#### Sequence III Surveillance Panel Meeting Minutes January 09, 2015 14:00 EST

**1.0) Attendance** (Attachment 1)

1.1) Requests for voting membership: Jeff Betz, Chrysler Mopar Parts Jeff Shu, Shell

Both requests were granted.

#### 2.0) Approval of minutes

The October 21, 2014 minutes, held in San Antonio, TX, were approved as issued.

#### 3.0) Action Item Review

3.1) Test Longevity Report to PCEOCP December, 2014 (Attachment 2) Glaenzer

Approximately 700 - 750 runs may be available for life of test(s); estimate of mid-2016 run out of parts.

3.2) Statistician Review of Sequence IIIF RO 433-1 PVIS Targets (Attachment 3) Martinez

The stats group does not support a change in targets at this time.

#### 4.0) Old Business

4.1) Introduction of Size 7 & 8 pistons/rings into Sequence IIIF test Brys

This was previously done for the IIIG. Motion from Leverett, Szappanos second:

### Allow Labs to conduct IIIF tests on run 7 & 8 kit hardware once they have had one acceptable IIIF reference run within their lab; effective 1/15/15.

The motion was approved with no objections and three waives. The TMC will revise the build manual and/or issue an information letter as necessary.

OHT asked for an estimate of quantity required. Dave Glaenzer will survey the labs.

#### 5.0) New Business

#### 5.1) Use of Stellite (S) seated heads beyond second use for IIIF and IIIG Leverett

In another effort to extend test life, the following motion was made (Leverett, Altman)

Allow the reuse of cylinder heads (24502260S) with hardened valve seat material in Seq. IIIF and IIIG as long as:

- Valve recession does not exceed 0.005" from the original measurement. - Measure valve guide clearances at top and bottom of guides meet clearance of 0.0015 to 0.0032 inch.

In order to document where cylinder heads have been reused, laboratories are to append the run number, i.e. "2" for the second run with the heads, "3" for the third run with the heads, etc.to the cylinder head part numbers; effective 1/12/15.

The motion passed 16-0-3.

5.2) Sequence IIIH Task Force report of readiness for Matrix Testing Haumann

Karin Haumann presented (Attachment 4). The TF has voted to approve the test for matrix testing with a caveat regarding final resolution on the oil temperature control point (refer to slide 8 of the presentation). Karin fielded several questions regarding the data and various tests, as well as suggested tweaks to the presentation. It was noted that this presentation is an abbreviated version of the one being sent to AOAP.

Action Item: Karin to make revisions and distribute the updated report.

Action Item: Haiying Tang of Chrysler to forward relevant and approved for release reference oil volatility data to the surveillance panel.

5.3) Sequence III Surveillance Panel vote on IIIH readiness for Matrix Testing

The same motion approved by the IIIH TF motion was made by Jeff Shu and seconded by Kastav Sinha:

"The Seq. III SP support the IIIH test being included in the precision matrix pending final resolution of the oil temperature control point issue, and will recommend such to the AOAP and PCEOCP".

After significant and lengthy discussion, this motion carried 8-1-10.

Shortly after passage of the previous motion, the follow motion was made (Mosher, Altman):

### *Prior to final matrix readiness approval, the surveillance panel will meet on or before February 5, 2015 to evaluate the resolution of the oil temperature control issue.*

This motion carried 17-0-2. It was noted that both motions should be presented to the AOAP and PCEOCP.

The meeting adjourned at 4:00 pm.

ATTACHMENT 1 27 ASTM Sequence III Surveillance Panel (20) Voting members)

TELECONFERENCE date: 01/09/15

| Name/Address                                                                                                        | Phone/Fax/Email                                                      |               | Signature | <u>.</u>             |                  |                     | L |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-----------|----------------------|------------------|---------------------|---|
| Ed Altman<br>Afton Chemical Corporation<br>500 Spring Street<br>Richmond, VA 23219<br>USA                           | 804-788-5279<br>804-788-6358<br>ed.altman@aftonchemical.com          | Voting Member | Present_/ | A                    | N                | A                   |   |
| Jason Bowden<br>OH Technologies, Inc.<br>9300 Progress Parkway<br>P.O. Box 5039<br>Mentor, OH 44061-5039<br>USA     | 440-354-7007<br>440-354-7080<br>jhbowden@ohtech.com                  | Voting Member | Present_  | W                    | W                | A                   |   |
| Timothy L. Caudill<br>Ashland Oil Inc.<br>22 <sup>nd</sup> & Front Streets<br>Ashland, KY 41101<br>USA              | 606-329-1960 x5708<br>606-329-2044<br><u>tlcaudill@ashland.com</u>   | Voting Member | Present   | A                    | W                | A                   |   |
| Richard Grundza<br>ASTM Test Monitoring Center<br>6555 Penn Avenue<br>Pittsburgh, PA 15206<br>USA                   | 412-365-1031<br>412-365-1047<br><u>reg@astmtmc.cmu.edu</u>           | Voting Member | Present_  | A                    | W                | A                   |   |
| Tracey King<br>Haltermann Solutions<br>MI<br>USA                                                                    | 947-517-4107<br>tking@Jhaltermann.com                                | Voting Member | Present   | W                    | A                | A                   |   |
| Teri Kowalski<br>Toyota Motor North America, Inc.<br>1555 Woodridge<br>Ann Arbor, MI 48105<br>USA                   | 734-995-4032<br>734-995-9049<br><u>teri.kowalski@tema.toyota.com</u> | Voting Member | Present   |                      |                  |                     |   |
| Patrick Lang<br>Southwest Research Institute<br>6220 Culebra Road<br>P.O. Box 28510<br>San Antonio, TX 78228<br>USA | 210-522-2820<br>210-684-7523<br>plang@swri.edu                       | Voting Member | Present_  | Cylinder Head Vote P | Finder M. Mature | S.P. Moot by Febs & |   |
| Page 1 of X<br>3                                                                                                    |                                                                      |               | )         | 10/3                 | v1/14            | ł                   |   |

#### ASTM Sequence III Surveillance Panel (20 Voting members)

date:

i.

| Name/Address                                                                                                                        | Phone/Fax/Email                                                                                    |                           | Signature        |                 | <u> </u>           | <u></u>          |  |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------------|--------------------|------------------|--|
| Charlie Leverett<br>Intertek Automotive Research<br>5404 Bandera Road<br>San Antonio, TX 78238<br>USA                               | 210-647-9422<br>210-523-4607<br>charlie.leverett@intertek.com                                      | Voting Member             | Present <u>/</u> | A               | W                  | P                |  |
| Bruce Matthews<br>GM Powertrain<br>Mail Code 483-730-472<br>823 Jocyln Avenue<br>Pontiac, MI 48340<br>USA                           | 248-830-9197<br>248-857-4441<br><u>bruce.matthews@gm.com</u><br><b>Test Sponsor Representative</b> | Voting Member             | Present_         | A               | W                  | A                |  |
| Timothy Miranda<br>BP Castrol Lubricants USA<br>1500 Valley Road<br>Wayne, NJ 07470<br>USA                                          | 973-305-3334<br>973-686-4039<br><u>Timothy.Miranda@bp.com</u>                                      | Voting Member             | Present 1        | A               | A                  | A                |  |
| Mark Mosher<br>ExxonMobil Technology Co.<br>Billingsport Road<br>Paulsboro, NJ 08066<br>USA                                         | 856-224-2132<br>856-224-3628<br>mark.r.mosher@exxonmobil.co                                        | Voting Member<br><u>m</u> | Present          | A               | A                  | A                |  |
| Andrew Ritchie<br>Infineum<br>1900 East Linden Avenue<br>P.O. Box 735<br>Linden, NJ 07036<br>USA                                    | 908-474-2097<br>908-474-3637<br><u>Andrew.Ritchie@Infineum.com</u>                                 | Voting Member             | Present          | A               | W                  | A                |  |
| Ron Romano<br>Ford Motor Company<br>Diagnostic Service Center II<br>Room 410.<br>1800 Fairlane Drive<br>Allen Park, MI 48101<br>USA | 313-845-4068<br>313-32-38042<br><u>rromano@ford.com</u>                                            | Voting Member             | Present          |                 |                    |                  |  |
| Greg Shank<br>Volvo<br>Page 2 of X                                                                                                  | 301-790-5817<br>greg.shank@volvo.com                                                               | Voting Member             | Present          | Carl. Herd Vote | 12 Inel. in MATRIX | E.P. most butals |  |

#### ASTM Sequence III Surveillance Panel (20 Voting members)

date:

| Name/Address                                                                                                   | Phone/Fax/Email                                                                      |                                  | Signature |                                                               |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|-----------|---------------------------------------------------------------|
| Kaustav Sinha, Ph.D.<br>Chevron Oronite Co., LLC<br>4800 Fournace Place<br>Bellaire, TX 77401<br>USA           | 713-432-6642<br>713-432-3330<br>LFNQ@chevron.com                                     | Voting Member                    | Present   | AAA                                                           |
| Thomas Smith<br>Valvoline<br>P.O. Box 14000<br>Lexington, KY 40512-1400<br>USA                                 | 859-357-2766<br>859-357-7084<br><u>trsmith@ashland.com</u><br><b>PCEOCP Chair</b>    | Voting Member                    | Present   | AWA                                                           |
| Scott Stap<br>Chevrolet Performance                                                                            | scott.stap@tgidirect.com                                                             | Voting Member                    | Present   | AWA                                                           |
| Mark Sutherland<br>Test Engineering, Inc.<br>12718 Cimarron Path<br>San Antonio, TX 78249-3423                 | 210-867-8357<br><u>mrsutherland@tei-net.com</u><br>Represent                         | Voting Member<br>ted by Don Long | Present   | W W W                                                         |
| George Szappanos<br>The Lubrizol Corporation<br>29400 Lakeland Boulevard<br>Wickliffe, OH 44092<br>USA         | 440-347-2352<br>440-347-4096<br>greg.seman@lubrizol.com                              | Voting Member                    | Present   | AWA                                                           |
| Haiying Tang<br>Chrysler LLC                                                                                   | 248-512-0593<br><u>ht146@chrysler.com</u>                                            | Voting Member                    | Present   | AAA                                                           |
| Jeff Betz<br>Chrysler Moper Parts                                                                              |                                                                                      | Voting                           | Presail L | AAA                                                           |
| Jeff & Hsu, PE<br>Shell                                                                                        |                                                                                      | Voting F                         | recent V  | AAA                                                           |
| Cylinder H<br>S.P. support III.H in MHTRI,<br>S.P. to Maetloy Fel 5 to<br>Page 3 of & raview oil<br>3 temp con | <u>A</u> <u>N</u> <u>W</u><br>eodVote 16-0-3<br>x Vote 8-1-10<br>Vote 17-0-2<br>trol | )                                |           | 10 Cyl. Head Whe<br>11 Include in MATRIX<br>55 meet by Felo S |

# ASTM Sequence III Test Activity and Performance

ATTACHMENT 2

David L. Glaenzer Sequence III Surveillance Panel Chairman December, 2014

# Sequence IIIF & IIIG Capacity

### Sequence IIIF

5 Stands

4 Labs

### Sequence IIIG

13 Stands5 Labs

One lab has chosen to discontinue IIIG testing

# Sequence IIIF & IIIG Oils Sequence IIIF

RO 433-2 Active Reference Oil

### Sequence IIIG

| RO 434-1 | Active Reference Oil  |
|----------|-----------------------|
| RO 434-2 | Re-blend to be tested |

- RO 435-2 Active Reference Oil
- RO 438 Active Reference Oil

# Sequence III Meetings

### Teleconference

- September 05, 2014
  - Approved use of run 7 & 8 pistons/rings for IIIG testing
  - Reviewed RO 433-2 (IIIF) PVIS targets
  - Reviewed ASTM Sequence IIIH Task Force activities

### Face to Face Meeting

- October 21, 2014
  - Meeting of ASTM Sequence IIIH Task Force
  - Reviewed RO 433-2 (IIIF) PVIS targets; insufficient new data
  - Reviewed ASTM Sequence IIIH Task Force activities

# Seq IIIF Severity & Precision

### • Hours to 275%

- Severity in control
- Precision in control

### Average Piston Varnish

- In Mild action alarm; long-term trend since 2006
- Precision in control

### • PVIS 60

- In Severe action alarm
- Precision in control

## Sequence IIIG Severity & Precision

### PVIS (percent viscosity increase)

- Severity in control
- Precision at warning alarm
- ACLW (average cam plus lifter wear)
  - Severity in Mild warning alarm (long term trend)
  - Precision in Mild warning alarm (long term trend)
- WPD (weighted piston deposits)
  - Severity at Severe action (long term trend)
  - Precision in control
- MRV
  - Severity and Precision in control
- Phosphorus Retention
  - Severity and Precision in control

### Sequence IIIF / IIIG Availability of Key Test Components

- 12593374 Connecting Rods (new)
  - 787 runs available; re-furbishing possible
    Labs have saved used rods should re-work become necessary
- 24502168 Crankshaft (unused)
  - 546 runs available based on 6 runs per crankshaft
    May need to look at extending use beyond 6 runs per unit

## Sequence IIIF / IIIG Availability of Key Test Components (cont.)

- 24502286 Cylinder Case (Block)
  - 717 runs available based on 8 runs per block
    Size 7 & 8 pistons and rings approved for IIIG (not IIIF)
    Surveillance Panel may consider use of Size 7 & 8 in IIIF
- 24502260<u>5</u> Cylinder Heads (w/Stellite seats)
  - 750 runs available based on one re-use
    SP will consider additional use if necessary
    214 pieces #24502260 heads available (need seats installed)

## Sequence IIIF / IIIG Availability of Key Test Components (cont.)

Extended use of engine blocks is underway for IIIG test. Third use of Stellite seat heads will be considered.

It is anticipated testing will diminish after 2014 as new tests become available.

Average number of ACC & ASTM tests has been 248 tests per 6 month period (three years).

Most recent six month period was 176 tests.

Chairman's Estimates

| 2015 | 450 tests |
|------|-----------|
| 2016 | 250 tests |

# Sequence IIIF / IIIG Activity



#### ATTACHMENT 3

## Sequence IIIF RO 433-2 Review

Data Analyst Group 12/10/2014

### **Data Analyst Group Participation**

- Participants:
  - Janet Buckingham, SWRI
  - Martin Chadwick, IAR
  - Todd Dvorak, Afton
  - Rich Grundza, TMC
  - Jo Martinez, Chevron Oronite
  - Kevin O'Malley, Lubrizol

### **Background and Recommendation**

- The Sequence III SP has requested the Data Analyst Group review 433-2 as the result of a TMC review on reference oils.
  - Specifically, the group was asked to assess whether 433-2 reference oil targets need to be updated.
- The data set reviewed was the IIIF LTMS data file where CHARTHRS = Y and the last reported result was 20141118 (n=168).
- As 433-1 and 433-2 were both tested beginning 20130924, a smaller data set beginning at that time was also reviewed.
- The Data Analyst Group does not support a change in the reference oil targets for 433-2.

#### **Hours Over Time**



### Comparison of 433-1 HOURS (6/13/10 to 9/20/13) to 433-2 HOURS

- Labs A & B1: 433-2 HRS are within the range of 433-1 HRS
- Lab G: 1 433-2 result is lower than observed range of 433-1 HRS
- Lab M2: 1 of the 4 433-2 HRS is lower than the observed range of 433-1 HRS

Notes:

6/13/10: The cutoff used

was developed

when the HRS calculation

Post 9/20/13: Both 433-1 and 433-2 were tested



#### Comparison of 433-2 HOURS to 433-1 HOURS Post 9/20/13

- Lab A: 433-2 HRS comparable to 433-1 HRS
- Lab B1: 3 of the 4 433-2 results are comparable to 433-1 HRS; 1 result higher than the 3 433-1 results
- Lab G: 1 433-2 HRS comparable to 433-1 HRS; 1 433-2 HRS lower than 433-1

Notes:

6/13/10: The cutoff used

was developed

when the HRS calculation

Post 9/20/13: Both 433-1

and 433-2 were tested

• Lab M2: 2 of the 4 433-2 HRS appear lower than the 433-1 HRS

![](_page_21_Figure_5.jpeg)

# Though not statistically significant, 433-2 LSMeans are consistently lower than 433-1 within labs (n=166\*)

![](_page_22_Figure_1.jpeg)

IND [LTMSLAB ]

| Least Squares Means Table |           |           |           |  |  |
|---------------------------|-----------|-----------|-----------|--|--|
|                           | Least     |           |           |  |  |
| Level                     | Sq Mean   | Lower 95% | Upper 95% |  |  |
| [A]433-1                  | 119.79457 | 117.70564 | 121.88349 |  |  |
| [A]433-2                  | 118.96500 | 108.94685 | 128.98315 |  |  |
| [B1]433-1                 | 119.30410 | 117.03544 | 121.57277 |  |  |
| [B1]433-2                 | 116.28750 | 109.20360 | 123.37140 |  |  |
| [G]433-1                  | 121.79040 | 119.78677 | 123.79403 |  |  |
| [G] 433-2                 | 121.55500 | 111.53685 | 131.57315 |  |  |
| [M2]433-1                 | 115.69737 | 112.44705 | 118.94769 |  |  |
| [M2]433-2                 | 106.51750 | 99.43360  | 113.60140 |  |  |

![](_page_23_Picture_0.jpeg)

#### ATTACHMENT 4

# Chrysler Oxidation and Deposit Engine Test Development for GF-6

### Task Force Update to Surveillance Panel January 8, 2015

![](_page_23_Picture_4.jpeg)

Chrysler Group LLC

### **Prove-Out Matrix**

- All labs are using the final hardware and hone procedure
- The results are repeated and correlated between the labs.

| Prove out Matrix |         |      |         |      |          |          |         |      |
|------------------|---------|------|---------|------|----------|----------|---------|------|
|                  | Swl     | RI   | IA      | IAR  |          | Lubrizol |         | on   |
|                  | pVis, % | WPD  | pVis, % | WPD  | pVis, %  | WPD      | pVis, % | WPD  |
| REO2             | 78.5    | 4.76 | 121.6** | 3.63 | 71.1     | 4.52     | 45.9    | 4.38 |
| REO2             | 54.8    | 4.72 | 46.4    | 5.15 | 44.6     | 4.82     |         |      |
| REO2             | 49.1*   | 4.98 |         |      |          |          |         |      |
| 434-1            | 143.7   | 4.27 | 90.5    | 4.76 | 754.7*** | 3.8      | 264.3   | 4.46 |
| 434-1            | 146.8*  | 4.61 |         |      | 184*     | 3.84     |         |      |
| REO3             | 21.2    | 6.8  |         |      |          |          |         |      |

\*New Oil Thermocouple Location

\*\*Test was conducted using lab cut rings and exhibited high blowby \*\*\*Anomaly in engine cooling strategy during oil level was identified

#### 

 TMC reference oils and two Vegas field test oils were run in duplicate with final procedure and final hardware

![](_page_25_Figure_2.jpeg)

### **Discrimination on WPD**

- TMC reference oils and two Vegas field test oils were run with final procedure and final hardware
- WPD results demonstrated discrimination on WPD with the separation of REO3 from TMC reference oil 434-1 and REO2

| Oil         | pVis, % | WPD  |
|-------------|---------|------|
| 434-1-SwRI  | 143.7   | 4.27 |
| 434-1- SwRI | 146.8   | 4.61 |
| 434-1-IAR   | 90.5    | 4.76 |
| 434-1-LZ    | 754.7   | 3.8  |
| 434-1-LZ    | 184     | 3.84 |
| 434-1-Afton | 264.4   | 4.46 |
| 435-SwRI    | 38.6    | 4.84 |
| 438-SwRI    | 113.9   | 3.91 |
| REO2-SwRI   | 78.5    | 4.76 |
| REO2-SwRI   | 54.8    | 4.72 |
| REO2-SwRI   | 49.1    | 4.98 |
| REO2-IAR    | 121.6   | 3.63 |
| REO2-IAR    | 46.4    | 5.15 |
| REO2-LZ     | 71.1    | 4.52 |
| REO2-LZ     | 44.6    | 4.82 |
| REO2-Afton  | 45.9    | 4.38 |
| REO3-SwRI   | 21.2    | 6.80 |

**WPD Separation** 

![](_page_26_Figure_5.jpeg)

### **Development Data**

CHRYSLER GROUP LLC

### **Development Data on Final Hardware**

| Oil             | PVIS (%) | WPD (merits) |
|-----------------|----------|--------------|
| TMC 434-1 SwRI  | 143.7    | 4.27         |
| TMC 434-1 SwRI  | 146.8    | 4.61         |
| TMC 434-1 IAR   | 90.5     | 4.76         |
| TMC 434-1 Afton | 264.3    | 4.46         |
| TMC 434-1 LZ    | 754.7    | 3.8          |
| TMC 434-1 LZ    | 184.0    | 3.84         |
| REO2 SwRI       | 78.5     | 4.76         |
| REO2 SwRI       | 54.8     | 4.72         |
| REO2 SwRI       | 49.1     | 4.98         |
| REO2 IAR        | 121.6    | 3.63         |
| REO2 IAR        | 46.4     | 5.15         |
| REO2 Lubrizol   | 71.1     | 4.52         |
| REO2 Lubrizol   | 44.6     | 4.82         |
| REO2 Afton      | 45.9     | 4.38         |
| REO3 SwRI       | 21.2     | 6.80         |
| REO3 SwRI       | 17.9     | 7.13*        |

hour

 Test Development is complete and all work has been transferred to the Task Force

| Status | Criteria                                            | Remark                                                     |
|--------|-----------------------------------------------------|------------------------------------------------------------|
| Yes    | Stand to stand repeatability                        | Demonstrated                                               |
| Yes    | Discrimination                                      | Demonstrated                                               |
| Yes    | 0W-16 viable                                        | Demonstrated                                               |
| Yes    | Field Correlation                                   | REO 2/3                                                    |
| Yes    | Procedure and final hardware available and released | 90 hours, 6 oz oil addition every 20 hours                 |
| Yes    | Long term engine supply and readiness               | 3800 engines to last through 2022, other parts through CPD |
| Yes    | Lab to lab reproducibility and prove-<br>out matrix | 2 independent labs and 2-3 dependent labs                  |

### Summary

- The Chrysler test results show repeatability, reproducibility, and discrimination on PVIS and WPD.
- The Chrysler test meets the test development objectives.
- The AOAP has voted unanimously that the test is 'fit for purpose' at the November 2014 meeting.
- The Task Force voted on January 6 in support of the test being included in the precision matrix pending final resolution of the oil temperature control point, and will recommend such to the AOAP and PCEOCP on January 15.
- Six stands are ready for Matrix in two independent labs and two dependent labs.

- A change was recently made to lower the oil gallery thermocouple into the engine block in an attempt to obtain the most consistent oil temperature reading.
- Prove-out testing was done with this change to verify that the change had a negligible effect on the test.
- During the prove-out testing two labs were able to provide satisfactory data on 3 tests, however 2 labs experienced oil leaking at the new location
- The Task Force is conducting testing now to verify the viability of an alternate oil temperature control point.

![](_page_31_Picture_0.jpeg)

# Thank You!

Chrysler Group LLC