Meeting Minutes Sequence III Surveillance Panel

March 28, 2012 09:00 – 15:00 CDT Omni Corpus Christi Hotel Corpus Christi, TX

Agenda

1.0) Roll Call

- **1.1)** George Szappanos replaces Greg Seman of Lubrizol who has accepted another position within company.
- **1.2)** Tracy King is no longer Chrysler's representative. She has been replaced by Haiying Tang.
- **1.3)** Karin Haumann has joined Southwest Research as their Seq. IIIF project engineer.
- 1.4) The attendance is included as Attachment 1.

2.0) Approval of minutes

2.1) The minutes of the November 3, 2011 teleconference were approved without objection.

3.0) Action Item Review

- **3.1)** 03/17/11 Panel members solicit oil suppliers for potential replacement reference oil for IIIF test (PVIS~275%). Dave Glaenzer reported that no one has come forward with a proposed oil.
- **3.2) Maximum hours for parts washer soap use.** Charlie Leverett reported under Old Business.

4.) Old Business

4.1) Parts Washer Soap Analysis, Charlie Leverett.

Charlie's presentation is shown in **Attachment 2**. After discussion, **Charlie moved**, **Altmann seconded**, **labs be required to change the soap after no more than 25 hours of use. The motion passed unanimously**. Rich Grundza will issue the appropriate build manual and/or test method revisions. It was noted that this change is for both the IIIG and IIIF.

4.2) ACC PAPTG response to data request (from 11/03/2011 teleconference), David Glaenzer.

Dave reported that ACC repsonded (Attachment 3) to, but denied the panel's request.

5.) Semi-Annual Reports

5.1) Test Monitoring Center Report

Rich Grundza's report is included as **Attachment 4**. Rich's report was accepted unanimously.

5.2) Test Sponsor Report

Bruce Matthews of GM reported that good progress is being made on the IIIH and expects that the San Antonio test labs will be running in the very near future.

5.3) Chevy Performance Report

Scott Stapp gave the report (**Attachment 5**), noting that their name has changed to Chevy Performance. At current usage rates, Scott estimates that current inventory is at 3+ years. Dave Glaenzer will poll the labs as to their inventories so that he can give the industry a complete view of expected test life.

The crankshaft part number has been updated (with a "C" appended) to indicate that the crankshafts have re-chamfered oil holes. These crankshafts have been shipping since January 11, 2012. Discussion moved to how to introduce the crankshafts for testing. Charlie Leverett moved, Jason Bowden second, to add the Chevy Performance crankshaft part number to the test report for Seq. IIIF and IIIG, effective with the release of the new report package. The motion passed unanimously. The TMC will produce the new packets and send to the industry for beta test and eventual release.

5.4) CPD Report

Jason Bowden's report is attached as **Attachment 6**; Technical Memos 21 and 22 are **Attachments 7 and 8**. The report was accepted unanimously.

5.5) Fuel Supplier Report

Mark Overaker gave the report for Haltermann (**Attachment 9**). It was noted that for the first time RVP has been adjusted for a batch of the EEE fuel at the Nixon facility (tank 63).

6.) New Business

5.1) Application of Sequence IIIG Information Letter 11-5 (FIFO parts usage) to Sequence IIIF (D6984) test.

It was noted that ACC has encouraged application of FIFO to the Seq. IIIF. A motion by Ed Altmann, Jason Bowden second, was made to incorporate the same FIFO scheme for the IIIF that was implemented for the IIIG. Expected implementation is June 1, 2012. The motion passed unanimously. The TMC will issue the appropriate report form / test method / build manual changes.

5.2) Targets for RO 435-2, Richard Grundza, Attachment 10.

Rich presented the results to date. After discussion, it was agreed to continue judging 435-2 against the original test targets.

5.3) Reporting of test hardware on Form 12, Rich Grundza and Jason Bowden, Attachment 11.

Jason explained that the Lifter Engine Set Number should be reported by the labs with only the numerical digits; no letters should be included.

5.4) Sequence IIIG PVIS Severity Analysis, Todd Dvorak/David Glaenzer, Attachment 12.

Todd's conclusion is that no single root cause can be identified as corresponding to higher PVIS results. As such, their is no recommendation at this time to take any action. During follow upd discussion, the reference oil supplier agreed to used oil FTIR data for both 434 and 434-1 being analyzed where the data is available. Pat Lang will collect the data and forward to Doyle Boese for statistical analysis.

- **5.5)** Annual calibration of Sunnen honing machine load measurement. A TMC poll of test labs indicated that some labs are adhering to the requirement, some aren't. Labs were reminded to adhere to the requirement and the requirement is subject to ISO audit and TMC inspection. Charlie Leverett and Bruce Matthews will dialog with Sunnen in an effort to make the calibration process easier for the labs.
- **5.6)** Notification by lab to SP of delayed stand calibration, Pat Lang, Attachment 13. Per a possible interpretation of the LTMS, SwRI notified the panel of a stand that wasn't skipped in the stand rotation but was delayed in re-calibrating. The panel saw no issue with this, and the general interpretation was that the wording in the LTMS (**Attachment 14**) doesn't apply since the within lab stand order did not change. For the future, similarly situated stands/labs, need not consult the SP. The TMC will review the section of the LTMS and propose a revision that simplifies the wording.

6.) Review Scope and Objectives

6.1) Included as **Attachment 15**.

7.) Next Meeting

7.1) Call of chairman

8.) Meeting Adjourned

8.1) The meeting adjourned at noon.

9.) Motions and Action Items

9.1) Included as Attachment 16.

date: 03/28/2012

Name/Address	Phone/Fax/Email		Signature
Ed Altman Afton Chemical Corporation 500 Spring Street Richmond, VA 23219 USA	804-788-5279 804-788-6358 ed.altman@aftonchemical.com	Voting Member	Present Eff
Art Andrews ExxonMobil Products Research 600 Billingsport Rd. Paulsboro, NJ 08066 USA	856-224-3013 arthur.t.andrews@exxonmobil.d	Non-Voting Member	Present
Zack Bishop CLAYTEN (Colgut Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-877-0228 210-690-1959 -zbishop@tei-net.com CIGNIGHT OTEI - Net. (SM	Non-Voting Member	Present
Doyle Boese Infineum 1900 E. Linden Avenue Linden, NJ 07036 USA	908-474-3176 908-474-3637 doyle.boese@infineum.com	Non-Voting Member	Present My Rolle
Adam Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 adbowden@ohtech.com	Non-Voting Member	Present
Jason Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 jhbowden@ohtech.com	Voting Member	Present / // / / / / / / / / / / / / / / / /
Dwight H. Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 dhbowden@ohtech.com	Non-Voting Member	Present

date:

Name/Address	Phone/Fax/Email		Signature
Matt Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039	440-354-7007 440-354-7080 mjbowden@ohtech.com	Non-Voting Member	Present
USA			100
Jerome A. Brys Lubrizol Corp.	440 347-2631	Non-Voting Member	Present
29400 Lakeland Blvd. Wickliffe, Ohio 44092 USA	jerome.brys@lubrizol.com		1
Bill Buscher III Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-6802 210-684-7523 william.buscher@swri.org	Non-Voting Member	Present
Bob Campbell Afton Chemical Corporation 500 Spring Street Richmond, VA 23219 USA	804-788-5340 804-788-6358 bob.campbell@aftonchemica	Non-Voting Member	Present
James Carter Haltermann Solutions 2296 Hulett Rd. Okemos, MI 48864 USA	517-347-3021 517-347-1024 jecarter@jhaltermann.com Cell: 517-896-0897	Voting Member	Present
Chris Castanien The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2973 440-944-8112 cca@lubrizol.com	Non-Voting Member	Present
Timothy L. Caudill Ashland Oil Inc. 22 nd & Front Streets Ashland, KY 41101 USA	606-329-1960 x5708 606-329-2044 tlcaudill@ashland.com	Voting Member	Present
Martin Chadwick Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238	210-706-1543 210-684-6074 martin.chadwick@intertek.co	Non-Voting Member	Present

USA

date:

••	,	*	
Name/Address	Phone/Fax/Email		Signature
Jeff Clark Sequence III Secretary ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1032 412-365-1047 jac@atc-erc.org	Non-Voting Member	Present
Sid Clark Southwest Research 50481 Peggy Lane Chesterfiled, MI 48047 USA	586-873-1255 Sidney.L.Clark@sbcglobal.net	Non-Voting Member	Present
Todd Dvorak Afton Chemical Corporation P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788- 6367 804-788- 6388 todd.dvorak@aftonchemical.co	Non-Voting Member	Present
Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1030 412-365-1047 fmf@astmtmc.cmu.edu	Non-Voting Member	Present
Gordon R. Farnsworth Infineum RR # 5 Box 211 Montrose, PA 18801 USA	570-934-2776 570-934-0141 gordon.farnsworth@infineum.c	Non-Voting Member	Present
Joe Franklin Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-523-4671 210-523-4607 joe.franklin@intertek.com	Non-Voting Member	Present
David L. Glaenzer Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5214 804-788-6358 dave.glaenzer@aftonchemical Surveillance Panel Chairman		Present

date:

	Name/Address	Phone/Fax/Email		Signature
	Richard Grundza ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1031 412-365-1047 reg@astmtmc.cmu.edu	Voting Member	Present
	Jeff Kettman GM-Racing Chert Performant 5388 Hill 23 Drive Flint, MI 48507 USA	313-667-0493 313-319-0139 – cell jeff.kettman@gm.com	Non-Voting Member	Present
	Tracey King Chrysler LLC 800 Chrysler Drive CIMS 482-00-13 Auburn Hills, MI 48326-2757 USA	248-576-7500 248-576-7490 tek1@chrysler.com	Voting Member	Present
/	Clayton Knight Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-690-1958 210-690-1959 <u>cknight@tei-net.com</u>	Voting Member	Present
	Teri Kowalski Toyota Motor North America, Inc. 1555 Woodridge Ann Arbor, MI 48105	734-995-4032 734-995-9049 teri.kowalski@tema.toyota.com	Non-Voting Member	Present
	Patrick Lang Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-2820 210-684-7523 plang@swri.edu	Voting Member	Present
	Charlie Leverett Intertek Automotive Research 5404 Bandera Road San Antonio, TX 78238 USA	210-647-9422 210-523-4607 <u>charlie.leverett@intertek.com</u>	Voting Member	Present
	Josephine G. Martinez Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-5563 510-242-3173 jogm@chevrontexaco.com	Non-Voting Member	Present

date:

Name/Address	Phone/Fax/Email		Signature /
Bruce Matthews GM Powertrain Mail Code 483-730-472 823 Jocyln Avenue Pontiac, MI 48340 USA	248-830-9197 248-857-4441 bruce.matthews@gm.com Test Sponsor Representative	Voting Member	Present
Mike McMillan	mmcmillan123@comcast.net	Non-Voting Member	Present
Timothy Miranda BP Castrol Lubricants USA 1500 Valley Road Wayne, NJ 07470 USA	973-305-3334 973-686-4039 <u>Timothy.Miranda@bp.com</u>	Voting Member	Present
Mark Mosher ExxonMobil Technology Co. Billingsport Road Paulsboro, NJ 08066 USA	856-224-2132 856-224-3628 mark.r.mosher@exxonmobil.co	Voting Member <u>m</u>	Present URM
Siamak Moshiri Cad Railway Industries Ltd. 155 Montreal – Toronto Highway H8S 1B4 Montreal, QC, CANADA	1-634-3131, ext. 412 smoshiri@cadrail.ca	Non-Voting Member	Present
Bob Olree GM Racing 5388 Hill 23 Drive Flint, MI 48507 USA	248-689-3078 olree@netzero.net	Non-Voting Member	1.
Christian Porter Afton Chemical Corp. 500 Spring Street Richmond, VA 23219 USA	804-788-5837 804-788-6358 christian.porter@aftonchemica	Non-Voting Member I.com	Present // L
Phil Rabbat BASF Corporation 500 White Plains Road Tarrytown, NY 10591-9005 USA	914-785-2217 914-785-3681 phil.rabbat@basf.com	Non-Voting Member	Present

Page 5 of 7 02/01/11

date:

Name/Address	Phone/Fax/Email		Signature
Allison Rajakumar The Lubrizol Corporation Drop 152A 29400 Lakeland Blvd. Wickliffe, OH 44092 USA	440-347-4679 440-347-2014 <u>Allison.Rajakumar@Lubrizol.co</u>	Non-Voting Member	Present
Scott Rajala Idemitsu Lubricants America Cor	p. srajala@ilacorp.com	Non-Voting Member	Present
Andrew Ritchie Infineum 1900 East Linden Avenue P.O. Box 735 Linden, NJ 07036 USA	908-474-2097 908-474-3637 Andrew.Ritchie@Infineum.com	Voting Member	Present By Phon
Ron Romano Ford Motor Company Diagnostic Service Center II Room 410. 1800 Fairlane Drive Allen Park, MI 48101 USA	313-845-4068 313-32-38042 rromano@ford.com	Voting Member	Present
Jim Rutherford Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-3410 510-242-3173 jaru@chevrontexaco.com	Non-Voting Member	Present
Philip R. Scinto The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2161 440-347-9031 prs@lubrizol.com	Non-Voting Member	Present
Greg Seman The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2153 440-347-4096 greg.seman@lubrizol.com	Voting Member	Present
George Szappar	105	roting member	69

date:

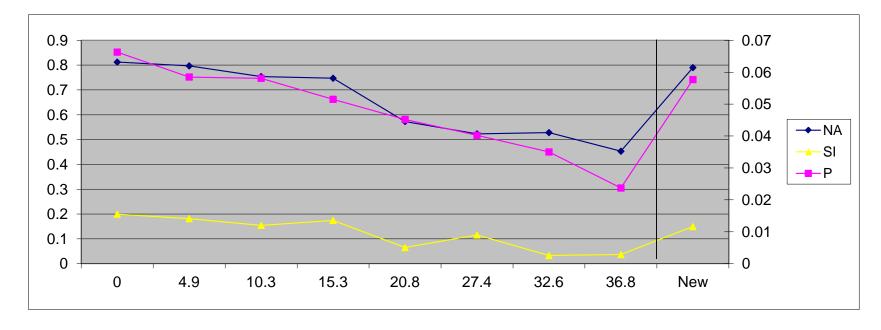
Name/Address Phone/Fax/Email Signature Matt J. Snider 248-672-3563 Non-Voting Member Present **GM** Powertrain 248-857-4441 **General Motors Corporation** mathew.j.snider@gm.com MC - 483-730-322 823 Joclyn Rd. Pontiac, MI 48090-9055 USA **Thomas Smith** 859-357-2766 **Voting Member** Present Valvoline 859-357-7084 P.O. Box 14000 trsmith@ashland.com Lexington, KY 40512-1400 PCEOCP Chair USA Don Smolenski 248-255-7892 Non-Voting Member Present GM donald.j.smolenski@gm.com Mark Sutherland 210-731-5621 Voting Member Chevron Oronite Company LLC 210-731-5699 4502 Centerview Drive msut@chevrontexaco.com Suite 210 San Antonio, TX 78228 USA Joe Vujica 440-347-2057 Non-Voting Member Present The Lubrizol Corporation 440-347-4096 29400 Lakeland Boulevard jsvu@lubrizol.com Wickliffe, OH 44092 USA Ben O. Weber 210-522-5911 Present_ Non-Voting Member Southwest Research Institute 210-684-7530 6220 Culebra Road bweber@swri.edu P.O. Box 28510 Sub-Committee D02.B01 Chair San Antonio, TX 78228 USA Tom Wingfield Non-Voting Member Present Chevron Phillips Chemical Co. wingftm@cpchem.com

Jem Linden TOYOTA Page 7 of 7

Karin Haumann

248-321-5343 LINDENSIME HOTMAIL.COM

Karin.hauwann@swri.org


02/01/11

Present Scott Stop Chery Performance ROBERT STOCKWELL GM POWERTRAIN

Parts Washer Soap	Analysis									
		1D0507MA1	1D0508MA1	OS1423MUC	OS1423MA1	2J0359MU1	2J0790MU1	2J1227MU1	2F0940MU1	2F0940MUA
	Hours	111.2	116.1	121.5	126.5	132	138.6	143.8	148	148.3
	In-Use	0	4.9	10.3	15.3	20.8	27.4	32.6	36.8	New
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
<mark>Sodium</mark>	NA	0.8122	0.7968	0.754	0.7472	0.5729	0.523	0.528	0.453	0.79
<mark>Phophoru</mark>	ıs P	0.0663	0.0585	0.0581	0.0515	0.0452	0.0402	0.035	0.0237	0.0577
*Silicon	SI	0.1995	0.1813	0.1542	0.1741	0.0648	0.1151	0.0326	0.0366	0.1493
		0.66%	0.65%	0.61%	0.61%	0.46%	0.42%	0.43%	0.37%	0.62%
Ratio	NA/P	12.3	13.6	13.0	14.5	12.7	13.0	15.1	19.1	13.7

^{*} Silcon is suspected to be antifoam additive

Sent via Email February 7, 2012

David L. Glaenzer Sequence III Surveillance Panel Chairman c/o Afton Chemical Corporation

Dear Mr. Glaenzer,

The ACC PAPTG appreciates the proactive approach being taken by the Sequence III Surveillance Panel in their efforts to ensure hardware for the Sequence IIIG test is assigned in a manner consistent with the 'First in First Out (FIFO)' principles established for the old Sequence IIIE test. We are absolutely dedicated to helping you and the panel in these efforts.

We have given careful consideration to your request to look at the hardware batch records for the historical candidate datasets for the IIIG and IIIF tests. After consultation with staff from the TMC the ACC PAPTG group has decided that the effort involved is not warranted at this time. We recognize that the 1991 Information Letter 60 for the now obsolete Sequence IID and IIIE tests embodies the principles of FIFO and support its formal reintroduction through the passing of a new Information Letter 11-5.

We do feel that we must take a more deliberate approach to monitoring the requirements of Information Letter 11-5 and thus support the request for the TMC to work to introduce database coding to implement this at some point in the near future. We encourage the Surveillance Panel to liaise with the TMC to assist them in setting this up. Once this is implemented by the TMC, the Panel should consider adopting a new test objective for monitoring compliance of registered Sequence IIIG tests with Information Letter 11-5 (Principles of FIFO) for the Sequence III test hardware. We note that the current action only covers the Sequence IIIG test and advise that consideration is given to expand it to include the Sequence IIIF test.

Thank you and the Sequence III Surveillance Panel for your support of high quality testing to our industry.

Sincerely,

Jerry Wang

Jerry Wang PAPTG Chair

Doug Anderson

Doug Anderson PAPTG Manager

Test Monitoring Center

http://astmtmc.cmu.edu

ASTM D02.B1 Semi-Annual Report Passenger Car Reference Oil Testing

April 2012

Passenger Car Engine Oil Testing Executive Summary

IIIF

No significant monitoring issues.

IIIG/A/B

 Ten tests obtained on reference oil 435-2. Potential target update to be discussed at March meeting.

IVA

 Reference oil 1006-2 reintroduced February 2, 2012. Calibration periods with 1006-2 reduced to generate additional data for targets.

Passenger Car Engine Oil Testing Executive Summary

VIB

No test activity this period.

VID

- Targets Updated in December for reference oil 1010.
- Results reported on new blend of 541

VIII

No significant monitoring issues.

Calibrated Labs and Stands*

Test	Labs	Stands
IIIF	4	4
IIIG/A/B	6	16
IVA	3	4
VG	4	8
VIB	0	0
VID	6	12
VIII	2	3

Test Activity Levels

October 1, 2011 –
March 31, 2012

Sequence Tests

Test Status	Validity Code	IIIF	IIIG	IVA
Acceptable Calibration Test	AC	7	11	7
Failed Calibration Test	OC	1	2	1
Operationally Invalid	LC	0	0	1
Aborted	XC	1	1	0
Abandon Stand/Eng	MC	0	0	3
Decoded/Donated	NN/AG	0	0	7
Assigned, not reported		1	1	1
Total		10	15	21

Sequence Tests (cont.)

Test Status	Validity Code	VG	VID	VIII
Acceptable Calibration Test	AC	8	25	4
Failed Calibration Test	OC	0	1	3
Operationally Invalid	LC	0	1	0
Aborted	XC	0	0	0
Abandon Stand/Eng	MC	0	2	0
Decoded/Donated	NN/AG	1	10	0
Assigned, not completed		0	1	1
Total		9	40	8

Failed Tests

Test Status	Test	Number of Tests
Screened ACLW >20µm	IIIF	1
Severe Viscosity Increase	IIIG	1
Severe Viscosity Increase and WPD	IIIG	1
Mild Average Cam Wear	IVA	4
Stand EWMA Precision Alarm, FEI2	VID	1
Severe Stripped Viscosity Result	VIII	2
Severe Stripped Viscosity, BWL Precision Alarm	VIII	1
Total		10

Lost Tests*

*Invalid and aborted tests

Test Status	Cause	IIIF	IIIG	IVA	VG	VID	VIII
Aborted	Oil Temperature Control	1	0	0	0	0	0
Aborted	Blown Head Gasket	0	1	0	0	0	0
Invalid	Engine Oil Thermocouple Failed	0	0	1	0	0	0
Invalid	Knock Sensor Wiring Issue	0	0	0	0	1	0
Total		1	1	1	0	1	0

Test Severity

>>> October 1, 2011 – March 31, 2012

Test Severity

IIIF

- PVIS and WPD are in control.
- APV
 - In mild action alarm
 - Long-term mild trend continuing (Since April 2006)
- PV60
 - In severe warning alarm
 - Long-term severe trend continuing (Since April 2007)
 - Charts shown in <u>Appendix 1.a.</u>

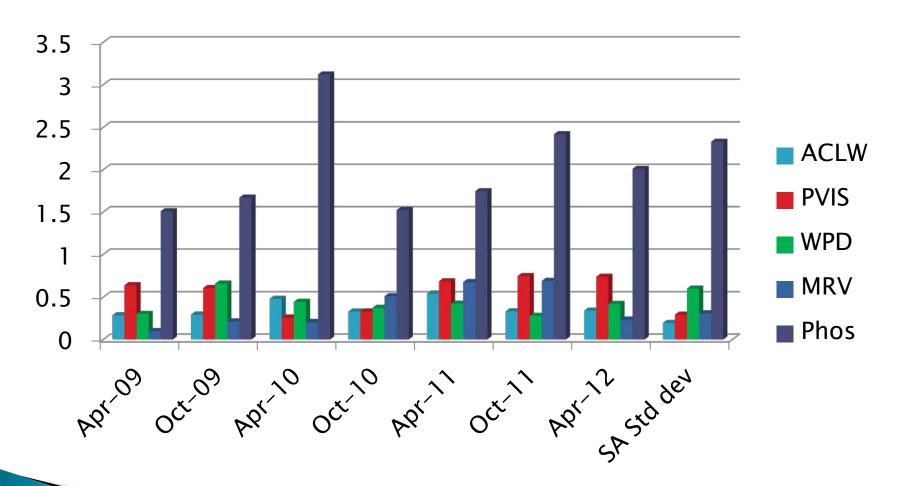
Test Severity (cont.)

IIIG

- PHOS and MRV are in control.
- WPD is in control
 - Long-term severe trend continuing (Since late 2004)
- PVIS in severity precision alarm
- ACLW in severity alarm Long-term mild trend
 - Charts shown in <u>Appendix 1.b.</u>

Test Precision


>>> October 1, 2011 – March 31, 2012


Test Precision Estimates

- Presented on an six month basis.
- Data presented for past four years.

IIIF Precision Estimates

IIIG Precision Estimates

Information Letters

>>> October 1, 2011 – March 31, 2012

Information Letters*

Test	Date	IL	Topic
IIIG	November 29, 2011	11-4, Seq. 34	Added provisions for strainers in coolant system Updated tolerances for cam and lifter measurement devices
IIIG	December 12, 2011	11-5, Seq. 35	Added First-in, First-out criteria for specific hardware and corrected harmonic balancer p/n
VID	January 11, 2012	12-1, Seq. 9	Clarified procedure for oil additions during new engine break-in

*Available from TMC Website

Reference Oil Inventory

Actions, Re-blends, Inventories and Estimated Life

Reference Oil Re-blends

- ➤Oils with ~ 2 years or less supply
 - •Re-blends no longer available
 - Oils Affected
 - 925–3 and 1007
 - •A replacement oil for 925-3 is being pursued and will be addressed during next meeting
 - •1007 to be replaced with 1006-2 in IVA

Reference Oil Re-blends

- ➤Oils with ~ 2 years or less supply
 - •Re-blends available
 - Oils Affected
 - 541–1 and 435–2
 - •Both Test areas actively working on introducing these reblends.
 - •435-2 targets to be reviewed at next meeting

Reference Oil Inventory Estimated Life

Oil	Tests	Original Blend Amount	Quantity Shipped in last 6 months	TMC Inventory	Lab Inventory	Estimated Life
433-1	IIIF	1045	40	198	48	2.5 years
434	IIIG	550	0	5	12	<1 year
434-1	IIIG	660	0	254	24	5+ years
435	IIIG	550	0	2	4	<1 year
435-2	IIIG	550	37	437	28	5+ years
438	IIIG	990	24	712	32	5+ years
540	VID	1100	25	463	40	5+ years
541	VID	550	35	5	45	<1 year

Reference Oil Inventory Estimated Life

Oil	Tests	Original Blend Amount	Quantity Shipped in last 6 months	TMC Inventory	Lab Inventory	Estimated Life
541-1	VID	550	25	515	20	5+ years
542	VID	1100	85	358	65	5+ years
704-1	VIII	897	12	206	10	5+ years
925-3	VG	975	0	10	6	<1 year
1006-2	IVA, VG, VIII	5500	91	3772	63	5+ years
1007	IVA, VG	1968	40	21	41	<1 year
1009	IVA, VG	1100	34	379	33	5+ years
1010	IIIG, VID	1100	55	712	60	5+ years

LTMS Deviations

>>> October 1, 2011 – March 31, 2012

LTMS Deviations

- One IVA LTMS Deviation in Current Period
 - •Test sounded a stand precision EWMA Alarm, cleared after one test
 - •Alarm due to change in hardware and oil selection
 - Stand calibrated with out additional tests

Historical Count of PCEO LTMS Deviations

Test	LTMS Deviations		
IIIF	5		
IIIG	5		
IVA	6		
VG	8		
VID	1		
VIII	3		

Quality Index Deviations

>>> October 1, 2011 –

March 31, 2012

Quality Index Deviations

 One PCEO Quality Index Deviations this period IIIG Deviation issued for EBP and Load Control problem.

Historical Count of PCEO Quality Index Deviations

Test	Quality Index Deviations		
IIIF	25		
IIIG	11		
IVA	27		
VG	38		

TMC Laboratory Visits

>>> October 1, 2011 – March 31, 2012

TMC Lab Visits

•Two III lab visits this period.

No issues at one lab, identified discrepancies in fuel injector flow measurements

•Two VID lab visits this period.

No issues identified during visits.

Test Area Timelines

>>> October 1, 2011 – March 31, 2012

Test Area Timeline Additions

Test	Date	Topic	IL
IIIG	20111129	Added provisions for strainers in coolant system Updated tolerances for cam and lifter measurement devices	11-3
IIIG	20111212	Added First-in, First-out criteria for specific hardware and corrected harmonic balancer p/n	11-4
VID	20120111	Clarified procedure for oil additions during new engine break-in	12-1
IVA	20120204	Reintroduced reference oil $1006-2$, targets with $N=4$	
1 V 🗥	20120204	Reintroduced reference on 1000-2, targets with N = 4	
IVA	20120209	Updated standard deviation for severity adjustments	

Additonal Information

>>> October 1, 2011 – March 31, 2012

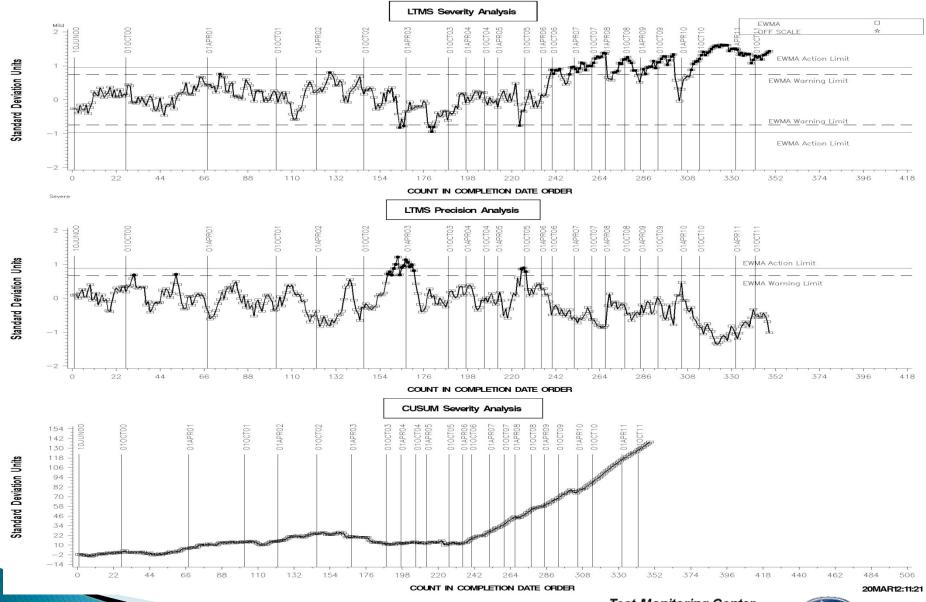
Additional Information

- Available on TMC Website:
 - Live Reference Test Data Bases
 - Surveillance Panel Meeting Minutes
 - Test Area Alarm Logs
 - Complete Test Area Timelines
 - LTMS Manual
- www.astmtmc.cmu.edu

Test Monitoring Center

http://astmtmc.cmu.edu

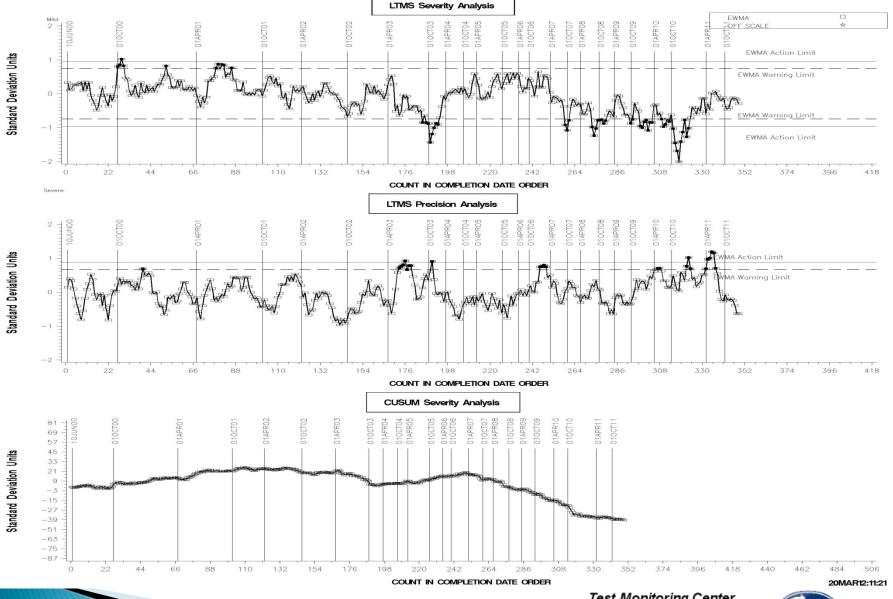
Appendix 1 PCMO Reference Oil Testing Control Charts


April 2012

Appendix 1.a IIIF Control Charts

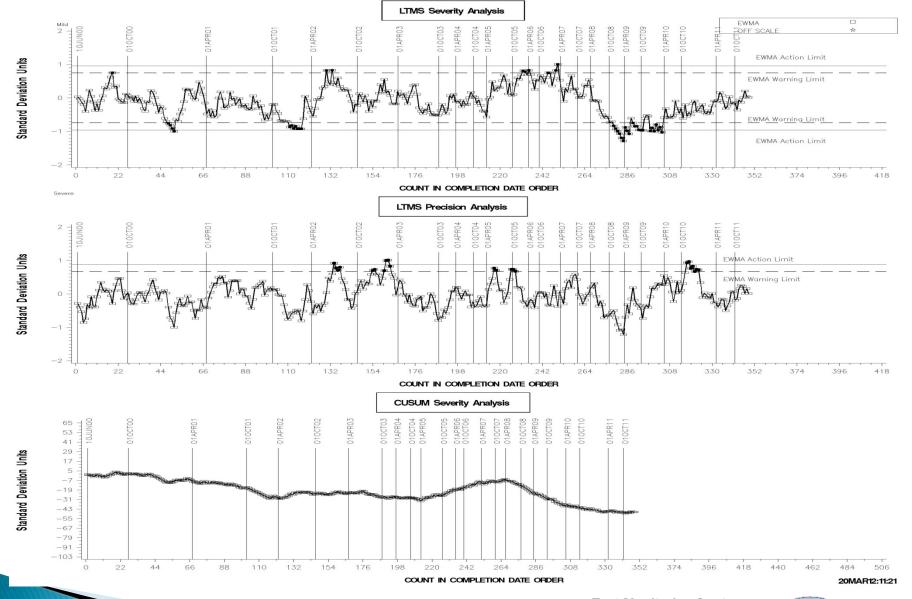
>>> Severity, Precision, and CuSum

AVERAGE PISTON SKIRT VARNISH FINAL ORIG UNIT RES



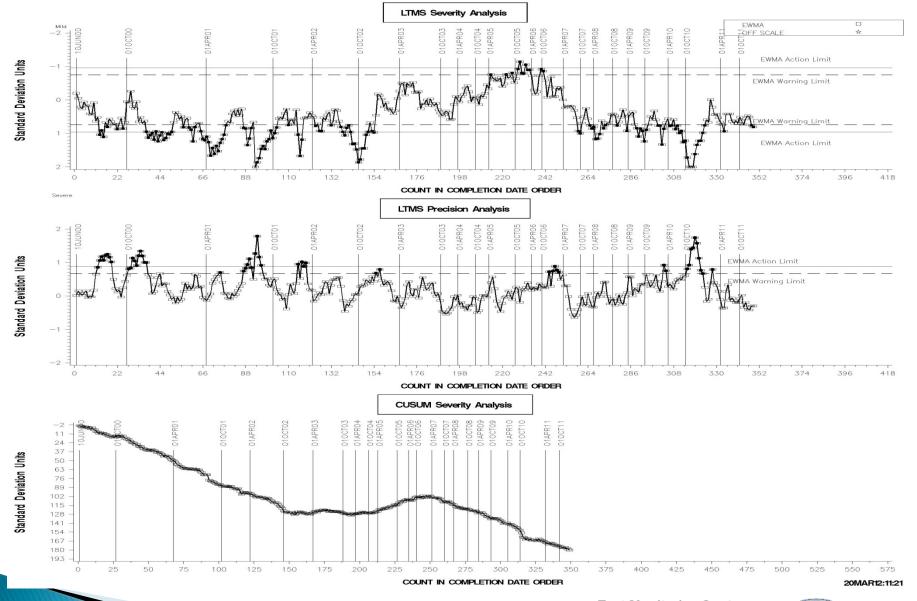
Test Monitoring Center

% VISCOSITY INCREASE


Test Monitoring Center

http://astmtmc.cmu.edu

AVERAGE WEIGHTED PISTON DEPOSITS FNL ORIG UNIT RES

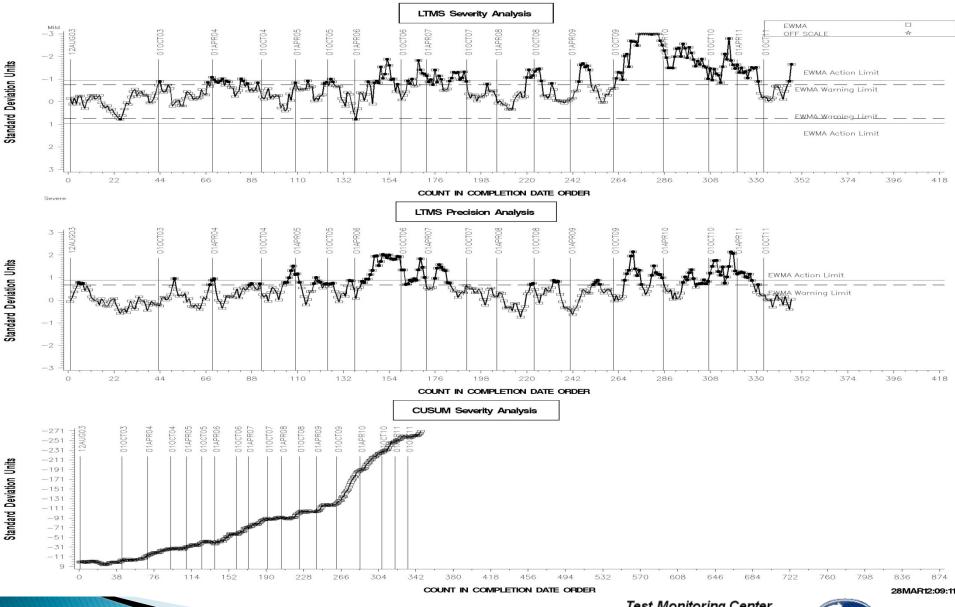

Test Monitoring Center

http://astmtmc.cmu.edu

% VISCOSITY INCREASE @ 060 HOURS

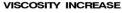
Test Monitoring Center

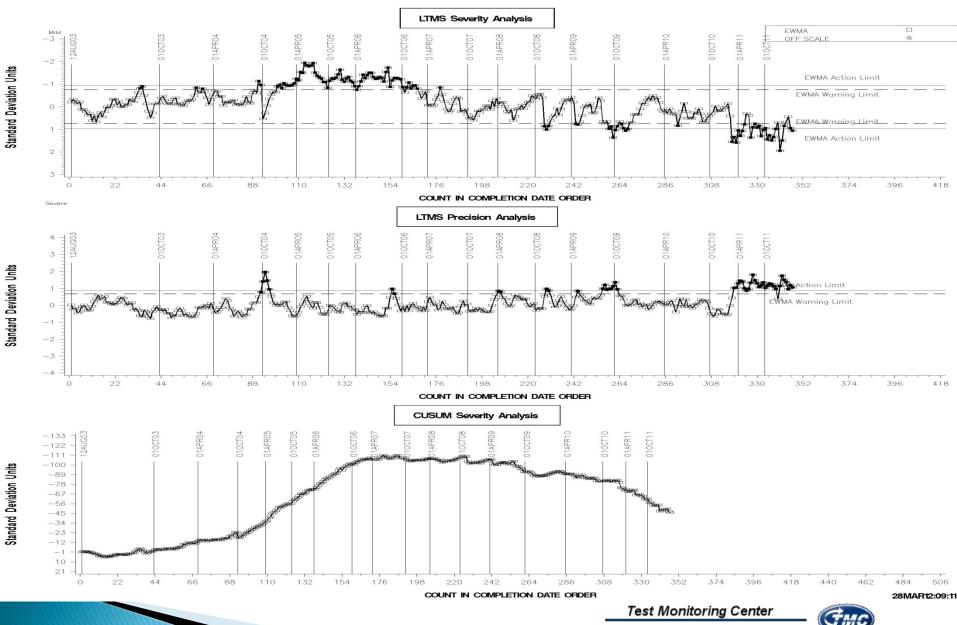
http://astmtmc.cmu.edu


Appendix 1.b IIIG/A/B Control Charts

>>> Severity, Precision, and CuSum

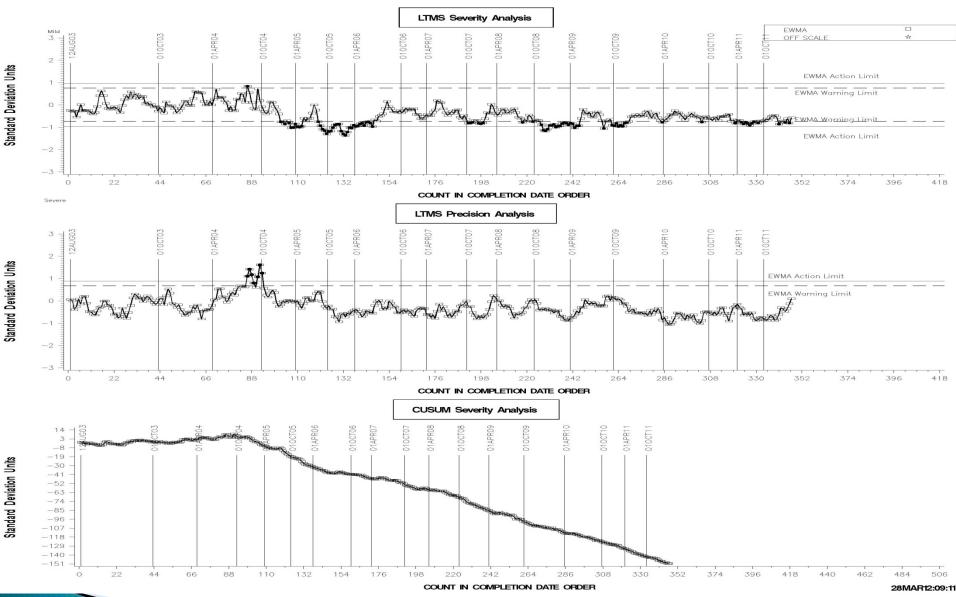
AVERAGE CAM + LIFTER WEAR


Test Monitoring Center


http://astmtmc.cmu.edu

AProgum of ARTH International

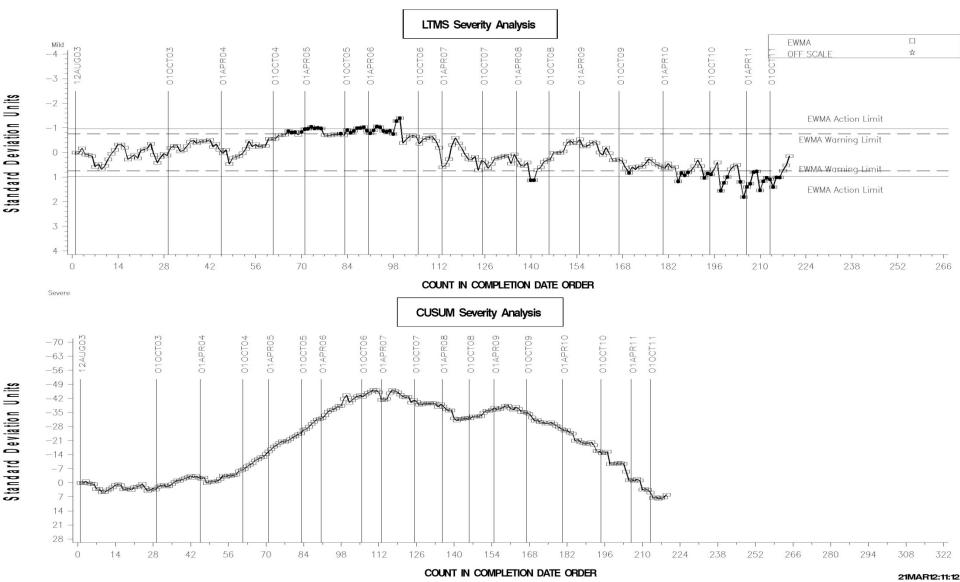
VICCOCITY INCOCA


Test Monitoring Center

http://astmtmc.cmu.edu

AProgram of ARTW international

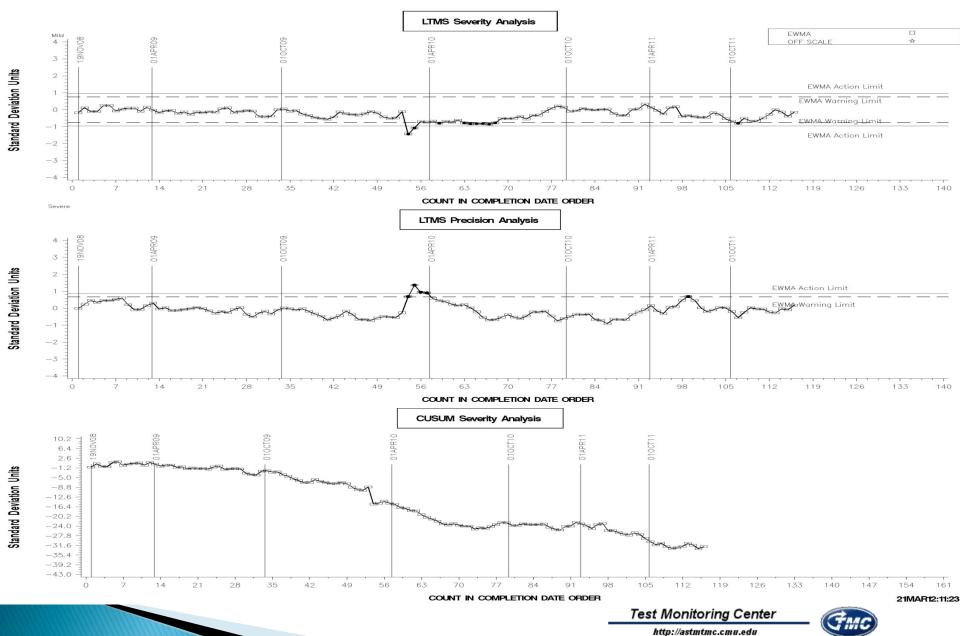
AVERAGE WEIGHTED PISTON DEPOSITS


Test Monitoring Center

http://astmtmc.cmu.edu

AProgram of ARTM International

MRV VISCOSITY RESULT


Test Monitoring Center

http://astmtmc.cmu.edu

AProgram of ARTH internations

PHOS RETENTION

GMR Oil Test Components

Compiled March 22th 2012

Current Inventory

		In Stock	At Storage	In Process	Total	1 year ago
12593374	Connecting Rods	360	13075	0	13435	16554
24502168	Crankshaft	202	130	0	332	406
24502286	Cylinder Block	36	252	0	288	373
24502260B	Cylinder Heads	194	3078	90	3362	4439

- At current usage rates, enough parts for 3+ years of testing
- Oil Test heads shipping serial# 2A12
- •Blocks shipping serial# 2H11-020
- Connecting shipping batch code 9-3-3
- Crankshafts shipping batch code 11307

24502260B Heads

- Cylinder heads are in stock at this time.
- Currently receiving an average of 50 heads every 10 days from the machine shop.
- Will continue receiving heads at this rate until inventory is restored to sufficient levels.

24502168C Crankshafts

- Crankshafts with re-chamfered oil holes are in stock at this time.
- "C" crankshafts have been shipping since 1/11/12

CENTRAL PARTS DISTRIBUTOR REPORT OH Technologies, Inc.

Sequence III Surveillance Panel Meeting Omni Hotel, Corpus Christi, TX March 28, 2012

1) Technical Memos Issued (6/01/11-3/23/12)

Technical Memo 21(10/20/11) - OHT3F-008-8 Thrust Face Run Out

Technical Memo 22 (3/15/12) – OHT3F-008-8, Camshaft Box Labels

2) Rejection Report

REPORTING PERIOD: 10 Months (6/01/11 - 3/23/12)

ITEM	DESCRIPTION	REASON REJECTED	QTY	REPLACED	ATE REPLACE
OHT3F-030-2	OIL COOLER	INADEQUATE PLATING	2	YES	6/7/2011
OHT3F-030-2	OIL COOLER	INADEQUATE PLATING	2	YES	6/14/2011
OHT3G-088-1	COVER, REAR	MACHINING DEFECT	4	YES	8/29/2011
OHT3F-008-8	IIIG CAMSHAFT	UST RUNOUT INSPECT	2	YES	8/30/2011
OHT3F-008-8	IIIG CAMSHAFT	UST RUNOUT INSPECT	6	YES	9/23/2011
OHT3F-008-8	IIIG CAMSHAFT	SCRATCH ON LOBE	1	YES	9/13/2011
OHT3G052-RN6-1	IIIG RUN 6 RING	BENT RING	1	YES	1/4/2012
3F028-09	CAM BEARING	NICK ON EDGE	1	YES	2/13/2012
OHT3F-030-2	OIL COOLER	INADEQUATE PLATING	1	YES	2/14/2012
OHT3F-030-2	OIL COOLER	RUST	1	YES	2/14/2012
OHT3F-030-2	OIL COOLER	RUST	1	YES	3/6/2012
OHT3G-091-1	REAR SEAL	MISSING SPRING	1	YES	3/6/2012

3) Batch Code Changes

	Batch	Date		Batch	Date
<u>IIIF</u>	Code	Introduced	IIIG	Code	Introduced
IIIF Camshaft	PC 17	9/30/11	Piston Grade 12	BC 26	12/16/12
Piston Grade 12	BC 26	12/27/11	Piston Grade 34	BC 26	12/16/12
Piston Grade 34	BC 25	12/27/11	Piston Grade 56	BC 27	1/17/12
Piston Grade 56	BC 27	1/27/11	Rocker Arms	BC 17	11/30/11
Rocker Arms	BC 17	12/06/11	Spring Valve	BC 12	7/11/11
Piston Grade 12	BC 26	12/27/11			

Date: October 20, 2011

To: ASTM Sequence III Testing Laboratories

From: Jason Bowden / OH Technologies, Inc.

Re: Seq. III CPD Technical Memo 21

OHT3F-008-8 camshafts

Cc: Mr. Bruce Matthews / General Motors Powertrain

Mr. Rich Grundza/ Test Monitoring Center

This Technical Memo is intended to notify users of the Sequence III test methods that we have confirmed several camshafts are out of specification up to .002 inch, with regards to the thrust face run out. This may cause a reduction in end play. OH Technologies will be notifying individual labs of specific camshaft serial numbers in their inventory to be returned to OH Technologies for inspection. OH Technologies, Inc. has taken corrective action with the vendor and has eliminated the possibility of these camshafts being shipped in the future.

If there are any questions or comments regarding the aforementioned item please do not hesitate to call.

Jason H. Bowden OH Technologies, Inc.

Date: March 15, 2012

To: ASTM Sequence III Testing Laboratories

From: Jason Bowden / OH Technologies, Inc.

Re: Seq. III CPD Technical Memo 22

OHT3F-008-8 IIIG, Camshaft Box Labels

Cc: Mr. Bruce Matthews / General Motors Powertrain

Mr. Rich Grundza/ Test Monitoring Center

This Technical Memo is intended to notify users of the Sequence III test methods that we have confirmed several labels of the OHT3F-008-8, IIIG Camshaft Box Labels were printed incorrectly. Specifically, IIIG camshaft serial numbers beginning with the letter "J" were incorrectly labeled as Pour Code 15. The correct Pour Code number for serial numbers beginning with the letter "J" is Pour Code 16. All other labels appear to be correct.

The **Pour Code letter** designation is engraved onto each camshaft along with the serial number. This letter designation is what is used by OH Technologies, Inc. for traceability of the Pour Code. No Pour Code traceability was lost by this labeling error. The **Pour Code number** designation is used only to reference how many pours of camshafts have been made, as there are letters in the alphabet that are not used for Pour Code designating purposes.

Once again, No Pour Code traceability was lost by this labeling error.

Please note the correct number designations for all camshaft Pour Codes in the field for both Seq. IIIF and Seq. IIIG as of today are:

Serial numbers beginning with the letter J = Pour Code 16Serial numbers beginning with the letter K = Pour Code 17

Below is a sample of the correct OHT3F-008-8, IIIG Camshaft label for "J" camshafts:

We apologize for any inconvenience this may cause and have taken immediate corrective action to prevent this occurrence in the future.

If there are any questions or comments regarding the aforementioned item please do not hesitate to call.

Jason H. Bowden OH Technologies, Inc.

PRODUCT: HALTERMANN PRODUCT CODE: **EEE-Lube Cert Gasoline**

HF0003

Tank No.: MTS

110

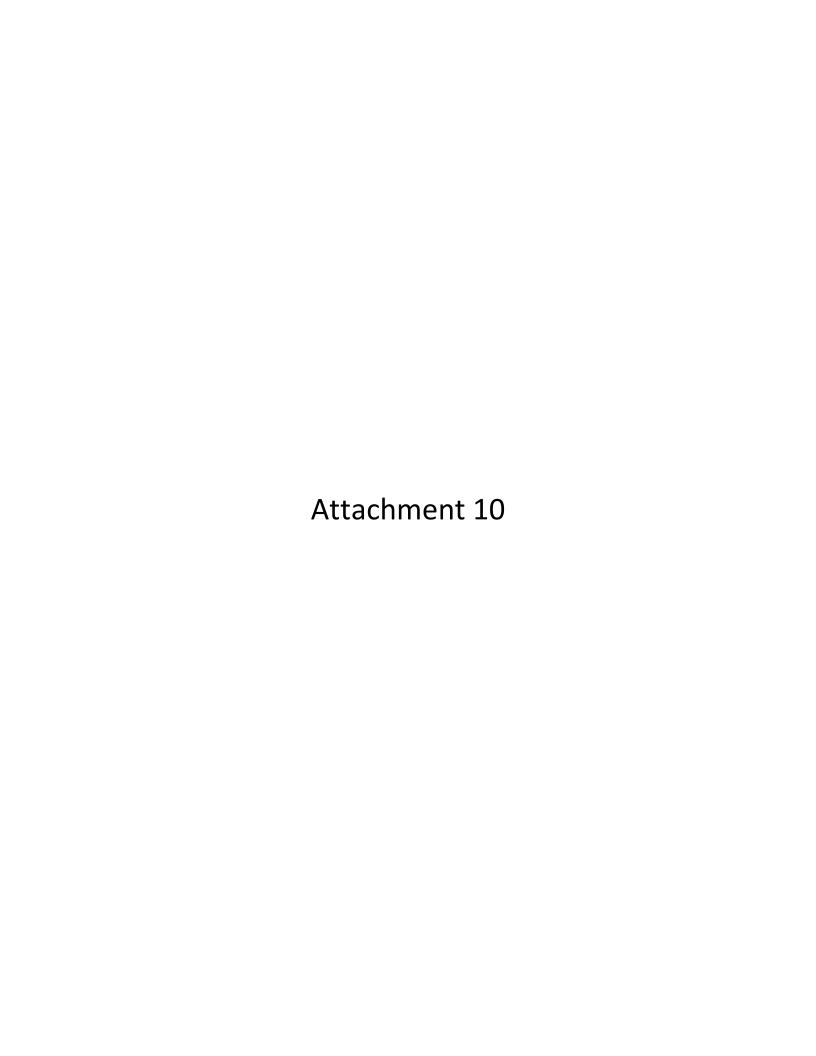
Analysis Date: 2/17/2012

 MTS
 MTS

 110
 110
 110

 17/2012
 12/5/2011
 11/16/2011

63 9/12/2011


110

9/14/2011

Seq.	Ш	&	VI	
------	---	---	----	--

TEST	METHOD	UNITS	HALT	ERMANN S	pecs	RESULTS	RESULTS	RESULTS	RESULTS	RESULTS
			MIN	TARGET	MAX	·				-
Distillation - IBP	ASTM D86	°C	23.9		35.0	31.0	30.1	30.1	29.8	30.1
5%		°C				44.3	41.7	41.7	41.5	42.5
10%		°C	48.9		57.2	53.1	49.9	49.9	50.5	51.0
20%		°C				65.8	62.0	62.0	63.9	63.6
30%		°C				79.8	76.0	76.0	78.8	77.8
40%		°C				95.3	93.2	93.2	95.9	95.1
50%		°C	93.3		110.0	105.7	106.1	106.1	106.4	107.0
60%		°C				111.6	113.1	113.1	112.2	113.7
70%		°C				117.6	119.8	119.8	117.9	120.6
80%		°C				128.6	131.8	131.8	128.5	133.0
90%		°C	151.7		162.8	158.1	160.7	160.7	157.6	161.0
95%		°C				168.4	171.8	171.8	170.1	172.2
Distillation - EP		°C			212.8	199.8	199.9	199.9	200.6	199.2
Recovery		vol %		Report		96.9	96.8	96.8	96.7	96.9
Residue		vol %		Report		1.1	1.2	1.2	0.8	0.9
Loss		vol %		Report		2.0	2.0	2.0	2.5	2.2
Gravity @ 60°F/60°F	ASTM D4052	°API	58.7		61.2	58.9	59.2	59.1	59.0	59.1
Density @ 15° C	ASTM D4052	kg/l	0.734		0.744	0.743	0.742	0.742	0.743	0.742
Reid Vapor Pressure	ASTM D5191	kPa	60.1		63.4	62.8	62.9	62.7	62.2	62.2
Carbon	ASTM D3343	wt fraction		Report		0.8663	0.8647	0.8648	0.8648	0.8647
Carbon	ASTM E191	wt fraction		Report		0.8618	0.8619	0.8619	0.8626	0.8612
Hydrogen	ASTM E191	wt fraction		Report		0.1337	0.1355	0.1355	0.1357	0.1347
Hydrogen/Carbon ratio	ASTM E191	mole/mole		Report		1.848	1.873	1.873	1.874	1.864
Oxygen	ASTM D4815	wt %			0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sulfur	ASTM D5453	mg/kg	3		15	6	4	4	4	3
Lead	ASTM D3237	mg/l			2.6	<1	<1	<1	<1	<1
Phosphorous	ASTM D3231	mg/l			1.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Composition, aromatics	ASTM D1319	vol %	26.0		32.5	30.4	27.9	27.9	27.6	27.9
Composition, olefins	ASTM D1319	vol %			10.0	0.6	1.0	1.0	0.6	0.9
Composition, saturates	ASTM D1319	vol %		Report		69.0	71.1	71.1	71.8	71.2
Particulate matter	ASTM D5452	mg/l			1	0.6	0.7	0.7	1.0	0.4
Oxidation Stability	ASTM D525	minutes	1000			1000+	1000+	1000+	1000+	1000+
Copper Corrosion	ASTM D130				1	1a	1a	1a	1a	1a
Gum content, washed	ASTM D381	mg/100mls			5.0	1.0	< 0.5	< 0.5	< 0.5	< 0.5
Fuel Economy Numerator/C Density	ASTM E191		2401		2441	2431	2422	2423	2425	2425
C Factor	ASTM E191			Report		1.0031	1.0005	1.0007	1.0045	1.0014
Research Octane Number	ASTM D2699		96.0			97.6	97.0	97.0	97.0	96.8
Motor Octane Number	ASTM D2700			Report		88.8	88.1	88.1	88.6	88.4
Sensitivity			7.5			8.8	8.9	8.9	8.4	8.4

Net Heating Value, btu/lb	ASTM D3338	btu/lb	Report	18451	18490	18488	18487	18491
Net Heating Value, btu/lb	ASTM D240	btu/lb	Report	18334	18395	18395	18314	18351
Color	VISUAL	1.75 ptb	Red	Red	Red	Red	Red	Red

Test Monitoring Center

http://astmtmc.cmu.edu

Sequence IIIG 435-2 Results

Sequence III Surveillance Panel March 28, 2012

Summary of Results

- 10 tests reported from six labs
- Summary in next few slides

Target Values

Parameter	Mean	Standard Deviation
ACLW	3.6381	0.3121
PVIS	5.2576	0.3286
WPD	3.51	0.28
PHOS	81.8	1.30

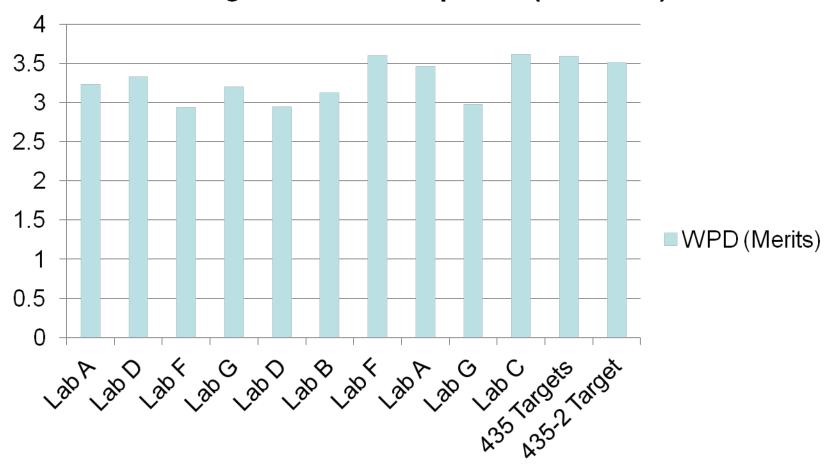
Means and standard deviations in transformed units for ACLW and PVIS

Summary of Test Results

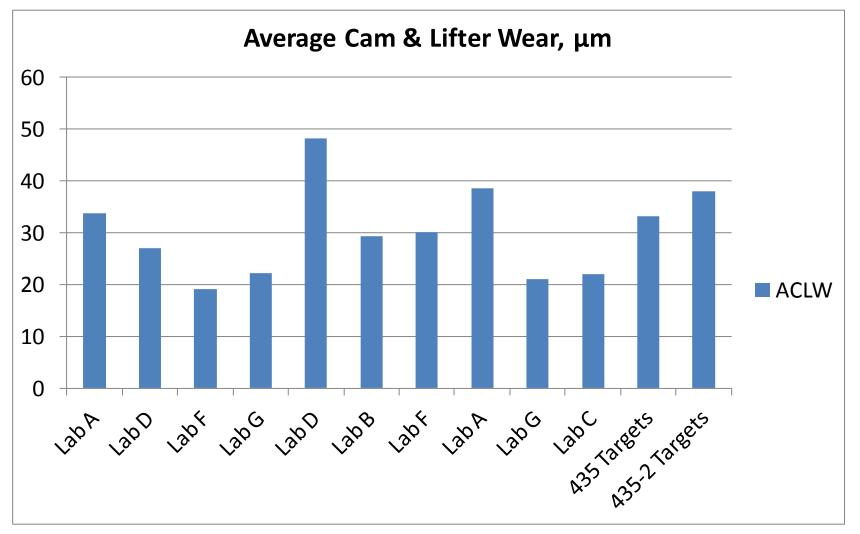
LTMSLAB	TESTKEY	PVIS	PVISti	SA	Adjusted	ACLWti	SA	Adjusted	WPDti	SA	Adjusted
D	80559-IIIG	208.4	5.339459	0	5.339459	3.2958	0.3647	3.6605	3.33	0	3.33
Α	80562-IIIG	358.4	5.88165	-0.28715	5.5945	3.5205	0.3874	3.9079	3.23	0.337	3.567
F	80561-IIIG	188.8	5.240688	0	5.240688	2.9497	0.1771	3.1268	2.94	0	2.94
G	81512-IIIG	293.7	5.682559	-0.27444	5.408121	3.1001	0.4048	3.5049	3.2	0.4164	3.6164
D	80560-IIIG	208.8	5.341377	-0.24998	5.091393	3.8754	0.1767	4.0521	2.95	0.4446	3.3946
В	80564-IIIG	173	5.153292	0	5.153292	3.6763	0.219	3.8953	3.13	0.4268	3.5568
F	82083-IIIG	376.2	5.930121	0	5.930121	3.4078	0.1908	3.5986	3.6	0.337	3.937
Α	81940-IIIG	162	5.087596	-0.29715	4.790451	3.6533	0.2947	3.948	3.46	0.335	3.795
G	82617-IIIG	176.3	5.172187	-0.17878	4.993409	3.0493	0.3817	3.431	2.98	0.3734	3.3534
E	80552-IIIG	153.7	5.035003	0	5.035003	3.0865	0.1693	3.2558	3.62	0	3.62

RO 435-2 Results for PVIS

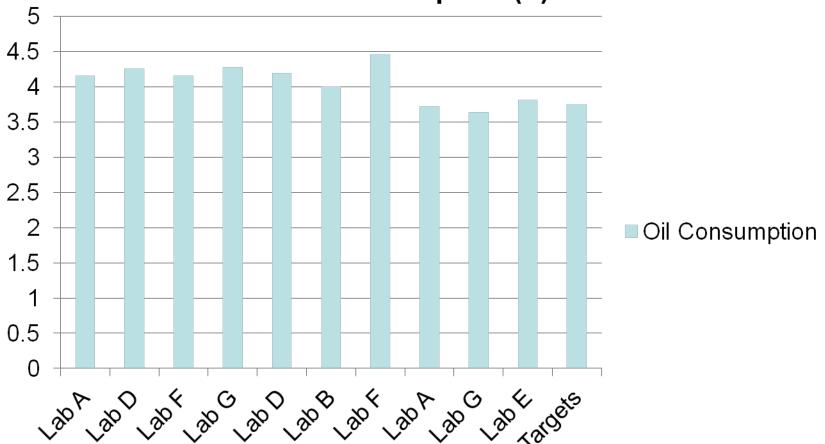
% Vis Increase

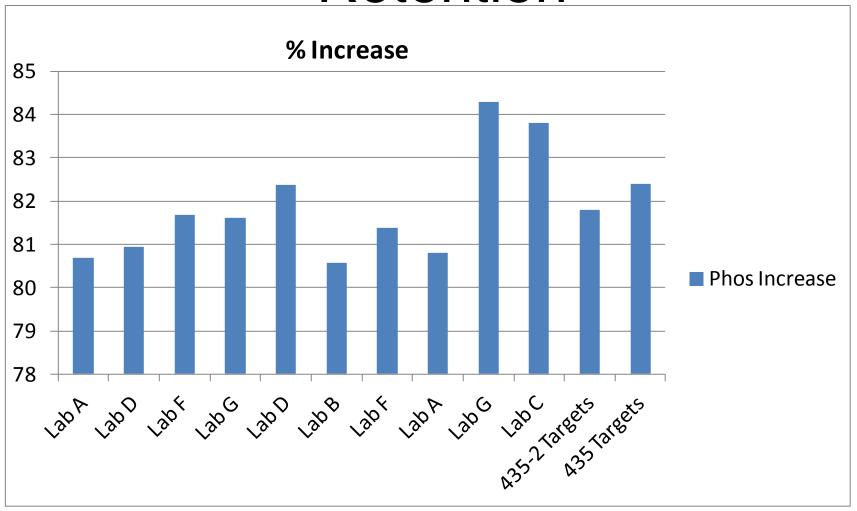


Test Monitoring Center
http://astmtmc.cmu.edu

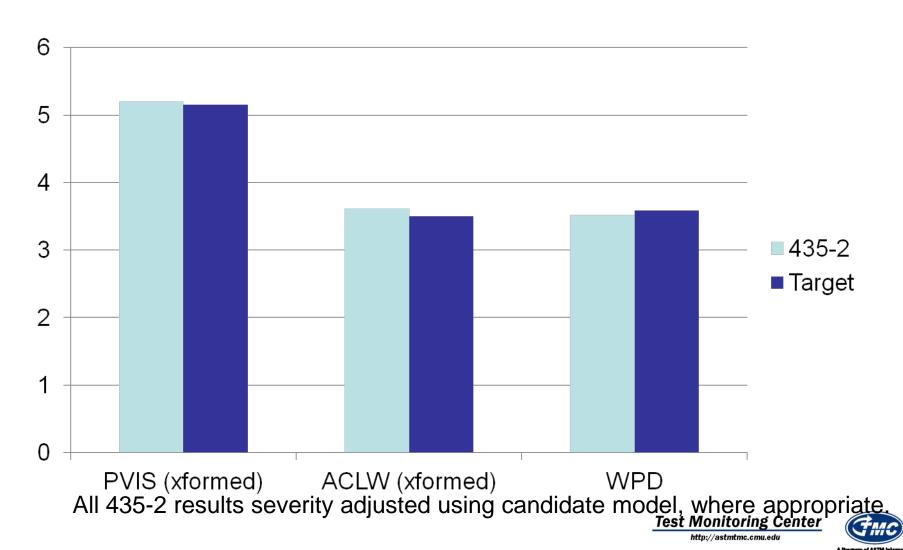

RO 435-2 Results for WPD

Weighted Piston Deposits (in Merits)

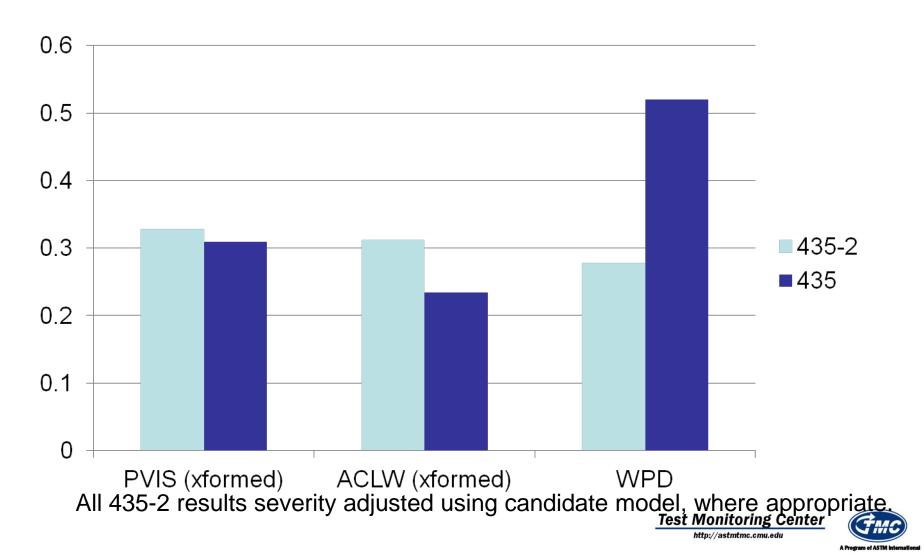

RO 435-2 Results for ACLW


RO 435-2 Results for Oil Consumption

Oil Consumption (L)



RO 435-2 Results for Phos Retention



Comparison of Mean Performance of 435-2 (n= 10) with 435 targets

Comparison of Standard Deviations of 435-2 (n= 10) with 435 targets

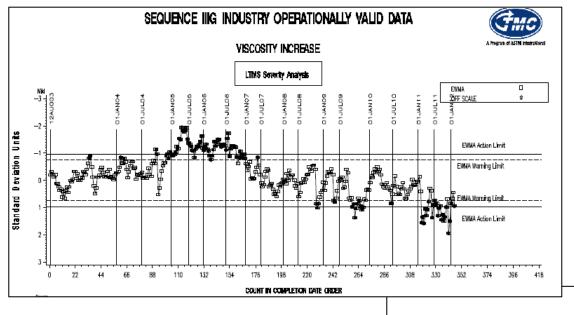
SAMPLE ENTRIES

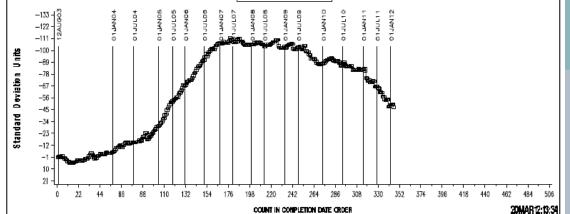
Sequence IIIG Form 12 Hardware Information

Laboratory:		Oil Code:	
Test Stand No.:		Test No.:	
Laboratory Oil Code:			
Formulation / Stand Cod	e:		

	Build Completion Date	20111025
	Block Serial Number	5E10025
	Crankshaft Serial Number	
	Camshaft Serial Number	J281107
FIFO	Camshaft Pour Code	PC 16
,	Camshaft Phosphate Batch Code	111026 (YYMMDD)
	Cylinder Head Serial Number, Left	20H11021
	Cylinder Head Serial Number, Right	20H11022
	Bearing Kit Serial Number	9536
FIFO	Main Bearings (M) Batch Code	19
FIFO	Connecting Rod Bearings (CR) Batch Code	18
FIFO	Camshaft Bushing (CB) Batch Code	21
FIFO	Intake Valve Seals Batch Code	4
FIFO	Exhaust Valve Seals Batch Code	3
FIFO	Lifter Engine Set Number (ESET)	9130

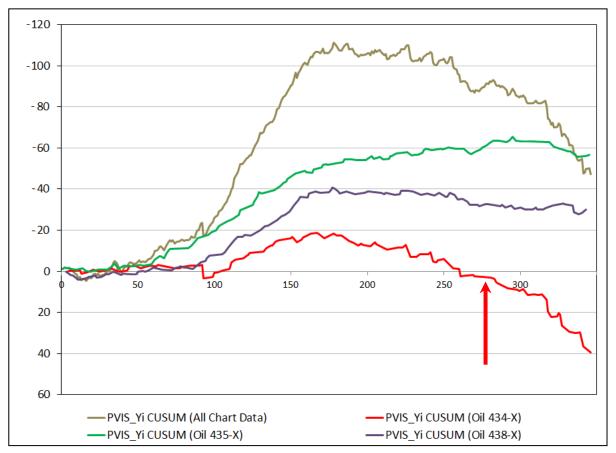
FIFO	Oil Filter Batch Code	6
FIFO	Oil Cooler Batch Code (C/SP)	111026 (YYMMDD)
FIFO	Piston Batch (Code)	26
FIFO	Piston Size (Grade)	12 <u>or</u> 34 <u>or</u> 56
FIFO	Piston Ring Batch Code	8
FIFO	Oil Control Ring (OC) Batch Code	15
FIFO	Expander Ring (EXP) Batch Code	15
	Top Ring Gap, mils	25
	Bottom Ring Gap, mils	42
FIFO	Rocker Arm Batch Code	16
FIFO	Valve Springs Batch Code	10


By: Todd Dvorak 03/27/12

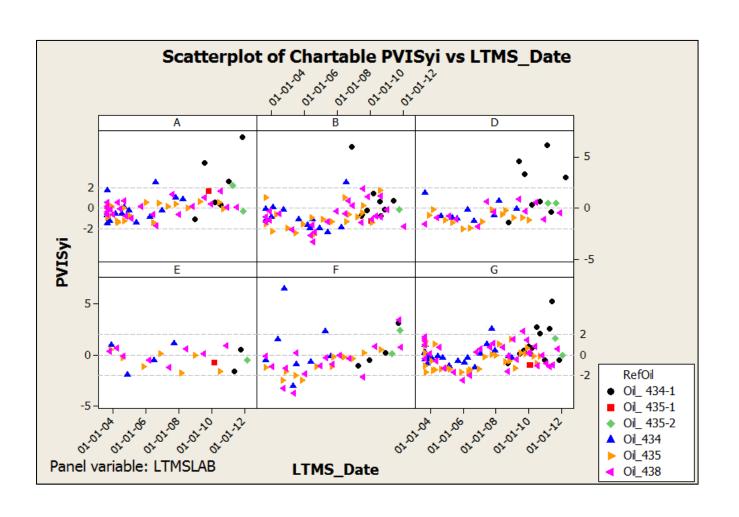

Passion for Solutions

- Sequence III SP Chair requested to investigate possible causes that may be related to the test severity
- A preliminary analysis of focused on fuel property data for possible correlations with the PVIS severity
- With a more complete fuel property and reference oil test data, the emphasis of the analysis transition to viscosity related factors
- The following slides outline the details of the analysis

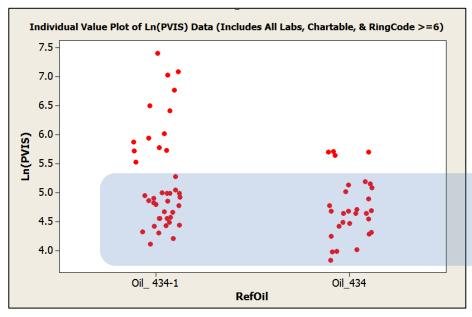
Industry IIIG EWMA and CUSUM Chart suggests that the PVIS parameter has been trending severe - since the first quarter of 2011.

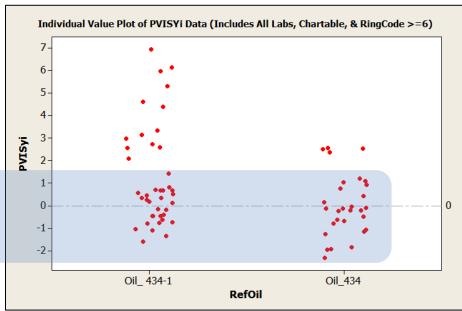


CUSUM Severity Analysis

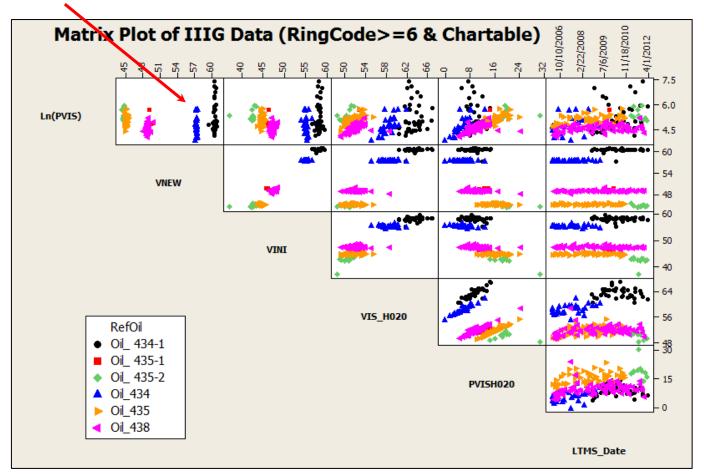


Plot of Chartable IIIG PVIS Industry Yi CUSUM Chart by reference oil suggests that reference oil 434/434-1 has been more severe of target as compared to the other reference oils.

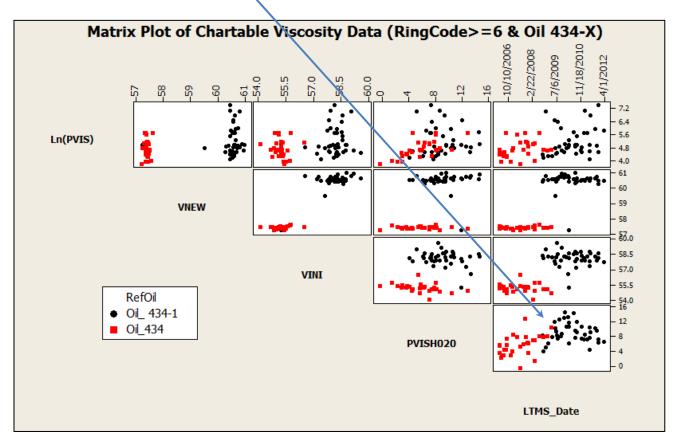




▶ Plot of Chartable & Chartable IIIG PVIS Y_i data suggests that a greater proportion of high PVIS results correspond with reference oil 434-1

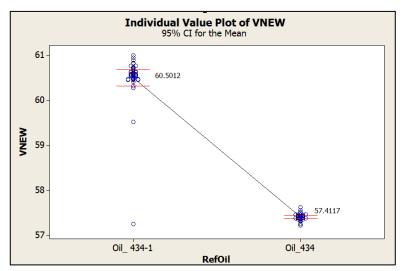

▶ Plot of Chartable & Chartable IIIG PVIS data also suggests that a proportion of the test 434 & 434-1 test results have similar performance

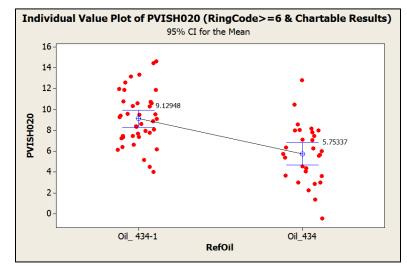
✓ Viscosity related measurement data suggests a possible viscosity difference with the re-blend 434-1 reference oil.

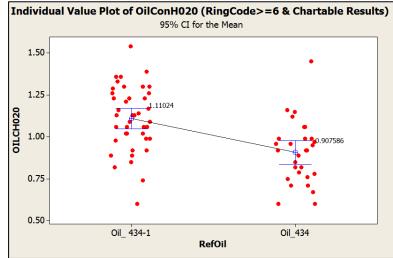


Analysis of chartable result data (w/Ring Batch ≥ 6 data ~ March 2006) suggests a difference in the means for reference oil 434-1 and 434.

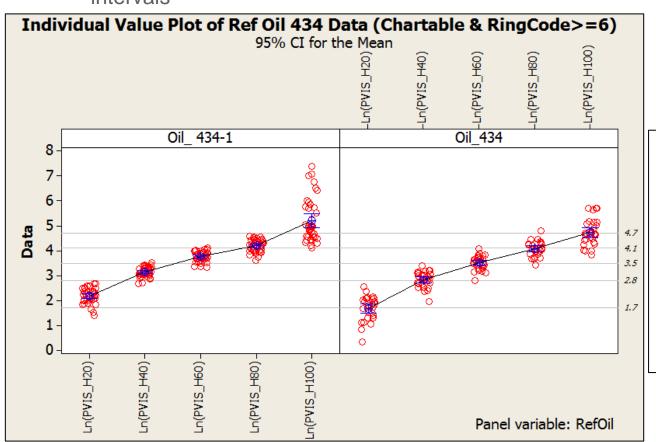
```
General Linear Model: Ln(PVIS) versus LTMSLAB, RefOil
                                                                                       Tukey Simultaneous Tests - Response Variable Ln(PVIS)
                                                                                       All Pairwise Comparisons among Levels of RefOil
Factor
         Type
                Levels Values
LTMSLAB
         fixed
                     6 A, B, D, E, F, G
                                                                                       RefOil = Oil_434-1 subtracted from:
                     6 Oil 434-1, Oil 435-1, Oil 435-2, Oil 434, Oil 435, Oil 438
RefOil
         fixed
                                                                                       Difference
                                                                                                         SE of
                                                                                                                         Adjusted
                                                                                                     of Means
                                                                                       RefOil
                                                                                                               Difference T-Value
                                                                                                                                      P-Value
Analysis of Variance for Ln(PVIS), using Adjusted SS for Tests
                                                                                                                                       0.9913
                                                                                       Oil 435-1
                                                                                                      -0.1464
                                                                                                                   0.24598
                                                                                                                             -0.595
                        Adj SS Adj MS
Source
               Seg SS
                                                                                       Oil 435-2
                                                                                                       0.1628
                                                                                                                   0.16553
                                                                                                                              0.983
                                                                                                                                       0.9228
                        2.8215 0.5643
                                         2.59 0.027
LTMSLAB
               3.4861
                                                                                       Oil_434
                                                                                                      -0.4735
                                                                                                                   0.11342
                                                                                                                             -4.175
                                                                                                                                       0.0006
RefOil
             16.2405 16.2405 3.2481 14.89 0.000
                                                                                       Oil_435
                                                                                                      -0.1427
                                                                                                                   0.09620
                                                                                                                             -1.484
                                                                                                                                       0.6752
Error
             43.4241 43.4241 0.2182
                                                                                       Oil 438
                                                                                                                   0.09221
                                                                                                                             -6.964
                                                                                                                                       0.0000
                                                                                                      -0.6422
         209
             63.1506
Total
                                                                                       RefOil = Oil 435-1 subtracted from:
S = 0.467131
               R-Sq = 31.24%
                               R-Sq(adi) = 27.78%
                                                     Least Squares Means for Ln(PVIS)
                                                                                                   Difference
                                                                                                                     SE of
                                                                                                                                     Adjusted
                                                                        SE Mean
                                                                                       RefOil
                                                                                                     of Means
                                                                                                               Difference T-Value
                                                                                                                                      P-Value
                Coef SE Coef
                                                                 5.196
                                                                        0.09033
Term
                                                                                       Oil 435-2
                                                                                                       0.3091
                                                                                                                    0.2786
                                                                                                                              1.109
                                                                                                                                       0.8770
             4.98810 0.05472
                              91.16
                                      0.000
                                                     В
                                                                 4.833
                                                                        0.08035
                                                                                       Oil 434
Constant
                                                                                                      -0.3272
                                                                                                                    0.2504
                                                                                                                             -1.307
                                                                                                                                       0.7811
                                                                 5.011
                                                                        0.09432
LTMSLAB
                                                                                       Oil 435
                                                                                                       0.0036
                                                                                                                    0.2430
                                                                                                                              0.015
                                                                                                                                       1.0000
             0.20826
                      0.07673
                                2.71 0.007
                                                                 4.858
                                                                        0.13649
Α
                                                                                       Oil_438
                                                                                                      -0.4958
                                                                                                                    0.2412
                                                                                                                             -2.055
                                                                                                                                       0.3152
В
            -0.15519
                     0.06677
                               -2.32
                                      0.021
                                                                 5.008
                                                                        0.10296
D
             0.02282
                      0.07790
                                0.29
                                      0.770
                                                                 5.023
                                                                        0.07112
                                                                                       RefOil = Oil_435-2 subtracted from:
             -0.1299
                       0.1120
                               -1.16
                                      0.247
                                                                                                Difference
                                                                                                                  SE of
                                                                                                                                  Adjusted
                                                     RefOil
             0.01945 0.08471
                                0.23
                                     0.819
                                                                                       RefOil
                                                                                                  of Means Difference T-Value
                                                                                                                                   P-Value
RefOil
                                                     Oil 434-1
                                                                 5.195
                                                                        0.07535
                                                                                       Oil_434
                                                                                                   -0.6363
                                                                                                                 0.1718
                                                                                                                          -3.703
                                                                                                                                    0.0037
Oil_434-1
             0.20700
                      0.07909
                                2.62
                                     0.010
                                                     Oil_ 435-1 5.049
                                                                        0.23654
                                                                                       Oil 435
                                                                                                   -0.3055
                                                                                                                 0.1610
                                                                                                                          -1.897
                                                                                                                                    0.4069
Oil 435-1
              0.0606
                       0.1988
                                0.31 0.761
                                                     Oil 435-2 5.358 0.14814
                                                                                       Oil 438
                                                                                                   -0.8050
                                                                                                                          -5.066
                                                                                                                 0.1589
                                                                                                                                    0.0000
Oil 435-2
                                                     Oil 434
              0.3698
                       0.1321
                                2.80
                                      0.006
                                                                 4.722
                                                                        0.08816
                                                     Oil_435
Oil_434
            -0.26654
                      0.08778
                               -3.04 0.003
                                                                 5.052
                                                                        0.06443
                                                                                       RefOil = Oil 434 subtracted from:
Oil_435
             0.06429 0.07269
                                0.88 0.378
                                                     Oil_438
                                                                 4.553 0.05882
                                                                                       Difference
                                                                                                        SE of
                                                                                                                         Adiusted
                                                                                       RefOil
                                                                                                  of Means Difference
                                                                                                                        T-Value
                                                                                                                                   P-Value
                                                                                       Oil_435
                                                                                                    0.3308
                                                                                                                 0.1070
                                                                                                                           3.093
                                                                                                                                    0.0271
                                                                                       Oil 438
                                                                                                   -0.1686
                                                                                                                 0.1034
                                                                                                                          -1.631
                                                                                                                                    0.5792
                                                                                       RefOil = Oil 435 subtracted from:
                                                                                                Difference
                                                                                                                  SE of
                                                                                                                                  Adjusted
                                                                                       RefOil
                                                                                                  of Means Difference T-Value
                                                                                                                                   P-Value
                                                                                       Oil 438
                                                                                                   -0.4995
                                                                                                                0.08386
                                                                                                                         -5.956
                                                                                                                                    0.0000
```




- PVIS at hour 20 (PVISH020) tends to be higher with re-blend 434-1 reference oil
 - Viscosity related confidence intervals on the next slide



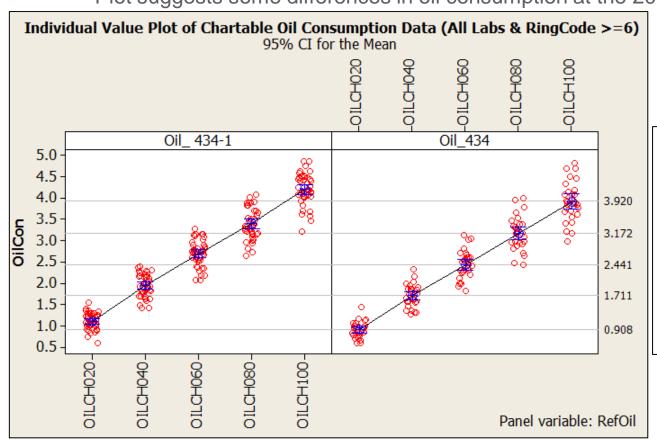
Individual value plot of VNEW, 20Hr Oil Consumption, 20Hr PVIS tends to be higher with oil 434-1 as compared to oil 434 (includes all lab data)



Passion for Solutions

Ln(PVIS) Plot by reference oil 434 & 434-1 (includes all lab data)

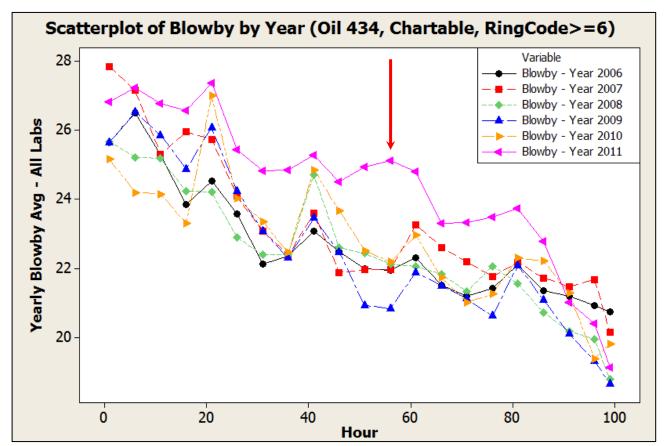
 Plot suggests some performance differences in viscosity increase at the 20 hour intervals



RefOil Oil_ 434-1 Oil_434	Mean 9.129 5.753	2.576
Oil_ 434-1	23.838	4.773
Oil_434	17.736	5.070
Oil_ 434-1	43.78	8.49
Oil_434	34.74	9.27
Oil_ 434-1	68.14	15.69
Oil_434	61.52	18.36
Oil_ 434-1	288.6	352.6
Oil_434	130.7	76.3
	Oil_ 434-1 Oil_434 Oil_ 434-1 Oil_434 Oil_ 434-1 Oil_434 Oil_ 434-1 Oil_434	Oil_ 434-1 9.129 Oil_434 5.753 Oil_ 434-1 23.838 Oil_434 17.736 Oil_ 434-1 43.78 Oil_434 34.74 Oil_ 434-1 68.14 Oil_434 61.52 Oil_ 434-1 288.6

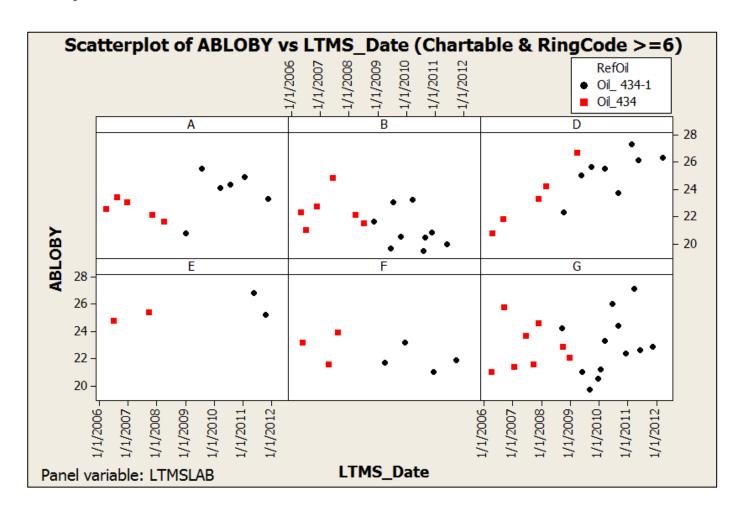
Similar plot of Oil Consumption by reference oil 434 & 434-1 (includes all lab data)

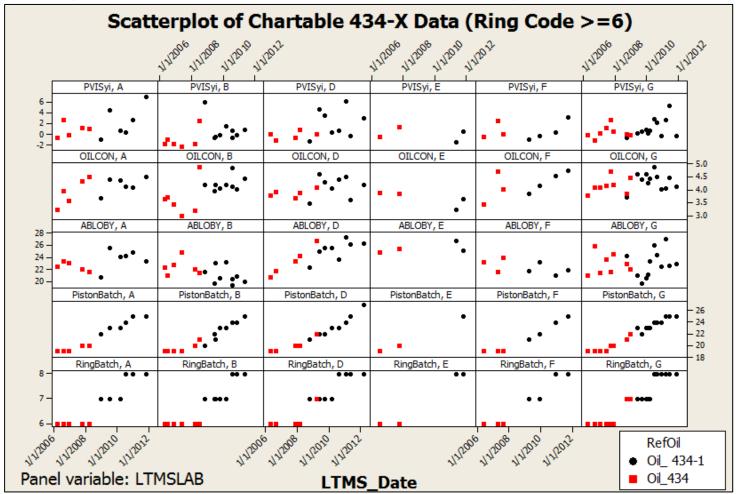
▲ Plot suggests some differences in oil consumption at the 20 hour intervals



Variable OILCH020	RefOil Oil_ 434-1 Oil_434	Mean 1.1102 0.9076	StDev 0.1925 0.1851
OILCH040	Oil_ 434-1	1.9456	0.2583
	Oil_434	1.7114	0.2614
OILCH060	Oil_ 434-1	2.6924	0.3138
	Oil_434	2.4407	0.3355
OILCH080	Oil_ 434-1	3.4005	0.3565
	Oil_434	3.1717	0.3919
OILCH100	Oil_ 434-1	4.2020	0.3718
	Oil_434	3.9203	0.4581

Other "coincidental" factors related to PVIS(?)


Mourly blow-by average (for all labs) may be higher during hours 20 − 90 for 2011 data (Reference oil 434-1 introduced in 2009)


Other "coincidental" factors related to PVIS increase (?)

Plot of data by test date and lab indicates no discernable increase in blow-by for reference oils 434 & 434-1

Other "coincidental" factors related to PVIS increase(?)

- ◆ Plots of PVIS Yi, Oil Consumption, Ring Batch, Piston Batch, ABlowby factors by lab & calendar date are summarized below
 - No single root cause can be identified that corresponds to higher PVIS Yi results

IIIG PVIS Analysis Summary

- TMC charts suggest that the PVIS parameter is trending severe of target
- CUSUM plots suggest that reference oil 434 has been trending more severe of target as compared to reference oils 435 & 438
- Analysis of Ln(PVIS) reference oil data suggests that there may be a difference in the means for the 434 and 434-1 contrast.
- Shift in severity may be coincidental with other variance sources
 - Average blow-by suggests that it may have increased in 2011
 - ◆ Oil Consumption tends to be higher with 434-1
 - ◆ The IIIG is a complex test to and has exhibited mild & severe trends without assignable root cause(s).
 - Other known and/or unknown factors may also be contributing to the test severity
- No recommendation given at this time to take any action

<u>Test Type</u>: Sequence IIIG

Subject: Annual Test Stand Calibration Test Requirement

Lab: Southwest Research Institute

Per the recommendation of the Test Monitoring Center, SwRI would like to inform the Sequence IIIG Surveillance Panel that the annual calibration on test stand 56 has been delayed from January 24, 2012 to April 8, 2012 to coincide with the laboratory reference period.

The following industry issues are handled by the TMC and do not require individual laboratory action.

- Exceed EWMA industry chart limits for severity
 - TMC to notify test developer, surveillance panel chairman, and ACC Monitoring Agency.
- Exceed EWMA industry chart limits for precision
 - TMC to notify test developer, surveillance panel chairman, and ACC Monitoring Agency

5. Removal of Test Stands from the System

The laboratory must notify the TMC and the ACC Monitoring Agency when removing a stand from the system. No reference oil data shall be removed from the control charts from test stands that have been used for registered candidate oil testing. Reintroduction of a stand into the system requires completion of new stand acceptance requirements; however, previously calibrated stands that are removed from the system following a failed calibration test must generate two (2) operationally valid calibration tests, with no Shewhart severity alarms (all parameters). If a calibrated stand is removed from the system, or skipped in the laboratory stand rotation, and the laboratory wishes to bring the stand back into the system within 90 days of its removal, the surveillance panel shall be consulted. In all instances of stand removal, stand renumbering can occur only if the stand undergoes a significant rebuild, as agreed upon by the laboratory and the TMC.

6. Introduction of New Reference Oils

When a new reference oil is introduced, Severity Adjustments shall not be calculated using results on a new reference oil until the test targets are based on at least eight (8) data points.

3-4 3-2012

ASTM SEQUENCE III SURVEILLANCE PANEL

SCOPE & OBJECTIVES

SCOPE

The Sequence III Surveillance Panel is responsible for the surveillance and continual improvement of the Sequence IIIF and IIIFHD tests documented in ASTM Standard D6984 as update by the Information Letter System. The Sequence III Surveillance Panel is also responsible for the surveillance and continual improvement of the Sequence IIIG, IIIGA and IIIGB tests documented in ASTM Standard D7320 as updated by the Information Letter System. Data on test precision will be solicited and evaluated at least every six (6) months for Sequence III test procedures. The Surveillance Panel is to provide continual improvement of rating techniques, test operation, test monitoring and test validation through communication with the Test Sponsor, ASTM Test Monitoring Center, the Central Parts Distributor, Fuel Supplier, ASTM BO.01 Passenger Car Engine Oil Classification Panel, ASTM Committee B0.01, ACC Monitoring Agency and ASTM Deposit/Distress Workshop. Actions to improve the process will be recommended when appropriate based on input to the Surveillance Panel from one or more of the previously stated groups. This process will provide the best possible Sequence III Type Test Procedure for evaluating engine oil performance with respect to it's ability to prevent oil thickening, varnish formation, oil consumption and engine wear.

OBJECTIVES TARGET DATE

Monitor industry hardware inventory

Ongoing

David L. Glaenzer, Chairman Sequence III Surveillance Panel Updated 03/28/2012
Corpus Christi, TX USA

Sequence IIIF/G Surveillance Panel March 28, 2012 9:00AM – 3:00PM Omni Corpus Christi Hotel, Bayfront Tower Corpus Christi, TX

Motions and Action Items
As Recorded at the Meeting by Bill Buscher

1. Motion – Parts washer water/soap mixture is to be replaced at no more than 25 hours of use. IIIF and IIIG test procedures and engine assembly manuals will be updated accordingly.

Charlie Leverett / Ed Altman / Passed Unanimously 11-0-0

2. Motion – Add "Chevrolet Performance" crankshaft part number to the IIIF and IIIG test reports. Effective with the release of the new test report packages.

Charlie Leverett / Jason Bowden / Passed Unanimously 11-0-0

3. Motion – Apply FIFO changes that were implemented for the IIIG (IIIG Information Letter 11-5) to the IIIF.

Ed Altman / Jason Bowden / Passed Unanimously 11-0-0

- 4. Action Item Continue to use RO 435 targets for RO 435-2 until the next review.
- 5. Action Item Labs to only report the 4 or 5 digit numeric characters for the Lifter Engine Set Number. Do not report the alpha characters.
- 6. Action Item SwRI to review their FTIR data on RO 434 and RO 434-1 used oil samples for any differences between the two blends. SwRI to also forward this data to Doyle Boese for statistical review.
- 7. Action Item Labs to report their Sunnen honing machine load measurement calibration results to the TMC during their annual lab audits.

- 8. Action Item Charlie Leverett and Bruce Matthews to participate in a conference call with Sunnen to discuss the future of calibrating the labs' Sunnen CV-616 honing machines.
- 9. Action Item TMC to review IIIG LTMS wording for potential improvements to section 5.