Seq. III Surveillance Panel November 8, 2013 Teleconference Meeting Minutes

Attendance

The attendance is shown in Attachment 1.

Seq. III Cylinder Head Task Force Report

The main purpose of the teleconference was to review and consider the report (Attachment 2) of the task force that was led by Sid Clark. GM has requested panel approval before they place an order and move the work to the machine shop. It was noted that the race shop is not currently processing any heads (in case there is an opportunity to update the remaining heads).

A small matrix of prove out tests was run to examine the suitability of Stellite material for intake and exhaust valve seat inserts. Pat Lang reviewed the report. The TF recommends the use of the Stellite seat inserts for Seq. III testing. Pat Lang moved, Ed Altman (via proxy to Dave Glaenzer) seconded to approve the use of the Stellite seat insert material for IIIG and IIIF and to instruct GM to move forward with the processing of the material.

<u>Discussion of Motion</u> - Charlie Leverett was concerned about the short notice for the call as well as some issues with the data (copper level and mild cam wear were noted). Please note that just prior to the meeting, several panel members sent information/analyses to the panel; these are shown, in no particular order, in **Attachment 3.**

Copper - Sid Clark stated that piston pin bushings, engine bearings, camshaft thrust plate, and oil pump gears are places the copper could be coming from and he suspects it may be the piston pin bushing sourcing the copper due to being stressed slight more from the consistent compression pressures. Dave Glaenzer asked Martin if he would looked into the issue some more and Martin agreed. Pat reminded that copper levels are a concentration and changes in oil consumption may be contributing to the difference.

Mild ACLW - Robert Stockwell was concerned that the oil 438 results were the most mild ever seen. He stated his belief that valve train dynamics may have been impacted by the new seat insert material and could be impacting severity. His main concern was to have people prepare for the face-to-face meeting in a few weeks to discuss this issue in greater depth. Rich Grundza sent some plots by cam batch and noted frequent mild excursions began in 2010. His concern is that severity adjustments may no longer adequately capture lab bias given the recent data. Jason Bowden was asked if there has been any change to the lifters and Jason stated he believed there has been no change. Jason also reminded the panel that during the 2010 severity examination, which looked at several components, the panel found no hardware or

process changes. Curious readers may review the ACLW TF report, which is included in April 2010 meeting minutes, at the following link:

<u>ftp://ftp.astmtmc.cmu.edu/docs/gas/sequenceiii/minutes/2010/TeleconferenceMinutes20100408.pdf</u>.

Dave Glaenzer stated that ACLW severity issue will be a major agenda item at the next meeting. Charlie asked if it was worthwhile to have industry statisticians review the prove out data prior to the face-to-face meeting. Dave agreed and will send out a request. Rich Grundza will examine the TMC database for any negative wear values for fixing. It was noted that this motion does not cover implementation/introduction into live test -- it only give direction to GM to go ahead with the processing change.

The question was called by the chair and the motion passed unanimously.

Current Inventory Levels

Robert Stockwell moved, Charlie Leverett second, that GM also restart manufacturing head as currently used (to avoid a potential shortage while waiting the new heads). At this point a frantic and wide-ranging discussion broke out, for which the secretary could simply not record fast enough. At the end of the discussion, Robert withdrew the motion and the topic will be discussed at the next meeting; Dave Glaenzer will survey the labs about their inventories of heads.

The meeting concluded at approximately 3:10 pm.

QUORUM = 10 VOTING MEMBERS

Attachment 7

ASTM Sequence III Surveillance Panel (Voting members)

date: 11/08/13

Name/Address	Phone/Fax/Email		Signature
Ed Altman Afton Chemical Corporation 500 Spring Street Richmond, VA 23219 USA	804-788-5279 804-788-6358 ed.altman@aftonchemical.com	Voting Member Represented by	Present
Art Andrews ExxonMobil Products Research 600 Billingsport Rd. Paulsboro, NJ 08066 USA	856-224-3013 arthur.t.andrews@exxonmobil.c	Non-Voting Member	Present
Zack Bishop Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-877-0223 210-690-1959 zbishop@tei-net.com	Non-Voting Member	Present
Doyle Boese Infineum 1900 E. Linden Avenue Linden, NJ 07036 USA	908-474-3176 908-474-3637 doyle.boese@infineum.com	Non-Voting Member	Present
Adam Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 adbowden@ohtech.com	Non-Voting Member	Present
Jason Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 jhbowden@ohtech.com	Voting Member 1	Present
Dwight H. Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 dhbowden@ohtech.com	Non-Voting Member	Present
		A ALOTA W	1150) 62

Page 1 of 8

M. BOWDEN, OHT SCHWEITZER A. SWITZER (TAR

R, StockWILL, 6M

C. CASTADIEN, CZ S. STAPP, Chow. Parl Volany Manyler 96/27/13

Name/Address	Phone/Fax/Email		Signature
Matt Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 mjbowden@ohtech.com	Non-Voting Member	Present
Jerome A. Brys Lubrizol Corp. 29400 Lakeland Blvd. Wickliffe, Ohio 44092 USA	440 347-2631 jerome.brys@lubrizol.com	Non-Voting Member	Present
Bill Buscher III Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-6802 210-684-7523 william.buscher@swri.org	Non-Voting Member	Present
Bob Campbell Afton Chemical Corporation 500 Spring Street Richmond, VA 23219 USA	804-788-5340 804-788-6358 bob.campbell@aftonchemical	Non-Voting Member I.com	Present
Chris Castanien The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2973 440-944-8112 <u>cca@lubrizol.com</u>	Non-Voting Member	Present
Timothy L. Caudill Ashland Oil Inc. 22 nd & Front Streets Ashland, KY 41101 USA	606-329-1960 x5708 606-329-2044 tlcaudill@ashland.com	Voting Member	Present
Martin Chadwick Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-706-1543 210-684-6074 <u>martin.chadwick@intertek.co</u>	Non-Voting Member <u>m</u>	Present

Name/Address	Phone/Fax/Email		Signature	·
Jeff Clark Sequence III Secretary ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1032 412-365-1047 jac@atc-erc.org	Non-Voting Member	Present	<u> </u>
Sid Clark Southwest Research 50481 Peggy Lane Chesterfiled, MI 48047 USA	586-873-1255 Sidney.L.Clark@swri.org	Non-Voting Member	Present	
Todd Dvorak Afton Chemical Corporation P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788- 6367 804-788- 6388 todd.dvorak@aftonchemical.co	Non-Voting Member	Present	-
Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1030 412-365-1047 fmf@astmtmc.cmu.edu	Non-Voting Member	Present	· .
Gordon R. Farnsworth Infineum RR # 5 Box 211 Montrose, PA 18801 USA	570-934-2776 570-934-0141 gordon.farnsworth@infineum.c	Non-Voting Member	Present_	VOTE
Joe Franklin Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-523-4671 210-523-4607 joe.franklin@intertek.com	Non-Voting Member	Present	
David L. Glaenzer Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5214 804-788-6358 dave.glaenzer@aftonchemical Surveillance Panel Chairmar		Present	

Name/Address	Phone/Fax/Email		Signature /
Richard Grundza ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1031 412-365-1047 reg@astmtmc.cmu.edu	Voting Member	Present
Tracey King Haltermann Solutions MI USA	947-517-4107 tking@Jhaltermann.com	Voting Member	Present
Clayton Knight Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-690-1958 210-690-1959 <u>cknight@tei-net.com</u>	Voting Member	Present ZACK VOTE
Teri Kowalski Toyota Motor North America, Inc. 1555 Woodridge Ann Arbor, MI 48105	734-995-4032 734-995-9049 <u>teri.kowalski@tema.toyota.com</u>	Voting Member	Present
Patrick Lang Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-2820 210-684-7523 plang@swri.edu	Voting Member	Present
Walter Lerche GM M/C 482-A30-C71 100 Renaissance Center Detroit, MI 48265 USA	313-667-1918 313-667-4095 walt.lerche@gm.com	Non-Voting Member	Present
Charlie Leverett Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-647-9422 210-523-4607 charlie.leverett@intertek.com	Voting Member	Present
Josephine G. Martinez Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-5563 510-242-3173 jogm@chevrontexaco.com	Voting Member	Present

Name/Address	Phone/Fax/Email		Signature
Bruce Matthews GM Powertrain Mail Code 483-730-472 823 Jocyln Avenue Pontiac, MI 48340 USA	248-830-9197 248-857-4441 bruce.matthews@gm.com Test Sponsor Representative	Voting Member	Present
Mike McMillan	mmcmillan123@comcast.net	Non-Voting Member	Present
Timothy Miranda BP Castrol Lubricants USA 1500 Valley Road Wayne, NJ 07470 USA	973-305-3334 973-686-4039 <u>Timothy.Miranda@bp.com</u>	Voting Member	Present
Mark Mosher ExxonMobil Technology Co. Billingsport Road Paulsboro, NJ 08066 USA	856-224-2132 856-224-3628 mark.r.mosher@exxonmobil.co	/Voting Member	Present
Siamak Moshiri Cad Railway Industries Ltd. 155 Montreal – Toronto Highway H8S 1B4 Montreal, QC CANADA	1-634-3131, ext. 412 smoshiri@cadrail.ca	Non-Voting Member	Present
Bob Olree 5388 Hill 23 Drive Flint, MI 48507 USA	248-689-3078 olree@netzero.net	Non-Voting Member	Present
Christian Porter Afton Chemical Corp. 500 Spring Street Richmond, VA 23219 USA	804-788-5837 804-788-6358 christian.porter@aftonchemica	Non-Voting Member al.com	Present
Phil Rabbat BASF Corporation 500 White Plains Road Tarrytown, NY 10591-9005 USA	914-785-2217 914-785-3681 phil.rabbat@basf.com	Non-Voting Member	Present

Name/Address	Phone/Fax/Email		Signature
Allison Rajakumar The Lubrizol Corporation Drop 152A 29400 Lakeland Blvd. Wickliffe, OH 44092 USA	440-347-4679 440-347-2014 <u>Allison Rajakumar@Lubrizol.co</u>	Non-Voting Member	Present
Scott Rajala Idemitsu Lubricants America Corp	<u>srajala@ilacorp.com</u> o.	Non-Voting Member	Present
Andrew Ritchie Infineum 1900 East Linden Avenue P.O. Box 735 Linden, NJ 07036 USA	908-474-2097 908-474-3637 Andrew.Ritchie@Infineum.com	Noting Member	Present
Ron Romano Ford Motor Company Diagnostic Service Center II Room 410. 1800 Fairlane Drive Allen Park, MI 48101 USA	313-845-4068 313-32-38042 rromano@ford.com	Voting Member	Present
Jim Rutherford Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-3410 510-242-3173 jaru@chevrontexaco.com	Non-Voting Member	Present
Philip R. Scinto The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2161 440-347-9031 prs@lubrizol.com	Non-Voting Member	Present
Greg Shank Volvo	301-790-5817 greg.shank@volvo.com	Voting Member	Present

Name/Address	Phone/Fax/Email		Signature
Thomas Smith Valvoline P.O. Box 14000 Lexington, KY 40512-1400 USA	859-357-2766 859-357-7084 <u>trsmith@ashland.com</u> PCEOCP Chair	Voting Member	Present
Don Smolenski GM	248-255-7892 donald.j.smolenski@gm.com	Non-Voting Member	Present
Mark Sutherland Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	msutherland@tei-net.com	Non-Voting Member	Present
Adam Sworski Ashland Oil Inc. 22 nd & Front Streets Ashland, KY 41101 USA	aesworski@ashland.com	Non-Voting Member	Present
George Szappanos The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2352 440-347-4096 greg.seman@lubrizol.com	Voting Member	Present
Haiying Tang Chrysler LLC	248-512-0593 ht146@chrysler.com	Voting Member	Present
USA .			
Ben O. Weber Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-5911 210-684-7530 <u>bweber@swri.edu</u> Sub-Committee D02.B01 Cl	Non-Voting Member	Present

date: 11/08/13,

Name/Address Phone/Fax/Email Signature

Tom Wingfield wingftm@cpchem.com Non-Voting Member Present_______
Chevron Phillips Chemical Co.

ATTACHMENT 2

Sequence III Cylinder Head Task Force

Stellite Valve Seat Insert

Background

Prove-out Test Data

Surveillance Panel Recommendation

Background

April 2013

SwRI presented research test data to the Sequence III
 Surveillance Panel demonstrating that Stellite valve
 seat inserts in Sequence IIIG testing reduces
 compression loss and intake valve recession.

August 2013

 Sequence III Surveillance Panel forms the Cylinder Head Task Force to investigate use of Stellite seat inserts in both the intake and exhaust positions in Sequence III testing.

Background

September 2013

- Task Force receives small batch of Stellite seats manufactured according to dedicated prints for the 3800 cylinder heads.
- Chevy Performance processes 20 cylinder heads through Schwartz Machine for prove-out testing.

October 2013

 Four prove-out tests conducted on TMC assigned reference oils.

Background

- October 31 2013
 - Cylinder head task force reviews test data, and unanimously agrees on recommending to the Sequence III Surveillance Panel, that new cylinder head castings with Stellite seat inserts installed in both the intake and exhaust positions be used in Sequence III testing.

Cylinder Head Task Force Recommendation

Motion – The Cylinder Head Task Force has conducted prove-out testing, reviewed the valve seat recession, compression and test result data from the recent industry donated tests, agrees the Stellite Seats provide better sealing and durability, and endorses their use in Sequence III testing.

Motion made by Charlie Leverett, IAR Seconded by Robert Stockwell, GM Motion passed unanimously

Example Data Comparison from Lab D

<u>Lab D</u>								
Cyl. Hea	d Run Oil 435-	2, EOT 10/12	/2013		Reference Test Oil 435-2, EOT 9/28			/2013
		Yi		Target		Yi		
	WPD	0.052	3.62	3.59	3.54	-0.086		
	PVIS	0.769	226.3	178.4	175.9	-0.045		
	ACLW	-4.257	12.2	33.1	10.9	-4.738		
<u>Stel</u>	lite Compress	sion_			<u>Refer</u>	ence Compre	ssion	
Cylinder#	Pre -test	Post-test	Loss		Cylinder#	Pre -test	Post-test	Loss
1	210	200	10		1	210	170	40
2	210	205	5		2	210	112	98
3	210	198	12		3	215	199	16
4	210	208	2		4	210	190	20
5	210	201	9		5	210	200	10
6	210	205	5		6	210	115	95
AVG	210	203	7		AVG	211	164	47
Stellite Va	alve Recession	n (inches)			Reference 1	Valve Recessi	on (inches)	
1 Intake	0.002				1 Intake	0.010		
1 Exhaust	0.001				1 Exhaust	0.001		
2 Intake	0.002				2 Intake	0.003		
2 Exhaust	0.001				2 Exhaust	0.001		
3 Intake	0.003				3 Intake	0.058		
3 Exhaust	0.000				3 Exhaust	0.001		
4 Intake	0.003				4 Intake	0.001		
4 Exhaust	0.001				4 Exhaust	0.004		
5 Intake	0.000				5 Intake	0.038		
5 Exhaust	0.003				5 Exhaust	0.001		
6 Intake	0.002				6 Intake	0.004		
6 Exhaust	0.001				6 Exhaust	0.002		
AVG	0.002				AVG	0.010		

Data Summary

Pre-test Compression (psi)

Cylinder	Lab A	Lab B	Lab D	Lab G
1	190	160	210	190
2	198	160	210	190
3	203	165	210	195
4	194	165	210	190
5	195	165	210	190
6	200	165	210	190
Average	197	163	210	191

Post-test Compression (psi)

Cylinder	Lab A	Lab B	Lab D	Lab G
1	195	175	200	175
2	190	180	205	170
3	195	180	198	170
4	195	185	208	170
5	190	170	201	170
6	190	180	205	170
Average	193	178	203	171

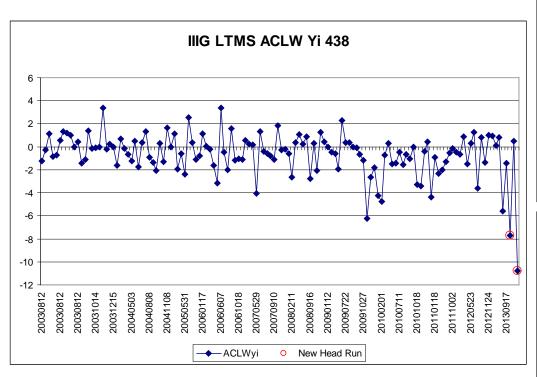
Compression Loss (psi)

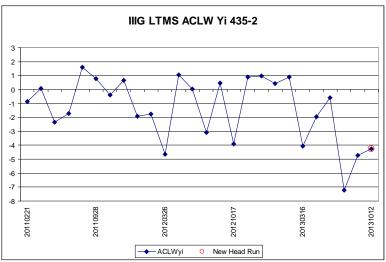
Cylinder	Lab A	Lab B	Lab D	Lab G
1	-5	-15	10	15
2	8	-20	5	20
3	8	-15	12	25
4	-1	-20	2	20
5	5	-5	9	20
6	10	-15	5	20
Average	4	-15	7	20

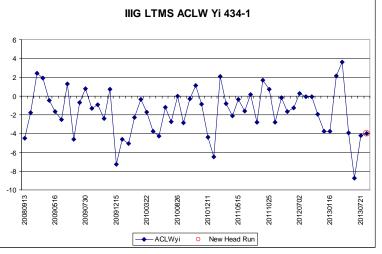
Data Summary

Post-test Valve Seat Recession (inches)

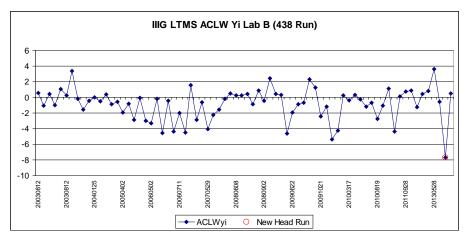
Valve Position	Lab A	Lab B	Lab D	Lab G
Cyl. 1 Intake	0.001		0.002	0.012
Cyl. 1 Exhaust	0.003		0.001	0.005
Cyl. 2 Intake	0.000		0.002	0.004
Cyl. 2 Exhaust	0.001		0.001	0.009
Cyl. 3 Intake	0.003		0.003	0.003
Cyl. 3 Exhaust	0.003		0.000	0.005
Cyl. 4 Intake	0.002	Not Recorded	0.003	0.001
Cyl. 4 Exhaust	0.002		0.001	0.005
Cyl. 5 Intake	0.002		0.000	0.006
Cyl. 5 Exhaust	0.002		0.003	0.008
Cyl. 6 Intake	0.002		0.002	0.009
Cyl. 6 Exhaust	0.002		0.001	0.001
Average	0.002		0.002	0.006

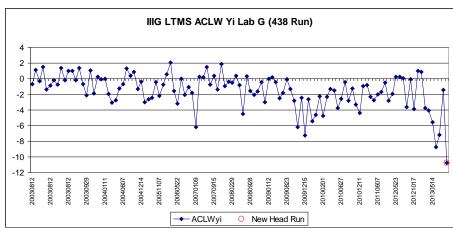

TMC Data Summary

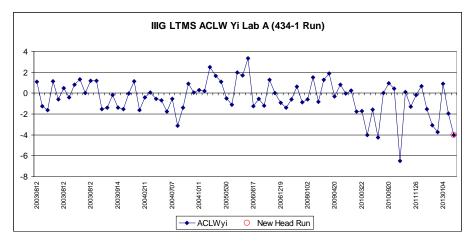

Lab A								
Cylinder Head Test			434-1	Recent Reference Test				
	Yi		Target		Yi			
WPD	-1.156	3.69	4.80	N/A	N/A	WPD		
PVIS	2.376	282.0	178.4	N/A	N/A	PVIS		
ACLW	-4.006	14.4	33.1	N/A	N/A	ACLW		
Lab B								
Cylinder Head Test			438	Recent Reference Test				
	Yi		Target		Yi			
WPD	-1.091	2.84	3.20	2.96	-0.728	WPD		
PVIS	-1.095	79.6	96.5	92.4	-0.252	PVIS		
ACLW	-7.678	3.6	17.8	19.8	0.501	ACLW		
Lab D								
Cylinder Head Test			435	Recent Reference Test				
	Yi		Target		Yi			
WPD	0.052	3.62	3.59	3.54	-0.086	WPD		
PVIS	0.769	226.3	178.4	175.9	-0.045	PVIS		
ACLW	-4.257	12.2	33.1	10.9	-4.738	ACLW		
Lab G								
Cylinder Head Test			438	Recent Reference Test				
	Yi		Target		Yi			
WPD	-1.485	2.71	3.20	2.83	-1.121	WPD		
PVIS	0.546	106.4	96.5	93.4	-0.190	PVIS		
ACLW	-10.757	1.9	17.8	13.2	-1.447	ACLW		

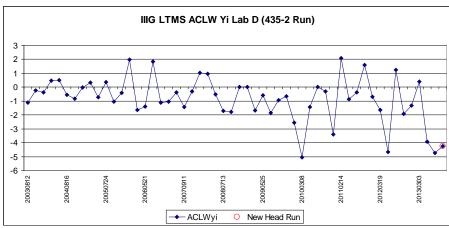

Surveillance Panel Required Action

- Surveillance Panel approval of the Cylinder Head Task Force Recommendation
 - General Motors is requiring surveillance panel approval prior to placing the order for a large batch of Stellite seat material
 - There is a long lead time involved in procuring the seat material
 - This material is needed in order to move forward with the processing of cylinder heads through Chevy Performance

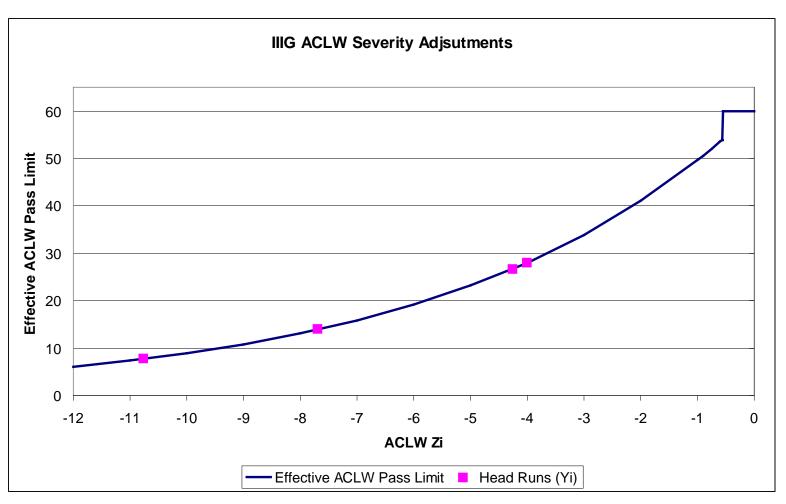

ATTACHMENT 3 Recent head evaluation runs produced the two mildest 438 results ever for ACLW

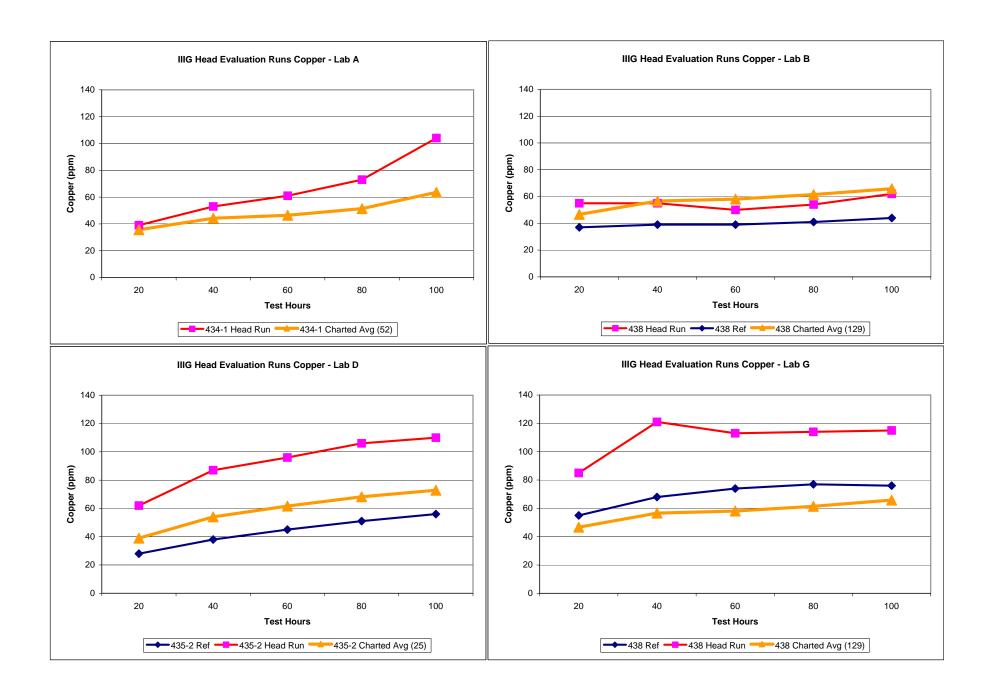


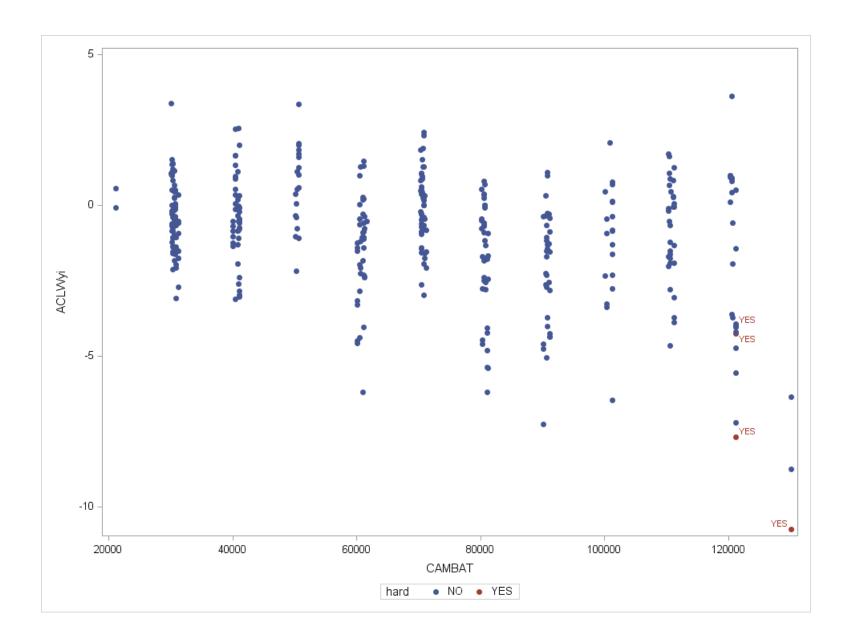


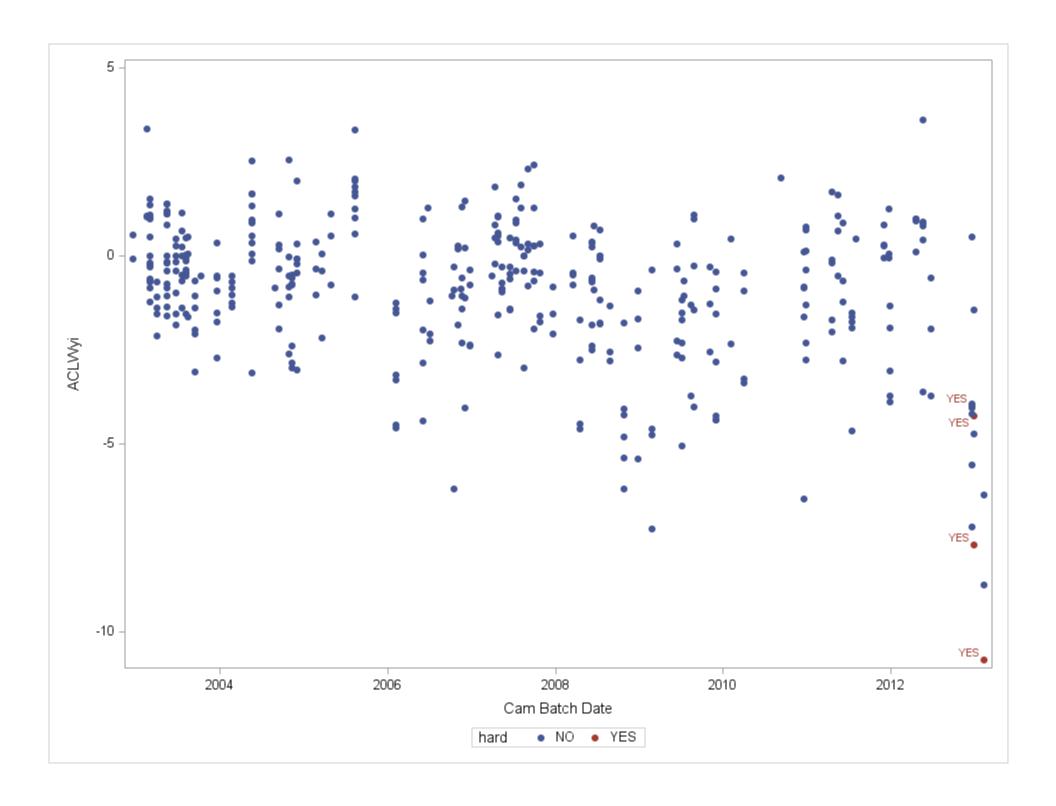


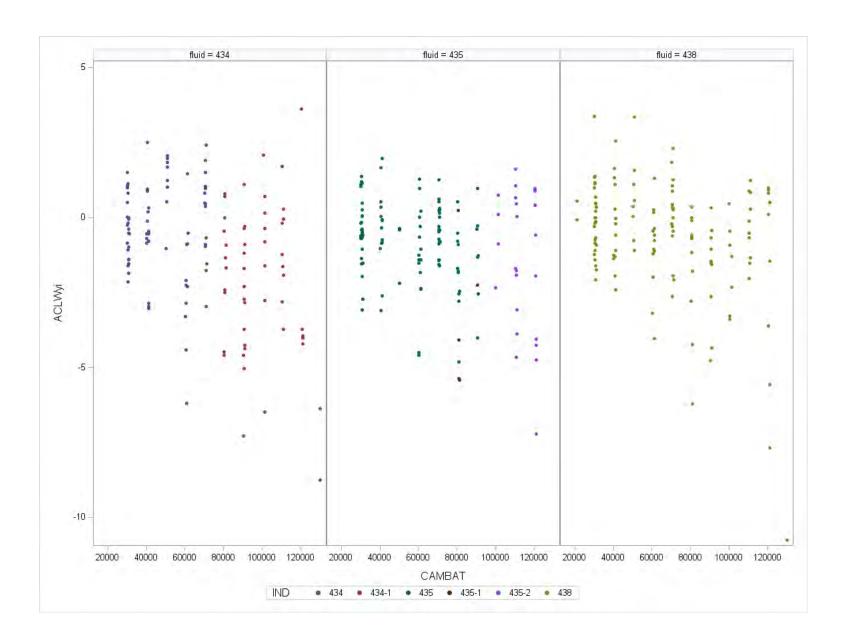
Both 438 head runs were the mildest Yi result ever in the laboratory

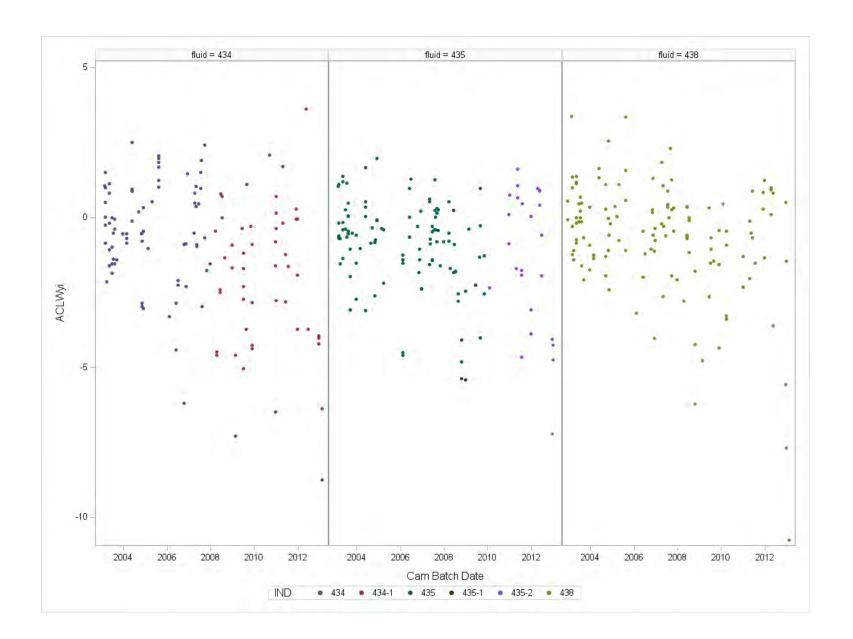


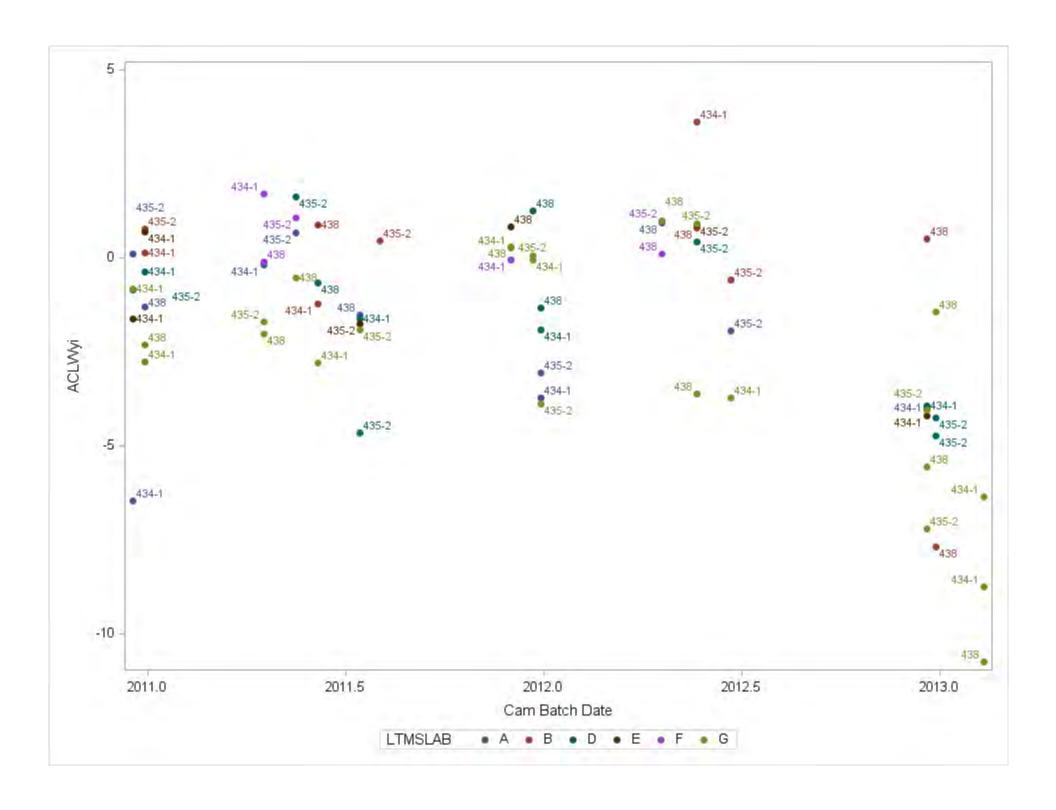


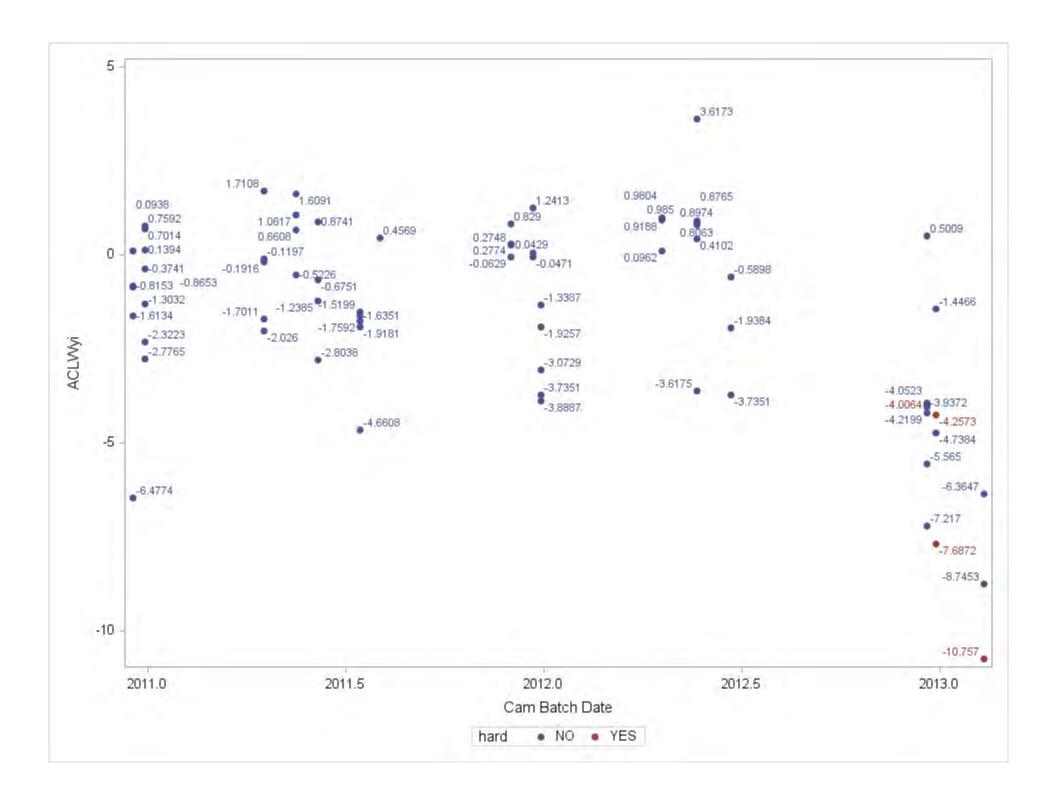


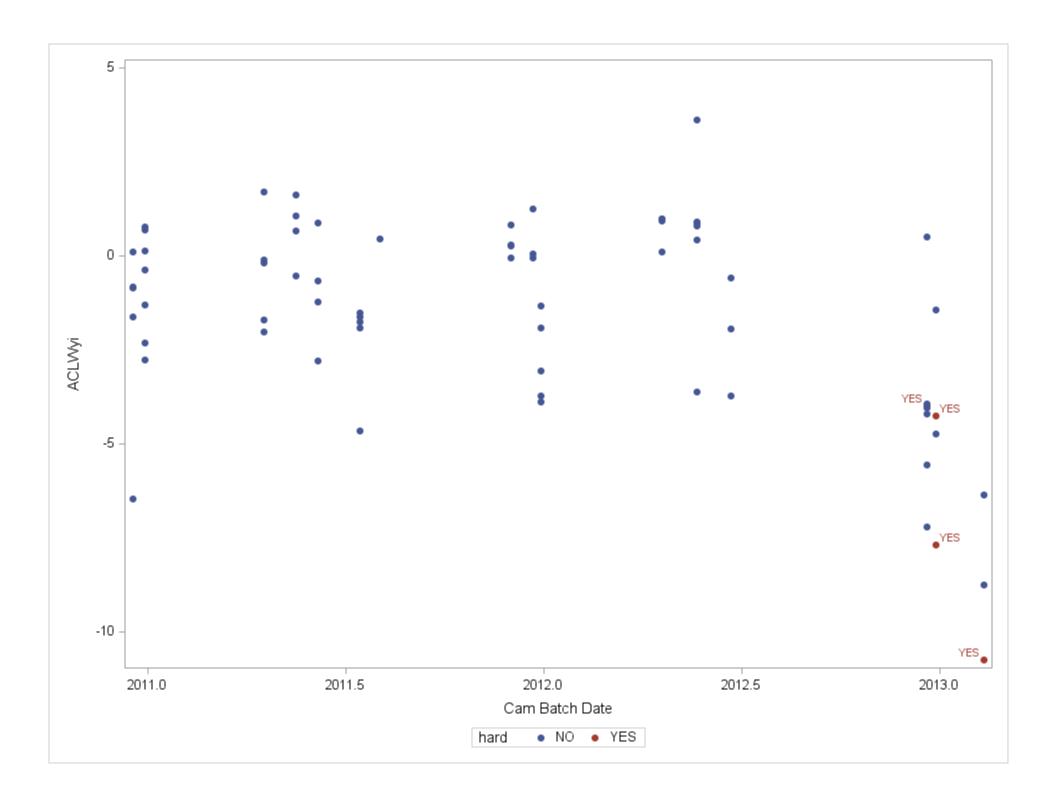


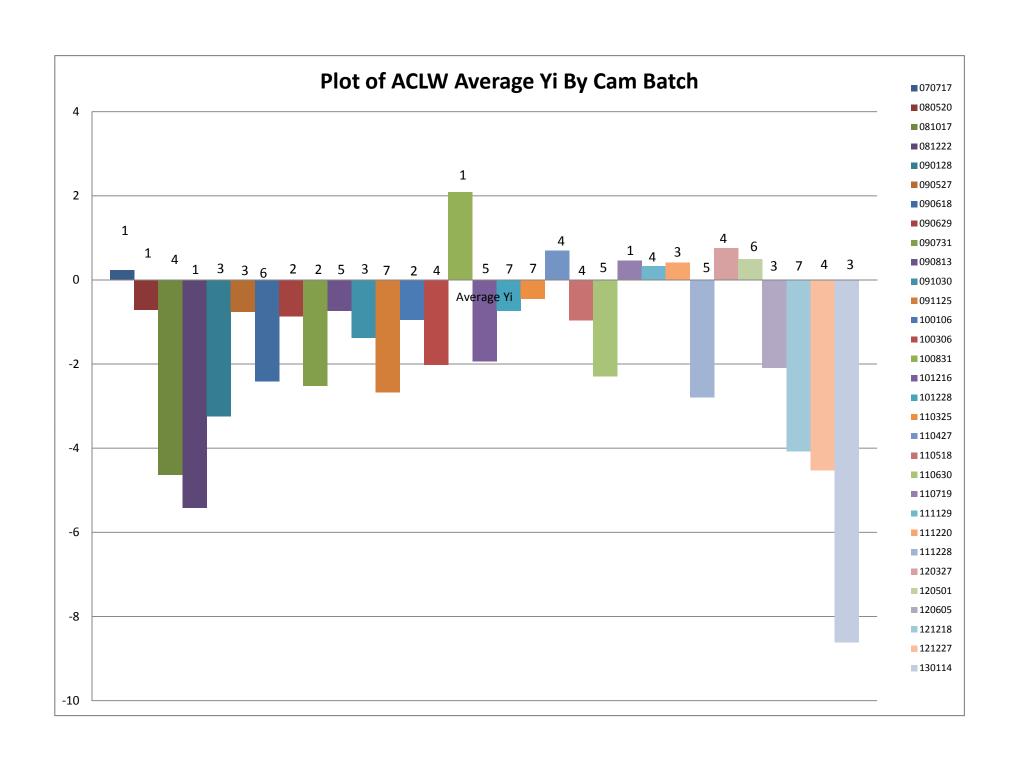

Recent ACLW performance could result in severity adjustments that are large enough to impact the ability to pass candidates













Cobalt Base Alloys

LEJ Allay	J3	76	J10	J21
Similar to:	Stellite 3 @	Stellile 6 (9	Tribatoy style="mso- spacerun: yes"> T- 400 ®	Stellite 21 ®
Carbon	2.45	1.20	0.08 max.	0.25
Silicon	1.5 max,	1.5 max.	x:กบส="x;กบส">2.5	1.0 max.
Manganese	t.0 mex.	1.0 max.	x:S(f=*'-*>-	1.0 max.
Chromium	30.0	29.0	x:num="x:num">8.0	27.0
Molybdenum	-	1.5 max.	x:num="x:num">28.0	6.55
Tungaten	12.5	4.5	x:8tr="-">-	
Venadlum	-	x:8ir="=">-	x:str="'-">	x:8tr="~">
Iron	3.0 max.	3.0 max.	x:str="-">	3.0 max.
Nickel	3.0 max.	3.0 max.	:::str="'-">→	2.55
Coball	Balance	Balance	Balance	Balance
Typical Hardness	57 Rd	48 Rc	54 Rc	33 Rc
Applications	Heavy duty, intake and exhaust, diesel and natural gas,	Heavy duty exhaust.	Heavy duty Intake, diesel and natural gas.	Ball valve seats.

From: Martin Chadwick Intertek

To: Rich Grundza; Glaenzer, Dave; Adam Bowden; Adam Sworski; Addison Schweitzer Intertek; Allison Rajakumar;

Andy Ritchie; Angela Willis; Arthur Andrews; Ben Weber; Bill Buscher; Bob Campbell; Bob Olree; Bob Salgueiro; Bruce Matthews; Charlie Leverett Intertek; Chris Castanien; Chris Taylor; Christian Porter; Clayton Knight; Doyle Boese; Dwight Bowden; Ed Altman; Elisa Santos; Frank Farber; George Szappanos; Gordon Farnsworth; Haiying Tang; Irwin Goldblatt; James Carter; Jason Bowden; Jason Holmes; Jeff Clark; Jerry Brys; Jessica Buchanan; Jim Rutherford; Jo Martinez; Joe Franklin Intertek; Kaustav Sinha; Mark Mosher; Mark Sutherland; Matt Bowden; Mike McMillan; Pat Lang; Phil Davies; Phil Rabbat; Phil Scinto; Robert Bacchi; Robert Stockwell; Ron Romano; Scott Raiala; Scott Stap; sidney.clark@swri.org; Teri Kowalski; Thom Smith; Tim Caudill;

Timothy Miranda; Todd Dvorak; Tracey King; Walt Lerche; Zach Bishop

Cc: Campbell, Bob
Subject: RE: ACLW

Date: Friday, November 08, 2013 1:43:04 PM

I agree that the long term trend in ACLW has been mild and cam batch and/or cam pour code could point to a potential cause. However, models of (Lab, Oil, Heads, and Cam Batch) or (Lab, Oil, Heads, and Cam Pour Code) both suggest that the new heads could be milder for ACLW. This may provide some motivation for additional research before they are accepted across the board. The potential differences in cam batches may be reaching a point that some additional action is required to avoid increasing the rate of candidate failures through excessive severity adjustments independent of the use of the new heads.

In the results below Chart = H is the four head runs and CHART = Y is charted reference tests.

General Linear Model: InACLW versus IND, CHART, LTMSLAB, CAMBAT

```
Factor
           Type
fixed
                    Levels
                              Values
                              434-1, 435-2, 438
TND
                          3
2
CHART
           fixed
                              Н, Ү
T.TMST.AB
           fixed
                              A, B, D, E, F, G
120327, 120501, 120605, 121218, 121227, 130114
                                      D,
CAMBAT
           fixed
Analysis of Variance for lnACLW, using Adjusted SS for Tests
                            Adj SS
2.0964
                                      Adj MS
1.0482
                  Seq SS
2.4073
Source
           DF
                                                        0.025
IND
                                                 4.97
                                                3.25
0.98
CHART
            1
                  3.2894
                            0.6851
                                      0.6851
                                                        0.095
                 4.1993
4.2572
T-TMST-AB
             5
                            1.0286
4.2572
                                      0.2057
0.8514
                                                        0.468
CAMBAT
                                                 4.04
                                                        0.020
           13
                  2.7392
                            2.7392
                                      0.2107
Error
Total
                16.8924
           26
```

General Linear Model: InACLW versus IND, CHART, LTMSLAB, CAMPOURC

R-Sq(adj) = 67.57%

```
Type
fixed
Factor
                     Levels
                               Values
                              434-1, 435-2, 438
H, Y
                           3
2
TND
CHART
            fixed
                               A, B, D, E, F, G
15, 16, 17, 18
LTMSLAB
            fixed
                           6
CAMPOURC
            fixed
Analysis of Variance for lnACLW, using Adjusted SS for Tests
                  Seq SS
2.5577
                            Adj SS
1.9254
Source
                                      Adj MS
                                       0.9627
                                                 4.31
                                                        0.022
IND
CHART
             1
                  4.3621
                            0.7617
                                       0.7617
                                                 3.41
                                                        0.074
                  3.3352
3.7883
7.3643
                            1.8375
3.7883
7.3643
LTMSLAB
             5
                                       0.3675
                                                 1.65
                                                        0.175
                                       1.2628
                                                        0.003
CAMPOURC
                                                 5.66
            33
                                       0.2232
Error
Total
                 21.4076
                  R-Sq = 65.60%
S = 0.472399
                                      R-Sq(adj) = 54.13%
```

R-Sq = 83.78%

Martin Chadwick Phone: 210-706-1543

S = 0.459031