IIIH Data Review Task Force Conference Call November 30, 2015 3:30 – 5:00 Eastern

Attendees:

Chrysler: Haiying Tang, Jeff Betz Shell: Karin Haumann, Oronite: Jo Martinez, Robert Stockwell, Ricardo Affinito Afton: Ed Altman, Bob Campbell Ashland: Amol Savant Infineum: Andy Ritchie, Gordon Farnsworth, Doyle Boese Lubrizol: George Szappanos, Kevin OMalley Intertek: Adison Schweitzer, Charlie Leverett SwRI: Pat Lang, Sid Clark, Travis Kostan, Mike Lochte TMC: Rich Grundza OHT: Jason Bowden, Matt Bowden **IMTS:** Dave Passmore Neste Oil: Chris Castanien Ford: Ron Romano Toyota: Teri Kowalski, Jim Linden **GM: Bruce Matthews**

Karin opened the meeting explaining the group was going to review the Toyota Proposal to Sequence IIIH Precision Matrix Data Analysis dated November 20, 2015. Karin indicated Jo Martinez would be going through the Toyota presentation; however she would be starting with the Sequence IIIH Precision Matrix IR Oxidation / Nitration Statistical Analysis from the Statistics Group dated November 18, 2015 that was emailed on 11/19/2015 to the group.

The presentations are attached in order of presentation;

Attachment #1 Sequence IIIH Precision Matrix IR Oxidation / Nitration Statistical Analysis, Statistics Group, November 18, 2015.

Attachment #2 Proposal to Sequence IIIH Precision Matrix Data Analysis, November 20, 2015, Toyota Motor Corporation.

Jo Martinez discussed the IR Analysis explaining the methods used which were Peak Height and Area Methods of looking at Oxidation and Nitration. Jo Martinez discussed the conclusions with comments on each of the Precision Matrix Oils and their comparison or Coefficient of Variation.

Questions / comments:

Ron Romano asked if he was correct in his conclusion we really don't get any advantage looking at IR Oxidation over Pvis, to which Jo Martinez answered "Yes". Ron asked if we could get a better coefficient of variance would it be better. Bob Campbell commented he thought the Transformed Data was actually a little better. Jo Martinez reviewed Slide #4 looking at LnPvis indicating the range of 438 is still a problem.

Andy Ritchie commented Infineum didn't see any benefit from looking at the Area approach over what we currently have. *The Secretary assumes he means Pvis.*

Jo Martinez next reviewed the Toyota Presentation (Attachment #2) going through each slide reading the comments, Pros, and Cons, as listed on each slide using the Smirnov-Grubbs Test to identify outlier data points.

After review of the Toyota Presentation, the group again discussed the outlier concerns with comments from; Andy Ritchie, Doyle Boese, Ron Romano, Bob Campbell, Charlie Leverett, Karin Haumann, and Jo Martinez. Some of the comments were;

Have the Statisticians looked at the Toyota Analysis and what were their comments; Jo Martinez replied they were currently reviewing the data and yes they had looked at outliers, changing their P-Value approach from 0.5 to 0.1 as a criterion.

Doyle discussed statistical interpretation used to identify outliers with follow up investigations into possible causes for the outlier which has been conducted by the group with no final conclusion as to the cause for the outlier.

Charlie Leverett asked if the outlier falls within the ASTM E-178 guidelines, which Jo Martinez indicated she had reviewed the questionable outlier under the ASTM guidelines and it fell within 0.1 significance level.

Bob Campbell commented Afton agrees they have one outlier data point at a high confidence level and they have looked extremely hard trying to understand the cause for the result. Bob Campbell indicated if the group wants to discuss how to decide upon the status of this test based on Today's discussions, that's OK. He also indicated Afton was going to re-run another 434-2 test. Bob reminded everyone that Afton's Prove-out data fell in the middle of everyone's data on 434-2 and they want to know what drove this test mild probably more than others.

Karin reviewed the question at hand, being using the data as is to set the targets / limits that determine the precision of the test, and thereby generate wider targets, or do we eliminate this test as an outlier and tighten the bands.

The group discussed whether they would ever identify the cause of the mild result and agreed this may happen again and we need to identify the cause as it is likely to happen in candidate testing. Karin agreed, commenting if the data point is used to set the limits, then there will not

be a means to single these type tests out, thereby causing labs to investigate the cause for such results.

The group then discussed results on Reference Oil 438, with Karin commenting the results for 438 were all very close through 80 hours. Karin mentioned we all realize as the oil thickens, we can have a large increase within an hour in the Sequence IIIG and she really didn't understand the concern about 438 commenting that all the oils are different chemistries and they are all going to act differently.

Ron Romano commented he felt we really need to understand what caused this result going forward as it will possibly happen in candidate testing.

Teri Kowalski mentioned her discussions with Hirano San during Toyota's review of their statistical evaluation indicating she felt it's time to possibly consider this an outlier and move on.

The group discussed additional concerns about engine build parameters, honing, cleaning, and data points that Robert Stockwell questioned about pressure data on one of the other Afton tests that cause confusion. Ed Altman and Robert discussed these data blips, with Ed suggesting there may have been a problem with the data acquisition board during that test. Ed Altman indicated the prove-out test on 434-2 run on the same stand generating 268% Pvis with nothing changed on the test stand or the engine build since that test.

Doyle Bose suggested possibly building an engine at another lab and running it at Afton.

Bob Campbell indicated he would like to see additional work on standardized honing efforts within the IIIH. The group discussed the status of the Round Robin Block and concerns that some labs have seen cylinders at the larger limit for bore size.

After continued discussion on numerous subjects focused on engine honing and potential differences between labs, Haiying Tang attempted to make a motion focused on removing the outlier data and moving forward. Teri again mentioned Hirano San's Statistical Evaluation and possibly setting up a conference call before the AOAP meeting.

The Secretary asked for a second on the motion before moving into any further discussion.

Karin Haumann seconded Haiying's motion and the group moved into discussion.

Discussion:

The group agreed to remove all data for the subject outlier test.

George Szappanos expressed concern about other labs falling into this situation and offered Lubrizol's assistance investigating the issue going so far as to offer an Lubrizol built engine to run at Afton along with whatever assistance requested to help investigate the problem. The group agreed the industry would work together to investigate the cause of the mild results through a root Task Force made up of the test engineers to continue looking into the test results.

The group continued to discuss test variability and how the questionable outlier test might affect the limits with concerns it may wash all the precision from the LTMS.

After continued discussion, Karin decided to call the question.

Review of the Motion with participant input resulted in the following wording:

Motion: Haiying Tang / Karin Haumann

Motion to accept the Toyota Statistical Evaluation of the IIIH Matrix Data, removing test CMIR 106788 as a statistical outlier at the .1 significance level from the matrix data analysis.

Company	Approve	Abstain	Negative
Infineum			Х
Oronite	X		
Shell	Х		
Chrysler	Х		
Ford			Х
General Motors			Х
Toyota	Х		
Afton		Х	
Ashland	Х		
Intertek		Х	
Lubrizol	Х		
SwRI		Х	
ТМС		Х	
IMTS	Х		
ОНТ		Х	
Totals	7	5	3

Voting:

The motion passed with 7 Approves, 5 Abstains, and 3 Negatives.

After the vote, the group discussed what needs to be done to move forward;

Ron Romano indicated he would support the motion if there was an action plan moving forward looking at other parameters to try to identify the cause for the mild results. Ed Altman agreed indicating Afton was planning to run additional testing and agreed he would work with Lubrizol to continue investigations.

Bob Campbell indicated they were going to make another run on 434-2 and Ron questioned how the statisticians would handle that data if it duplicated.

The group discussed whether data points have ever been removed from matrix testing and bill Buscher reminded everyone that the Sequence IV Panel removed two mild data points from the Sequence IV GF-3 Precision Matrix.

Bob Campbell commented he encouraged labs to run additional testing to complement Afton's re-run and after some additional discussion the group adjourned.

Adjourn: 5:12 pm Eastern

This is a compilation from notes recorded during the call, with comments from member participants during the Draft Review. Certain subjects may not necessarily be in exact order; however, they are believed to represent an accurate account of the call. If anyone feels changes or additional content may be necessary, please contact Sid Clark @ 586-873-1255 or Sidney.Clark@swri.org

Thanks, Sid

Sequence IIIH Precision Matrix IR Oxidation/Nitration Statistical Analysis

Statistics Group Nov. 18, 2015

Conclusions

- IR Peak Height measurements were done by SwRI.
- If IR measurements are used, then additional work is needed to investigate measurement differences between labs.
- Coefficient of Variation of IR Area and IR Peak Height parameters are equal or worse than PVIS with the exception of Ln-transformed IRO3EOT.
- IR Oxidation Area and Peak Height parameters discriminate 434-2 vs 436 and 438-1.
 - PVIS does not discriminate between 434-2 and 438-1.
 - Range of 438-1 includes each of the other two oils for IR Oxidation parameters.
- IR Nitration Area and Peak Height parameters gave the worst Coefficient of Variation and do not discriminate between 434-2 and 436.

Summary

Parameter	Transformation	Summary Statistics		CV	Effects
PVIS	LnPVIS	RSquare	0.72		D < A
		RSquare Adj	0.61		A2 < A1
		Root Mean Square Error	0.5631	0.1393	436 < 434-2
		Mean of Response	4.0435		
		Observations (or Sum Wgts)	28		
Height	LnIRPH90	RSquare	0.73		No Lab difference
		RSquare Adj	0.62		G1 < G2
		Root Mean Square Error	0.5670	0.1320	436, 438-1 < 434-2
		Mean of Response	4.2947		
		Observations (or Sum Wgts)	28		
Height	SqrtIRPH90	RSquare	0.75		D < A
		RSquare Adj	0.64		A2 < A1, G1 < G2
		Root Mean Square Error	2.3746	0.2520	436, 438-1 < 434-2
		Mean of Response	9.4234		
		Observations (or Sum Wgts)	28		
Area	LnIRO3EOT	RSquare	0.77		B, G < A; G < E
		RSquare Adj	0.67		G1 < G2
		Root Mean Square Error	0.6844	0.0865	436, 438-1 < 434-2
		Mean of Response	7.9158		
		Observations (or Sum Wgts)	28		
Area	SqrtIRO3EOT	RSquare	0.79		B, D, G < A
		RSquare Adj	0.70		A2 < A1
		Root Mean Square Error	17.65444	0.2889	436, 438-1 < 434-2
		Mean of Response	61.11939		
		Observations (or Sum Wgts)	28		
Height	NitPH90	RSquare	0.65		No Lab difference
		RSquare Adj	0.51		No Stand(Lab) difference
		Root Mean Square Error	9.9649	0.3535	438-1 < 434-2
		Mean of Response	28.1890		
		Observations (or Sum Wgts)	28		
Area	IRN3EOT	RSquare	0.64		D, G < E
		RSquare Adj	0.48		No Stand(Lab) difference
		Root Mean Square Error	155.1318	0.4070	438-1 < 434-2
		Mean of Response	381.1429		
		Observations (or Sum Wgts)	28		

LnPVIS

LnIRO3EOT

SqrtIRO3EOT

IRN3EOT

LnIRPH90

SqrtIRPH90

NitPH90

PVIS

IRO3

R03

IRO3 vs. Hours

IRN3

IRN3

IRPHOx

IRPHNit

IRPHNit

(5
	4
	2
	ž
-	5
_	3
5	두
	-

TOYOTA

Proposal to Sequence IIIH Precision **Matrix Data Analysis**

November 25th, 2015 Toyota Motor Corporation

Prepared for Seq III SP, Stat Group Review, and AOAP

Nov. 25th, 2015

-

τογοτα				IIIH Data trom As I IVI I IVIC Wedsite		Controd by TMAC DEC and Toot No	SUITED BY THIS VED ATTA TEST ING.					Influencing observations	nointed out by Stat Group in		the Sed IIIH Precision Matrix	Stat Analysis Report.		(CTU2, & VON)												and AOAP 2
	Phos Retention	94.73	91.51	92.62	92.37	92.78	95.30	93.64	98.06	95.23	78.47	78.39	82.09	77.42	79.83	78.85	81.34	79.94	81.28	81.22	81.30	80.85	79,22	78.07	79.22	76.52	77.36	78.49	79.40	P, Stat Group Review,
)ata	MPD	4.45	4.62	4.92	4.30	4.24	4.72	4.77	4.96	4.24	3.98	3.66	3.40	4.19	4.73	5.60	3.93	4.10	3.35	4.28	3.33	3.46	3.34	3.97	3.59	3.32	3.10	3.42	4.50	or Seq III SI
crix D	PVIS	19.5	38.0	22.7	54.6	26.5	27.8	22.4	31.3	25.3	137.5	104.9	232.4	121.8	13.6	59.4	99.8	166.6	180.9	129.6	31.2	29.4	265.1	73.6	25.4	24.6	209.0	31.3	130.9	Prepared fo
n Mat	Test No.	106763	106775	106776	106777	106783	106786	106792	106793	111422	106778	106779	106780	106781	106788	106789A	106795	107873	110227	110228	106767	106768	106774	106785	106791	106797	107869	107870	107872	
isior	TMC REO	436	436	436	436	436	436	436	436	436	434-2	434-2	434-2	434-2	434-2	434-2	434-2	434-2	434-2	434-2	438-1	438-1	438-1	438-1	438-1	438-1	438-1	438-1	438-1	
Prec	an Order	1	З	4	4	2	ŝ	2	ŝ	7	1	ŝ	4	m	1	2	4	2	ŝ	4	2	ŝ	-	Ч	4	1	2	2	4	015
Η	Lab-Stand	G-1	A-2	A-2	A-1	E-1	D-1	B-1	B-1	G-2	A-2	A-1	E-1	E-1	D-1	D-1	B-1	G-2	G-2	G-1	G-1	G-1	A-1	E-1	D-1	B-1	A-1	A-2	G-2	Nov. 25th, 21

HONOH

 \sim

Nov. 25th, 2015

Prepared for Seq III SP, Stat Group Review, and AOAP

Toyota's Thoughts	YOTA
Treatment of Outliers	
 Approach 1 : Validity of Test Operations 	
 Assumption : test operation variation causes the test result variat 	tion.
 No guarantee that monitored operational parameters can capture operational variations. 	U
 The TF could not find operational problems to invalidate concerne 	ed data
points.	
 Approach 2 : Statistical Test 	
 Check if concerned data point belongs to the same population. 	
 If it does not, then excludes it from calculation to set up LTMS. 	
 Pros : Tighter allowance will pick up questionable reference data invalidate its test stand. 	and
 Cons : Labs may face difficulty to control test stand severity, beca source of variation is not yet clarified. 	ause
ov. 25th, 2015 Prepared for Seq III SP, Stat Group Review, and AOAP	4

Nov. 25th, 2015

-	
C	5
C	σ
C	C
2	2
5	

- Outlier Test : Smirnov-Grubbs Test
- Assuming the data population follows normal distribution, check each data point to see if it is statistically outlier.
- Pros : Can identify outlier data point without clarifying its reason. I
- Cons : Need separate work to improve test stand that shows outlier result. T

Unbiased Variance

$$u^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Test Statistic

2.139 2.274

1.938 2.032

1.973

1.887 2.020

1.822

0.01

0.05

0.10

2 9

signifiance level (2 tailed test)

Smirnov-Grubbs Critical Value Table

2.482 2.564 2.636

2.290 2.355 2.412

912

2.285

2.234

2.387

2.110 2.176

2.126

0 0

$$\tau_1 = \frac{x_1 - \mu}{\sigma} \quad (\sigma = u)$$

Critical Value Calculation for Smirnov-Grubbs Test

$$\tau = \frac{(n-1)t}{\sqrt{n(n-2) + nt^2}}$$

Nov. 25th, 2015

Prepared for Seq III SP, Stat Group Review, and AOAP

Borderline for Outlier at 0.10 significance level, but not significant enough.

Data
Matrix
Precision
H
Sequence

					Smirnov-Gr	ubbs Critica	l Values	
JCVJVAT				significance		0		2
11/1/430				Level				5
				0.10		2.110		2.032
				0.05		2.215		2.126
				0.01		2.387		2.274
Percent	Viscosity	Increase						
					Ľ	6 -	: u	= 8
Lab-Stand	Run Order	TMC REO	Test No.	PVIS	In(PVIS)	1	In(PVIS)	ч
G-1	1	436	106763	19.5	2.97041	-1.1975	2.9704	-1.4041
A-2	m	436	106775	38	3.63759	0.9284	3.6376	1.7812
A-2	4	436	106776	22.7	3.12236	-0.7133	3.1224	-0.6786
A-1	4	436	106777	54.6	4.00003	2.0832		3.5117
E-1	2	436	106783	26.5	3.27714	-0.2201	3.2771	0.0604
D-1	ŝ	436	106786	27.8	3.32504	-0.0675	3.3250	0.2890
B-1	2	436	106792	22.4	3.10906	-0.7557	3.1091	-0.7421
B-1	m	436	106793	31.3	3.44362	0.3103	3.4436	0.8552
G-2	H	436	111422	25.3	3.23080	-0.3678	3.2308	-0.1609
				Ave	3.34623		3.26450	
				VAR (Sample)	0.0984974		0.0438695	
				ъ	0.313843		0.2094505	

Г

* PVIS is transformed by natural log for normal distribution. Prepared for Seq III SP, Stat Group Review, and AOAP

Nov. 25th, 2015

9

PVIS: TMC434-2

TOYOTA

Outlier at 0.01 significance level.

Sequence IIIH Precision Matrix Data

	G-1 4 434-2 110228 129.6 4.86445 0.2922 4.8645 0.0246	$\begin{array}{c c} n = & \\ 2.12 \\ 2.11 \\ 2.22 \\ 2.33 \\ 9 \\ 1.50 \\ 33 \\ 0.17 \\ 33 \\ 33 \\ -0.55 \\ 33 \\ -0.55 \\ 33 \\ -0.55 \\ 33 \\ -0.55 \\ 24 \\ -5.66 \\ 1.96 \\ 32 \\ -0.66 \\ 77 \\ 0.07 \\ 77 \\ 0.07 \\ 77 \\ 0.07 \\ 1.96 \\ 0.07 \\ 1.96 \\ 0.07 \\ 1.96 \\ 0.07 \\ 1.96 \\ 0.00 \\ 0.00$	n = n = 10(PV 4.92 4.65 4.65 4.60 4.08 5.11 5.11 4.85 4.85	n = 10 2.176 2.290 2.482 2.482 2.482 0.3661 0.3661 0.0283 1.0211 0.2148 -0.6814 -0.6814 -0.6814 0.7084 0.2922 0.2922	n = 10 ln(PVIS) 4.92362 4.65301 5.44846 4.80238 2.61007 4.08429 4.60317 5.11560 5.19794 4.63030	significance Level 0.10 0.05 0.01 0.01 137.5 104.9 232.4 121.8 13.6 59.4 121.8 13.6 59.4 99.8 13.6 59.4 121.8 13.6 59.4 99.8 13.6 59.4 92.8 13.6 59.4 92.8 13.6 59.4 92.8 13.6 59.4 73.6 13.6 59.4 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6	Test No. 106778 106779 106781 106781 106783 106783 106795 107873 110227 110228	TMC REO 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2 434-2	Viscosity Viscosity Run Order 3 3 4 4 4 4 4 2 2 2 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3	1C434 . -Stand A-2 A-1 E-1 E-1 D-1 D-1 D-1 B-1 G-2 G-2 G-2 G-2	
		477	4.85		4.63030	Ave					
G-1 4 434-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 Ave 4.63030 4.85477 4.85477 4.85477		79 0.87	5.19	0.7084	5.19794	180.9	110227	434-2	ŝ	G-2	
5-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 434-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 6-1 4 434-2 110228 129.6 4.63030 4.85477 0.0246	G-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704	56 0.66	5.11	0.6057	5.11560	166.6	107873	434-2	2	G-2	
5-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 434-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 6-1 4 434-2 110228 129.6 4.63030 4.85477 0.0246	G-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 G-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704	32 -0.6	4.60	-0.0339	4.60317	99.8	106795	434-2	4	B-1	
3-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 5-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 434-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 5-1 4 4.63030 6.4645 0.2922 4.8645 0.0246	B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 G-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 G-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704	43 -1.9	4.08	-0.6814	4.08429	59.4	106789A	434-2	2	D-1	
D-1 2 434-2 106789A 59.4 4.08429 -0.6814 4.0843 -1.9543 3-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 3-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 3-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 4 4.34-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 4 4.34-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 5-1 4 4.85477 4.85477 4.85477 4.85477	D-1 2 434-2 106789A 59.4 4.08429 -0.6814 4.0843 -1.9543 B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 G-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 G-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704	-5.65		-2.5213	2.61007	13.6	106788	434-2	1	D-1	
0-1 1 434-2 106788 13.6 2.61007 -2.5213 -5.6935 00000 0-1 2 434-2 106789A 59.4 4.08429 -0.6814 4.0843 -1.9543 0-1 2 434-2 106795 99.8 4.00317 -0.6814 4.0843 -1.9543 3-1 4 434-2 106795 99.8 4.60317 -0.6339 4.6032 -0.6382 5-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-3 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704 5-1 4 4.34-2 110228 129.6 4.86445 0.2922 4.8645 0.0246 5-1 4 4.53030 4.85477 9.0246 1.48645 1.0246	D-1 1 434-2 106788 13.6 2.61007 -2.5213 -5.6035 Outllef D-1 2 434-2 106789A 59.4 4.08429 -0.6814 4.0843 -1.9543 Outllef B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -1.9543 Outllef G-2 2 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 Outllef G-2 2 434-2 107873 166.6 5.11560 0.6357 5.1156 0.6616 G-2 3 434-2 110227 180.9 5.19794 0.7084 5.1979 0.8704	24 -0.1	4.80	0.7148	4.80738	121.8	106781	434-7	m	F-1	
-1 3 434-5 106781 171.8 4.80236 0.7148 4.8024 -0.1329 Outlier 0-1 1 434-2 106788 13.6 2.61007 -2.5213 4.8024 -0.1329 0utlier 0-1 2 434-2 106788 59.4 4.08429 -0.6814 4.0843 -1.9543 0-1 4 4.04-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 3-1 4 4.08-1 -0.07873 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 3-1 4 4.34-2 107873 166.6 5.11560 0.6057 5.1156 0.6382 5-1 4 4.86445 0.7084 5.1979 0.7084 5.1979 0.8704 5-1 4 4.86445 0.7084 5.1979 0.8704 0.8704 5-1 4 4.86445 0.2922 4.8645 0.0246 0.0246 0.0246 0.0246	F-1 3 434-2 106781 171.8 4.80738 0.7148 4.8074 -0.1329 Outlier D-1 1 434-2 106788 13.6 2.61007 -2.5213 -0.1329 -0.1329 Outlier D-1 2 434-2 106789 59.4 4.08429 -0.6814 4.0843 -1.9543 B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 G-2 2 434-2 107873 166.6 5.11560 0.6339 4.6032 -0.6382 G-2 3 434-2 107873 180.9 5.1979 0.7084 5.1979 0.8704	85 1.50	5.44	1.0211	5.44846	232.4	106780	434-2	4	E-1	
1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 1 3 434-2 106781 171.8 4.80738 0.7148 4.8074 1.5059 0-1 1 434-2 106783 13.6 2.61007 2.5213 4.8074 -0.1379 0-1 2 434-2 106788 13.6 2.61007 2.5213 4.8074 -0.1379 0-1 2 434-2 106789 59.4 4.08429 -0.6814 4.0843 -1.9543 3-1 4 434-2 106795 99.8 4.60317 -0.03399 4.6032 -0.6382 5-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-2 3 434-2 110227 180.9 5.19794 0.7084 5.1156 0.6616 5-1 4 434-2 110227 180.9 5.19794 0.8704 5-1 4 4.3645 0.7084 5.1156 0.6616 0.8704 5-1	E-1 4 434-2 106780 232.4 5.4846 1.0211 5.4485 1.5059 F-1 3 434-2 106781 171.8 4.80738 0.7148 4.8074 1.0211 5.4485 1.5059 D-1 1 43 106781 171.8 4.80738 0.7148 4.8074 -0.1379 D-1 1 43 106788 13.6 2.61007 2.5213 4.8074 -0.1379 D-1 2 434-2 106789A 59.4 4.08429 -0.6814 4.0843 -1.9543 B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 G-2 2 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 G-2 3 4.60317 -0.0339 4.6032 -0.6382 -0.6382 G-2 434-2 107873 166.6 5.11560 0.6616 0.6616 0.8704 0.8704 <td< td=""><td>30 -0.5</td><td>4.65</td><td>0.0283</td><td>4.65301</td><td>104.9</td><td>106779</td><td>434-2</td><td>ŝ</td><td>A-1</td></td<>	30 -0.5	4.65	0.0283	4.65301	104.9	106779	434-2	ŝ	A-1	
1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 -0.5118 2-1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 2-1 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 2-1 3 434-2 106783 10578 13.6 2.61007 -2.5213 4.8024 -1.329 0-1 2 434-2 106783 59.4 4.08429 -0.6814 -1.9543 0.1329 0-1 2 434-2 106795 99.8 4.60317 -0.6313 4.8024 -1.9543 0-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 5-1 434-2 107873 166.6 5.11560 0.6057 5.1156 0.6616 5-1 4 434-2 110227 180.9 5.11560 0.6057 5.1156 0.6616 5-1 4 4.34+2 110228 129.6 0.6039 0.7084	A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 -0.5118 E-1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 F-1 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 D-1 3 434-2 106789 171.8 4.80738 0.7148 4.8074 -0.1329 D-1 1 434-2 106789 13.6 2.61007 2.5213 7. 5.4693 D-1 2 434-2 106789 59.4 4.08429 -0.6814 4.0843 -1.9543 B-1 4 434-2 106795 99.8 4.60317 -0.0339 4.6032 -0.6382 G-2 434-2 107873 166.6 5.11560 0.6616 0.65382 G-2 3 434-2 107873 166.6 5.19794 0.7084 0.8704 0.8704	36 0.17	4.92	0.3661	4.92362	137.5	106778	434-2	1	A-2	
$\sqrt{2}$ 1 $434-2$ 106778 137.5 4.92362 0.1746 0.1746 $\sqrt{-1}$ 3 $434-2$ 106779 104.9 4.65301 0.0283 4.6530 0.1746 $2-1$ 4 $434-2$ 106780 232.4 5.44846 1.0211 5.4485 1.5059 -1 3 $434-2$ 106780 232.4 5.44846 1.0211 5.4485 1.5059 -1 3 $434-2$ 106780 121.8 4.8023 0.11329 -0.5118 -1 1 $434-2$ 106789 13.66 5.44846 1.0211 5.4485 1.5059 -1 1 $434-2$ 106788 13.66 0.1329 4.037 0.5495 0.1329 -1 4 $4.34-2$ 106789 59.4 4.0337 0.0389 4.6337 0.5693 0.1329 -1 4 4.08429 0.6814 4.0843 <	A-2 1 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1746 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.3146 F-1 4 434-2 106780 232.4 5.4846 1.0211 5.4485 1.5059 F-1 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 D-1 1 4 434-2 106788 13.6 2.61007 2.5213 4.8074 1.0211 D-1 1 434-2 106788 13.6 2.61007 2.5213 4.8074 1.5059 D-1 2 434-2 106789 9.8 4.08429 -0.6314 4.8074 -0.1329 D-1 2 434-2 106795 99.8 4.60317 -0.6314 -1.9543 B-1 4 434-2 106795 99.8 4.60317 -0.6332 -0.6382 G-2	/IS) T	In(PV	τ	In(PVIS)	PVIS	Test No.	TMC REO	Run Order	o-Stand	
Stand Run Order TMC REO Test No. PVIS In(PVIS) τ In(PVIS) τ λ^2 1 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1746 λ^{-1} 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.5118 γ^{-1} 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 γ^{-1} 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 γ^{-1} 3 434-2 106780 171.8 4.8073 4.6530 0.5118 γ^{-1} 2 434-2 106789 59.4 4.08429 -0.1379 4.6032 γ^{-1} 2 434-2 106788 13.66 2.61007 2.5133 4.6032 -1.9543 γ^{-1} 4 4.08429 -0.6339 4.6032 -1.9543 0.6616 γ^{-1} 4.3	\cdot Stand Run Order TMC REO Test No. PVIS In(PVIS) τ In(PVIS) τ $A-2$ 1 434-2 106779 137.5 4.92362 0.3661 4.9236 0.1746 $A-1$ 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 $A-1$ 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 $E-1$ 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 $D-1$ 1 4 434-2 106788 13.6 2.61007 2.5433 4.8034 -0.1339 $D-1$ 1 4 434-2 106788 13.6 2.61007 2.5213 -0.1339 -0.1339 $D-1$ 2 434-2 106789 59.4 4.0843 -1.9543 -1.9543 $D-1$ 4 4.6317 -0.6814 -0.6339 4.6032 -0.6332 -0	6	= u		n = 10						
n=10 n=9 n=9 Stand Iun Order TMC RE0 Test No. PVIS In(PVIS) τ In(PVIS) τ λ^2 1 434-2 106779 137.5 4.92362 0.3661 4.9236 0.1746 λ^-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.0518 τ^-1 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 τ^-1 3 434-2 106780 232.4 5.4836 0.7148 4.6037 τ^-1 3 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 τ^-1 2 434-2 106780 236.4 4.80738 0.7148 4.8074 τ^-1 2 434-2 106789 13.6 0.7148 4.8073 1.0559 τ^-1 2 434-2 106789 5.1156 0.6814 4.0843 -1.9543	h h							Increase	Viscosity	rcent	
n=10 n=10 n=10 Stand Run Order TMC REO Test No. PVIS In(PVIS) n=10 n=10 $\sqrt{2}$ 1 434-2 106779 104.9 4.5301 0.0283 4.6530 0.1746 $\sqrt{1}$ 3 434-2 106780 232.4 5.4846 1.0211 5.4485 1.5059 1 4 434-2 106781 171.8 4.80738 0.01439 4.65301 0.0283 4.6530 0.5118 1 4 434-2 106781 171.8 4.80738 0.01439 4.65301 0.0283 4.65305 0.5118 2 4 4.8074 1.0211 5.44846 1.0211 5.4485 1.5059 2 4 4.80738 0.0148 4.8074 1.0213 5.4485 1.5059 2 4 4.80738 0.0148 4.8074 2.6033 4.6530 0.6518 2 4 4.80738 0.0148 4.60317 0.0339 4.6032	remarking the structure of t	2.38		2.482		0.01					
Contraction 2.482 2.387 Contraction 2.482 2.387 Contraction $1=10$ $1=30$ 2.387 Stand Run Order TMC REO Test No. PVIS $1=10$ $1=30$ $1=37.5$ 2.4352 0.3661 4.9236 0.1746 $\sqrt{2}$ 1 $434-2$ 106780 137.5 4.92362 0.05118 4.0873 1.0746 1.746 $\sqrt{1}$ 3 $434-2$ 106780 137.5 4.92362 0.05118 4.5330 0.1746 $\sqrt{1}$ 3 $434-2$ 106780 107.9 4.65301 0.0283 4.65300 0.1746 $\sqrt{1}$ 3 $4.34-2$ 106780 2104.9 2.48466 1.02118 4.9236 0.1746 $\sqrt{1}$ 3 $4.34-2$ 106780 232.44 2.48366 1.02148 1.0329 $\sqrt{1}$ $4.34-2$ 106780 $2.32.4$ 2.48366 1.01746 1.0329 $\sqrt{1}$ $4.34-2$ 106783 2.32.4	reent Viscosity Increase 0.01 2.482 2.387 2.387 -5tand Run Order TMC REO Test No. PVIS n=10 1 2.387 A-2 1 434-2 106778 PVIS In(PVIS) τ In(PVIS) τ A-1 3 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1746 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 A-1 3 434-2 106780 232.4 4.80236 0.1746 1.0211 A-1 4 434-2 106780 232.4 4.80236 0.1746 1.0218 D-1 1 1 4 434-2 106788 13.6 0.2148 1.0211 5.4485 1.5059 D-1 1 1 1 106788 <td< td=""><td>2.2</td><td></td><td>2.290</td><td></td><td>0.05</td><td></td><td></td><td></td><td></td></td<>	2.2		2.290		0.05					
0.05 0.05 2.290 2.215 2.482 2.387 Cent Yiscosity 2.482 2.31 Stand Run Order TMC REO 10.01 2.482 2.31 VIS 10.0578 1.10 <th cols<="" td=""><td>0.05 0.05 2.290 2.215 0.01 2.482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 0.01 -5482 0.1746 51 106779 10715 π 1 A-2 1 434-2 106779 10719 7 10716 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 A-1 4 434-2 106778 104.9 4.65301 0.0283 4.6530 0.0718 F-1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 D-1 1 1 4 8.034 -0.1329 0.1329 D-1 2 4.8023 0.06814 4.8034 -0.1329 D-1 2 4.8023 <td< td=""><td>2.13</td><td></td><td>2.176</td><td></td><td>0.10</td><td></td><td></td><td></td><td></td></td<></td></th>	<td>0.05 0.05 2.290 2.215 0.01 2.482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 0.01 -5482 0.1746 51 106779 10715 π 1 A-2 1 434-2 106779 10719 7 10716 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 A-1 4 434-2 106778 104.9 4.65301 0.0283 4.6530 0.0718 F-1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 D-1 1 1 4 8.034 -0.1329 0.1329 D-1 2 4.8023 0.06814 4.8034 -0.1329 D-1 2 4.8023 <td< td=""><td>2.13</td><td></td><td>2.176</td><td></td><td>0.10</td><td></td><td></td><td></td><td></td></td<></td>	0.05 0.05 2.290 2.215 0.01 2.482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 2.387 -5482 0.01 -5482 0.1746 51 106779 10715 π 1 A-2 1 434-2 106779 10719 7 10716 A-1 3 434-2 106779 104.9 4.65301 0.0283 4.6530 0.1746 A-1 4 434-2 106778 104.9 4.65301 0.0283 4.6530 0.0718 F-1 4 434-2 106780 232.4 5.44846 1.0211 5.4485 1.5059 D-1 1 1 4 8.034 -0.1329 0.1329 D-1 2 4.8023 0.06814 4.8034 -0.1329 D-1 2 4.8023 <td< td=""><td>2.13</td><td></td><td>2.176</td><td></td><td>0.10</td><td></td><td></td><td></td><td></td></td<>	2.13		2.176		0.10				
0.10 0.10 2.176 2.110 0.05 0.05 2.290 2.110 0.01 2.482 2.315 2.315 Control 1 0.01 2.482 2.315 Control 1 0.01 2.482 2.315 Control 1 0.01 0.05 2.2482 2.315 Control 1 0.01 0.01 0.01 0.01 V2 1 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1746 V1 3 434-2 106778 137.5 4.53367 0.0748 1.376 V1 3 434-2 106778 137.5 4.92365 0.1746 1.376 V1 3 434-2 10678 137.5 4.65301 0.1746 V1 3 434-2 10678 137.5 4.65301 0.1746 V1 1 4 4.0337 0.0283 4.6530 0.5138 <	O.10 O.10 2.176 2.110 0.05 2.290 2.215 0.01 2.282 2.215 0.01 2.282 2.215 0.01 2.282 2.215 0.01 2.282 2.236 -511 0.01 2.248 -511 0.01 2.248 -511 10678 137.5 A-2 1 434-2 106779 106778 137.5 A-1 3 434-2 106779 104.9 46301 0.0283 4.65301 0.0283 4.6530 0.1746 A-1 3 434-2 106780 232.4 D-1 1 4 4.8024 1.0211 D-1 1 4.434-2 106780 232.4 D-1 2 4.8024 1.0379 D-1 2 4.8024 1.0376 D-1 2 4.8024 1.0376 D-1 2	Ш Ц		n = 10		significance Level			5	C434-	
	1246		n 2.2 2.2 2.2 2.2 2.2 33 2.2 2.2 33 2.1 5 2.1 5 6 2.1 5 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n = 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n = 10 n = 10 n = 1 2.176 2.176 2.2 2.176 2.176 2.2 2.290 2.2 2.2 2.280 2.2 2.2 2.280 2.2 2.2 2.482 2.482 2.2 10 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 1156 0.06814 10 1156 0.0843 10 1156 0.0339 4.6032 <td>significance level$n=10$$n=10$$n=10$$n=1$0.100.102.1762.20.010.102.2902.20.052.24822.20.012.4822.20.012.4822.20.01$2.482$2.20.01$1-10$$n=9$$n=10$$n=10$$n=9$$n=10$$n=10$$1.65$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.14846$$137.5$$4.92362$$0.3661$$137.5$$4.92362$$0.3661$$137.6$$2.44846$$1.0211$$5.44846$$1.0211$$5.4485$$137.6$$0.3661$$4.9236$$0.232.4$$4.6033$$0.7148$$4.60317$$0.02833$$4.6330$$13.6$$0.0339$$4.6032$$13.6$$5.11560$$0.6037$$180.9$$5.19794$$0.7084$$180.9$$4.6032$$0.10339$$180.9$$4.6330$$0.7084$$180.9$$4.6330$$0.7084$$5.19794$$0.7084$$5.1979$$0.0037$$4.8645$$0.0$$180.9$$4.6330$$0.7084$$180.9$$4.6330$$0.7084$$180.9$$4.6330$$0.7084$$180.9$$4.63$</td> <td>significance $n = 10$ $n = 10$ $n = 10$ $n = 1$ Level 0.10 2.176 2.2 0.05 2.290 2.250 2.2 0.01 2.142 2.2 2.2 0.01 2.2482 2.2 2.2 0.01 2.2482 2.2 2.2 0.01 2.2482 2.482 2.2 0.01 137.5 $n = 10$ $n = 9$ 2.2 106778 137.5 4.92362 0.3661 4.9236 0.1 106779 10783 $1.37.5$ 4.65301 0.0283 4.6530 0.1 106778 137.5 4.92362 0.3661 4.9236 0.1 106779 104.9 4.65301 0.0283 4.6530 0.1 106778 13.6 2.4486 1.0211 5.4485 1.5 106788 13.16 2.2234 2.6407 0.1 106788 13.6 2.6407 0.01</td> <td>significance level $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=2$ 0.10 0.05 2.290 2.290 2.2 2.2 0.01 0.05 2.2482 2.3 2.3 0.01 $n=10$ $n=9$ 2.3 TMC RE0 Test No. PVIS $n(PVIS)$ $n=9$ 2.3 106779 137.5 4.92362 0.3661 4.9236 0.1 434-2 106779 137.5 4.92362 0.3661 4.9236 0.1 434-2 106779 137.6 4.92362 0.3661 4.9236 0.1 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1 434-2 106788 133.6 2.4486 1.0211 2.4485 1.5 434-2 106788 133.6 2.44846 1.0211 2.4485 1.5 434-2 106788 232.4 4.80373 0.0339 4.6530 0</td> <td>2 significance level n=10 n=10 n=10 Level 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 100 2.176 1 434-2 106778 1 434-2 106778 1 434-2 106778 1 434-2 106780 2 4.65301 0.0283 4 434-2 106780 1 434-2 106780 2 4.8023 0.101 2 4.8023 0.1148 4 4.8023 0.1281 2 4.434-2 106780 2 4.4024 0.0399 2 4.4024 0.0399 2 4.434-2</td>	significance level $n=10$ $n=10$ $n=10$ $n=1$ 0.100.102.1762.20.010.102.2902.20.052.24822.20.012.4822.20.012.4822.20.01 2.482 2.20.01 $1-10$ $n=9$ $n=10$ $n=10$ $n=9$ $n=10$ $n=10$ 1.65 137.5 4.92362 0.3661 137.5 4.92362 0.3661 137.5 4.92362 0.3661 137.5 4.92362 0.3661 137.5 4.92362 0.3661 137.5 4.92362 0.14846 137.5 4.92362 0.3661 137.5 4.92362 0.3661 137.6 2.44846 1.0211 5.44846 1.0211 5.4485 137.6 0.3661 4.9236 $0.232.4$ 4.6033 0.7148 4.60317 0.02833 4.6330 13.6 0.0339 4.6032 13.6 5.11560 0.6037 180.9 5.19794 0.7084 180.9 4.6032 0.10339 180.9 4.6330 0.7084 180.9 4.6330 0.7084 5.19794 0.7084 5.1979 0.0037 4.8645 0.0 180.9 4.6330 0.7084 180.9 4.6330 0.7084 180.9 4.6330 0.7084 180.9 4.63	significance $n = 10$ $n = 10$ $n = 10$ $n = 1$ Level 0.10 2.176 2.2 0.05 2.290 2.250 2.2 0.01 2.142 2.2 2.2 0.01 2.2482 2.2 2.2 0.01 2.2482 2.2 2.2 0.01 2.2482 2.482 2.2 0.01 137.5 $n = 10$ $n = 9$ 2.2 106778 137.5 4.92362 0.3661 4.9236 0.1 106779 10783 $1.37.5$ 4.65301 0.0283 4.6530 0.1 106778 137.5 4.92362 0.3661 4.9236 0.1 106779 104.9 4.65301 0.0283 4.6530 0.1 106778 13.6 2.4486 1.0211 5.4485 1.5 106788 13.16 2.2234 2.6407 0.1 106788 13.6 2.6407 0.01	significance level $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=10$ $n=2$ 0.10 0.05 2.290 2.290 2.2 2.2 0.01 0.05 2.2482 2.3 2.3 0.01 $n=10$ $n=9$ 2.3 TMC RE0 Test No. PVIS $ n(PVIS) $ $n=9$ 2.3 106779 137.5 4.92362 0.3661 4.9236 0.1 434-2 106779 137.5 4.92362 0.3661 4.9236 0.1 434-2 106779 137.6 4.92362 0.3661 4.9236 0.1 434-2 106778 137.5 4.92362 0.3661 4.9236 0.1 434-2 106788 133.6 2.4486 1.0211 2.4485 1.5 434-2 106788 133.6 2.44846 1.0211 2.4485 1.5 434-2 106788 232.4 4.80373 0.0339 4.6530 0	2 significance level n=10 n=10 n=10 Level 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 2.176 2.2 0.10 100 2.176 1 434-2 106778 1 434-2 106778 1 434-2 106778 1 434-2 106780 2 4.65301 0.0283 4 434-2 106780 1 434-2 106780 2 4.8023 0.101 2 4.8023 0.1148 4 4.8023 0.1281 2 4.434-2 106780 2 4.4024 0.0399 2 4.4024 0.0399 2 4.434-2	

* PVIS is transformed by natural log for normal distribution. Prepared for Seq III SP, Stat Group Review, and AOAP

Nov. 25th, 2015