.63

Lab/Stand	WPD LS Mean
[A]1	3.73
[A]2	4.09
[G]1	4.01
[G]2	4.19

reliminary

WPD Precision

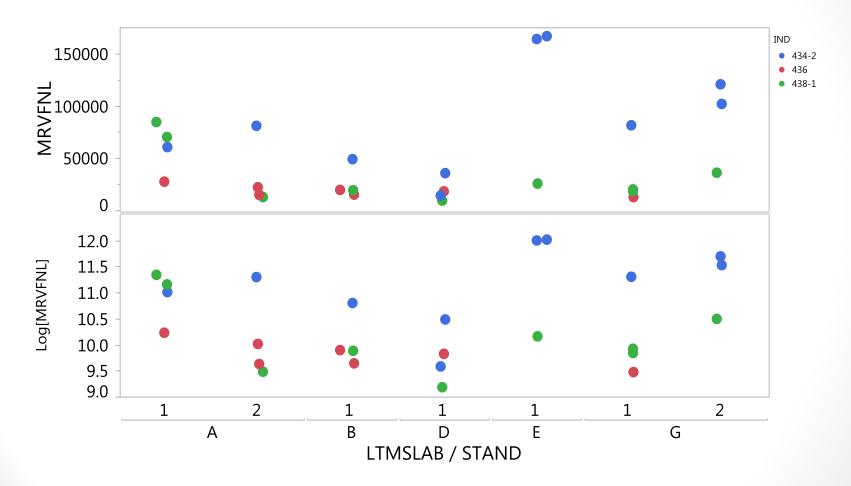
Model: Oil, Lab, Stand(Lab)

Model RMSE

- s = 0.48
- IIIH Prove-out s=0.40
- IIIG Precision Matrix s=0.60
- IIIG recent data s=0.39-0.43

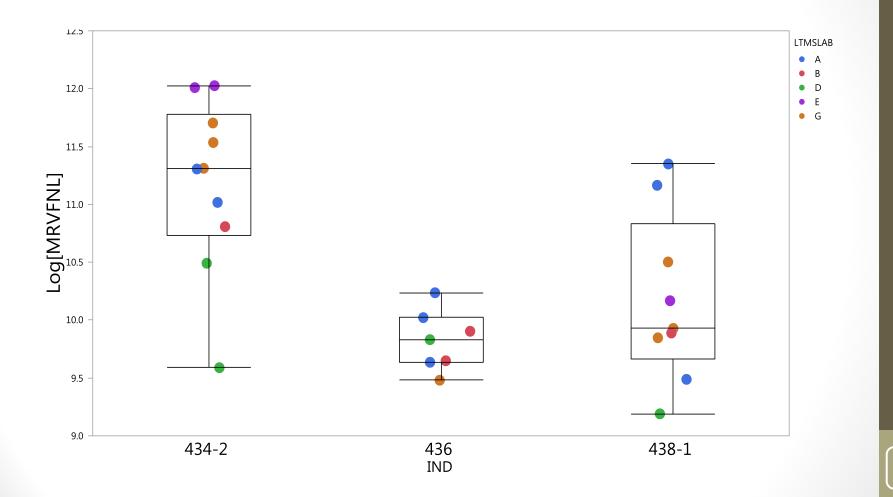
Repeatability

- s = 0.48
- r = 1.33


Reproducibility

- s = 0.50
- R = 1.39

WPD Precision


Based upon the Seq. III pooled standard deviations (s_r) and ASTM's repeatability (r) definition for the maximum allowable difference between successive test results, there is no significant difference between a WPD result¹ of 2.7 - 4.0 for the IIIH and 2.3 - 4.0 for the IIIG.

MRV Viscosity n=26

reliminary

LnMRV

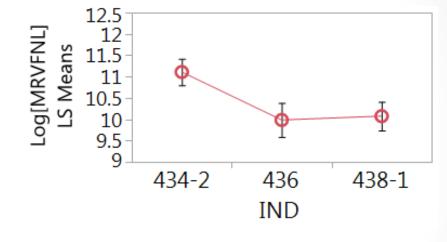
reliminary

LnMRV ANOVA

Summary of Fit		
RSquare	0.814225	
RSquare Adj	0.726802	
Root Mean Square Error 0.447787		
Mean of Response	10.46454	
Observations (or Sum Wgts)	26	

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	8	14.939972	1.86750	9.3136
Error	17	3.408722	0.20051	Prob > F
C. Total	25	18.348694		<.0001*


Effect Tests

	Sum of			
Source	DF	Squares	F Ratio	Prob > F
IND	2	6.1027395	15.2178	0.0002*
LTMSLAB	4	4.4179947	5.5084	0.0050*
LTMSAPP[LTMSLAB]	2	1.9212981	4.7910	0.0224*

LnMRV Oil Discrimination

436 is significantly lower than 434-2

438-1 is significantly lower than 434-2

Oil1	Oil2	Difference	p-Value
434-2	436	1.1239	0.00
434-2	438-1	1.0332	0.00
438-1	436	0.0907	0.92

Oil	LnMRV LS Mean	MRV LS Mean
434-2	11.1087	66749
436	9.9848	21694
438-1	10.0755	23754

reliminary

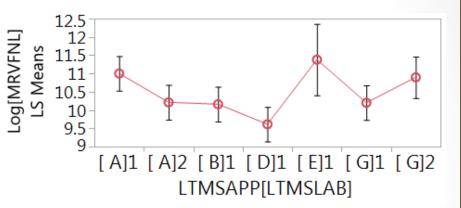
LnMRV Lab Difference

Lab D is significantly lower than Lab E

Lab D is significantly lower than Lab A

Lab D is significantly lower than Lab G

Lab1	Lab2	Difference	p-Value
E	D	1.4307	0.01
А	D	1.0216	0.01
G	D	0.9508	0.03
E	В	0.8629	0.17
В	D	0.5677	0.43
E	G	0.4799	0.56
А	В	0.4539	0.49
E	А	0.4091	0.70
G	В	0.3831	0.69
А	G	0.0708	1.00


Log[MRVFNL] LS Means	12.5 12- 11.5- 11- 10.5- 10- 9.5- 9	•				þ
	5	Α	В	D	Е	G
			Ľ	TMSLA	В	

Lab	LnMRV LS Mean	MRV LS Mean
А	10.6171	40827
В	10.1633	25934
D	9.5955	14698
E	11.0262	61464
G	10.5463	38036

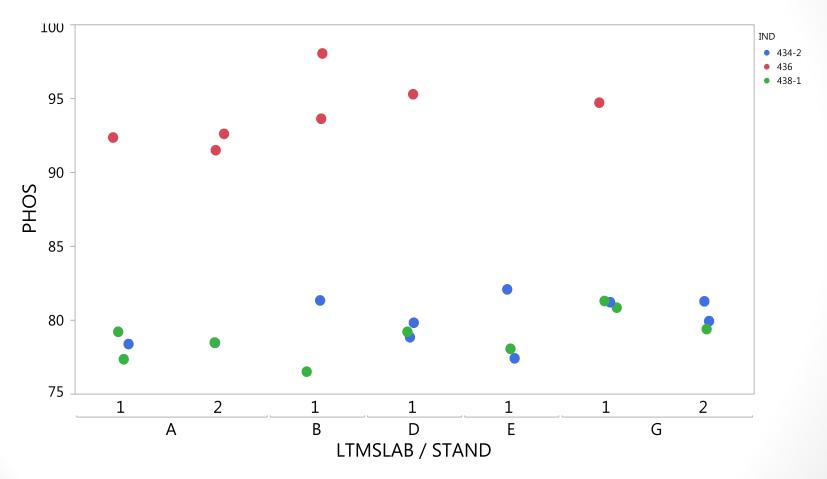
reliminary

LnMRV Stand(Lab) Difference

Stand A2 is significantly lower than Stand A1

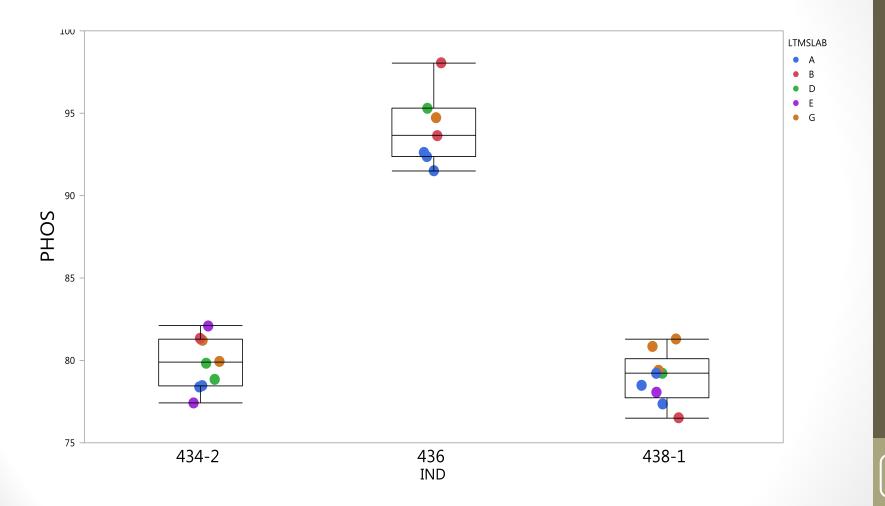
Lab/Stand1	Lab/Stand2	Difference	p-Value
[A]1	[A]2	0.8065	0.02
[G]2	[G]1	0.6518	0.08

Lab/Stand	LnMRV LS Mean	MRV LS Mean
[A]1	11.0204	61108
[A]2	10.2139	27280
[G]1	10.2204	27458
[G]2	10.8722	52691


reliminary

LnMRV Precision

Model: Oil, Lab, Stand(Lab)


Model RMSE	Repeatability	Reproducibility
• s = 0.4478	• s = 0.4385	• s = 0.6449
• No IIIGA s	• r = 1.2412	• R = 1.7876

Phosphorus Retention n=26

Prelimina

PHOS

Preliminary

PHOS ANOVA

Summary of Fit

RSquare	0.962598
RSquare Adj	0.944998
Root Mean Square Error	1.600934
Mean of Response	83.365
Observations (or Sum Wgts)	26

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	8	1121.3720	140.172	54.6907
Error	17	43.5708	2.563	Prob > F
C. Total	25	1164.9429		<.0001*

Effect Tests

	Sum of				
Source	DF	Squares	F Ratio	Prob > F	
IND	2	945.11881	184.3783	<.0001*	
LTMSLAB	4	23.88424	2.3297	0.0976	
LTMSAPP[LTMSLAB]	2	1.57303	0.3069	0.7397	

PHOS Oil Discrimination

100

95

90

85

80

75

434-2

PHOS LS Means

436 is significantly higher than 438-1

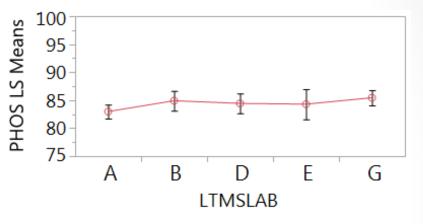
436 is significantly higher than 434-2

Oil1	Oil2	Difference	p-Value
436	438-1	15.33	0.00
436	434-2	14.38	0.00
434-2	438-1	0.95	0.45

Oil	PHOS LS Mear		
434-2	79.87		
436	94.25		
438-1	78.93		

436

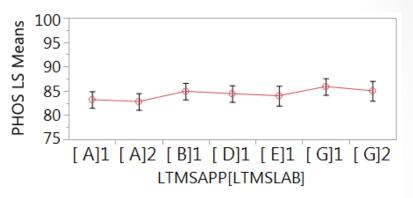
IND


438-1

PHOS Lab Difference

No significant lab difference

Lab1	Lab2	Difference p-Valu	
G	А	2.45	0.07
В	А	1.92	0.33
G	E	1.45	0.69
D	А	1.42	0.62
G	D	1.02	0.85
E	А	0.99 0.90	
В	E	0.93	0.95
G	В	0.53	0.99
В	D	0.50	0.99
D	E	0.43	1.00



Lab	PHOS LS Mean
А	82.99
В	84.91
D	84.42
E	83.99
G	85.44

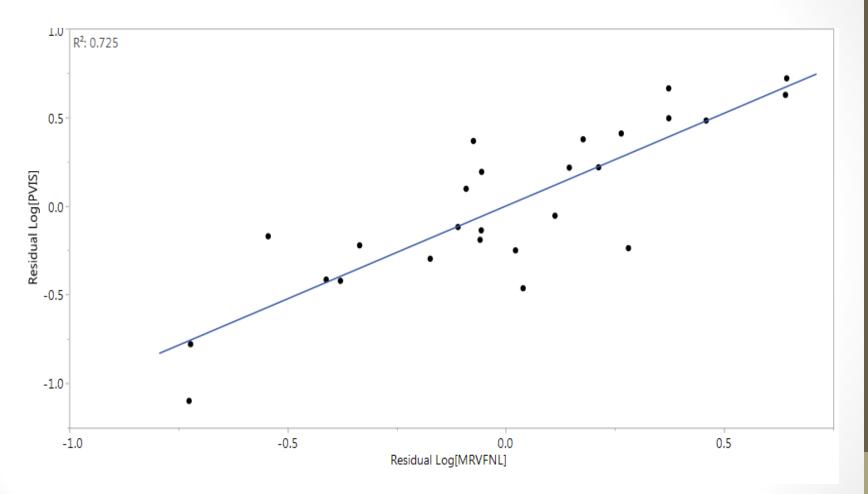
reliminary

PHOS Stand(Lab) Difference

No significant stand(lab) difference

Lab/Stand1	Lab/Stand2	Difference	p-Value
[G]1	[G]2	0.88	0.49
[A]1	[A]2	0.39	0.74

Lab/Stand	PHOS LS Mean
[A]1	83.19
[A]2	82.80
[G]1	85.88
[G]2	85.00


reliminary

PHOS Precision

Model: Oil, Lab, Stand (Lab)

Model RMSE	Repeatability	Reproducibility
• s = 1.60	• s = 1.60	• s = 1.75
• IIIGB s=2.33	• r = 4.43	• R = 4.85

Correlation

PVIS and MRV are correlated

reliminary

LTMS

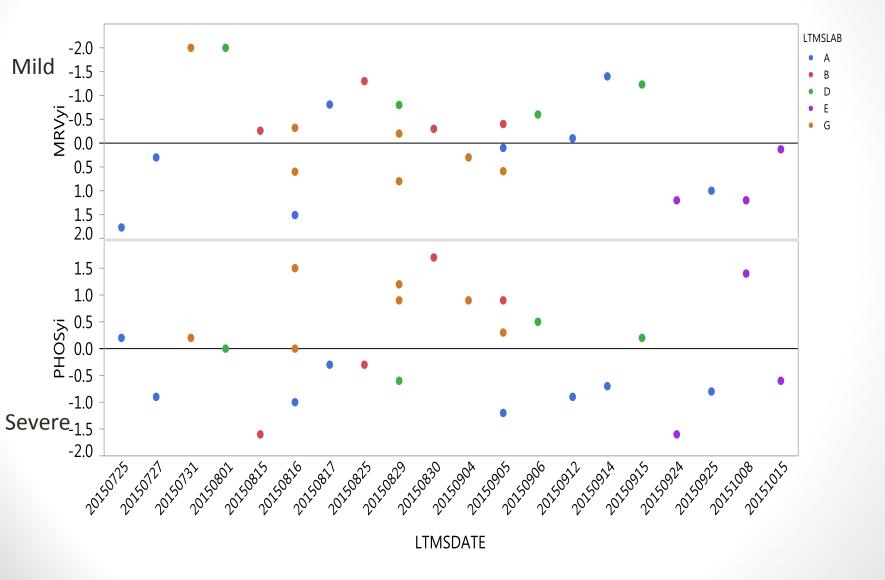
	P-value			
ANOVA Factor	LnPVIS	WPD	LnMRV	PHOS
IND	0.01	0.00	0.00	0.00
LTMSLAB	0.01	0.20	0.01	0.10
LTMSAPP[LTMSLAB]	0.01	0.51	0.02	0.74

Looks like a Stand-based LTMS is appropriate for Sequence IIIH based on the Stand(Lab) factor being significant but a more detailed analysis of LTMS is needed to confirm this.

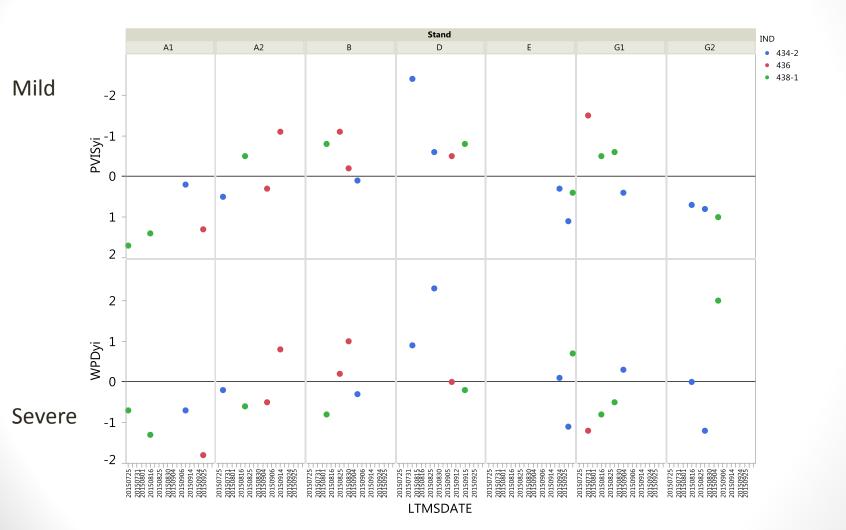
Reference Oil Targets (Preliminary)


PERCENT VISCOSITY INCREASE					
Unit of Measure: LN(PVIS)					
IIIH			IIIG		
Reference Oil	LSMean	Standard Deviation	Reference Oil	Mean	Standard Deviation
434-2	4.5287	0.8013	434	4.7269	0.3859
436	3.5192	0.3571			
438-1	3.9580	0.9558	438	4.5706	0.1768
WEIGHTED PISTON DEPOSITS					
Unit of Measure: Merits					
IIIH			IIIG		
Reference Oil	LSMean	Standard Deviation	Reference Oil	Mean	Standard Deviation
434-2	4.11	0.66	434	4.80	0.96
436	4.73	0.24			
438-1	3.66	0.43	438	3.20	0.33

Reference Oil Targets (Preliminary)

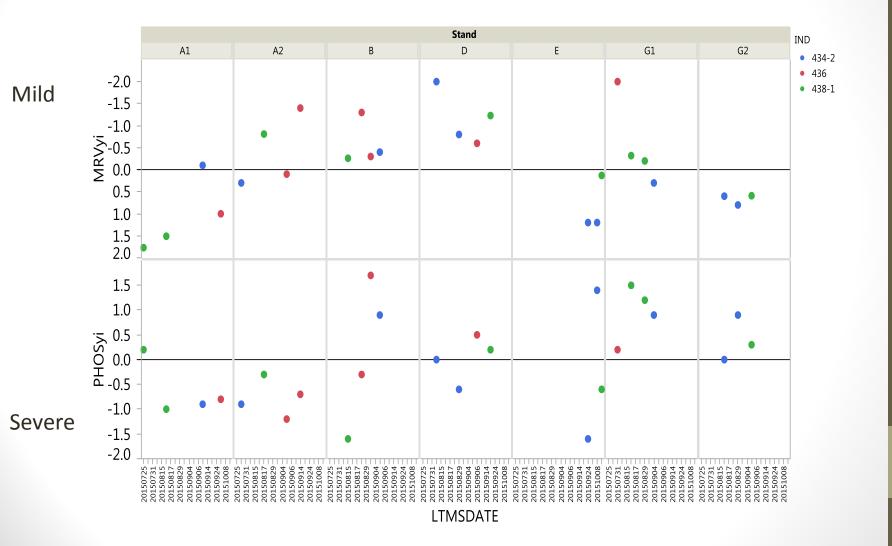

MRV VISCOSITY					
Unit of Measure: LN(MRV)					
IIIH			IIIGA		
Reference Oil	LSMean	Standard Deviation	Reference Oil	Mean	Standard Deviation
434-2	11.1087	0.74593	434	10.7881	0.45550
436	9.9848	0.25809			
438-1	10.0755	0.72094	438	9.8277	0.16646
PHOSPHORUS RETENTION					
Unit of Measure: Percent					
ШН		IIIGB			
Reference Oil	LSMean	Standard Deviation	Reference Oil	Mean	Standard Deviation
434-2	79.87	1.57	434	76.00	2.02
436	94.25	2.22			
438-1	78.93	1.54	438	78.20	2.56

Industry Yi (Preliminary)



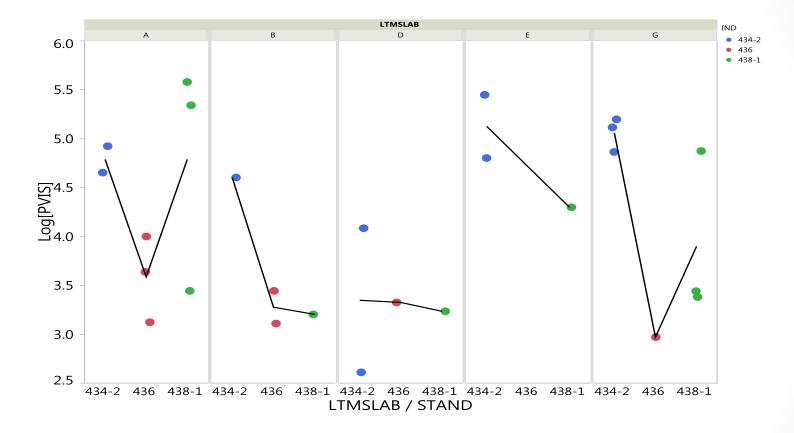
Preliminary

Industry Yi (Preliminary)



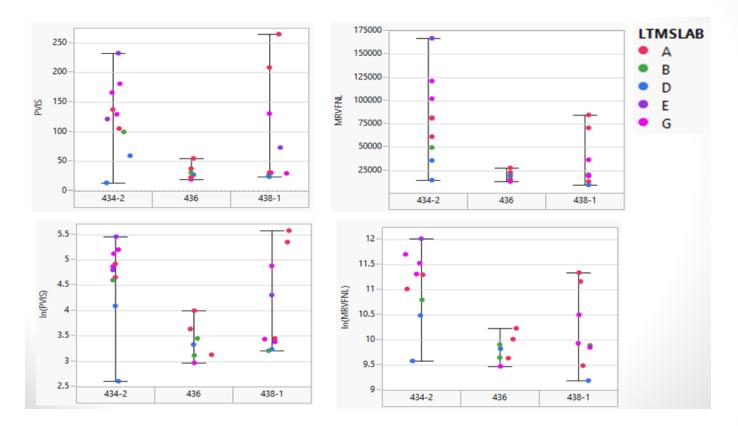
Stand Yi (Preliminary)

Prelin


Stand Yi (Preliminary)

reliminary

43


PVIS Concern 1

Labs do not discriminate the same way for PVIS

Preliminary

PVIS Concern 2

If 434-2 is meant to be a failing oil, then will PVIS and/or MRV be adequate parameters to ensure failing oils won't pass and passing oils won't fail? Is the test severe enough for PVIS to consistently reflect that 434-2 "breaks"?

Attachment 7

CENTRAL PARTS DISTRIBUTOR REPORT

SEQUENCE III SURVEILLANCE PANEL MEETING

SOUTHFIELD, MI

OCTOBER 29, 2015

PARTS REJECTION REPORT

(5 MONTH PERIOD (5/28/15 - 10/23/15)

DATE PREPARED: 10/23/15					
REPORTING PERIOD: 5 Mo	onths (5/28/15 - 10/23/15)				
ITEM	DESCRIPTION	REASON REJECTED	QTY	REPLACED	DATE REPLACED
OHT3F-008-8	CAMSHAFT, IIIG	PHOSPHATE COATING SCUFF	2	YES	7/23/2015
OH13F-008-8	CAMSHAFT, IIIG	PHOSPHATE COATING SCUFF	2	YES	7/23/2015

BATCH CODE CHANGE REPORT

(5 MONTH PERIOD (5/28/15 - 10/23/15)

IIIF	Batch Code	Date Introduced
PUSHROD	12	7/28/15
PISTON, GR. 78	2	8/19/15
PISTON, GR. 90	1	10/01/15
RINGS, RUN 7	1	8/19/15
RINGS, RUN 9	1	10/01/15
	Batch	Date
IIIG	<u>Code</u>	Introduced
PUSHROD	12	8/07/15
PISTON GR. 90	1	7/21/15
RINGS, RUN 9	1	7/21/15

ADDITIONAL ITEMS

Reminder:

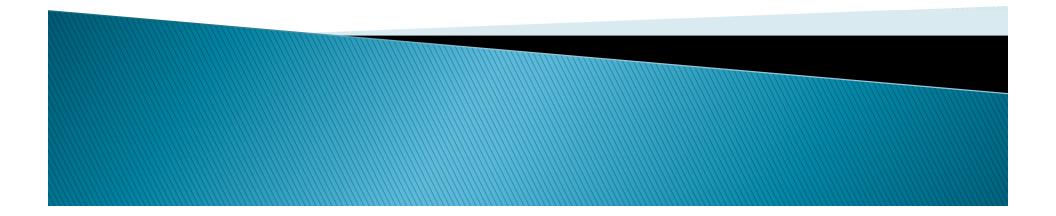
OHT has previously notified the testing laboratories and the Surveillance Panel to retain the following material:

```
OHT3F-014-1 PIN, WRIST (~150 engine sets in stock)
OHT3G-080-1 BRACKET, OIL FILTER
```

If testing volumes were to increase significantly, the following items would need to be retained as well:

OHT3F-058-1 ARM, ROCKER W/ BOLTS

All other items are in stock.

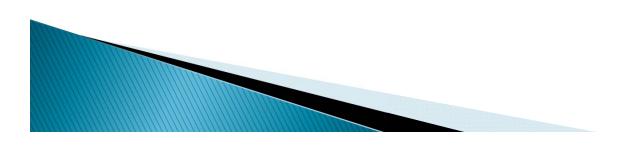

QUESTIONS

If you have any questions please do not hesitate to contact OHT.

Thank you.

Attachment 8

Multiple Runs on Seq III Cylinder Heads Part Number: 245022605

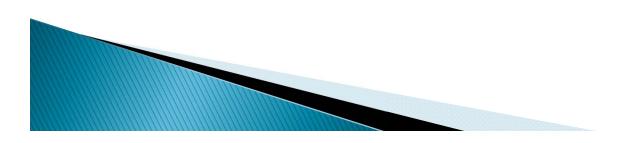

Overview

- Original expectation was to get multiple runs on the Stellite seat cylinder heads from GM Performance (Part Number: 24502260S).
- Current IIIF/G critical hardware inventory shows that something needs to be done about head shortage in the industry to extend the life of the Seq III. The current options are:
 - Machining used 24502260B heads by Schwartz
 - Re-work of used 24502260S heads by Schwartz

- Third party machine shop re-work of head material
- Increasing the max valve recession specification and allowing the labs to re-work the current inventory of head material.

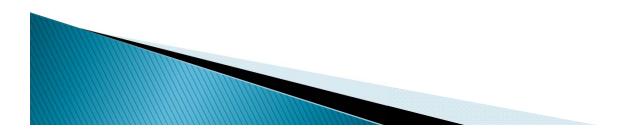
Cylinder Head Re-Use


- IAR developed a plan for additional uses on the cylinder heads and propose the following revisions to the IIIF/G EAM.
 - Increasing the maximum valve recession from $0.005" \rightarrow 0.010"$
 - Allowing the use of grinding stones (30°, 45°, and 60°) for valve seat preparation.

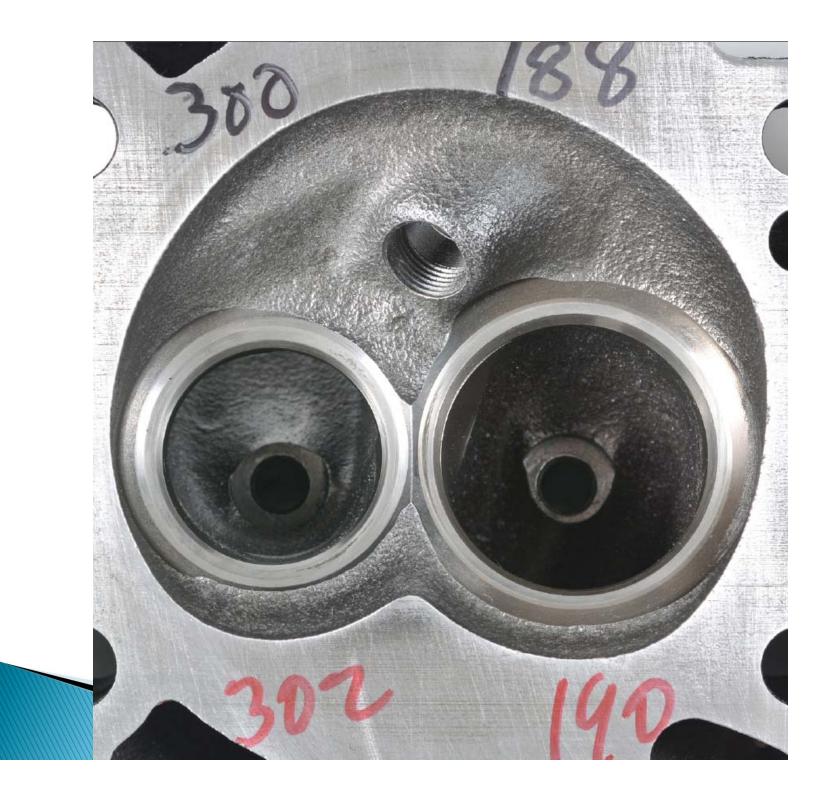


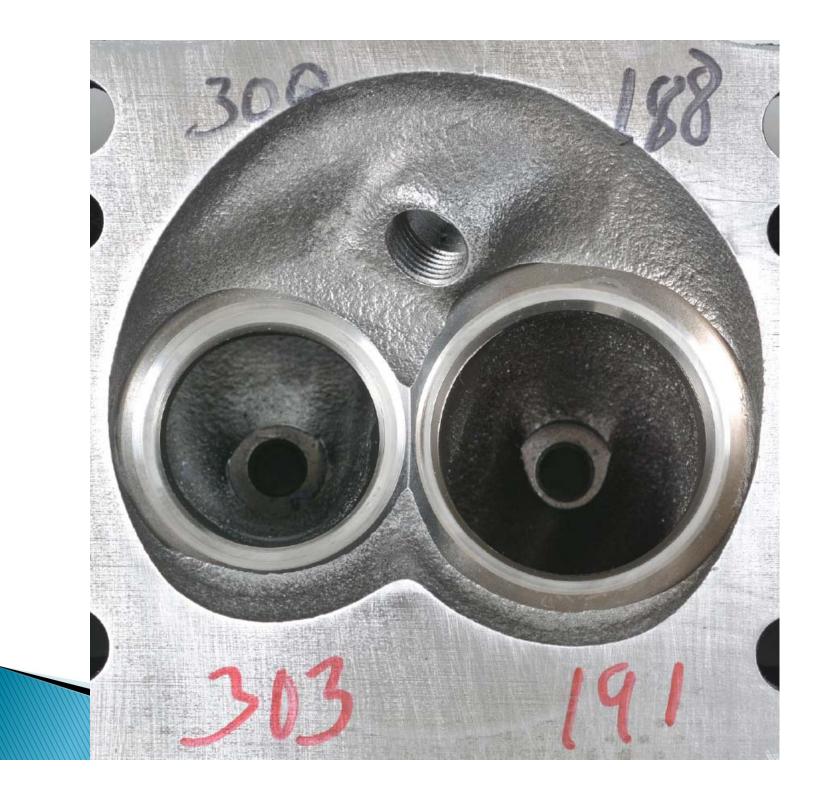
				Description	of Operation
				When reusing cyli	
					0S, Clean cylinder
				head by automate	
				ultrasound bath a	
				solution of EF-411	
				solvent. Remove	
				compressed air. D	
				scotchbrite pads o	r other abrasives t
				clean heads.	
				Visually inspect se	ats for wear.
				Measure Valve red	
				procedure in 5a, s	heet 1.
				Reject any heads v	vhere valve
				recession exceeds	0.005 0.010"
				Measure valve gui	de clearances at to
					es. Reject any head
				which do not mee	
				to 0.0032 inch.	
				Specif	ication
DEV	Data		Devision Iliston	V.	
REV	Date		Revision History	Vie Initial Prop. rougin	
REV	Date		Revision History	Via Initial Prep, reusin	
REV	Date		Revision History		
REV	Date		Revision History	Initial Prep, reusin	g Head 240522609
		Assembly	Revision History Sequence IIIG		

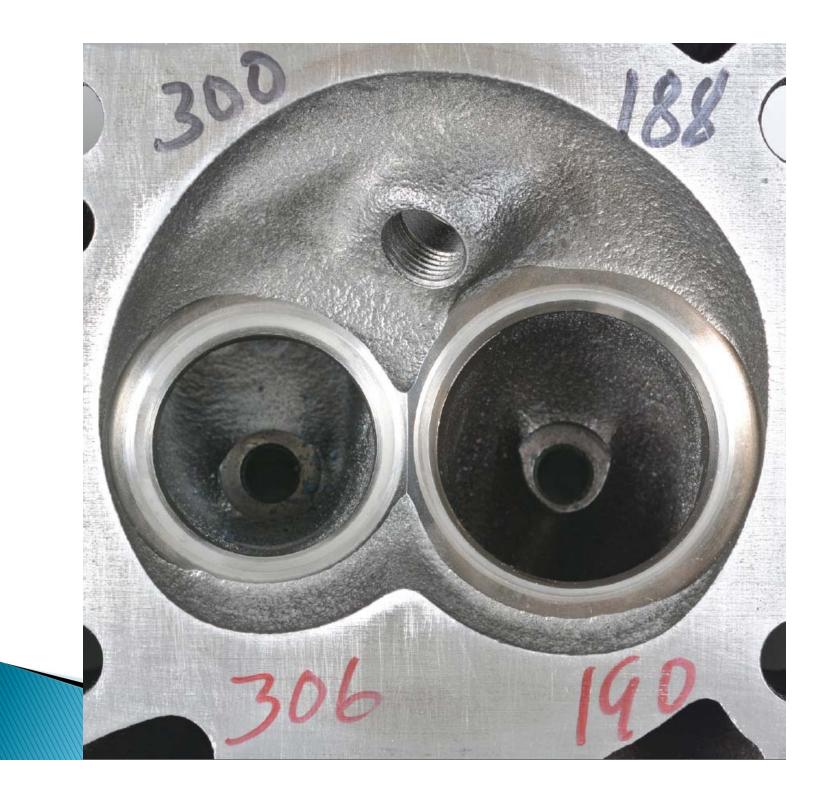
Recommend the allowance of grinding stones (30°, 45°, 60°) for valve seat preparation.	rinding Compound, 80036. Inoroughly clean lapp alves and seats using g. Be sure all lappin moved. After clean oray entire head wit oray with, with 50-5 olvent and EF411 the ompressed air. Inor ply bluing to each sually inspect for pr uing ring should be round the entire value	Use Permatex Valve water mixed, item ping compound from g water and a lint free og compound is ing lapping compound, h degreasing solvent. O mixture of degreasing en blow dry with valve and install. roper seating. The a consistent width
REV Date	ce. If valves show propearance, repeat " rocedure". If Valve s ceed .005 ", heads a se. 0.010"	l the middle of the roper seating Pre Test Measurement
		/iew ions (continued)
	nead reparat	ions (oonanded)
Head Assembly Sequence IIIG		Sheet

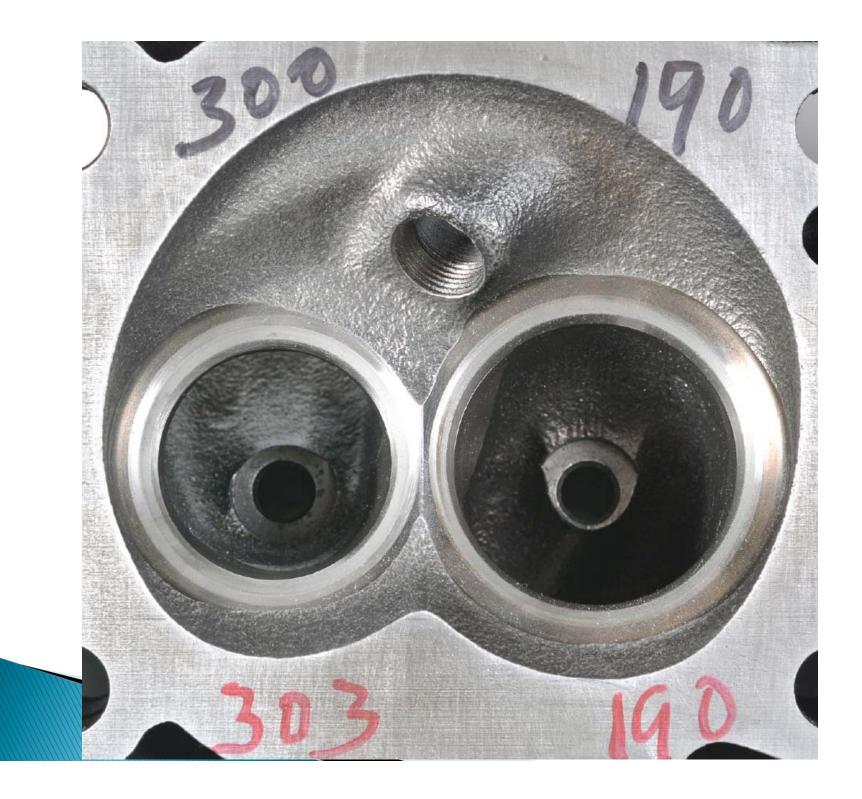

Recommendation

- MOTION:
 - IAR recommends that the maximum valve recession in the IIIF/G EAM be increased to 0.010" and allow the usage of grinding stones (30°, 45°, and 60°) for valve seat preparation on Sequence III nonreference testing provided that the laboratory has conducted a successful reference oil test.


Questions


- Addison J. Schweitzer
 - Office: (210)-706-1586
 - Mobile: (210)-215-1370



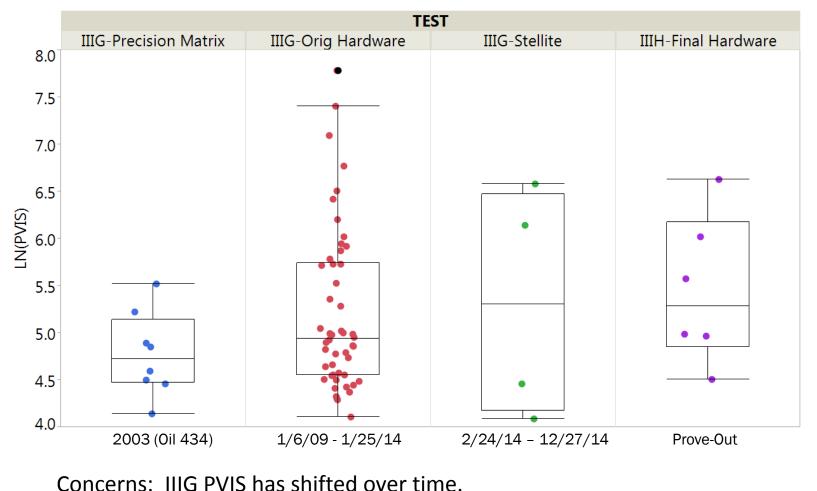

Supplemental Slides

AOAP IIIG and IIIH Oil 434-1 Variability IIIG and IIIH Oil Discrimination and Precision

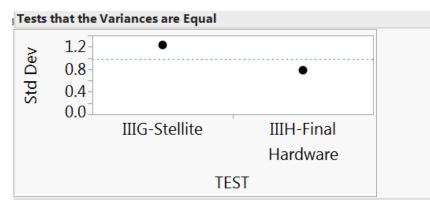
Statisticians Group Janet Buckingham, SwRI Doyle Boese, Infineum Jo Martinez, Oronite Kevin O'Malley, Lubrizol

3/18/15

Variability of Oil 434-1 Conclusions


- Variability of 434-1, oil that is common to both tests, is not significantly different between IIIH and IIIG.
 - LnPVIS is estimated to have a standard deviation of 0.78 for the IIIH and from 0.44 to 1.23 for the IIIG.
 - WPD is estimated to have a standard deviation of 0.40 for the IIIH and from 0.69 to 0.88 for the IIIG.

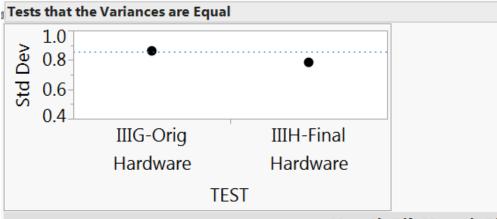
How does the variability in Oil 434-1 compare between the IIIG and IIIH tests?


Seq IIIG and Seq IIIH Oil 434-1 Data					
Test	Oil	Time Period	Hardware	# Tests	
IIIG Precision Matrix	434	2003	Original	8	
IIIG Since 2009	434-1	1/6/09 - 1/25/14	Original	50	
IIIG Since 2014	434-1	2/24/14 - 12/27/14	Stellite	4	
IIIH Prove-Out	434-1	2014-15	Final	6	

LN(PVIS) Data – Oil 434-1 by Test Type and Hardware

IIIG 434-1 LN(PVIS) Targets: Mean = 4.7269 Stdev = 0.3859

Compare LN(PVIS) Variances IIIG Stellite vs. IIIH Prove-out

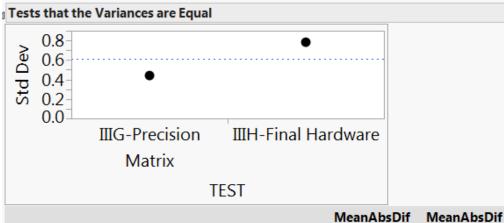

Level	Count	Std Dev		MeanAbsDif to Median				
IIIG-Stellite	4	1.230539	1.046089	1.046089				
IIIH-Final Hardw	are 6	0.782742	0.627110	0.627110				
Test	F Ratio	DFNum D	FDen p-Value					
O'Brien[.5]	3.4755	1	80.0993	7				
Brown-Forsythe	3.2631	1	80.1085					
Levene	3.8772	1	80.0845					
Bartlett	0.7049	1	.0.4011					
F Test 2-sided	2.4715	3	5 <mark>0.3534</mark>					
Warning: Small s	sample sizes	Warning: Small sample sizes. Use						

Caution.

Conclusion:

No significant difference in the LN(PVIS) variances between the IIIG Stellite and IIIH Prove-out based on the 434-1 results.

Compare LN(PVIS) Variances IIIG (since 2009) vs. IIIH Prove-out


			MeanAbsDif	MeanAbsDif
Level	Count	Std Dev	to Mean	to Median
IIIG-Orig Hardware	50	0.8626669	0.6923676	0.6330114
IIIH-Final Hardware	6	0.7827415	0.6271097	0.6271097

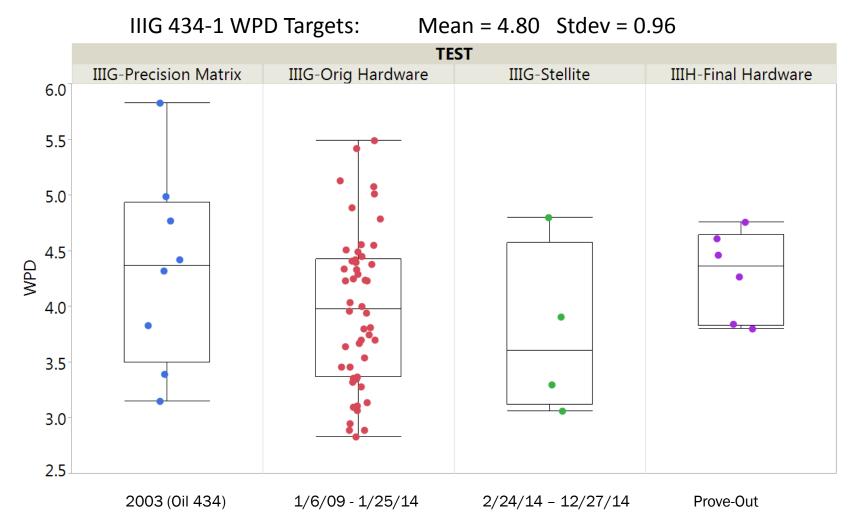
Test	F Ratio	DFNum	DFDen p-Value
O'Brien[.5]	0.0620	1	54 <mark>0.8044</mark>
Brown-Forsythe	0.0005	1	54 <mark>0.9826</mark>
Levene	0.0933	1	54 <mark>0.7612</mark>
Bartlett	0.0762	1	.0.7824
F Test 2-sided	1.2146	49	5 <mark>0.9216</mark>

Conclusion:

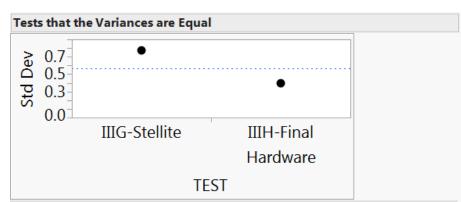
No significant difference in the LN(PVIS) variances between the IIIG (since 2009) and IIIH Prove-out based on the 434-1 results.

Compare LN(PVIS) Variances IIIG Precision Matrix vs. IIIH Prove-out

Level	Count	Std Dev	to Mean	to Median
IIIG-Precision Matrix	8	0.4446734	0.3483561	0.3483561
IIIH-Final Hardware	6	0.7827415	0.6271097	0.6271097


Test	F Ratio	DFNum	DFDen p-Value
O'Brien[.5]	2.4252	1	12 0.1454
Brown-Forsythe	2.4601	1	12 0.1428
Levene	2.8617	1	12 0.1165
Bartlett	1.7347	1	. 0.1878
F Test 2-sided	3.0985	5	7 0.1726

Conclusion:


No significant difference in the LN(PVIS) variances between the IIIG PM and IIIH Prove-out based on the 434 and 434-1 results.

WPD Data – Oil 434-1

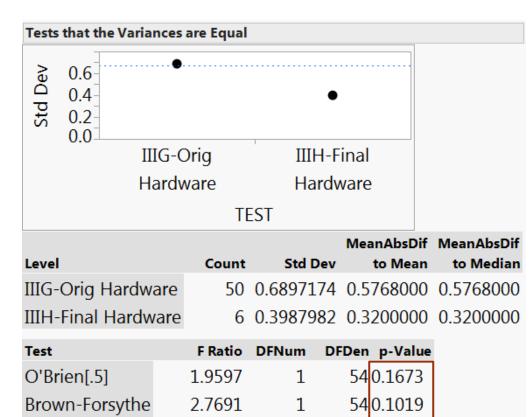
by Test Type and Hardware

Compare WPD Variances IIIG Stellite vs. IIIH Prove-out

			MeanAbsDif	MeanAbsDif
Level	Count	Std Dev	to Mean	to Median
IIIG-Stellite	4	0.7757738	0.5875000	0.5875000
IIIH-Final Hardware	6	0.3987982	0.3200000	0.3200000

Test	F Ratio	DFNum	DFDen p-Value
O'Brien[.5]	2.0680	1	8 <mark>0.1884</mark>
Brown-Forsythe	1.8441	1	8 <mark>0.2115</mark>
Levene	2.2684	1	8 <mark>0.1705</mark>
Bartlett	1.5201	1	. <mark>0.2176</mark>
F Test 2-sided	3.7841	3	5 <mark>0.1861</mark>
Warning: Small sa	ample sizes	llse	

Warning: Small sample sizes. Use Caution. **Conclusion:**


No significant difference in the WPD variances between the IIIG Stellite and IIIH Prove-out based on the 434-1 results.

Compare WPD Variances IIIG (since 2009) vs. IIIH Prove-out

54 0.1011

0.1665

50.2205

1

1

49

2.7827

1.9141

2.9911

No significant difference in the WPD variances between the IIIG (since 2009) and IIIH Prove-out based on the 434-1 results.

Conclusion:

Levene

Bartlett

F Test 2-sided

Compare WPD Variances IIIG Precision Matrix vs. IIIH Prove-out

Tests that the Variances are Equal					
≥ 0.8 0.6 0.4 0.4 0.0	•	•			
IIIG-	Precision	IIIH-Final H	lardware		
N	Matrix				
	TE	EST			
			MeanAbsDi	if MeanAbsDif	
Level	Count	Std Dev	to Mea	n to Median	
IIIG-Precision Ma	trix 8	0.8793626	0.6650000	0.6650000	
IIIH-Final Hardwa	re 6	0.3987982	0.3200000	0.3200000	
Test	F Ratio	DFNum DF	Den p-Valu	e	
O'Brien[.5]	2.2807	1	12 0.1569	1	
Brown-Forsythe	2.3340	1	12 0.1525		
Levene	2.3819	1	12 0.1487		
Bartlett	2.8387	1	. 0.0920		

4.8622

7

50.1006

Conclusion:

No significant difference in the WPD variances between the IIIG PM and IIIH Prove-out based on the 434 and 434-1 results.

F Test 2-sided

IIIG and IIIH Oil Discrimination and Precision Conclusions

- The current IIIH data shows statistical discrimination among the oils for both LnPVIS and WPD.
- The IIIH precision is estimated to be within the range of the precision of the IIIG.

<u>LnPVIS:</u>

The IIIH standard deviation is estimated to be 0.59 to 0.61^{*}. The IIIG standard deviation ranges from 0.29 to 0.63^{*} for the different subsets of data considered in the analysis.

WPD:

The IIIH standard deviation is estimated to be 0.40 to 0.42*.
The IIIG standard deviation ranges from 0.39 to 0.60* for the different subsets of data considered in the analysis.

* Ranges of estimates, not confidence intervals.

Comparing IIIG and IIIH Precision Using Lab-based Models

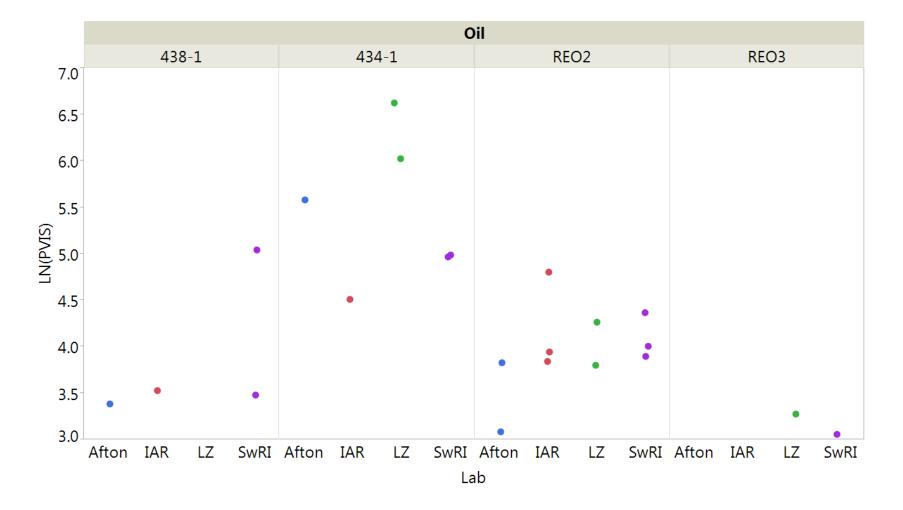
- Compared IIIG and IIIH with models using only two effects:
 - Oil
 - Lab
- Combined all 435 oil blends as they were not significantly different from one another in the various models
- Statistical outliers were not removed from the models
 - Very small data sets
- Concerns:
 - The standard deviations of the oils in the IIIG and IIIH are not the same; however, the range of the quality of the oils is similar
 - The IIIG PVIS data has shifted over time

PVIS Summary

- Lab-based Model included only Oil and Lab effects
- Used 5% level of significance
- No statistical outliers were removed

Test	Data	Oil Discrimination	RMSE
IIIG	Precision matrix (n=24) 2003 Oils: 434, 435, 438	(438, 434) < 435	0.2919
IIIG	#A (n=154) [*] 1/6/09 – 2/2/14 Original cylinder heads Oils: 434-1, 435blends, 438	438 < (435blends, 434-1)	0.54
IIIG	#B (n=75)* 1/24/11 – 2/2/14 Original cylinder heads Oils: 434-1, 435-2, 438	438 < (435-2, 434-1)	0.63
IIIG	#C (n=23) 2/24/14 – 2/18/15 Stellite seats Oils: 434-1, 434-2, 435-2, 438	438 < 435-2	0.56
ШН	#D (n=22) Prove-out Final hardware Oils: 434-1, REO2, REO3, 438-1	(REO2, 438-1, REO3) < 434-1	0.59
ШН	#E (n=20) Prove-out Final hardware Oils: 434-1, REO2, 438-1	(438-1, REO2) < 434-1	0.61

* Statistical outliers identified but not removed


WPD Summary

- Lab-based model included only Oil and Lab effects
- Used 5% level of significance
- No statistical outliers were removed

Test	Data	Oil Discrimination	RMSE
IIIG	Precision matrix (n=24) 2003 Oils: 434, 435, 438	(438, 435) < 434	0.60
IIIG	#A (n=154) [*] 1/6/09 – 2/2/14 Original cylinder heads Oils: 434-1, 435blends, 438	438 < 435blends < 434-1	0.43
IIIG	#B (n=75)* 1/24/11 – 2/2/14 Original cylinder heads Oils: 434-1, 435-2, 438	438 < 435-2 < 434-1	0.39
IIIG	#C (n=23) 2/24/14 – 2/18/15 Stellite seats Oils: 434-1, 434-2, 435-2, 438	(438, 435-2) < 434-2 438 < 434-1	0.40
ШН	#D (n=22)* Prove-out Final hardware Oils: 434-1, REO2, REO3, 438-1	(REO2, 434-1, 438-1) < REO3 438-1 < REO2	0.42
ШН	#E (n=20) [*] Prove-out Final hardware Oils: 434-1, REO2, 438-1	438-1 < (REO2, 434-1)	0.40

* Statistical outliers identified but not removed

LN(PVIS) – IIIH Prove-Out by Oil and Lab

Model #A: IIIG LN(PVIS)

Original cylinder heads, 1/6/09 – 2/2/14, n=154

Prob > F <.0001* 0.1067

Summary of RSquare	Fit			0.288	193	
RSquare Adj 0.2540						
Root Mea	n Squar	e Erro	or	0.542	634	
Mean of F	Response	е		5.032	369	
Observati	ons (or S	Sum	Wgts)	:	154	
Analysis of \	/ariance					
Parameter E	stimates					
Effect Tests						
_			_	Sum of		
Source	Nparm	DF		quares	-	Ratio
INDx	2	2	13.76	57153	23	.3776
LTMSLAB	5	5	2.72	23646	1	.8500
Residual by	Predicted	Plot				
CNIS) Residual			6 6.5 Predic	7 7.5 ted	8	

- Oil Discrimination
 - 438 < (435blends, 434-1)
- RMSE = 0.54

LSMeans Differences Tukey HSD							
α= 0.050 Q= 2.3679							
Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value	
435	438	0.6678567	0.1067865	0.414997	0.9207160<	<.0001*	
434-1	. 438	0.5864287	0.1071977	0.332596	0.8402618<	<.0001*	
435	434-1	0.0814280	0.1081393	-0.174635	0.33749060	0.7323	

Model #B: IIIG LN(PVIS)

Original cylinder heads, 1/24/11 – 2/2/14, n=75

Prob > F <.0001* 0.0915

Summary of	Fit					
RSquare 0.3597					715	
RSquare A	RSquare Adj 0.2928					
Root Mea	n Squar	e Erro	or	0.632	663	
Mean of F	Respons	e		5.174	737	
Observati	ons (or s	Sum	Wgts)		75	
Analysis of V						
Parameter E	stimates					
Effect Tests						
				um of		
Source	Nparm	DF	S	quares	F	Ratio
IND	2	2	10.94	2534	13.6	692
LTMSLAB	5	5	3.98	0907	1.9	891
Residual by	Predicted	Plot				
<u>e</u> 2.0		•				
n 2.0- pi 1.5-		••				1 💌 L:
2.0 1.5 1.0 0.5 0.0 -0.5						α=
ິ <u>ດ</u> 0.5		[:]				Lev
₹ 0.0-	-68-	j 3 -				43
U -0.5		j.				
-1.0-	1 1			1 1	-	43
4	4.5 5				8	43
	LN(P	VIS) F	Predict	ed		

- Oil Discrimination
 - 438 < (435-2, 434-1)
- RMSE = 0.63

∎ ■LSMeans Differences Tukey HSD							
α= 0.050 Q= 2.39689							
Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value		
434-1	. 438	0.8374931	0.1840148	0.396430	1.278556<.0001*		
435-2	2 438	0.8283850	0.1803166	0.396186	1.260584<.0001*		
434-1	. 435-2	0.0091081	0.1766911	-0.414401	0.432617 0.9985		

Model #C: IIIG LN(PVIS) Stellite seats, 2/24/14 – 2/18/15, n=23

Prob > F

0.0396*

Sum	mary of	f Fit				
RSq	RSquare					31
RSq	uare A	٩dj			0.2341	52
Roc	ot Mea	in Squar	e Erro	or	0.5646	95
Mea	an of F	Response	5		5.0768	53
Obs	ervati	ons (or S	Sum	Wgts)		23
Anal	ysis of	Variance	_			
		stimates				
	t Tests				_	
Sour		Nparm	DF		Squares	F Ratio
IND	1	3	3	3.41	60230	3.5709
LTN	ISLAB	4	4	0.82	87706	0.6498
Resi	dual by	Predicted	Plot			
-	1.0-			٠		
LNPVIS Residua	0.5-	•				
IS Re	0.0-		•	•••		
NPV	-0.5-		•	••		
	-1.0-		•			
	4	4.5	5	5.5	6 6.5	7
		LN	NPVIS	S Predi	cted	

- Oil Discrimination
 - 438 < 435-2

• RMSE = 0.56

J ■ LSMeans Differ	LSMeans Differences Tukey HSD							
α= 0.050 Q=	2.88215							
Level - Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value			
435-2 438	0.8787650	0.2861176	0.05413	1.703399 <mark>(</mark>).0349*			
434-1 438	0.7829486	0.3486176	-0.22182	1.787716 ().1558			
434-2 438	0.6111640	0.4710501	-0.74647	1.968800 ().5783			
435-2 434-2	0.2676009	0.4715850	-1.09158	1.626779 ().9402			
434-1 434-2	0.1717846	0.5066402	-1.28843	1.631997 ().9860			
435-2 434-1	0.0958163	0.3517378	-0.91794	1.109577 (0.9926			

Model #D: IIIH LN(PVIS) Final hardware, n=22

Prob > F

0.0004*

0.2677

F Ratio 11.3755

1.4507

Summary of Fit	
RSquare	0.724694
RSquare Adj	0.614571
Root Mean Square Error	0.591196
Mean of Response	4.284474
Observations (or Sum Wgts)	22
Analysis of Variance	
Parameter Estimates	

Sum of

Squares

11.927602

1.521118

Effect Tests

Oil

Lab

Source Nparm

 Oil Discrimination 	n
--	---

• (REO2, 438-1, REO3) < 434-1

• RMSE = 0.59

	1.0	•
LN(PVIS) Residua	0.5-	•
(SIVc	0.0	••••
LN(I	-0.5	
	2.5	3.5 4 4.5 5 5.5 6 6.5 7
		LN(PVIS) Predicted

DF

3

3

3

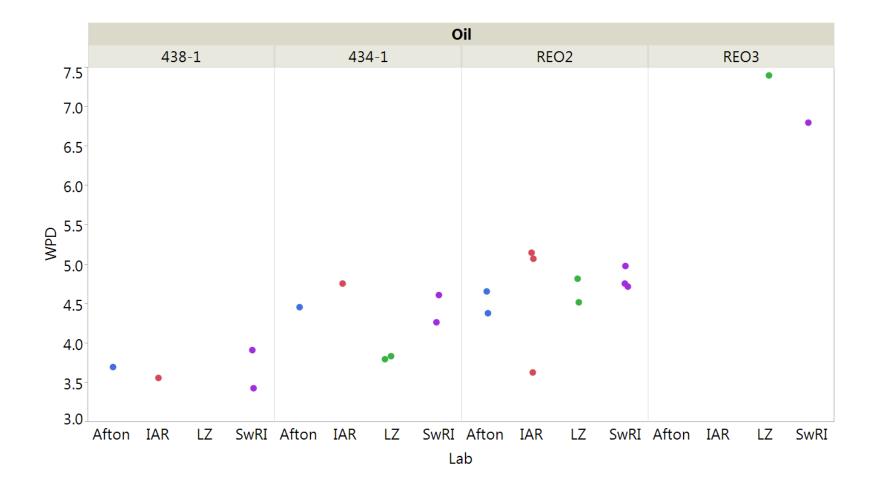
3

Residual by Predicted Plot

Level - Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value
434-1 REO3	2.451258	0.4913439	1.03513	3.867385 <mark>0.0008</mark> *
434-1 438-1	1.395351	0.3961808	0.25350	2.537203 0.0146*
434-1 REO2	1.372278	0.3101316	0.47843	2.266123 0.0025*
REO2 REO3	1.078980	0.4794411	-0.30284	2.4608010.1546
438-1 REO3	1.055907	0.5417127	-0.50539	2.617204 0.2501
REO2 438-1	0.023073	0.3572543	-1.00659	1.0527330.9999

Model #E: IIIH LN(PVIS)

Final hardware, n=20, removed REO3 tests


Prob > F 0.0020* 0.2935

Summa	ary of	Fit						
RSqua	are	0.679	321					
RSqua	are A	0.564	792					
Root I	Mea	n Sq	uare	Error	0.610	199		
Mean	of F	Respo	onse		4.396	553		
Obser	vati	ons (or Su	um Wgts)		20		
Analysi	s of \	/arian	ce	-				
Parame	ter E	stimat	tes					
Effect 1	Fests							
				Sum				
Source	Npa	rm	DF	Squar	es 🛛	F Ratio		
Oil		2	2	7.492115	0 10	.0608		
Lab		3	3	1.526948	88 1	.3670		
Residua	al by	Predic	ted P	lot				
. ज	1.0-		•			1 _		
idu .	1.0		•	•		Le		
Res ().5 -		•	•		43		
-N(PVIS) Residua	- D.O-	•		•		43		
S`	.0	•)		R		
Z -().5 -	•	•	•				
	+	2 5				-		
	3 3.5 4 4.5 5 5.5 6 6.5 7							
			V(PV)	IS) Predict	ed			

- Oil Discrimination
 - (438-1, REO2) < 434-1
- RMSE = 0.61

evel - Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value
34-1 438-1	1.382360	0.4114778	0.305408	2.459313 0.0122*
34-1 REO2	1.368718	0.3203467	0.530281	2.2071560.0021*
REO2 438-1	0.013642	0.3702370	-0.955372	0.9826560.9993

WPD – IIIH Prove-Out by Oil and Lab

Model #A: IIIG WPD Original cylinder heads, 1/6/09 - 2/2/14, n=154 Summary of Fit RSquare 0.482397 Oil Discrimination **RSquare Adj** 0.45758 Root Mean Square Error 0.431488 • 438 < 435blends < 434-1</p> Mean of Response 3.436753 Observations (or Sum Wgts) 154 Analysis of Variance Parameter Estimates RMSE = 0.43Effect Tests **DF** Sum of Squares F Ratio Prob > F Source Nparm 64.8394 <.0001* **INDx** 2 24.143856 2 **LTMSLAB** 5 1.272489 1.3669 0.2401 5 **Residual by Predicted Plot** 1.5 WPD Residual 1.0 0.5 LSMeans Differences Tukey HSD 0.0 $\alpha = 0.050 \quad Q = 2.3679$ -0.5 - Level Upper CL p-Value Difference Std Err Dif Lower CL Level -1.0 434-1 438 0.9521892 0.0852407 0.7503480 $1.154030 < .0001^*$ 434-1 435 0.6520206 0.0859894 0.4484065 0.855635 <.0001* 2.5 3 3.5 4.5 5 55 4 438 0.3001686 0.0849137 0.0991018 0.501236 0.0016* 435 WPD Predicted

Model #B: IIIG WPD

Original cylinder heads, 1/24/11 - 2/2/14, n=75

Summa	ary of F	it										
RSquare 0.498179							 Oil Discrimination 438 < 435-2 < 434-1 					
RSquare Adj 0.44575												
Root Mean Square Error 0.389044												
Mean of Response 3.4224							• 430 < 433-2 < 434-1					
Obsei	rvatio	ns (or S	um V	Ngts)		75						
Analys	is of Va	ariance										
		timates							RMSE	- 0 30	נ	
Effect	Tests				Sum of				NIVIJL	- 0.55)	
Source		Vparm	DF	-	guares	F Ratio	Prob > F	:				
						26.5122						
LTMS	LAB	5	5	1.864	41520	2.4633	0.0414*					
Residu	al by P	redicted	Plot									
WPD Residual	1.0- 0.5-	• •		•			√ ▼LSMe	ans Diffe	rences Tukev F	HSD		
$\alpha = 0.050$ Q= 2.39689												
Dd .	-0.5-			•			Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value
	-1.0-		• • • •				434-1			0.1131562		1.080729<.0001*
	+ 2.5	5 3 3	3.5	4 4	.5 5	5.5	434-1	435-2	0.5170667	0.1086526	0.2566383	0.777495<.0001*
	Z	, , ,		- T		0.0						

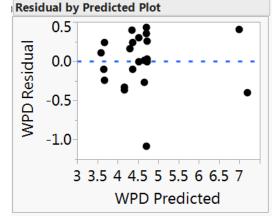
Model #C: IIIG WPD

Stellite seats, 2/24/14 - 2/18/15, n=23

Prob > F

0.0020*

0.0187*


Summary of Fit							
RSq	uare		0.780577				
RSq	uare A	٩dj		0.67	78179		
Roo	t Mea	in Square	e Erro	or	0.40)3545	
Mea	an of F	Response	•		3.47	70435	
Obs	ervati	ons (or S	Sum V	Ngts)		23	
Anal	ysis of	Variance					
Para	meter E	stimates					
Effec	t Tests						
Sour	ce	Nparm	DF S	Sum of	Squar	es	F Ratio
IND	1	3	3	3.9406460		0	8.0661
LTM	ISLAB	4	4	2.69	2.6953057		4.1377
Resid	dual by	Predicted I	Plot				
	0.6			•	•		7
-	0.4-	• •					
dua	0.2-	•••	•				
esi	0.0-	••••		- • -			
DR	-0.2-	•					
WPD Residua	-0.4-	• •	•				
-	-0.6-		•	٠			
	-0.8-		1				_
	2	.5 3 3.	5 4	4.5	5	5.5	6
		V	VPD I	Predic	ted		

- Oil Discrimination
 - (438, 435-2) < 434-2
 - 438 < 434-1
- RMSE = 0.54

J CLSMeans Differences Tukey HSD									
α= 0.050 Q=	2.88215								
Level - Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value					
434-2 438	1.540290	0.3366242	0.570089	2.510491 0.0018*					
434-2 435-2	1.171070	0.3370065	0.199767	2.142373 0.0160*					
434-2 434-1	0.807733	0.3620578	-0.235771	1.851238 0.1597					
434-1 438	0.732557	0.2491308	0.014524	1.450589 <mark>0.0448</mark> *					
435-2 438	0.369220	0.2044668	-0.220084	0.958524 0.3088					
434-1 435-2	0.363337	0.2513606	-0.361122	1.087796 0.4922					

Model #D: IIIH WPD Final hardware, n=22

Summa	ry of Fit					
RSqua	are		0.863102			
RSqua	are Adj		0.808343			
Root N	vlean Sq	uare	0.422336			
Mean	of Resp	onse	4.601364			
Observations (or Sum Wgts) 22						
Analysis	s of Varian	ce				
Parame	ter Estima	tes				
Effect T	ests					
			Sum	of		
Source	Nparm	DF	Squar	es F Rat	io Prob >	
Oil	3	3	15.93192	29 29.773	86 <.0001	
Lab	3	3	0.13417	0.250	0.8596	

- Oil Discrimination
 - (REO2, 434-1, 438-1) < REO3
 - 438-1 < REO2

• RMSE = 0.42

Level -	Level	Difference	Std Err Dif	Lower CL	Upper CL p-Value
REO3 4	438-1	3.530643	0.3869859	2.41529	4.645994<.0001*
REO3 4	434-1	2.829531	0.3510037	1.81789	3.841176<.0001*
REO3 F	REO2	2.473734	0.3425006	1.48660	3.460872<.0001*
REO2 4	438-1	1.056909	0.2552134	0.32135	1.792472 0.0043*
434-14	438-1	0.701112	0.2830215	-0.11460	1.5168230.1047
REO2 4	434-1	0.355797	0.2215501	-0.28274	0.994337 0.4048

Model #E: IIIH WPD

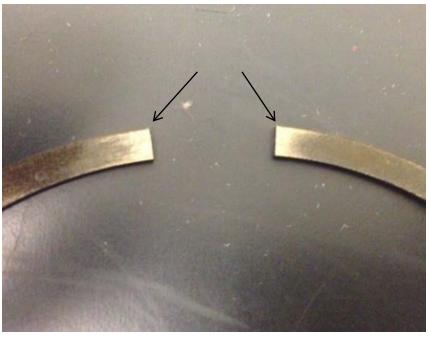
Final hardware, n=20, removed REO3 tests

Summ	ary o	f Fit										
RSquare						0	0.594512					
RSqu	RSquare Adj						0.449696					
Root	Root Mean Square Error							37	71			
Mear	Mean of Response							35	15			
Obse	rvati	ions (or Su	um \	Ngts	5)			20			
Analys	is of \	Variano	e									
Param	eter E	stimat	es									
Effect	Tests											
_						n of		_			_	
Source	e Npa	arm	DF		Squa							
Oil		2	2	3.2	4953	325	25 9.9660 <mark>0.00</mark> 2			020		
Lab		3	3	0.3	4725	596	96 0.7100 0.5620				620	
Residu	ıal by	Predic	ted P	lot								
	0.5				•	8						
ual	0.0	•'	•		•					Le	vel	- 1
esid	0.0	•	•	•	• .	•				RE	02	4
WPD Residua	0.5-									43	84-1	. 43
¥.	1.0-									RE	02	4
	+		-,,		1	•						
		3.5	4	ļ	4.5		5					
		1	WPD) Pre	dict	ed						
									_			

- Oil Discrimination
 - 438-1 < (434-1, REO2)

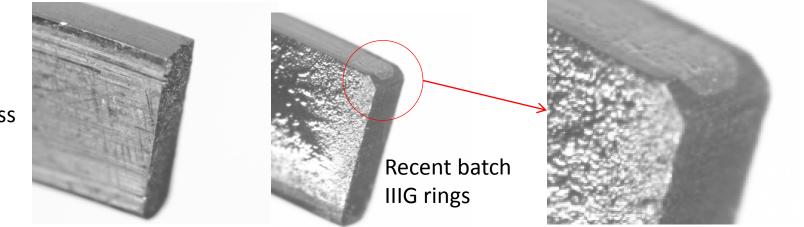
• RMSE = 0.40

vel - Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value
EO2 438-1	1.091110	0.2449869	0.449911	1.7323100	.0015*
34-1 438-1	0.748222	0.2722761	0.035599	1.460845 <mark>(</mark>	.0392*
EO2 434-1	0.342888	0.2119744	-0.211908	0.8976850).2710


Attachment 10

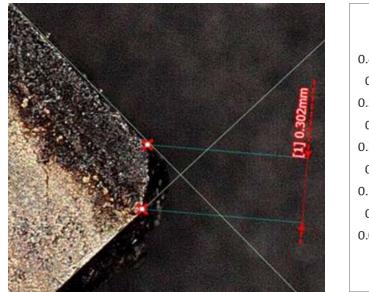
Sequence IIIG Piston Ring Chamfers

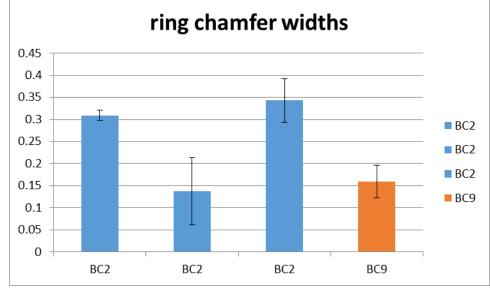
09/28/2015


Background

- Industry has been concerned about Seq. III Piston Deposit Severity
- LZ discovered on Chrysler IIIH test that even a slight chamfer or excessive deburring of the edge/corner of the piston ring gap will cause dramatic shifts in WPD and PVIS severity
- Led to investigation of IIIG piston rings

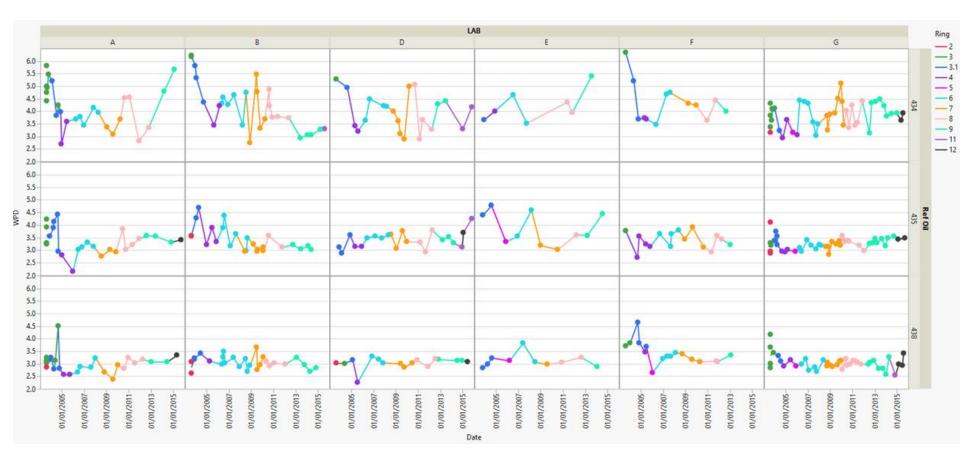
IIIG Ring Gap

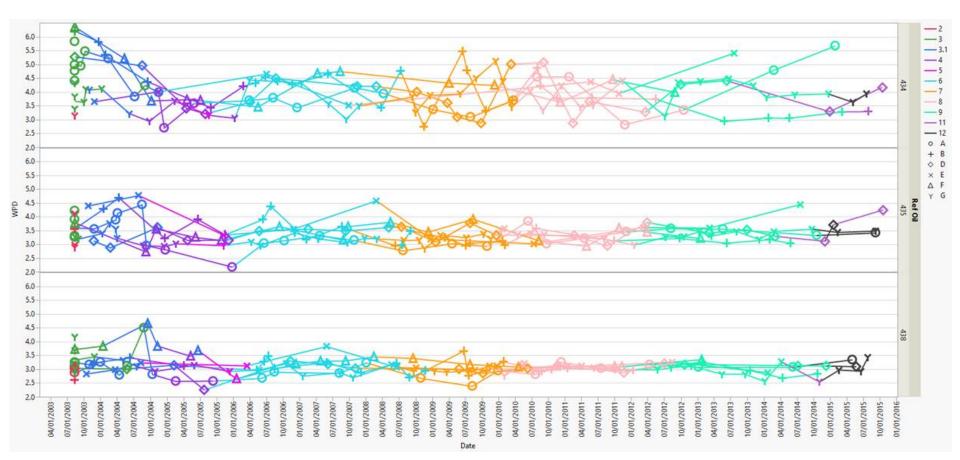

- Inspection of current batch of rings revealed a vertical chamfer along both outside corners of the ring gap
- Spot checks of batches 8, 9, and the most recent batches 1 and 2 for run 7/8 and 9/10 also indicate the chamfer is present
- Measurements of the chamfers vary in the width (0.14-0.34 mm avg.)
- OHT rings for the IIIH and IIIF do not appear to have this chamfer
- Early, batch 4 IIIG rings (BC4) do not have this chamfer
- Production, dealer purchased rings also do not show chamfered vertical edges
- General industry knowledge is that the edge should be sharp and un-chamfered



Chamferless rings

Inspection of rings

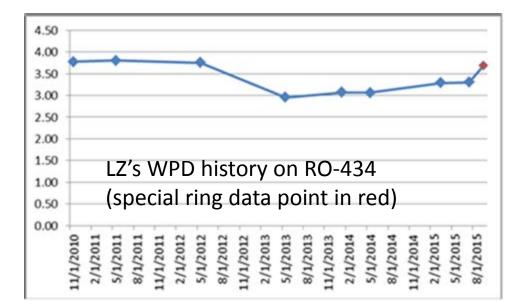

- Measured with Kayence machine (IVB)
- LH and RH chamfer of each ring measured
- Fairly large variability even between batches


WPD by batch

• By lab

WPD by batch

• By oil



LZ Experiments

- A set of "chamferless" production rings were fitted in a run 7/8 block
- The resulting gap was approx 0.001" larger than the allowable tolerance (0.025" ±0.002"), which should translate to more severity
- A recent LZ candidate was re-run with these production rings
- An improvement of 0.9 merits was achieved

LZ Experiments

- The previous experiment was repeated with industry reference oil RO-434
- An improvement of 0.5 merits was achieved

Questions left...

- Why does the industry data not show a batch effect?
 - Is there variability within batches?
 - Is there variability between block run #s?
 - Does the variability span batches?
 - Is there another characteristic responsible?
- Should there be follow-up work done?
 - Can rings be remade without chamfers and tested?
 - Should other test types adopt a more thorough inspection of their rings?

appendix

Background (provided by Sid Clark)

- Sid Clark searched back in old STP 315 Sequence III Test Procedures
 - Seq. II & III A through D Test Procedures all state....

D.9 End Ring Gap

It is recommended that a top and 2nd end ring gap(36) of 0.034 and 0.032 in. respectively, be used on a new engine. If light viscosity oils, such as 5W-20 are to be evaluated, the end ring gap should be decreased from 1 to 2 thousands per ring. The compression ring gaps can be modified on subsequent tests as necessary to assist in controlling blowby rates. The engine speed and load may be varied within the specified limits to further assist in controlling blowby rates. A ring grinder, prints RX-116728 thru 33, 116933 thru 49, 116951 thru 57, and 117052, 117506 and 117507, is helpful in grinding the rings to obtain a squareedged gap. All burrs must be removed from the rings with a fine stone prior to installation.

Excerpt from Multicylinder Test Sequences for Evaluating Automotive Engine Oils STP 315F

Background Cont.

- The aforementioned tests used 0.005" oversized piston rings supplied through Muskegon Piston Ring Co.
- The labs cut their ring gaps with the focus on "Square Cut Gaps"
- Technicians would de-burr gap edges, but never to the extent there was a notable chamfer. Actually, build technicians very seldom used any stones on the outer edge of the gap areas as checking the ring gap in the cylinder removed any fine burrs.
- Fine stoning was focused on the flat surfaces to assure proper ring rotation.

Background Cont.

- During the Sequence IIIE Test period, OHT, (then Bowden Manufacturing) was recommended by General Motors as the approved Central Parts Distributor for piston rings.
- GM worked with Muskegon Piston Ring and the CPD to assure all pre-gapped piston rings were square cut and free of any chamfers.
- The technical directions in the Sequence IIIE Procedure were changed to require the use of the CPD supplied materials and labs were no longer allowed to modify ring gaps.
- It has been ~ Twenty Years since this change and the CPD has been through numerous suppliers as the gapping process is very labor intensive and suppliers change, along with Engineers and Technicians.

Background & Conclusion

- In the past, any change in piston ring suppliers / specifications, was always approved through GM
- Prints and specifications were spelled out and all rings met the print.
- I'm concerned there may be some degree of miscommunication between the CPD and the current supplier doing the actual gapping procedures.
- George is correct, this was identified through IIIH Test Development as the newer build technicians were not necessarily aware of the importance of the "Square Cut" at the ring gap and soon realized its effect on testing.

Background respectfully submitted by Sid Clark as Consultant to SwRI and our Lubrizol Customer.

LTMS cleaned data

RINGCODE	first use	renamed	count
BC-2	6-Nov-02	2	2
BC-8	7-Nov-02	8	18
2	26-May-03	2	19
3	10-Jun-03	3	18
2/9	12-Aug-03	2	4
BC-3	12-Aug-03	3	20
3/10	12-Aug-03	3	12
	12-Aug-03	unk	31
BC3	17-Sep-03	3	1
BC-3A	14-Oct-03	3.1	15
3A	23-Oct-03	3.1	30
BC 3A	26-Nov-03	3.1	2
BC3A	20-Mar-04	3.1	5
4	22-Aug-04	4	26
BC4	16-Nov-04	4	2
BC-4	16-Dec-04	4	6
BC 4	4-Jul-05	4	1
5	18-Aug-05	5	4
BC5	9-Nov-05	5	1
6	18-Feb-06	6	71
BC-6	20-Feb-06	6	18
BC-5	15-Mar-06	5	1
BC6	3-Jul-06	6	6
BC 6	26-Nov-06	6	1
7	8-Jun-08	7	62
BC-7	22-Jul-08	7	9
BC7	23-Dec-08	7	5
8	16-Jan-10	8	64
BC12	9-Mar-10	unk	1
BC8	6-Oct-10	8	7
9	23-May-12	9	68
BC-9	31-Jul-12	9	2
BC9	20-Feb-13	9	6
10	30-Dec-13	10	3
1	2-Jul-14	11	10
BC1	11-Aug-14	11	1
FACTO	13-Sep-15	unk	1

Sequence III Surveillance Panel October 29, 2015 9:00AM – 12:00PM USCAR <u>Southfield, MI</u>

Motions and Action Items

As Recorded at the Meeting by Bill Buscher

- 1. Action Item Precision matrix labs to provide the FTIR peak height oxidation and nitration data from all Sequence IIIH precision matrix tests, and all oil samples (i.e. 80 hours, 90 hours...) to the Sequence IIIH Task Force and the industry statisticians group.
- 2. Action Item Sequence IIIH Task Force, along with the industry statisticians group, to evaluate all alternate suggestions for possible replacement for PVIS as the Sequence IIIH oxidation pass/fail parameter. Suggestions include hours to a certain PVIS value, hours to a certain FTIR oxidation and/or nitration value, including both peak height and area under the curve data, an FTIR area under the curve oxidation and/or nitration limit and an FTIR peak height oxidation and/or nitration limit.
- 3. Action Item At some point, yet to be determined, the precision matrix labs to provide the FTIR spectra curves to a single lab, yet to be determined, to interpret all FTIR spectra curves the same for peak height and area under the curve.
- 4. Action Item A sub-group of the Sequence IIIH Task Force, led by Kevin OMalley to closely evaluate <u>all</u> data from the precision matrix tests which produced influential observations to see if anything can be learned about influences on the test results.
- 5. Action Item Afton (Ed Altman) to document a cleaning procedure for the Sequence IIIF/G fuel injectors, which will be reviewed and added to the Sequence IIIF/G engine assembly manuals.
- 6. Action Item Form a Sequence IIIF/G Cylinder Head Reuse Task Force, chaired by Addison Schweitzer.

- 7. Action Item Labs to start capturing valve seat width data on Sequence IIIF/G engine builds, using a measurement procedure defined by the Sequence IIIF/G Cylinder Head Reuse Task Force.
- 8. Action Item: Once data is available, the Sequence IIIF/G Cylinder Head Reuse Task Force will analyze the valve seat width data and make recommendations to the Sequence III Surveillance Panel on revisions to the Sequence IIIF/G engine assembly manuals to allow for additional runs to be obtained on the Stellite seat cylinder heads (p/n 24502260S).
- 9. Action Item OH Technologies will inspect their inventory of Sequence IIIF/G/H piston rings to insure that the ring chamfers are within the current specifications/tolerances.
- 10.Action Item OH Technologies will review the ring chamfer specifications/tolerances with their suppliers of the Sequence IIIF/G/H piston rings to see if the specifications/tolerances can be tightened.