

100 Barr Harbor Drive ■ PO Box C700 ■ West Conshohocken, PA 19428-2959 Telephone: 610-832-9500 ■ Fax: 610-832-9555 ■ e-mail: service@astm.org ■ Website: www.astm.org

Committee DO2 on PETROLEUM PRODUCTS AND LUBRICANTS

 Chairman: W. JAMES BOVER, ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, PO Box 971, Annandale, NJ 08801-0971, (908) 730-1048, FAX: 908-730-1197, EMail: wjbover@erenj.com
 First Vice Chairman: KENNETH O. HENDERSON, Cannon Instrument Co, PO Box 16, State College, PA 16804, (814) 353-8000, Ext: 0265, FAX: 814-353-8007, EMail: kenohenderson@worldnet.att.net
 Second Vice Chairman: SALVATORE J. RAND, 221 Flamingo Drive, Fort Myers, FL 33908, (941) 481-4729, FAX: 941-481-4729
 Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co LP, PO Box 206, Wilmington, IL 60481, (815) 458-0216, FAX: 815-458-0217, EMail: macvarlen@aol.com
 Assistant Secretary: JANET L. LANE, ExxonMobil Research and Engineering, 600 Billingsport Rd, PO Box 480, Paulsboro, NJ 08066-0480, (856) 224-3302, FAX: 856-224-3616, EMail: janet_Llane@email.mobil.com
 Staff Manager: DAVID R. BRADLEY, (610) 832-9681, EMail: dbradley@astm.org

Originally Issued: June 1, 2005

Reply to:

Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 Phone: 412-365-1030 Fax: 412-365-1047 Email: fmf@astmtmc.cmu.edu

Unapproved Minutes of the May 17, 2005 Sequence III Surveillance Panel Meeting held in Tunkhannock, PA

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

The meeting was called to order at 9:00 am by Chairman Bill Nahumck. A membership list was circulated for members & guests to sign in. It's shown in Attachment 1.

Agenda Review Bill Buscher is Action & Motion recorder.

The Agenda was accepted as shown on Attachment 2.

Sequence III Surveillance Panel Minutes Tunkhannock, PA – May 17, 2005 Page 2

Membership Changes Andy Ritchie replaces Gordon Farnsworth for Infineum

Meeting Minute Status

The November 17, 2004 meeting minutes were approved by the surveillance panel.

Review of Action Items from Last Meeting

Motions and Action Items As Recorded at the Meeting by Bill Buscher

1. Motion – Surveillance Panel to release control of reference oil 432.

Done.

2. Action Item – GM to send the San Antonio laboratories a machined engine block for inspection, before the machining process is completed on the entire batch of blocks.

Done.

3. Motion – Implement the suggested Sequence III engine build worksheet into the annex of the Sequence IIIF and IIIG procedures. Laboratories will be required to perform all of these measurements during the build and retain the data. Data should be made available for TMC lab audits or Surveillance Panel requests. Effective with release of information letter.

Done.

4. Motion – Eliminate as a validity requirement from the Sequence IIIF procedure, the requirement to maintain an average blowby of 23.0 L/min for the first 26 hours of the test (procedure section 12.14.3). Effective 11/17/04.

Done.

5. Motion – The mineral spirits requirement will only require that the aromatic content, flash point and color requirements of ASTM D 235, Type II, Class C solvent must be met. Laboratories will use the Certificate of Analysis documentation for each batch to verify that these requirements have been met.

Done.

6. Motion – Revise yield stress units from cP to Pa on form 6 of the Sequence IIIF test report.

Done.

7. Action Item – O&H Subpanel to research a replacement torque wrench or options for repairing existing torque wrench.

Covered in O&H Report.

IIIF/IIIG/IIIIGA TMC Test Status

The complete TMC reports are posted to the TMC website. Rich Grundza gave a verbal summary of the number of calibration tests and general severity.

Sequence IIIG				
Average Δ, in				
Parameter	Δ/s	Reported Units	Direction	
PVIS	-0.639	-56% VI	Mild	
WPD	-0.766	-0.31 Merits	Severe	
ALCW	-0.156	-3.0 µm	Mild	

Sequence IIIF			
		Average Δ, in	
Parameter	Δ/s	Reported Units	Direction
PVIS	0.802	120.1% VI	Mild
APV	0.152	0.02 Merits	On Target
WPD	-0.037	-0.03 Merits	On Target
PV60	-0.737	-31.4 % VI	Mild

When Δ /s is in **BOLD RED** the shift is significant!

RSI Report

No RSI attendance. Reports have been previously emailed to panel members and posted to the RSI website.

Fuel Supplier Report

Jim Carter presented data from the last 3 fuel batches. Haltermann is doing \sim 1 batch every 1.5 months. All items were within specification. See Attachment 3.

Sequence III Surveillance Panel Minutes Tunkhannock, PA – May 17, 2005 Page 4

IIIG/IIIF CPD Reports

<u>OHT</u>

The OHT report was accepted as shown below.

1.) <u>Rejections from 11/17/2004 to 5/10/2005 :</u>

ITEM	DESCRIPTION	REASON REJECTED	QTY	REPLACED (Y/N)	DATE REPLACED
OHT3F-008-8	IIIG PHOS CAM	NO THREADS IN NOSE	1	YES	12/27/2004
OHT3F-030-2	COOLER, OIL	CORROSION	4	YES	12/27/2004
OHT3F-030-2	COOLER, OIL	CORROSION	5	YES	3/23/2005
OHT3G-059-1	SPRING, VALVE	HIGH LOAD TENSION	72	YES	2/21/2005
		OHT ACTION: RESET LOADS AT VENDOR			
OHT3F-029-3	LIFTER, TEST, ACI W/ FLAT	DEFECT ON FOOT	4	YES	4/1/2005
OHT3F-055-1	PISTON, GRADE 56	DAMAGE ON RING LANDS	2	YES	4/1/2005
		OHT ACTION: CHANGED PACKAGING PROCEDURES			

2.) <u>Technical Memos Issued</u>

None

3.) <u>Batch Code Changes</u>

<u>IIIF</u>	Batch Code	Date Introduced
Grade 12 Piston	BC 17	1/04/05
Grade 34 Piston	BC 16	3/15/05
Grade 56 Piston	BC 17	3/28/05
Cam Bearing	BC 11	3/15/05
Main Bearing	BC 11	3/15/05
-		
IIIG	Batch Code	Date Introduced
IIIG Grade 12 Pistons	Batch Code BC 17	Date Introduced 12/30/04
IIIG Grade 12 Pistons Grade 34 Pistons	Batch Code BC 17 BC 16	Date Introduced 12/30/04 12/17/04
IIIG Grade 12 Pistons Grade 34 Pistons Grade 56 Pistons	Batch Code BC 17 BC 16 BC 17	Date Introduced 12/30/04 12/17/04 1/28/05
IIIG Grade 12 Pistons Grade 34 Pistons Grade 56 Pistons Run 5 Rings	Batch Code BC 17 BC 16 BC 17 BC 5	Date Introduced 12/30/04 12/17/04 1/28/05 4/05/04
IIIG Grade 12 Pistons Grade 34 Pistons Grade 56 Pistons Run 5 Rings Rocker Arm	Batch Code BC 17 BC 16 BC 17 BC 5 BC 9	Date Introduced 12/30/04 12/17/04 1/28/05 4/05/04 1/28/05
IIIG Grade 12 Pistons Grade 34 Pistons Grade 56 Pistons Run 5 Rings Rocker Arm Cam Bearing	Batch Code BC 17 BC 16 BC 17 BC 5 BC 9 BC 11	Date Introduced 12/30/04 12/17/04 1/28/05 4/05/04 1/28/05 1/03/05

GM Motorsports

Sid Clark summarized verbally the GM Motorsports report. For the next 5 years, GM is projecting a usage rate of 150 blocks/year. No materials have been rejected this report period. The chairman will contact the Heavy Duty ASTM leadership to develop planning for future inventories. GM is changing the connecting rod design to eliminate the oil slinger slots sometime in the future. The current powered metal (pm) rods have the slinger slots and the cast iron rods do not. GM will be moving to piston cooling jets to cool pistons in the future. GM will report back on the timeframe for this change. It was noted by OHT that any implementation should be done in a controlled manner so that severity assessments of the new rods can occur.

O&H Report

Pat Lang's report is Attachment 4. Pat will distribute a draft of the MRV precision report from Chris May.

Blowby evacuation standardization was dropped and will be addressed more clearly in Sequence IIIH. Labs can continue to use their current systems as long as the crankcase is not exposed to a vacuum.

The SPS Torque wrench replacement from Ingersoll-Rand (p/n ETW-125) and will be available by the end of June. Also, OHT has 2 wrenches available for use by the laboratories.

Frank Farber discussed CRC grouping of raters based upon their performance at the April 2005 workshop (see Attachment 5). Initial indication is that the grouping is being accepted b the raters and can be useful in developing a rater calibration process. Frank recommended that the Sequence III panel review the CRC technique in May of 2006 for use in a rater calibration protocol.

Sequence IIIG Severity Discussion

Mild Viscosity, Severe WPD: GM commented that the severity adjustments are taking care of the issue from their point of view.

Dwight Bowden noted that the Sequence III group is not utilizing matrix type testing to assess severity impacts of hardware changes to the test.

TMC presentation is inconclusive with regard to whether honing, piston batch or pm connecting rods have caused the severity shifts. Charlie Leverett commented that he believes that the honing and connecting rod changes are somewhat responsible for the shifts.

Sequence III Surveillance Panel Minutes Tunkhannock, PA – May 17, 2005 Page 6

Afton candidate data presentation: Data indicates that directionally oil consumption is lower with Batch 4 rings.

It was suggested that it might be a good idea to look at possible fuel effects since fuel is sitting around longer at labs. The panel approved a motion (Motioned by Dwight Bowden, seconded by Gordon Farnsworth) that each lab sample their EEE fuel and send to Jim Carter. Labs are to include the reporting batch and last batch received number along with sample date. Samples should be taken from the storage tank similar to the way VG samples are taken. Jim Carter from Haltermann agreed to supply to each laboratory the proper sampling containers, shipping instructions and labels for safe shipment.

The panel recommended that the O&H panel should convene soon and review issues such as honing, rods, valves and heads for their effect on the severity and report back as soon as possible if any significant information is found.

The setting new reference oil targets were removed from the agenda until the severity shifts are understood and can properly interpreted.

Status of IIIG Standard

The Sequence IIIG Test Method is being worked on by Ben Weber and is currently being reviewed by Lyle Bowman. The Test Method will be reviewed by the panel later this year and then submitted for concurrent balloting within ASTM.

GF-5 Crystal Ball

IIIH engine choice is being defined. Development work should start in 2007. GM is working diligently to get an engine down to San Antonio for preliminary testing. Oxidation and deposits should be the main focus. Wear will not be part of this test.

Scope & Objectives

See Attachment 6.

New Business

Frank Farber presented a follow-up to the recent TGC ballot regarding test precision (see Attachment 7). The panel agreed to look at the proposal and make a decision downstream of the meeting.

Sequence III Surveillance Panel Minutes Tunkhannock, PA – May 17, 2005 Page 7

<u>Adjournment</u>

The meeting was adjourned at 1:20 pm.

Motions and Action Items As Recorded at the Meeting by Bill Buscher

- 1. Motion Approval of Minutes for 11/17/04. Approved without changes. Bill Nahumck / Dwight Bowden / Passed unanimously
- 2. Action Item Bill Nahumck will contact Jim McGeehan concerning the choice of the Sequence IIIF or IIIG for inclusion in PC-10, due to hardware needs and availability concerns.
- 3. Action Item Sid Clark will investigate the status of the oil slinger slots in the powder-metal connecting rods for the Sequence IIIG test engine, and report back to the Surveillance Panel.
- 4. Action Item Pat Lang to obtain a copy of the draft of D4684 from Chris May, and distribute it to the Surveillance Panel members.
- Motion Remove the blowby evacuation system investigation from the O&H Sub-panel's action items list. Laboratories can continue to use their current systems as long as the crankcase is not exposed to a vacuum. Pat Lang / Sid Clark / Passed unanimously
- 6. Action Item Pat Lang will obtain brochures from Ingersoll-Rand for the replacement SPS wrench when they become available, and distribute them to the laboratories for review. Pat will also inquire Ingersoll-Rand to see if a demo wrench can be obtained for review.
- 7. Motion Laboratories to sample the Haltermann EEE fuel that they currently have on hand and send the samples to Dow for analysis. Each laboratory should obtain samples at the fuel tank from each fuel tank (storage and run tanks) containing Haltermann EEE fuel. Haltermann will supply the required sample bottles and shipping instructions to each of the laboratories. Dwight Bowden / Gordon Farnsworth / Passed unanimously
- Action Item O&H Sub-panel to schedule a conference call to discuss the outcome of the 05/17/05 Surveillance Panel meeting and establish a plan to address the current Sequence IIIG severity trends.
- Motion Approve the concept that the severity adjustments and the test precision calculation should use the same standard deviations.
 Dwight Bowden / Gordon Farnsworth / Passed unanimously
- 10. Action Item Frank Farber to distribute the TGC test precision calculation proposal to the Surveillance Panel members for agreement on oil selection for each parameter.

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Ed Altman Afton Chemical Corporation P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5279 804-788-6358 ed.altman@aftonchemical.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present III
Monica Beyer The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2006 440-347-4096 mbey@lubrizol.com	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☑ O&H SUBPANEL ☐ O&H Mailing List 	Present Minin Burgh
Jason Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 jhbowden@ohtech.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present H.B.
Dwight H. Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 dhbowden@ohtech.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present 2000
Donald Bryant The Lubrizol Corporation 28400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2159 440-943-9004 debr@lubrizol.com	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☑ O&H Mailing List 	Present

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Don Burnett ChevronPhillips Chemical Compan Chevron Tower 1301 McKinney Street Suite 2130 Houston, TX 77010-3030 USA	713-289-4859 713-289-4865 burnede@cpchem.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
James Carter Haltermann Products 3520 Okemos Rd. Suite #6-176 Okemos, MI USA	517-347-3021 517-347-1024 JECarter@dow.com	IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List	Present JRC
Timothy L. Caudill Ashland Oil Inc. 22nd & Front Streets Ashland, KY 41101 USA	606-329-5708 606-329-3009 tlcaudill@ashland.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present
Sid Clark GM Powertrain General Motors Corporation MC - 483-730-322 823 Joslyn Rd. Pontiac, MI 48340-2920 USA	248-857-9959 sidney.I.clark@gm.com Test Sponsor Rep	 ✓ IIIF SURV PANEL □ IIIF MAILING LIST ✓ O&H SUBPANEL □ O&H Mailing List 	Present <u>Secl</u>
Johnny M De La Zerda PerkinElmer Automotive Research, 5404 Bandera Road San Antonio, TX 78238 USA	210-523-4621 210-523-4607 johnny.delazerda@perkinelmer.com	 □ IIIF SURV PANEL ✓ IIIF MAILING LIST ✓ O&H SUBPANEL □ O&H Mailing List 	Present

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1030 412-365-1047 fmf@astmtmc.cmu.edu	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present frank fal
Gordon R. Farnsworth Infineum RR # 5 Box 211 Montrose, PA 18801 USA	570-934-2776 570-934-0141 gordon.famsworth@infineum.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ✓ O&H Mailing List 	Present MD
Frank Fernandez ChevronOronite Co., LLC 4502 Centerview Drive Suite 210 San Antonio, TX 78228 USA	210-731-5603 210-731-5699 ffer@chevron.com PCEOCP Chair	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present
Dennis Florkowski DaimlerChrysler 800 Chrysler Road CIMS 482-00-13 Auburn Hills, MI 48236-2757 USA	248-576-7477 248-576-7490 df11@daimlerchrysler.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present
Thomas M. Franklin PerkinElmer Automotive Research, 5404 Bandera Road San Antonio, TX 78238 USA	210-647-9446 210-523-4607 tom.franklin@perkinelmer.com Sub-Committee D02.B Chair	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
David L. Glaenzer Afton Chemical Corporation 500 Spring Street P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5214 804-788-6358 dave.glaenzer@aftonchemical.com	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☑ O&H Mailing List 	Present
Irwin L. Goldblatt Castrol Americas 240 Centennial Avenue Piscataway, NJ 08854-3910 USA	732-980-3606 973-686-4224 irwin.goldblatt@cnacm.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
Larry Hamilton The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2326 440-347-4096 Idha@Iubrizol.com	 ☐ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present Jy K
Asth Geundan Michael T. Kasimirsky ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	/031 412-365- 4033 412-365-1047 , mtk@astmtmc.cmu.cdu feg	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Presen
Clayton Knight Test Engineering, Inc. 12718 Cimarron Path San Antonio, TX 78249-3423 USA	210-690-1958 210-690-1959 cknight@tei-net.com	 ✔ IIIF SURV PANEL ☐ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present

May 17, 2005 Tunkhannock, Pennsylvania

ATTACHMENT 1

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Brian Kundinger Kundinger Controls 1771 Harmon Road Auburn Hills, MI 48326 USA	248-391-6100 248-391-6900 bkundinger@kundnger.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
Patrick Lai Imperial Oil Limited 453 Christina Street Research Department P.O. Box 3022 Sarnia, Ontario N7T7MI CANADA	519-339-5611 519-339-5866 patrick.k.lai@esso.ca	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present
Patrick Lang Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-2820 210-684-7523 plang@swri.edu O&H Subpanel Chairman	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present Tahil Lam
Charlie Leverett PerkinElmer Automotive Research, 5404 Bandera Road San Antonio, TX 78238 USA	210-647-9422 210-523-4607 charlie.leverett@perkinelmer.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present
Vince Livoti Ciba Specialty Chemicals 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 USA	914-785-4494 914-785-4249 vincent.livoti@cibasc.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Bill Mahoney Registration Systems, Inc. 4139 Gardendale Suite 205 San Antonio, TX 78229 USA	706 343-1911 b.mahonøy@regsysinc.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present
Josephine G. Martinez Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510-242-5563 510-242-1930 jogm@chevrontexaco.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
Chris J. May Imperial Oil Products and Chemcial 453 S. Christina Street P.O. Box 3022 Samia, Ontario N7T8C8 CANADA	519-339-2827 chris.j.may@esso.ca	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☑ O&H Mailing List 	Present
Mike McMillan GM R&D Center MC480-106-160 Chemical & Environmental Science 12 Mile & Mound Roads Warren, MI 48090-9057 USA	586-986-1935 586-986-2094 micheal.l.mcmillan@gm.com	 ☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☑ O&H Mailing List 	Present
Timothy Miranda Castrol Technology Center 240 Centennial Avenue Piscataway, NJ USA	732-980-3634 973-686-4039 Timothy.Miranda@Castrol.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
MW MA BR LUBA 1500 N WAYA 5/12/2005 8:48:52	NOSI RICANTS USA phy IALLEY ROAD PI NE, NJ 07470 EN	me 973-305- Nx 973-686- Nail <i>Timothy</i> .	3334 4039 Miranda @ BP. Com Page 6 of 9

May 17, 2005 Tunkhannock, Pennsylvania

ATTACHMENT 1

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Mark Mosher ExxonMobil Technology Company Billingsport Road Paulsboro, NJ 08066 USA	856-224-2132 856-224-3628 mark.r.mosher@exxonmobil.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present ML Moha
Hannah Murray Toyota Technical Center, USA, Inc. 1588 Woodridge RR #7 Ann Arbor, MI 48105 USA	734-995-3762 734-995-5971 hmurray@ttc-usa.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present
William M. Nahumck The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2596 440-347-4096 wmn@lubrizol.com Surveillance Panel Chair	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present W. M. Naul
Joe Noles Infineum 1900 East Linden Avenue P.O.Box 735 Linden, NJ 07036 USA	908-474-2796 908-474-3363 joe.noles@infineum.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ✓ O&H Mailing List 	Present
Robert Oiree GM Powertrain General Motors Corporation MC - 483-730-322 823 Joslyn Rd. Pontiac, MI 48090-9055 USA	248-857-9989 robert.olree@gm.com	 □ IIIF SURV PANEL ✓ IIIF MAILING LIST □ O&H SUBPANEL ✓ O&H Mailing List 	Present SMO

£.

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Michael J. Riley Ford Motor Company 21500 Oakwood Blvd. POEE Building, MD44 Cube DN-159 Dearborn, MI 48121-2053 USA	313-390-3059 313-845-3169 mriley2@ford.com	 ✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List 	Present
Andrew Ritchie Infineum 1900 East Linden Avenue P.O.Box 735 Linden, NJ 07036 USA	908-474-2097 Andrew.Ritchie@Infineum.com	 IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List 	Present Aller
Robert H. Rumford Specified Fuels & Chemicals, LLC 1201South Sheldon Road Channelview, TX 77530-0429 USA	281-457-2768 281-457-1469 rhrumford@specified1.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ○ 0&H SUBPANEL ○ 0&H Mailing List 	Present
Jim Rutherford Chevron Oronite Company LLC 100 Chevron Way Richmond, CA 94802 USA	510- 510- jaru@chevrontexaco.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present
Philip R. Scinto The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2161 440-347-9031 prs@lubrizol.com	 ☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List 	Present

•		ATTACHMENT 1
ASTM SEQUENCE	IIIF LIST	May 17, 2005 Tunkhannock, Pennsylvania
NAME / ADDRESS	PHONE / FAX / E-MAIL	SIGNATURE
Mark Sutherland Chevron Oronite Company LLC 4502 Centerview Drive Suite 210 San Antonio, TX 78228 USA	210-731-5621 210-731-5699 msut@chevrontexaco.com	IIIF SURV PANEL Present <i>Museum</i> IIIF MAILING LIST O&H SUBPANEL O&H Mailing List
Ben O. Weber Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-5911 210-684-7530 bweber@swri.edu Sub-Committee D02.B01 Chair	 ☐ IIIF SURV PANEL Present ☑ IIIF MAILING LIST □ O&H SUBPANEL □ O&H Mailing List

SEQUENCE III SURVEILLANCE PANEL MEETING GUEST LIST ATTACHMENT A May 17, 2005 Tunkhannock, Pennsylvania

NAME/ADDRESS	PHONE/FAX/EMAIL	SIGNATURE
WILLIAM & BUSCHED II 6220 CULEBRA RD SAN ANTONIO, TX 78228	210-522-6802 210-684-7530 Whuscher@Suriet	Willia Bhun
ADAM D. BOWDEN P.O. BOX 5039 MENTUK, OH 44001-5039	440.354.7007 440.354.7080 adbowden Cohtech.co	n alam Savan
John Glaser Perkin Elmer 5404 Bandera Ro San Antonio, Tx 78238	210-647-9459 210-523-4607 john.gluser @ perkinelmer.com	And
Bob Sutherland Shell 3333 Highway 6 South Houston, Tx 77082	281-544-8420 281-544-8450 Risutherlande Shell-com	RAS
William A. Buscher, Jr. PO Box 112 Hopewell Jet, NY 12533 Buscher Consulting Service	845/897-9658 Duschwa@aol.com	

SEQUENCE III SURVEILLANCE PANEL MEETING GUEST LIST ATTACHMENT A May 17, 2005

1.

Tunkhannock, Pennsylvania

NAME/ADDRESS	PHONE/FAX/EMAIL	SIGNATURE
Todd Dvorak 500 SPRING STREET Richmond, VA 23219	<u>804-788-6307</u> <u>F: 804-788-6388</u> todd. dyora KC afton chemical.	can Some

Attachment 2

AGENDA SEQUENCE III SURVEILLANCE PANEL MEETING

Shadowbrook Inn, Tunkhannock, PA May 17, 2005 9:00 AM to 5:00 PM

- 1. APPOINTMENT OF RECORDER OF ACTIONS/MOTIONS
- 2. AGENDA REVIEW
- **3. MEMBERSHIP CHANGES**
- 4. APPROVAL OF THE MINUTES FROM THE NOVEMBER 2004 MEETING
- 5. REVIEW OF ACTION ITEMS FROM THE LAST MEETING

<u>TMC TEST SEMIANNUAL REPORT HIGHLIGHTS</u> – Rich Grundza SEQUENCE IIIF – D6984 SEQUENCE IIIG SEQUENCE IIIGA

<u>RSI SEMIANNUAL REPORT</u>– Bill Mahoney SEQUENCE IIIF – D6984 SEQUENCE IIIG

SEQUENCE III FUEL SUPPLIER REPORT – James Carter

SEQUENCE III CPD SUPPLIER REPORTS

- 1. <u>OHT</u>
- 2. <u>GM MOTORSPORTS</u>

SEQUENCE III O&H REPORTS – Pat Lang

Configuration of the IIIG blowby evacuation system Torque Wrench Update Rating Workshop Update Resolution of the Description of MRV Results

SEQUENCE IIIG ISSUES

- 1. Current Severity concerns
- 2. Setting new reference oil targets

OLD BUSINESS

- 1. Status of IIIG Standard <u>Bill Nahumck</u>
- 2.

NEW BUSINESS

- 1. GF-5 Crystal Ball
- 2. TGC Proposal for Test Precision Calculation Guidelines <u>Frank Farber</u>

<u>REVIEW OF SCOPE & OBJECTIVES</u> – <u>Bill Nahumck</u>

ADJOURNMENT

PRODUCT CODE: HE03 Tank Nac. 2012 2014 2012 2014 2012 TEST METHOD UNITS FED Spece HALTERNANN Speca RESULTS RESULTS </th <th>PRODUCT:</th> <th colspan="6">EEE Unleaded Gasoline Batch No.: TD1421LS11 TB2821LS10 TA1221LS11</th>	PRODUCT:	EEE Unleaded Gasoline Batch No.: TD1421LS11 TB2821LS10 TA1221LS11									
Test METHOD UNITS FED Spect HALTERMAN Spect RESULTS RESULTS RESULTS Diselilation - IBP ASTM D86 1°F 75 65 75 95 8.3 8.5 89 0% 1°F 120 135 120 135 122 136 122 126 131 0% 1°F 120 135 120 135 120 136 121 126 131 30% 1°F 120 230 200 230 219 220 221 126 131 122 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 135 120 136 120 136 130 130 130 130 130 130 130 130	PRODUCT CODE:	<u>HF003</u>		Tank No.:				2012	2014	2012	
TEST METHOD UNITS FED Spece HALTERNAN Specs RESULTS RESULTS RESULTS Distillation - IBP ASTM D88 °F 75 95 83 85 89 5% °F 75 95 83 85 89 10% °F 120 135 122 122 126 131 20% °F 120 135 122 126 131 177 30% °F 'F 120 136 122 126 131 30% °F 'F 200 230 200 221 220 221 20% 'F 200 230 200 231 233 337 338 20% 'F 305 .25 305 .325 321 320 331 339 20% 'F 305 .25 .201 .20 .265 256 264 20% 'F							Analy	sis Date:	4/25/2005	3/8/2005	1/21/2005
MIN MAX MIN TARGET MAX MAX<	TEST	METHOD	UNITS	FED	Specs	HAL	TERMANN	Specs	RESULTS	RESULTS	RESULTS
Disalitation - IBP ASTM DB6 * 75 96 75 96 83 85 89 5% * * * 120 135 122 126 131 117 10% * * * 120 135 122 126 131 117 20% * * * * 168 171 175 05 30% * * * 200 230 200 230 219 220 221 231 231 232 237 265				MIN	MAX	MIN	TARGET	MAX			
5%	Distillation - IBP	ASTM D86	۴F	75	95	75		95	83	85	89
10%	5%		۴F						107	113	117
20%	10%		۴F	120	135	120		135	122	126	131
30%	20%		۴F			i i			143	147	152
40% Fr - 196 198 201 50% "F" 200 230 200 230 219 220 221 60% "F" 300 325 200 230 219 220 221 70% "F" 300 325 305 325 321 320 321 80% "F" 305 325 305 325 321 330 337 338 Becliation - EP "F" 415 390 403 390 Resolue vol % "Report 96.7 98.2 98.7 Residue vol % "Report 0.744 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.744 0.741 0.744 0.741 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744	30%		۴						168	171	175
50% Fr 200 230 200 230 219 220 221 70% ''F ''F ''F ''S	40%		۴F						196	198	201
60%	50%		°F	200	230	200		230	219	220	221
70% 9°F 9°F 244 242 243 80% 9°F 305 325 305 325 321 330 331 80% 9°F 415 415 390 403 390 86% 9°F 415 390 403 390 86x0ery vol % 96,7 98,2 98,7 Resoury vol % 7°F 415 96,7 98,2 98,7 Resoury vol % 7°F 61.2 59.3 59.5 59.1 Carsa 0.734 0.744 0	60%		۴F					1	231	231	232
80% 97 305 325 305 325 321 320 321 96% 97 305 325 305 325 321 320 321 96% 97 415 390 403 390 Recovery vol % Report 96.7 98.2 98.7 Residue vol % Report 1.0 1.0 1.0 1.0 Loss vol % Report 2.3 0.8 0.3 Gravity ASTM D4052 K/API 58.7 61.2 59.7 59.1 Density ASTM D5052 k/API 58.7 9.2 8.7 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 8.9 Carbon ASTM D519 psi 8.7 9.2 9.2 9.2 8.9 Carbon ASTM D433 vit fraction Report 0.1324 0.1333 0.1351 1 9.5 0.05	70%		°F						244	242	243
90% rF 305 325 305 325 321 320 321 96% rF 415 339 337 338 Bellattion - EP rF 415 390 403 390 Recovery vol % Report 96,7 98.2 98.7 Residue vol % Report 1.0 1.0 1.0 Lass ASTM 04052 XPI 58.7 61.2 59.3 59.5 59.1 Density ASTM 04052 kg/l 0.734 0.744 0.741 0.741 0.742 Reid Vapor Pressure ASTM D323 psi 8.7 9.2 8.7 9.2 9.2 9.2 9.2 9.2 8.9 Carbon ASTM D333 wf fraction Report 0.8669 0.8669 0.8669 0.8669 0.8646 0.8639 0.8646 0.8639 0.8646 0.8639 0.8646 0.8639 0.05 0.01 0.01 0.01 0.01	80%		۴						265	265	264
95% *F 415 339 337 338 Distillation - EP *F 415 390 403 390 Recovery vol % Report 96.7 98.2 98.7 Residue vol % Report 2.3 0.8 0.3 Gravity ASTM D4052 kg/l 0.734 0.744 0.741 0.742 Reid Vapor Pressure ASTM D4052 kg/l 0.734 0.744 0.741 0.742 Reid Vapor Pressure ASTM D333 wt fraction Report 9.2 9.2 9.2 9.2 9.2 9.2 9.2 8.7 Carbon ASTM D5191 psi 8.7 9.2 8.7 0.8669 0.8670 0.8659 Carbon ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM E191 wt fraction Report 0.005 <0.05	90%		۴F	305	325	305		325	321	320	321
Distillation - EP rF 415 390 403 390 Recovery vol % Report 96.7 98.2 98.7 Residue vol % Report 1.0 1.0 1.0 Loss vol % Report 2.3 0.8 0.3 Gravity ASTM D4052 *API 58.7 61.2 59.3 59.5 59.1 Reid Vapor Pressure ASTM D4052 *API 58.7 61.2 59.7 0.744 0.741 0.741 0.742 0.743 0.744 0.742 0.743 0.744 0.742 0.743 0.744 0.742 0.743 0.74	95%		۴F						339	337	338
Recovery vol % vol % Report 96.7 98.2 98.7 Residue vol % Report 1.0 1.0 1.0 1.0 1.0 Loss vol % Report 1.0 1.0 1.0 1.0 1.0 Gravity ASTM D4052 'API 56.7 61.2 59.3 59.5 59.1 Density ASTM D4052 kg/l 8.7 9.2 9.2 9.2 9.0 Reid Vapor Pressure ASTM D323 psi 8.7 9.2 8.7 9.2 9.2 9.2 9.0 Carbon ASTM D334 wt fraction Report 0.8669 0.8670 0.8659 0.8670 0.8650 Carbon ASTM D319 wt fraction Report 0.1324 0.1333 0.1331 Hydrogen/Carbon ratio ASTM D4515 wt % 0.005 -0.005 <0.05	Distillation - EP		۴F		415			415	390	403	390
Residue vol % vol % Report 1.0 1.0 1.0 1.0 Loss vol % report 2.3 0.8 0.3 Gravity ASTM D4052 *API 58.7 61.2 59.3 59.5 59.1 Density ASTM D4052 kg/l 0.734 0.744 0.741 <td>Recovery</td> <td></td> <td>vol %</td> <td></td> <td></td> <td></td> <td>Report</td> <td></td> <td>96.7</td> <td>98.2</td> <td>98.7</td>	Recovery		vol %				Report		96.7	98.2	98.7
Loss vol % Report 2.3 0.8 0.3 Gravity ASTM D4052 %API 58.7 61.2 58.7 61.2 59.3 59.5 59.1 Density ASTM D4052 kg/l 8.7 9.2 59.2 9.2 9.0 Reid Vapor Pressure ASTM D323 wit fraction 8.7 9.2 9.2 9.0 Reid Vapor Pressure ASTM D333 wit fraction Report 0.8669 0.8670 0.8659 Carbon ASTM E191 wit fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM D4815 wit % 0.05 <0.05	Residue		vol %				Report		1.0	10	10
Gravity ASTM D4052 *API (kg/l) 58.7 61.2 59.3 59.5 59.1 Density ASTM D4052 kg/l 8.7 9.2 8.7 9.2 9.2 9.2 9.2 9.2 9.2 9.2 8.9 Reid Vapor Pressure ASTM D323 psi 8.7 9.2 8.7 9.2 9.2 9.2 9.2 8.9 Carbon ASTM D3343 wt fraction Report 0.8669 0.8670 0.8659 Carbon ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM D4615 wt % 0.05 <0.05	Loss		vol %				Report		2.3	0.8	0.3
Density ASTM D4052 kg/l 0.734 0.741 0.741 0.741 0.741 0.742 Reid Vapor Pressure ASTM D323 psi 8.7 9.2 8.7 9.2 9.2 9.2 9.2 8.9 Reid Vapor Pressure ASTM D3343 wt fraction Report 0.8669 0.8669 0.86670 0.8659 Carbon ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen ASTM D4815 wt fraction Report 0.8669 0.86670 0.8630 Corpon ASTM D4815 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen ASTM D4815 wt % 0.005 0.001 <0.005	Gravity	ASTM D4052	°API	58.7	61.2	58.7		61.2	59.3	59.5	50.1
Reid Vapor Pressure ASTM D323 psi 8.7 9.2 8.7 9.2 9.0 0.0 Carbon ASTM D343 wt fraction Report 0.8669 0.8669 0.8669 0.8669 0.8630 0.8646 0.8630 0.1324 0.1324 0.1324 0.1324 0.1324 0.1324 0.1324 0.1324 0.1324 0.133 0.1351 Hydrogen/Carbon ratio ASTM D4815 wt % 0.005 <0.005	Density	ASTM D4052	kg/l			0.734		0.744	0 741	0 741	0.742
Reid Vapor Pressure ASTM D5191 psi Report 9.2 9.2 8.9 Carbon ASTM D3343 wt fraction Report 0.8669 0.8670 0.8659 Carbon ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM D4815 wt % 0.05 <0.05	Reid Vapor Pressure	ASTM D323	psi	8.7	9.2	8.7		92	92	0.741	0.742
Carbon ASTM D3343 wt fraction Report 0.8669 0.8670 0.8659 Carbon ASTM E191 wt fraction Report 0.8639 0.8646 0.8630 Hydrogen ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM D4815 wt % 0.05 <0.05	Reid Vapor Pressure	ASTM D5191	psi				Report	•,=	9.2	9.2	8.9
Carbon ASTM E191 wt fraction Report 0.8639 0.8636 0.8630 Hydrogen ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM E191 mole/mole Report 0.8639 0.8646 0.8630 Oxygen ASTM D4815 wt % 0.05 <0.05	Carbon	ASTM D3343	wt fraction				Report		0.8669	0.8670	0.8659
Hydrogen ASTM E191 wt fraction Report 0.1324 0.1333 0.1351 Hydrogen/Carbon ratio ASTM E191 mole/mole Report 1.826 1.837 1.865 Oxygen ASTM D4815 wt % 0.05 <0.05	Carbon	ASTM E191	wt fraction				Report		0.8639	0.8646	0.8630
Hydrogen/Carbon ratio ASTM E191 mole/mole Report I.826 I.837 I.865 Oxygen ASTM D4815 wt % 0.05 <0.05	Hydrogen	ASTM E191	wt fraction				Report		0.1324	0 1333	0.1351
Oxygen ASTM D4815 wt % 0.05 0.01 <0.05 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0	Hydrogen/Carbon ratio	ASTM E191	mole/mole				Report		1.826	1 837	1.865
Sulfur ASTM D5453 ppm 1000 3 15 7 3 4 Lead ASTM D3237 g/gal 0.05 0.01 <0.01	Oxygen	ASTM D4815	wt%				•	0.05	<0.05	<0.05	<0.05
Lead ASTM D3237 g/gal 0.05 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	Sulfur	ASTM D5453	ppm		1000	3		15	7	3	4
Phosphorous ASTM D3231 g/gal 0.005 0.005 0.008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	Lead	ASTM D3237	g/gal		0.05			0.01	<0.01	<0.01	<0.01
Composition, aromatics ASTM D1319 vol % 35.0 35.0 31.9 32.5 30.1 Composition, olefins ASTM D1319 vol % 10.0 0.3 0.4 0.5 Composition, saturates ASTM D1319 vol % 10.0 0.3 0.4 0.5 Composition, saturates ASTM D1319 vol % 10.0 0.3 0.4 0.5 Composition, saturates ASTM D1319 vol % Report 67.8 67.1 69.4 Particulate matter ASTM D552 mg/l 1 0.4 0.6 0.8 Oxidation Stability ASTM D525 minutes 240 >1000 >1000 >1000 >1000 Copper Corrosion ASTM D381 mg/100mls 1 2401 2441	Phosphorous	ASTM D3231	g/gal		0.005			0.005	<0.0008	<0.0008	<0.00
Composition, olefins ASTM D1319 vol % 10.0 0.3 0.4 0.5 Composition, saturates ASTM D1319 vol % 10.0 0.3 0.4 0.5 Particulate matter ASTM D5452 mg/l 1 0.4 0.6 0.8 Dxidation Stability ASTM D525 minutes 240 >1000 >1000 >1000 >1000 Copper Corrosion ASTM D130 1	Composition, aromatics	ASTM D1319	vol %		35.0			35.0	31.9	32.5	30.1
Composition, saturates ASTM D1319 vol % Report 67.8 67.1 69.4 Particulate matter ASTM D5452 mg/l 1 0.4 0.6 0.8 Oxidation Stability ASTM D525 minutes 240 >1000 >1000 >1000 Copper Corrosion ASTM D130 minutes 240 >1000 >1000 >1000 Copper Corrosion ASTM D381 mg/100mls 5 <1	Composition, olefins	ASTM D1319	vol %		10.0			10.0	0.3	0.4	0.5
Particulate matter ASTM D5452 mg/l 1 0.4 0.6 0.8 Dxidation Stability ASTM D525 minutes 240 >1002 1.0028	Composition, saturates	ASTM D1319	vol %				Report		67.8	67.1	69.4
Oxidation Stability ASTM D525 minutes 240 >1000 10002 10008 86 86 86 86 86 87 1000 10007 10022 100028 88.1 88	Particulate matter	ASTM D5452	mg/l					1	0.4	0.6	0.8
Copper Corrosion ASTM D130 1 1 1 1 1 1 Gum content, washed ASTM D381 mg/100mls 5 <1	Oxidation Stability	ASTM D525	minutes			240			>1000	>1000	>1000
Gum content, washed ASTM D381 mg/100mls 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Copper Corrosion	ASTM D130						1	1	1	1
Fuel Economy Numerator/C Density ASTM E191 2401 2441 2429 2425 2425 C Factor ASTM E191 Report 1.0007 1.0022 1.0028 Research Octane Number ASTM D2699 93.0 96.0 96.8 96.8 96.8 Motor Octane Number ASTM D2700 7.5 7.5 8.8 8.6 8.7 Sensitivity 7.5 7.5 8.8 8.6 8.7 Net Heating Value, btu/lb ASTM D3338 btu/lb Btu/lb Report 18433 18431 18462	Gum content, washed	ASTM D381	mg/100mis					5	<1	-1 <1	1 <1
C Factor ASTM E191 Report 1.0007 1.0022 1.0028 Research Octane Number ASTM D2699 93.0 96.0 96.8 96.8 96.8 Motor Octane Number ASTM D2700 7.5 7.5 8.8 8.6 8.7 Net Heating Value, btu/lb ASTM D3338 btu/lb Report 18433 18431 18462	Fuel Economy Numerator/C Density	ASTM E191	•			2401		2441	2429	2425	2425
Research Octane Number ASTM D2699 93.0 96.0 96.8 96.9 96.9 96.9 <	C Factor	ASTM E191					Report		1 0007	1 0022	1 0029
Motor Octane Number ASTM D2700 Report 88.0 88.2 88.1 Sensitivity 7.5 7.5 8.8 8.6 8.7 Net Heating Value, btu/lb ASTM D3338 btu/lb Report 18433 18431 18462 Net Heating Value, btu/lb ASTM D340 btu/lb Report 18455 18410 18370	Research Octane Number	ASTM D2699		93.0		96.0	. opoit		96.8	96.8	06.8
Sensitivity 7.5 7.5 8.8 8.6 8.7 Net Heating Value, btu/lb ASTM D3338 btu/lb Report 18433 18431 18462 Net Heating Value, btu/lb ASTM D3340 btu/lb Report 18455 18410 18370	Motor Octane Number	ASTM D2700					Report		88.0	90.0 88.7	90.0 88 1
Net Heating Value, btu/lb ASTM D3338 btu/lb Report 18433 18431 18462 Net Heating Value, btu/lb ASTM D338 btu/lb Report 18433 18431 18462	Sensitivity			7.5		7.5	epoir		80.0 8 R	86	00.1 97
Net Heating Value, btu/lb ASTM D240 btu/lb Beport 19455 19410 19270	Net Heating Value, btu/lb	ASTM D3338	btu/lb				Report		18433	18/21	18/62
	Net Heating Value, btu/lb	ASTM D240	btu/lb				Report		18455	18410	18370
Color VISUAL 1.75 ptb Report Red Red Red	Color	VISUAL	1.75 ptb				Report		Red	Red	Red

Sequence III Surveillance Panel Report of the O&H Subpanel to the

Presented by Pat Lang May 17, 2005

!

Used Oil MRV Precision

- revised to incorporate precision and bias for used gasoline oils consistent with Chris May reported that a research report has been drafted and D4684 the research report results.
- This is currently being balloted within Subcommittee 7 (Ballot 05-02).
- After a successful ballot it will then be directed to DO2 for ballot. May 17,2005 O&H Subpanel Report

 \sim

Blowby Evacuation System

- Conference call held with O&H group on April 5, 2005:
- explicit in defining system but does not allow 1. Reviewed procedure, current wording not crankcase to be exposed to a vacuum
- There are two configurations of systems in successfully calibrating with both systems use now but it is not know how they potentially affect severity; labs are <u>с</u>і.

May 17,2005 O&H Subpanel Report

ATTACAMENT

4

Blowby Evac. System (cont'd)

- No data to prove that this system is the driver for the current WPD trend.
- any changes to the systems that are currently in place as long as a vacuum is not drawn on The test developer supports not mandating the crankcase.
- will clearly define blowby evacuation system The next version of the Seq. III test (IIIH) configuration.

May 17,2005 O&H Subpanel Report

4

TACHMENT

Motion #1

investigation from the O&H actions list. systems as long as the crankcase is not Labs can continue to use their current Remove blowby evacuation system exposed to a vacuum.

May 17,2005 O&H Subpanel Report

ATTACKMENT 4

5

Torque Wrench Replacement

- According to the technical representative at wrench will be available at the end of June. Ingersoll-Rand, the replacement SPS
- Part number will be ETW-125
- they are available and distribute to labs for O&H chair will get brochures as soon as review.

May 17,2005 O&H Subpanel Report

4-

0

Attachment 5

The combination of the histogram and the summary statistics give a *very good* depiction of where the rater's data fell at this particular workshop.

Evaluating this information, however, can be more complicated than what a rater is interested in.

In 2003, in order to provide the rater with a simple comparison of his own data to every other rater at the workshop, CRC began to group together raters with similar summary statistics.

CRC Groups

Attachment 5

Attachment 5

The groups are *not* intended to equally sized.

Conceptually, the white group is the largest. The boundaries between the groups are intended to place the majority (50-60% in experience so far) of the raters into the white group. Among journeyman raters, this percentage is higher.

Raters producing the most variable data are placed into the yellow group. In experience thus far, the yellow group has consisted almost entirely of either novice raters or raters not as familiar with the hardware (usually field raters). The yellow group is usually 20% or less of the workshop participants.

Attachment 6

THE ASTM SEQUENCE III SURVEILLANCE PANEL

SCOPE & OBJECTIVES

SCOPE

The Sequence III Surveillance Panel is responsible for the surveillance and continual improvement of the Sequence IIIF and IIIFHD test documented in ASTM Standard D6984-03 as update by the Information Letter System. The Sequence III Surveillance Panel is also responsible for the surveillance and continual improvement of the new Sequence IIIG and IIIGA tests which will be documented as an ASTM Standard DNNNN-XX and updated by the Information Letter System. Data on test precision and laboratory versus field correlation will be solicited and evaluated at least every six (6) months for Sequence III test procedures. The Surveillance Panel is to provide continual improvement of rating techniques, test operation, test monitoring and test validation through communication with the Test Sponsor, ASTM Test Monitoring Center, Operations and Hardware Subpanel, the Central Parts Distributor, fuel supplier, ASTM B0.01 Passenger Car Engine Oil Classification Panel, ASTM Light Duty Rating Task Force, ASTM Committee B0.01, ACC Monitoring Agency and CRC Motor Rating Methods Group. Actions to improve the process will be recommended when appropriate based on input to the Surveillance Panel from one or more of the previously stated groups. Develop updated test procedures when necessary and review the correlation with previous test procedures. This process will provide the best possible Sequence III Type Test Procedure for evaluating automotive lubricant performance with respect to the lubricant's ability to prevent oil thickening, varnish formation, oil consumption and engine wear.

<u>OB</u>	JECTIVES	TARGET DATE	
1.	Prepare the IIIG Test Method for elevation to ASTM Standard	October 2005	
2.	Issue the IIIG Test Method for ballot to ASTM for approval as a Standard	November 2005	
<u>3.</u>	Reporting of used oil D4684 apparent viscosity and yield stress	<u>— May 2005</u>	
3.	Develop a Sequence III rater calibration proposal	May 2006	
4.	Complete PVIS and WPD Severity Investigation by the O&H Subpanel	November 2005	

TGC Test Precision Ballot Review

May 2005

Attachment 7

Ballot Issuance

- Technical Guidance Committee Chairman Gordon Farnsworth emailed TGC membership a unanimous consent ballot on 2/3/2005
 - TGC membership : Surveillance Panel Chairs
 - Close date of ballot was March 1, 2005
 - Negatives were received
 - Motion was not implemented

Ballot Subject

- Attached is a proposal from the TMC for "Test Precision Reporting Guidelines". As chairman of the ASTM TGC I will instruct the TMC to adopt this practice on March 1, 2005 unless I receive other input from any TGC member.
- The ASTM TMC has proposed a standard methodology for calculating and updating the test precision listed in the various Sequence test procedures (see attached). This proposal is complementary to the recently issued LTMS appendix G "Guidelines for developing Reference Oil Targets and Severity Adjustment Deviations - B.01 & B.02 Tests" that the TGC approved via e-mail.

Test Precision Reporting Guidelines

As test targets are updated or a need arises to update test method precision statements the TMC will be working with each surveillance panel to identify which reference oils should be used in the Severity Adjustment standard deviation calculation. The recommendation from the TMC is to use reference oil(s) that are as close to the pass limit as possible. In some test areas, only one oil may be used. Other test areas may use multiple oils depending on the available oils and number of pass fail parameters. As always it will be the surveillance panel who will ultimately decide the oil(s) selection.

To be consistent on the precision value that is provided to the industry, the TMC will be updating test method Intermediate Precision standard deviation with the same value that is used for the SA standard deviation. Data to be used for this calculation will be severity adjusted and pooled by oil and lab. The test method Reproducibility standard deviation will then be based on the same data set and pooled by oil.

The only time the test method precision values will be changed is when the SA std. dev. is updated. And this of course will occur according to the recently accepted LTMS guidelines. As mentioned above, the surveillance panels can always intervene and make changes as they see fit.

Background

- At the December 2004 ASTM meeting D02.B advised that test method precision statements are to be reviewed/updated on an annual basis
- The TMC was aware that inconsistencies existed in how test precision was being reported

Background (continued)

- TMC developed guidelines for updating test method precision values
- TMC forwarded the guidelines to the TGC Chairman for his review
- TGC ballot was subsequently released

Sequence IIIG Status

		LTMS SA
	Test Method	Std. Dev.
Oils	434, 435 and 438	See Below
Viscosity	0.392 ¹	0.2919
Increase		(RMSE Matrix)
WPD	0.655 ¹	0.60
		(RMSE Matrix)
ACLW	0.224 ¹	0.1903
		(434 & 435 -1/04)

¹ Precision as of December 22, 2004

Attachment 7

Sequence IIIG Performance

	Viscos	ity Increase	V	VPD	ACLW	
Oils	Target	Pass Limit	Target	Pass Limit	Target	Pass Limit
434	113		4.80		32	
435	178	150%	3.59	3.5	33	60
438	97		3.20		18	

Sequence IIIG Recommendation

		LTMS SA	
	Test Method	Std. Dev.	Recommendation
Oils	434, 435 and 438	See Below	See Below
Viscosity	0.392 ¹	0.2919	~0.4444
Increase		(RMSE Matrix)	(434 & 438)
WPD	0.655 ¹	0.60	~0.6984
		(RMSE Matrix)	(434 & 435)
ACLW	0.224 ¹	0.1903	~0.2423
		(434 & 435 -1/04)	(434 & 435)

¹ Precision as of December 22, 2004

Attachment 7

Sequence IIIF Status

	Test Method	LTMS SA Std. Dev.
Oils	1006-2, 1008-1 and 433-1	See Below
Viscosity Increase @ 80 Hours	0.016755 ¹	0.0129546
APV	0.220 ¹	0.220
WPD	0.532 ¹	0.658
VIS60	0.146264 ¹	0.17334

¹ Precision as of December 6, 2004

Attachment 7

Sequence IIIF Performance

	1006-2	1008-1	433-1	Pass Limit
VIS80	515	115	37	275
APV	9.35	9.77	9.30	9.0
WPD	3.94	4.57	4.59	4.0
VIS60	235	76	35	295

Sequence IIIF Recommendation

	Test Method	LTMS SA Std. Dev.	Recommendation
Oils	1006-2, 1008-1 and 433-1	?	See Below
Viscosity Increase @ 80 Hours	0.016755 ¹	0.0129546	~0.005979 (1008-1)
APV	0.2201	0.220	~0.220 (1006-2,1008-1,433-1)
WPD	0.532 ¹	0.658	~0.374 (1006-2)
VIS60	0.146264 ¹	0.17334	~0.1247 (1006-2)

¹ Precision as of December 6, 2004

Attachment 7

Reproducibility

• Reproducibility will be calculated from same data set as Intermediate Precision.