

100 Barr Harbor Drive ■ PO Box C700 ■ West Conshohocken, PA 19428-2959

Telephone: 610-832-9500 ■ Fax: 610-832-9555 ■ e-mail: service@astm.org ■ Website: www.astm.org

Committee D02 on PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: W. JAMES BOVER, ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, PO Box 971,

Annandale, NJ 08801-0971, (908) 730-1048, FAX: 908-730-1197, EMail: wibover@erenj.com

First Vice Chairman: KENNETH O. HENDERSON, Cannon Instrument Co, PO Box 16, State College, PA 16804, (814) 353-8000, Ext: 0265, FAX: 814-353-8007, EMail: kenohenderson@worldnet.att.net

Second Vice Chairman: SALVATORE J. RAND, 221 Flamingo Drive, Fort Myers, FL 33908, (941) 481-4729,

FAX: 941-481-4729

Secretary: MICHAEL A. COLLIER, Petroleum Analyzer Co LP, PO Box 206, Wilmington, IL 60481,

(815) 458-0216, FAX: 815-458-0217, EMail: macvarlen@aol.com

Assistant Secretary: JANET L. LANE, ExxonMobil Research and Engineering, 600 Billingsport Rd, PO Box 480,

Paulsboro, NJ 08066-0480, (856) 224-3302, FAX: 856-224-3616, EMail: janet_l_lane@email.mobil.com

Staff Manager: DAVID R. BRADLEY, (610) 832-9681, EMail: dbradley@astm.org

December 12, 2002 Originally Issued: Revised: December 19, 2002

Frank Farber Reply to:

ASTM Test Monitoring Center

6555 Penn Avenue Pittsburgh, PA 15206 Phone: 412-365-1031 Fax: 412-365-1047

Email: fmf@astmtmc.cmu.edu

Unapproved Minutes of the November 21, 2002 Joint Sequence IIIF Surveillance Panel Meeting held in San Antonio, Texas

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of ASTM committee activities except with the approval of the chairman of the committee having jurisdiction and the president of the society. Copyright ASTM, 100 Barr Harbor Drive. West Conshohocken, PA 19428-2959.

The meeting was called to order at 9:00 am by Chairman Bill Nahumck. A membership list was circulated for members & guests to sign in. It's shown in Attachment 1.

Agenda Review

Ben Weber is Action & Motion recorder.

The Agenda was accepted as attached (Attachment 2).

Membership Changes

Monica Beyer will be the Lubrizol representative. Bill Nahumck retains the LZ vote.

Meeting Minute Status

May 16, 2002 Approved. The only revision after their distribution was:

GM also stated that it believes that 100 hours is appropriate for oxidation severity and recommended that this length be used for the Sequence IIIG (Attachment 11). However, to be certain that the *IIIG* is twice as severe as the IIIF, GM felt that the test length may require 120 test hours. Further evaluation of this issue will occur after the matrix is run.

Action Item Review from May 16, 2002 Meeting

Attachment 3 shows the action items from the previous meeting. All the items were resolved prior to the meeting with the exception of the following:

Item 5: Sequence IIIF reference oil 1009 introduction: Because of low testing frequency of the Sequence IIIF and the imminent start of the Sequence IIIG the panel decided to table this item until the next meeting to see if the oil would be brought into the Sequence IIIG test.

Item 6: A light duty rating workshop was conducted on September 23, 2002. To spread out the timing of light and heavy duty workshops the LDRTF chairman recommended that a February 2003 joint ASTM IIIF/VG Rating workshop be conducted. The panel agreed. In order for the panel to monitor CRC rating workshop plans, the TMC was requested to be the CRC/ASTM liaison. Because of the desire of CRC to again hold rating workshops the panel discussed how ASTM test specific rating items could be addressed. The panel felt that a task force should be formed to discuss and recommend how Sequence III rater issues could be addressed. The TMC agreed to lead this group.

Item 8: Covered under fuel supplier report

Item 13: Head calibration data and technique still needs reviewed by the TMC during lab visits.

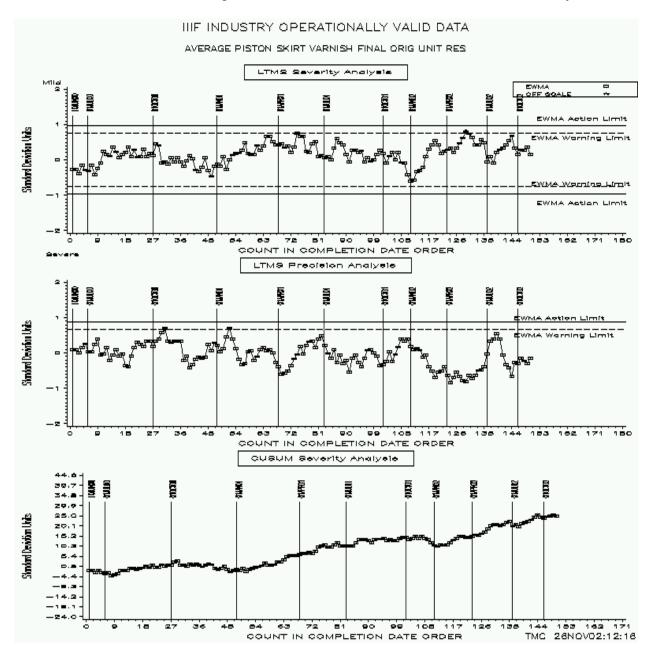
Item 24: Proper quantity of reference oil to eliminate a need for a reblend after the Sequence IIIG matrix still needs to be done.

Item 29: Sequence IIIF Test Method progress is on going.

Additional Item: The panel needs to determine a MRV and CCS measurement start limit after EOT (amount of time between the EOT and starting the bench tests). The laboratories were instructed to review with their analytical labs, consider weekends/holiday storage considerations and return recommendations to the chairman by mid-May.

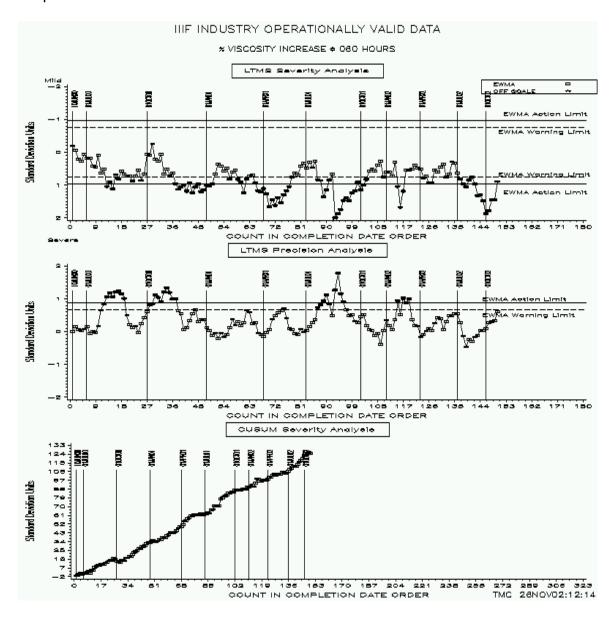
TMC Sequence IIIF Semi-Annual Report

See TMC ftp site for report:


ftp://astmtmc.cmu.edu/docs/gas/sequenceiii/semiannualreports/

Because of a stand being pulled out of the system after the TMC report was generated the following information is different than what is shown in the distributed/archived TMC report.

	Industry Severity Summary						
Parameter	Direction	Average ∆/s	Pooled s (degrees of freedom)	Average Δ , in reported units	Control Status		
PVIS	Severe	-0.169	0.015 (df=18)	24.7% Viscosity Increase ¹	In-Control		
APV	Mild	0.337	0.133 (df=18)	0.04 merits	In-Control		
WPD	Mild	-0.180	0.547 (df=18)	0.10 merits	In-Control		
PV60	Severe	1.020	0.125 (df=18)	86.6 % Viscosity Increase ²	EWMA ALARMS		


¹ At the GF-3 Pass Limit of 275% Viscosity Increase ² At the CH-4 Pass Limit of 295% Viscosity Increase @ 60 hours

It was noted that APV has begun to trend mild and should be monitored closely.

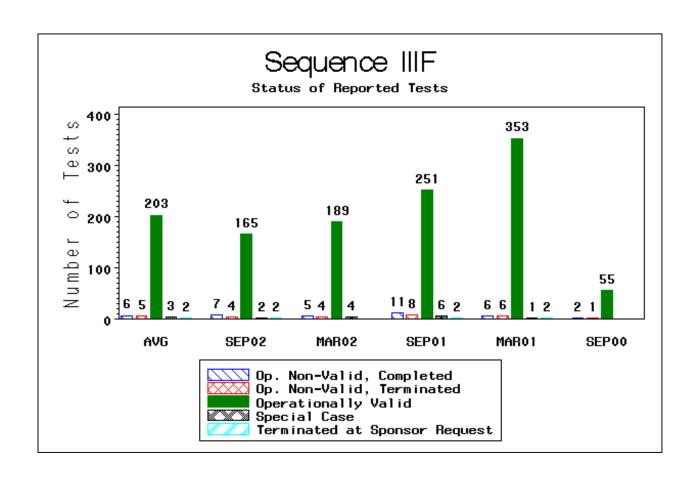
The TMC was requested to review possible hardware changes to see if there is any influence on APV and WPD severity. The panel was concerned about a possible severity deposit shift and will continue to monitor.

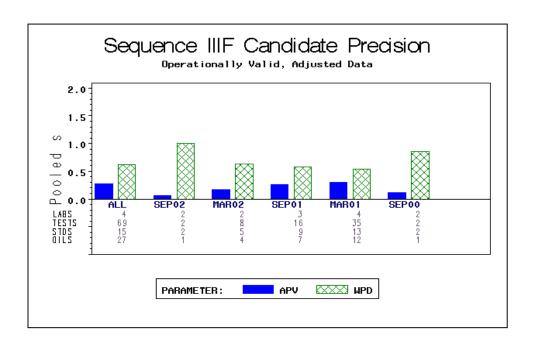
Percent viscosity increase at 60 hours is trending severe and has been for the life of the Sequence IIIF.

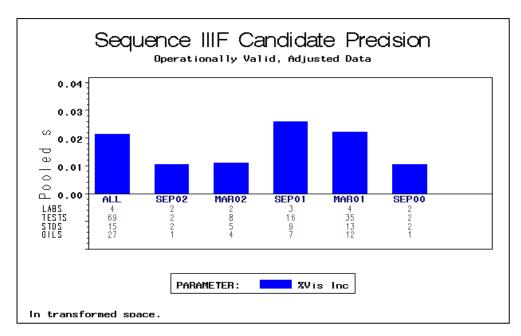
The panel was concerned that the LTMS targets may not be set correctly. Phil Scinto reviewed PVIS60 targets over a break in the meeting. Phil noted that the original PVIS60 targets were set with a large amount of data and noted that there was a severity effect over time with the data. Phil felt that the current targets were set correctly. The panel agreed that appropriate action would be for the Chairman to send the Heavy-Duty Classification Panel a letter noting the severity trend and that the IIIF panel will not be taking any action on this situation.

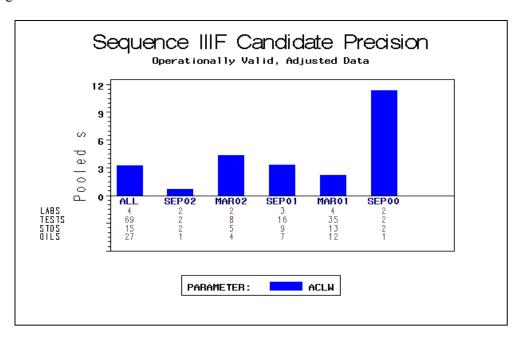
LDRTF Report

The TMC reported that a light-duty rater workshop was held on September 23, 2002 and that no issues were raised by the raters. The LDRTF chairman recommended that a light-duty workshop be held in late-February in order to space out the light-duty and heavy-duty workshops. Currently both are held within a month of each other in late fall and can be burdensome to lab raters and the TMC. A discussion took place regarding the situation of CRC conducting rater workshops. At this point, the CRC situation is still unresolved so the panel agreed to continue the ASTM light-duty workshop. The TMC was instructed to hold a February rating workshop and to keep the panel posted on CRC workshop progress. TEI graciously offered to help host the next workshop in San Antonio.


RSI Report


Report Accepted.


RSI Sequence IIIF Semi-Annual Report Six-Month Period Ending September 30, 2002


STATUS OF REPORTED TESTS			
STATUS	N	PERCENT	
Operationally Non-Valid, Terminated	4	2.2%	
Terminated at Sponsor Request	2	1.1%	
Operationally Non-Valid, Completed	7	3.9%	
Operationally Valid	165	91.7%	
Special Case	2	1.1%	
Total Reported Tests	180	100.0%	
CAUSES FOR LOST TESTS]	V	
Oil Consumption		1	
Control Problems		3	
Engine Mechanical Problems		4	
Support Equipment Problems		1	
Operator Error		1	
Sponsor Request	2		
Miscellaneous		1	

SEQUENCE IIIF PRECISION			
COMPONENTS OF REPLICATED DATA BASE	N		
Number of Tests	2	2	
Number of Oils	1		
Number of Labs	2	2	
Number of Stands	2	2	
Number of Severity Adjusted Avg C+L Wear Tests	()	
Number of Severity Adjusted Avg Piston Varnish Tests	()	
Number of Severity Adjusted % Vis Inc. Tests	()	
Number of Severity Adjusted Weighted Piston Deposit Tests	1		
	_		
VARIABLE	Pooled s	R	
Percent Vis Increase, Adjusted	0.010	0.029	
Avg Piston Varnish, Adjusted	0.057	0.158	
Weighted Piston Deposits, Adjusted	1.004	2.811	
Avg Cam + Lifter Wear, Adjusted	0.707	1.980	
Percent Vis Increase, Non-Adjusted	0.010	0.029	
Avg Piston Varnish, Non-Adjusted	0.057	0.158	
Weighted Piston Deposits, Non-Adjusted	0.682	1.910	
Avg Cam + Lifter Wear, Non-Adjusted	0.707	1.980	

Fuel Supplier Report

Jim Carter presented fuel batch analysis data (see Attachment 4) for the Channelview distribution terminal for EEE fuel. As of 9/30/2002 the inventory was 56,583 gallons. The panel approved a motion to set a 5 - 15 ppm specification on sulfur. Haltermann reported that the fuel was being adjusted to keep the hydrocarbon light-ends at appropriate levels with the injection of iso-butane. The panel was unaware of these adjustments. Haltermann was requested to determine when the fuel was adjusted, what was used and the amount of the adjustments. Possible piston deposit shifts were a concern. The report was accepted.

CPD Report

The following information was distributed by Dwight Bowden as the CPD report:

1.) Rejections from 05/01/2002 to 11/15/2002:

Oil Coolers
Oxidation, 2 Pieces
Material Replaced

Pistons, Grade 12
Damaged, 2 Pieces
Material Replaced

Camshaft

Zero Thrust Clearance, 1 Piece Material Replaced

Connecting Rod Bearings
Surface Finish, 1 Engine Set
Material Replaced

2.) <u>Technical Memos Issued</u>

Technical Memo 8, Issued 07/18/2002

"MB" & "MK" Camshafts depleted Batch Code 7 will carry letter designation "NF"

3.) Batch Code Changes

Main Bearing BC7 Introduced 05/24/2002
Camshaft Bearing BC6 Introduced 05/13/2002
Pistons, GR34 BC12 Introduced 06/20/2002
Pistons, GR56 BC12 Introduced 05/17/2002
Valve Spring BC5 Introduced 06/20/2002
Camshaft BC7 Introduced 07/18/2002

Report was accepted.

GM Motorsport Report

The following information was verbally distributed by Sid Clark.

No race shop part rejections occurred this period. One exhaust valve seat problem was noted. Front cover surface roughness was found with a recent casting change. GM will investigate. GM indicated adequate parts availability.

Report Accepted.

O & H Report

Pat Lang presented Attachment 5.

Concern over the use of Power Cool 2000 (supplied by Detroit Diesel) as a substitute for Nacool 2000/Pencool 2000 was discussed. Lubrizol is currently using this product because of cost considerations. The outcome was to allow Power Cool 2000 at this time as long as the lab can show it was purchased within 60 days of October 9, 2002 (see Attachment 6). Documentation provided by Lubrizol showed that at this time the products are equivalent. Otherwise, the use of Power Cool 2000 is not permitted. To resolve the item Pat will request a letter from Detroit Diesel stating that Power Cool 2000 will always be the same as Pencool 2000. If the letter is obtained a procedural modification will be considered.

An alternative mass air flow sensor part number will be reviewed by GM for equivalency. It will be approved for use upon the approval of GM. Motion approved.

The SPS torque wrench specified in the procedure is no longer available (See Attachment 7). The replacement wrench is to be added to the procedure (Ingersoll–Rand EVS125-10E). Motion approved.

In order to clarify and simplify the oil leveling/oil consumption sheet Sid Clark and Pat Lang along with the Chairman will revise the oil leveling sheet and report form 5. The revisions will then be e-balloted to the panel.

O&H Report accepted.

Review of Scope & Objectives

See Attachment 8.

The Objectives were modified as follows:

Objective 1: The Chairman is to send a letter to HDEOCP explaining that IIIF introduction of 15W40 HDD, CH-4 oil will not occur.

Objective 2: GM will send a letter to TMC notifying of a change to the assembly manual. TMC will distribute a notice to the industry.

Objective 3: Sid will need to provide information on this to create an IL by June 2003.

Objective 4: Removed.

Objective 8. TMC named CRC/ASTM Rating Liaison & TMC led rater task force creation.

Sequence IIIG Development Update

Jason Bowden and Sid Clark presented Attachment 9:

GM & OHT have concluded an intense review of the camshaft manufacturing and phosphate coating processes and have made several enhancements to the way Sequence IIIG camshaft are produced phosphate coated. GM and OHT feel that a substantially superior phosphate quality level has been achieved compared to those camshafts produced prior to those designated as NF200. The phosphate operation has been moved from Engine Power to an outside vendor and is overseen by OH Technologies. It was found that Engine Power was not able to maintain the phosphate coating tank temperatures adequately. As a result, OHT recommended that an outside vendor be used whose primary business is applying phosphate coatings. Data run to date on oil 538 with the new NF camshafts looks very promising to GM and OHT. Currently, GM is focusing in on 538 results with NF200 camshafts. GM felt that the high wear results on 433-1 were not totally understood however it was felt that the results were not of major concern considering the history of this oil and wear. Some of the panel members did not necessarily agree with this comment. GM is awaiting 538 runs being conducted at PerkinElmer and SWRI. Data indicates that current NF200 camshafts are producing severity levels consistent with MK160 camshafts on oil 538. Sid Clark and Dwight Bowden also noted to the panel that the NF200 results shown used camshafts that were phosphated on three (3) different days. OHT stated that MK160 camshafts were not phosphated correctly and that the NF200 camshafts are phosphated correctly with a controlled process and are meeting GM specifications. The phosphate coating specifications includes a weight/area specification and grain size. CWC (the camshaft manufacture) is currently doing destructive testing and 100% inspection of the Sequence IIIG camshafts (same as IIIE & IIIF cams). Pending the two 538 runs in progress additional camshafts will need to be produced and run to produce a more robust data set. OHT will exchange MK phosphated camshafts with NF camshafts.

Tests run using NF200 camshafts were done using WIX/Dana oil filters because it was found that PF47 filter production had changed and Delco would not be able to certify the quality of the filter media and physical design as before. OHT will also exchange WIX oil filters for PF47. Sequence IIIF testing will continue to use the PF47 until supplies are exhausted.

Side discussion: Phil Scinto injected that ACC and LZ desires to have some kind of camshaft phosphate batch code information. Pour codes, cooling, grinding

manufacturing codes and coating weights etc. were requested. This request was declined by OHT. This position is based, in OHT's opinion, that false positive correlations have occurred on IIIF camshafts which unjustly suggested the component was of sub-standard quality. In addition, it is possible that some of the potential requested information is proprietary. GM and OHT stated that they believe the camshaft manufacturing process is in control and that additional batch coding is not necessary. That information is being monitored and will be available if needed to investigate severity issues. Phil suggested that a task group be formed to define what is meant by batch code and that the information can be made available to the industry. No action was taken on this request. The ACC request will be submitted to GM/OHT/panel in writing for review and addressed in a timely manner. Additionally, concern over batch size was also raised. GM/OHT felt that since the manufacturing process was well controlled batch size was not an issue. Phil suggested a list of runs that have been made and are planned so that industry can review and digest prior to future meetings. GM will take the suggestion under advisement.

IIIG CCS & MRV Draft Revision:

Attachment 10 shows sections of the Sequence IIIG procedure that need to be modified and released to the industry as Draft 2. These are different than what is currently done for the Sequence IIIF. In addition, report forms and the data dictionary need to be modified to accommodate the changes.

Report accepted.

Update from GF-4 Matrix Design Task Force Report

Frank Fernandez noted that the GF-4 Matrix Design Task Force has recommended that a 24 test matrix be run. The ballot closed 11/20/02 with a split decision. All OEM's voted negative, all additive and oil companies voted approve/ with the exception of one returned ballot. As a result, Frank distributed an 18-test matrix ballot to the industry for a vote. The vote will close in December.

ACC Template Update

The chair reviewed the ACC template and is Attachment 11. The only issue that was lacking was in the area of field data correlation. The panel will not be able to address this issue because of the absence of data.

ASTM Sequence IIIF Standard

ASTM test method has been sent to Tom Verdura and will be submitted to panel for review by Sid. The goal is to have the vote on raising the procedure to an ASTM standard Dxxxx issue by March 2003.

Review Scope and Objectives

Objectives are below:

Identify 15W-40 HDD, CH-4 oil for the IIIF reference system - Chairman will send letter to HDEOCP informing them that due to the drop of Sequence IIIF testing this oil will not be brought into the system.

<u>Topic</u> <u>Due Date</u>

Assembly Manual Revision System November 2002

(GM will inform the TMC by letter on at least a quarterly basis of any Assembly Manual revisions. The TMC will place the revisions on the website and distribute to the industry.)

Fluid Rack System Clarification June 2002 Issue Draft 5 of IIIF Test Method Done

Resolution of unexplained IIIF Wear November 2002 Revise IIIF ASTM Standard August 2002 Develop Sequence IIIG Test July 2002

Introduce GF-3 Category Oil November 2002

Revised Oil Cooling System Done

Old Business

Chris May has requested drain oil samples from laboratories for refining the techniques for used oils in new oil tests like the MRV and CCS. The panel encouraged labs to submit samples to Chris.

New Business

Elimination of the procedural photo requirement was discussed. GM noted that they will keep the photo requirement for any factory fill or service fill submission for GM's approval. Sid Clark also noted that the photograph requirement will be retained for any sample, reference or candidate, submitted to PRI. The panel requested that this requirement be optional for candidate runs. No action taken. Panel members were requested to discuss this topic with their customers. The panel will review this item at the next meeting.

Concern over the fuel pressure that labs are running was raised by Monica Beyer. TMC reference oil data indicates that all labs are not running within the 365 +/- 5 kPa specification. The parameter is a read-only parameter. GM felt that the range could be increased. GM will clarify this specification.

Next Meeting

Next meeting will be at the call of the chair.

Motions & Action Items

Motions & Action Items see Attachment 12.

Attachment	1
Page	_ 1
Reference	

ASTM SEQUENCE IIIF LIST

November 21, 2002 San Antonio, Texas

NAME / ADDRESS ,	PHONE / FAX / E-MAIL		SIGNATURE
Ed Altman Ethyl Petroleum Additives, Inc. P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5279 804-788-6358 ed_altman@ethyl.com	☐ IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List	Present
Beto Araiza Test Engineering, Inc. 12718 Cimarron Path #102 San Antonio, TX 78249 USA	210-690-1958 210-690-1959 baraiza@t ostong.com TEI-Net.Com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present Roberts
Monica Beyer The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2006 440-347-4096 mbey@lubrizol.com	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☑ O&H SUBPANEL ☐ O&H Mailing List	Present
Dwight H. Bowden OH Technologies, Inc. 9300 Progress Parkway P.O. Box 5039 Mentor, OH 44061-5039 USA	440-354-7007 440-354-7080 dhbowden@ohtech.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present Mausa
Donald Bryant The Lubrizol Corporation 28400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2159 440-943-9004 debr@lubrizol.com	☐ IIIF SURV PANEL IIIF MAILING LIST ☐ O&H SUBPANEL O&H Mailing List	Present

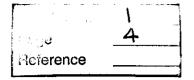
Attachment 1
Page 2
Reference

ASTM SEQUENCE IIIF LIST

November 21, 2002 San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Don Burnett ChevronPhillips Chemical Compan Chevron Tower 1301 McKinney Street Suite 2130 Houston, TX 77010-3030 USA	713-289-4859 713-289-4865 burnede@cpchem.com	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present
William A. Buscher, Jr. Texaco Inc. P.O. Box 112 Hopewell Jet, NY 12533 USA	845-897-8069 845-897-8069 buschwa@aol.com	✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ☐ O&H SUBPANEL ✓ O&H Mailing List	Present
James Carter Haltermann Products 3520 Okemos Rd. Suite #6-176 Okemos, MI USA	517-347-3021 517-347-1024 JECarter@dow.com	☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present
Timothy L. Caudill Ashland Oil Inc. 22nd & Front Streets Ashland, KY 41101 USA	606-329-5708 606-329-3009 tlcaudill@ashland.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present JJC
Sid Clark GM Powertrain General Motors Corporation Mail Code 480-106-160 30500 Mound Rd. Warren, MI 48090-9055 USA	\$\$6 \$40-986-1929 \$40-986-2094 sidney.l.clark@gm.com Test Sponsor Rep	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present Sed

Attachment Page


Page Reference 3_

ASTM SEQUENCE IIIF LIST

November 21, 2002

San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Francis R. Duffey DaimlerChrysler 800 Chrysler Road CIMS 482-00-13 Auburn Hills, MI 48236-2757 USA	248-576-7476 248-576-7490 fd13@daimlerchrysler.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST☐ O&H SUBPANEL☐ O&H Mailing List	Present
Frank Farber ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1030 412-365-1047 fmf@astmtmc.cmu.edu	☐ IIIF SURV PANEL IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present Fu
Gordon R. Farnsworth Infineum P.O. Box 735 Linden, NJ 07036 USA	908-474-3351 908-474-3637 gordon.farnsworth@infineum.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST☐ O&H SUBPANEL✓ O&H Mailing List	Present <u>HC</u>
Frank Fernandez Oronite Global Technology 4502 Centerview Drive Suite 210 San Antonio, TX 78228 USA	210-731-5603 210-731-5699 ffer@chevron.con	☐ IIIF SURV PANEL IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present
David L. Glaenzer Ethyl Petroleum Additives, Inc. 500 Spring Street P.O. Box 2158 Richmond, VA 23218-2158 USA	804-788-5214 804-788-6358 dave_glaenzer@ethyl.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST☐ O&H SUBPANEL✓ O&H Mailing List	Present Lagran

ASTM SEQUENCE IIIF LIST

November 21, 2002 San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Larry Hamilton The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2326 440-347-4096 Idha@lubrizol.com	☐ IHF SURV PANEL ☐ IHF MAILING LIST ☑ O&H SUBPANEL ☐ O&H Mailing List	Present
Barry J. Jecewski Ford Motor Company 21500 Oakwood Boulevard POEE Building, MD #34 P.O. Box 2053 Dearborn, MI 48121-2053 USA	313-594-6943 303-845-0613 bjecewsk@ford.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present
Michael T. Kasimirsky ASTM Test Monitoring Center 6555 Penn Avenue Pittsburgh, PA 15206 USA	412-365-1033 412-365-1047 mtk@astmtmc.cmu.cdu	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present
Brian Kundinger Kundinger Controls 1771 Harmon Road Auburn Hills, MI 48326 USA	248-391-6100 248-391-6900 bkundinger@kundnger.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present
Patrick Lai Imperial Oil Limited 453 Christina Street Research Department P.O. Box 3022 Sarnia, Ontario N7T7MI CANADA	519-339-5611 519-339-5866 patrick.k.lai@esso.com	☐ IIIF SURV PANEL IIIF MAILING LIST O&H SUBPANEL O&H Mailing List	Present

Attachment 1
Page 5
Reference

ASTM SEQUENCE IIIF LIST

November 21, 2002

San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Patrick Lang Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-2820 210-684-7523 plang@swri.edu O&H Subpanel Chairman	✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List	Present Tat Say
Charlie Leverett PerkinElmer Automotive Research, 5404 Bandera Road San Antonio, TX 78238 USA	210-647-9422 210-523-4607 charlie.leverett@perkinelmer.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present
Vince Livoti Ciba Specialty Chemicals 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 USA	914-785-4494 914-785-4249 vincent.livoti@cibasc.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST☐ O&H SUBPANEL☐ O&H Mailing List	Present
Mike McMillan GM R&D Center Building 1-6 Chemical & Environmental Science 12 Mile & Mound Roads Warren, MI 48090-9057 USA	810-986-1935 810-986-2094 micheal.l.mcmillan@gm.com	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☑ O&H Mailing List	Present
John Moffa Castrol International Technology Centre Whitchurch Reading, RG8 7QR ENGLAND	00441189765263 00441189841131 John_Moffa@burmahcastrol.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present

11/18/2002 3:58:07 PM Page 5 of 7

Attachment 1
Page 6
Reference

ASTM SEQUENCE IIIF LIST

November 21, 2002 San

San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Aifredo Montez Chevron Oronite 4502 Centerview Drive #210 San Antonio, TX 78228 USA	210-731-5604 210-731-5694 AMMIN Ochevion Com AMMIN GCHEVWY tevaco, co	✓ IIIF SURV PANEL ☐ JIIF MAILING LIST ✓ O&H SUBPANEL ☐ O&H Mailing List	Present DM
Mark Mosher Mobil Technology Company Billingsport Road Paulsboro, NJ 08066 USA	856-224-2132 856-224-3628 mark.r.mosher@exxonmobil.com	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present MMAGA
William M. Nahumck The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2596 440-347-4096 wmn@lubrizol.com Surveillance Panel Chair	✓ IIIF SURV PANEL☐ IIIF MAILING LIST✓ O&H SUBPANEL☐ O&H Mailing List	Present W. M. Mall
Rick Oliver Registration Services Inc. 2805 Beverly Drive Flower Mound, TX 75022 USA	972-724-2136 210-341-4038 crickoliver@attbi.com	☐ IIIF SURV PANEL ✓ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present Zich Mus
Robert Olree GM Powertrain 30500 Mound Road m/c 480-106-160 Warren, Mf 48090-9055 USA	810-947-0069 810-986-2094 robert.olree@gm.com	☐ IIIF SURV PANEL IIIF MAILING LIST ☐ O&H SUBPANEL O&H Mailing List	Present 2MOluu

ASTM SEQUENCE IIIF LIST

November 21, 2002

San Antonio, Texas

NAME / ADDRESS	PHONE / FAX / E-MAIL		SIGNATURE
Robert H. Rumford Specified Fuels & Chemicals, LLC 1201South Sheldon Road Channelview, TX 77530-0429 USA	281-457-2768 281-457-1469 rhrumford@specified1.com	✓ IIIF SURV PANEL ☐ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present
Jim Rutherford Chevron 100 Chevron Way Richmond, CA 94802 USA	510-242-3410 510-242-1930 jaru@chevron.com	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present
Philip R. Scinto The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092 USA	440-347-2161 440-347-9031 prs@lubrizol.com	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Presen PR J
Ben Weber Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228 USA	210-522-5911 210-684-7530 bweber@swri.edu Sub-Committee D02.B01 Chair	☐ IIIF SURV PANEL ☑ IIIF MAILING LIST ☐ O&H SUBPANEL ☐ O&H Mailing List	Present

SEQUENCE HIF SURVEILLANCE PANEL MEETING

GUEST LIST

November 21, 2002 San Antonio, Texas

Attachment	\
Page	8
Reference	

NAME/ADDRESS	PHONE/FAX/EMAIL	SIGNATURE
Tom FRANKLIN PERKINELMEN AR 5404 Bandera RD SANANTONIO TX 78238	210 647-9446 210 523-4607 tom. franklin@ perkinemow.com	AAL
Monica BEYER LUBRIZOL Corp. 29400 Lakeland BIVd. Wickliffe, ott 44092 Mail Doop 123 A	(440)347-2006 (440)347-4096 mbey@lubrizol.com	Mrin Eigh.
LARRY HAMILTOH LUBRIZO I 29400 LAKEURA BIND. WICKLIFFE OHIO 44092	(440) 347- 2376 (440) 347- 4096 LDHA@ Lubrizol . com	Landan
CLAYTON J. KNIGHT TEST ENGINEERING, INC. 12718 CIMATTON PATH SAN ANTONIO, TEXAS 78249-3423	(210) 690.1958 (210) 690.1959 CKNight BTET - NOT. COM	La la significa de la companya della companya della companya de la companya della
Jason H. Bruder OH Technologies, Fac. 9300 Progress Phuy. Ro. Box 5039 mentor, OH 44061-5039	440-354- 7007 440-354- 7080 Jhbouden Pohtech.com	Jack-

AGENDA

SEQUENCE HIF SURVEILLANCE PANEL MEETING

San Antonio, Texas November 21, 2002

Attachment	2
Page	
Reference	

- 1. APPOINTMENT OF RECORDER OF ACTIONS/MOTIONS
- 2. AGENDA REVIEW
- 3. MEMBERSHIP CHANGES
- 4. APPROVAL OF MINUTES FROM May 16, 2002 (Available for viewing at the TMC website)
- 5. REVIEW OF ACTION ITEMS

SEQUENCE IIIF

- 1. TMC TEST STATUS UPDATE MIKE KASIMIRSKY
- 2. RSI REPORT Rick Oliver
- 3. FUEL SUPPLIER REPORT
- 4. CPD SUPPLIER REPORTS
 - A. OHT
 - B. GM MOTORSPORTS
- 5. O&H SUBPANEL REPORT PAT LANG
- 6. STATUS OF THE WEAR INVESTIGATION
- 7. SEQUENCE HIG DEVELOPMENT UPDATE
 - A. Is the test ready for a Precision Matrix?
 - B. Update from the Matrix Design Task Force Don Marn
 - C. ACC Template Update Phil Scinto
- 8. OLD BUSINESS
 - A. Review of Scope & Objectives
 - B. Drain Oil Request from Chris May, Section D02.07C
- 9. NEW BUSINESS

ADJOURNMENT

3

Motions & Action Items
Sequence IIIF Surveillance Panel
May 16, 2002
As Recorded at the Meeting by Ben Weber

Previous meeting minutes accepted as written.

TMC report accepted as presented with the noted precision and severity shifts for some parameters like WPD.

Test labs should review the groove piston ratings to see if there is any precision improvements that can be made, or if this measurement is difficult to accurately perform. One suggestion at the meeting concerned cleaning of the pistons. Dual ratings have been taking place at some of the test labs, and rating differences have not been a problem.

[Dwight B & Mike K] 1008-1 will be brought into the system using the older 1008 targets during normal calibration testing. Targets will be reviewed after 5 tests, then updated at 10, 20 & 30. Passed unanimously.

TMC will check into the possibility of coordinating the introduction of 1009 during a given time period that is acceptable to all test labs.

The group agreed that the next future-light-duty rating workshops should be held during the October timeframe in conjunction with the heavy-duty rating workshops. It was left open for later discussion about having a workshop before the next scheduled fall workshop. Scott Parke of the TMC will coordinate these future workshops for both heavy- and light-duty ratings.

The RSI report was accepted as presented.

The fuel supplier report was accepted as presented. By September 2002 EEE HF003 fuel for the IIIF, which will now be different than the new EPA fuel in terms of sulfur limits (approx. 25 – 35 ppm for the EPA version), will all come from their Houston location in Channelview, Texas. The fuel supplier will review sulfur levels from previous batches over the last few years to see where the sulfur maximum has been and possibly determine a specification or range for EEE HF003. Most of the sulfur levels have been around 10-15 ppm for the EEE HF003 fuel.

9. CPD OHT report was accepted as presented.

10. CPD GM Motorsports report was accepted as presented. GM will continue to investigate the valve seat recession problems.

[Pat L & Sid Clark] Accept the OHT external oil bypass system in conjunction with the 0.500" oil filter adapter and specified thermocouple for use in the IIIF test. Place a note in the comments section of the test report when the bypass occurs and at what test hours. Use of this system does not change the current guidelines outlined in the IIIF procedure for changing the oil filter and cooler during a test. Effective June 1, 2002. Passed unanimously.

12. Labs will experiment with the external oil bypass system and report back to the O&H panel about standardization on what to do when you go into bypass by August 2002.

≥ 13. TMC will review the head calibration data and technique during their next lab visits.

⇒ 14. The test labs need to notify the O&H chair on what type of solvent specification they are using. Bob Rumford expressed interest in helping the O&H chair with this task.

[Charlie L & Dwight B] The Sequence III surveillance panel recommends that the Information Letter concerning the use of the MnP coating in IIIF testing be withdrawn. The vote was 12-0-1.

The SP decided that IIIG lab visits and a IIIG engine build workshop is not required at this time due to the very similar nature of the IIIG to the IIIF test method.

below. (Ben and Bill, Daryl I am not sure we had full resolution on this item. If you think we did, do we need to modify report forms to include the new WPD result?) There is some concern about chipping of the thin carbon on the crown land. It was suggested that the raters get together and discuss GM's proposal and any other IIIG rating concerns via teleconference mentioned below.

- Crown land at 0.2
- 2nd land at 0.2
- 3rd land at 0.2
- 1st groove at 0.1
- 2nd groove at 0.1

Dropped per Olree

Attachment	_3
Page	_2
Reference	

- 3rd Groove at 0.1
- Under-crown at 0.1
- The SP is interested in seeing as much IIIG development data as possible like individual cam lobe wear data, etc. It was decided to e-mail the membership whatever extra data can be distributed to the SP.
- 19. [Sid C & Dwight B] The IIIG test sponsor report was accepted as presented with the above items noted.
- 28. [Dwight B & Dave G] Current labs will need to run one demonstration IIIG test to prove initial performance prior to any formal matrix testing. PerkinElmer and SwRI are exempt from this requirement due to their development work. This demonstration run needs to be completed by June 30, 2002. ILSAC will define the oil by June 1, 2002. The labs are to communicate to Don Marn, chair of the Matrix Design Task Force, by June 1, 2002 their intention to comply with these requirements. The SP will convene once all the data is complete and determine if acceptability has been achieved. Passed unanimously.
- [Charlie L & Dwight B] The Surveillance Panel recommends to the MDTF that at a minimum, 3 oils will be used and at least two viscosity oils. ILSAC will choose these oils. Passed unanimously.
- 22. [Thom Smith & Tom Boschart] For calibrated IIIF laboratories, the 2-2 testing protocol will be used in the matrix. The vote was 3 for, 0 against, and 9 waives. This is a passing motion using the simple majority rule for Surveillance Panels.
- 23. The Memorandum of Agreement will need to be adjusted and reviewed to be in agreement with the decisions made by the Sequence III Surveillance Panel.
- 24. The SP or Matrix Design Task Force will need to discuss the proper quantity of oils blended to cover the future use of any of these oils as potential reference oils without having to go through a re-blend right after the matrix testing is complete.
- > 25. TMC and GM will expedite the release of the IIIG test method and assembly manual. The target is to have this completed by the first week in June 2002.
 - 26. The TMC will coordinate a IIIG rating teleconference by mid-June 2002.
 - > 27. The IIIG test labs will need to continue to measure MRV and CCS on EOT oil samples.
 - > 28. The test labs are also requested to send any of their IIIF EOT reference samples to Chris May of ASTM Section D02.07C by June 15, 2002. The sample size needed will be clarified later by Daryl B.
 - 29. IIIF test method still needs to be completed as an ASTM standard.
 - [Charlie L & Dwight B] Remove the lifter designations from the IIIFHD test report. Passed unanimously.
 - 31. [Charlie L & Dwight B] The TMC will start using 6 decimal places for the viscosity increase severity adjustment on their LTMS calibration sheets. Passed unanimously.

_
1
· · · · · · · · · · · · · · · · · · ·

PRODUCT: PRODUCT CODE:

EEE Unleaded Gasoline HF003

Batch No.: QG1721LS03
Tank No.: 2014
Analysis Date: 7/23/2002

TEST	METHOD	UNITS	FED	Specs	HAL1	RESULTS		
			MIN	MAX	MIN	TARGET	MAX	AGSCE15
Distillation - IBP	ASTM D86	۰°F	75	95	75		95	89
5%		۰F						115
10%		۰F	120	135	120		135	129
20%		۰F	,					148
30%		°F						171
40%		°F						197
50%		۰F	200	230	200		230	220
60%		۰F	_++					234
70%		۰F						246
80%		°F						268
90%		°F	305	325	305		325	320
95%		°F	500	020			020	337
Distillation - EP		°F		415			415	395
Recovery		vol %		,,,		Report	710	97.2
Residue		vol %				Report		1.0
Loss		vol %				Report		1.8
Gravity	ASTM D4052	°API	58.7	61.2	58.7	Пороп	61.2	59.3
Density	ASTM D4052	kg/l	00.7	V1.2	0.734		0.744	0.742
Reid Vapor Pressure	ASTM D323	psi	8.7	9.2	8.7		9.2	9.0
Reid Vapor Pressure	ASTM D529	psi psi	0.,	3.2	0.,	Report	3.2	8.80
Carbon	ASTM D3343	wt fraction				Report		0.8656
Carbon	ASTM E191	wt fraction				Report		0.8624
Hydrogen	ASTM E191	wt fraction				Report		0.8024
Hydrogen/Carbon ratio	ASTM E191	mole/mole				Report		1.852
Oxygen	ASTM D4815	wt %			l	Пароп	0.05	< 0.05
Sulfur	ASTM D4613	ppm		1000			1000	8
Sulfur	ASTM D3433 ASTM D2622	wt%		0.1		Report	1000	<0.001
Lead	ASTM D2022 ASTM D3237	g/gal		0.05		порон	0.01	<0.001
Phosphorous	ASTM D3237	g/gal		0.005			0.005	<0.008
Composition, aromatics	ASTM D3231	vol %		35.0			35.0	29.8
Composition, elefins	ASTM D1319	vol %		10.0			10.0	0,5
Composition, saturates		vol %		10.0		Report	10.0	69.7
Particulate matter	ASTM D1319 ASTM D5452	mg/l				nepuit	1	0.5
Oxidation Stability	ASTM D5452 ASTM D525	minutes			240		'	>1000
Copper Corrosion		minutes			240		1	>1000 1
Gum content, washed	ASTM D130	ma/t00mla						-
Fuel Economy Numerator/C Density	ASTM D381	mg/100mls			2401		5 2 441	<1 2422
C Factor					2401	Donort	∠441	
Research Octane Number	ASTM E191		93.0		96.0	Report		1.0014
Motor Octane Number	ASTM D2699		83.0		90.0	Danad		96.7
Sensitivity	ASTM D2700		7.5		7.5	Report		88.0
	A CTAA DOGGO	btu/lb	7.5		1.5	Donort		8.7
Net Heating Value, btu/lb	ASTM D3338					Report		18467
Net Heating Value, btu/lb	ASTM D240	btu/lb				Report		18378
Color	VISUAL	1.75 ptb				Report		Red

Attachmant Page Reference

PRODUCT: PRODUCT CODE:

EEE Unleaded Gasoline HF003

 Batch No.:
 QI1521LS01
 QH2121LS01

 Tank No.:
 2012
 2014

 Analysis Date:
 9/23/2002
 8/28/2002

TEST	METHOD	UNITS	FED	Specs	HALTERMANN Specs		RESULTS	RESULTS	
L		_	MIN	MAX	MIN	TARGET	MAX		
Distillation - IBP	ASTM D86	۰F	75	95	75		95	88	95
5%		°F						115	116
10%		°F	120	135	120		135	128	129
20%		°F						148	148
30%		°F						171	181
40%		۰F						199	197
50%		۰F	200	230	200		230	221	220
60%		۰F						233	232
70%	•	۰F						245	244
80%		۰F						268	266
90%		۰F	305	325	305		325	321	324
95%		°F						336	336
Distillation - EP		°F		415			415	396	395
Recovery		vol %				Report	7.0	97.8	97.0
Residue		vol %				Report		1.0	1.0
Loss	ŀ	vol %				Report		1.2	2.0
Gravity	ASTM D4052	°API	58.7	61.2	58.7	Порон	61.2	58.9	58.8
Density	ASTM D4052	kg/l	00.5	01.2	0.734		0.744	0.743	0.744
Reid Vapor Pressure	ASTM D4032	psi	8.7	9.2	8.7		9.2	9.2	9.1
Reid Vapor Pressure	ASTM D523	psi	0.7	3.2	0.7	Report	J.Z	9.10	8.90
Carbon	ASTM D3191	wt fraction				Report		0.8653	0.8658
Carbon	ASTM E191	wt fraction				Report		0.8627	0.8625
Hydrogen	ASTM E191	wt fraction				Report		0.3027	0.8023
Hydrogen/Carbon ratio	ASTM E191	mole/mole				Report		1.862	1.825
Oxygen	ASTM E 191 ASTM D4815	wt %				перин	0.05	< 0.05	< 0.05
Sulfur	ASTM D4613	ppm		1000			1000	11	11
Sulfur	A\$TM D3453	wt%		0.1		Report	1000	<0.001	<0.001
Lead	!			0.05		перии	0.01	<0.001	10.00
Phosphorous	ASTM D3237	g/gal		1					
	ASTM D3231	g/gal		0.005			0.005	<0.0008	<0.0008
Composition, aromatics	ASTM D1319	vol %		35.0			35.0	28.8	29.6
Composition, olefins	ASTM D1319	vol %		10.0			10.0	0.4	0.1
Composition, saturates	ASTM D1319	vol %				Report		70.8	70.3
Particulate matter	ASTM D5452	mg/l					1	0.3	0.6
Oxidation Stability	ASTM D525	minutes			240			>1000	>1000
Copper Corrosion	ASTM D130						1	<1	<1
Gum content, washed	ASTM D381	mg/100mls					5	<1	<1
Fuel Economy Numerator/C Density					2401	_	2441	2428	2436
C Factor	ASTM E191					Report		1.0005	1.0028
Research Octane Number	ASTM D2699		93.0		96.0			97.0	96.8
Motor Octane Number	ASTM D2700					Report		87.9	88.9
Sensitivity	I		7.5		7.5			9.1	7.9
Net Heating Value, btu/lb	ASTM D3338	btu/lb				Report		18475	18465
Net Heating Value, btu/lb	ASTM D240	btu/lb				Report		18442	18372
Color	VISUAL	1.75 ptb				Report		Red	Red

Sequence IIIF	Operations and	Hardware	Subpanel	Report	11/21/02
1					

Attachment	_5
Page	
Reference	

Sequence IIIF O&H Report

Presented by: Patrick Lang November 21, 2002 San Antonio, Texas

Current Activities

- Exhaust valve seat failures
 - Some labs experienced exhaust valve seats coming out of place during IIIF and IIIG testing
 - Machined depth of the exhaust seat pocket increased
 - · Cylinder heads are in distribution
 - Modified heads have a red dot on the outside of the box and are acceptable for immediate use

IIIF O&H Report 11/21/02

2

Attachment 5
Page 2
Reference

Current Activities (cont'd)

- Various names for same coolant additive
 - Nacool 2000
 - Pencool 2000
 - Power Cool 2000
- Documentation from the supplier has stated that Power Cool is same as Pencool/Nacool
- Need to add Power Cool to procedure

IIIF O&H Report 11/21/02

2

Current Activities (cont'd)

- Mass air flow sensor part number has changed from 24508238 to 12568877. Both are considered equivalent.
- SPS Torque wrench specified in procedure is no longer available from listed manufacturer. Correction needs to be made to procedure.

IIIF O&H Report 11/21/02

4

Attachment 5
Page 3
Reference

Motion

- Modify the IIIF procedure to incorporate the following:
 - Power Cool to be listed as an acceptable coolant additive
 - Alternate electronic torque wrench model number, Ingersall-Rand EVS125-10E to be listed. There will be another ETW model in the near future.
 - Superseded mass air flow sensor number PENDING

IIIF O&H Report 11/21/02

5

O & H Future Work

- Recommend changes to the flush cart to help prevent the recirculation of casting sand during the flush
- Solvent specification in IIIF procedure
 - Industry looking to settle on one type of solvent that can be used on both gas and diesel testing.
- Batch Concept/Hardware Control Task Force to generate Info. Letter 60 type document.

 IIIF O&H Report 11/21/02

6

Attachment	5
Page	4
Reference	

	8203					8=Number adds *472		No.	b=Total leveling sample discarded		C=ML below full from start of test	Koon](a-b)+(c-236)
	Fot	TOTAL							a		U		-236	
	ML	80												UMPTION
TEST # START DATE		20												TOTAL OIL CONSUMPTION
STA	TIAL RUN	8												TOTAL
	END OF INIT	8												
IIIF OIL LEVEL, AND CONSUMPTION	OIL LEVEL AT END OF INITIAL RUN	Q#												
ND CONS	OIL LI	00						1		1	1			
- LEVEL,A		20									1			
SEQ. IIIF OIL		- 01						1	1					
<i>σ</i>	INITIAL	NUN												
TEST CELL ENGINE# OIL SAMPLE#		INITIAL FILL=5500 ML REMOVE 472ML PURGE SAMPLE	REMOVE 472ML LEVELING SAMPLE REMOVE 236ML ANALYSIS SAMPLE	REMOVE 59ML ANALYSIS SAMPLE REPLACE 477M1 PURGE SAMPLE	ADD 59ML TO REPLACE SAMPLE	ADD 47ZML NEW OIL	CIL LEVEL AFIER DRAIN DOWN (ML)	LEVELING SAMPLE AUDED (ML)	DESIGNATION OF THE DISCARDED (ML)	RESULTING DIPSTICK LEVEL (MM)	ME BELOW FULL PROM START			

472ML(NEW OIL ADDITIONS 10 - 70h) - TOTAL SAMPLE DISCARDED + (LEVEL @ EOT - 236ML) = TOTAL CONSUMED

IF THE TEST IS TERMINATED EARLY, FOLLOW THE 80h LEVEL CHECKLIST FOR FINAL SAMPLE & LEVELING PROCEDURE

Sequence IIIF Evaluation

Operational Summary Form 5

Attachment Page Reference

<u>5</u>	

Laboratory:	Oil Code:	
Test Stand No.:	Test No.:	
Laboratory Oil Code:		
Formulation / Stand Code:		

	Parameter	Units	QI Threshold	EOT	Target	Average	Standard Deviation	Number Of	
								Samples	BQD
	Speed	r/min	0.000		3600				
S S	Load	N·m	0.000		200				
arameters	Oil Filter Block	°C	0.000		155.0				
la l	Engine Coolant Out	°C	0.000		122.0				
•	Condenser Coolant Out	°C	0.000		40.0				
Controlled	Left Air-to-Fuel Ratio		0.000		15.0				
tro	Right Air-to-Fuel Ratio		0.000		15.0				
5	Left Exhaust Back Pressure	kPa	0.000		6.0				•
١٦	Right Exhaust Back Pressure	kPa	0.000		6.0				
	Intake Air	kPa	0.000		0.05				
	Engine Coolant Flow	L/min	0.000		160.0				

	Parameter	Units		Standard Deviation	Number Of	
ဖွ			Average		Samples	BQD
Parameters	Oil Sump	°C		· ·		
an	Pump Outlet Pressure	kPa				
Par	Gallery Pressure	kPa				,
b	Engine Coolant In	°C				
5	Fuel Inlet	°C				
controlled	Inlet Air	°C			·	
Ç	Intake Air Dew Point	°C				
Non-	Intake Vacuum	kPa				
	Crankcase	kPa				
	Fuel Pressure	kPa				

Oil Consumption Data								
Hours	Initial Run-in							
Level (ml) low								-

NO _X Measurement					
Hours					
NO _X ppm					

DETROIT DIESEL

A DalmierChryster Compa

October 9, 2002

	_
Attachment	6
Page	
Reference	

Dear To Whom it May Concern

Power Cool 2000 and Pencool 2000

This letter is to inform you that Detroit Diesel Power Cool 2000 is exactly the same chemistry as Pencool 2000. Both products are manufactured by the Penray Company. Power Cool is a Detroit Diesel brand name and the Penray Company private labels Pencool 2000 for Detroit Diesel Corporation as Power Cool 2000. The only difference is the label.

Should you have any questions, or require further clarification please feel free to contact me directly.

Sincerely,

Edward J. Hart

Performance Products Development Manager

2 A. Hart

Phone: 313-592-7681 Fax: 313-595-3878

P.02/03

Attachment 6
Page 2
Reference

DETROIT DIESEL

EDRPORATION

POWER COOL Products

POWER COOL Engine Antifreeze/Coolant

Concentrated

23512138 One gallon jugs (6 per case)

23512139 55 gallon drums

23512140 Bulk delivery - 1,000 gallon minimum

Pre-blended 50:50

23518918 55 gailon drums 23513503 Bulk delivery - 1,000 gallon minimum

Pre-blended 33:67

23524737 1 gaton jug (6 per case)

23524922 5 galon pail

23524923 55 gallon drums

23524924 Bulk delivery - 1,000 gallon minimum

POWER COOL 3149

23528571 Bulk

23528572 55 gallon drums

POWER COOL Plus Extended Life Diesel Engine Coolant (NOAT)

Concentrated

23519397 One gallon jugs (5 per case)

23519394 55 qallon drums

23519395 Bulk delivery - 2,000 gation minimum

Pre-blended 50:50

23519396 One gallon jugs (6 per case)

23519398 55 gallon drums

23519399 Bulk delivery - 2,000 gation minimum

POWER COOL Plus Extender for use with POWER COOL Plus

23519409 6 x 1 quart bottles

POWER COOL Plus 6000 for Marine & Other Water Only Systems

23522127 One gallon jugs (6 per case)

23522128 5 galon pail

POWER COOL Plus Marine (30/70)

23524677 5 gallon pail 23524676 55 gallon drums

POWER COOL 2000 Supplemental Coolant Additive

2000-16

23507858 Pint Bottle (12 per case)

2000-64

23507859 Half Gallons Jug (6 per case)

2000-05

23507860 5 Gallons Pail

2000-55

23507861 55 Gallons Drum

SA244 0008

Productivity Solutions Group Assembly Solutions Business Development Center

Attachment	
Page	
Reference	

Ingersoli-Rand Company. 1467 Route 31 South PO Box 970 Annandale, NJ 08801 USA 908-238-7000 Phone 908-238-7051 Fax

October 30 2002

Ingersoll-Rand Sensor, Tensor and Expert Hand Wrenches

This notice is to inform you that after December 31 2002 we cannot accept orders for Expert wrenches.

The original SPS Sensor and Tensor wrenches were last produced in 1996. The Control and Display boards are no longer available and many parts are obsolete. We can no longer repair these wrenches if replacement of these boards is required and can offer re-calibration and battery changes only. In cases where wrenches are returned for repair, the customer will be notified that the wrench is non-repairable.

The Expert wrench must also be discontinued as we have exhausted the supply of Display boards. These boards are no longer available in economic quantities. We have about 40 boards in the new version Expert 40 (planned replacement for the Tensor wrench). This product will now not be launched.

We will continue to support the Expert product line for as long as possible but eventually there will be no Display boards available.

We intend to replace the Expert with a new wrench based on the ETW product. This will carry many of the features available in the Expert at a reduced list price.

This will be available early 2003.

THE ASTM SEQUENCE IIIF SURVEILLANCE PANEL

SCOPE & OBJECTIVES

Attachment	_8
Page	
Reference	

SCOPE

The Sequence IIIF Surveillance Panel is responsible for the surveillance and continual improvement of the Sequence IIIF test documented in ASTM Standard DNNNN-XX as update by the Information Letter System. Data on test precision and laboratory versus field correlation will be solicited and evaluated at least every six (6) months. The Surveillance Panel is to provide continual improvement of rating techniques, test operation, test monitoring and test validation through communication with the Test Sponsor, ASTM Test Monitoring Center, Operations and Hardware Subpanel, the Central Parts Distributor, ASTM B0.01 Passenger Car Engine Oil Classification Panel, ASTM Light Duty Rating Task Force, ASTM Committee B0.01, CMA Monitoring Agency and CRC Motor Rating Methods Group. Actions to improve the process will be recommended when appropriate based on input to the Surveillance Panel from one or more of the previously stated groups. Develop updated test procedures when necessary and review the correlation with previous test procedures. This process will provide the best possible Sequence III Type Test Procedure for evaluating automotive lubricant performance with respect to the lubricant's ability to prevent oil thickening, varnish formation, oil consumption and engine wear.

<u>OBJECTIVES</u>	TARGET DATE
 Identify a 15W-40 HDD, CH-4 oil for the IIIF reference system Assembly Manual Revision System Control System Clarification 	On hold letter November 2002 June 2002 3
4.—Resolution of the unexplained, random wear in the IIIF Test Method 5. Revise the IIIF Test Method for elevation to ASTM Standard	Nevember 2002 MAR 2003
 Develop the IIIG test for inclusion in the ILSAC GF-4 Specification Introduction of the GF-3 Category Reference Oil 	January 2003 November 2002 MAy 2003
8. CRC/ASTM Rating workshops 9. MRV/CCS -establish hind to start tests	

William M. Nahumck, Chairman Sequence IIIF Surveillance Panel Updated November 21, 2002 San Antonio, Texas

Attachment 9 Page 1 Reference

Overview of Camshaft Phosphate Development

Quality Definition

November 21, 2002 San Antonio, Texas IIIG Development Group

Overview

on the incorporation of phosphate coating of This presentation provides the background changes made to the process since January camshafts in the IIIG test, and the quality 2002.

Objectives

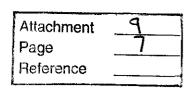
linear wear without initial scuffing. (i.e. Develop a test that generates controlled single or multiple initial lobe failures.) Develop test components around materials and processes that can be defined and are quantifiable and repeatable.

Fage 4
Reference

Solution to Wear Problem

Testing performed in early 2002, using phosphate coated (MK) camshafts, eliminated initial scuffing.

- In July, the IIIG Development Group toured OHT vendors of camshafts and lifters.
- completed IIIG camshafts. These camshafts During the visit to the camshaft vendor, the group questioned the visual appearance of initiated an investigation to identify the were rejected by OHT and the vendor cause.


Attachment 9 5
Reference

Investigation Results

- observed by the IIIG group was "blush rust" caused by low phosphate tank temperature resulting in insufficient phosphate coating. The vendor determined that the condition
- Tank temperature was corrected and a large batch of "NF190°F" camshafts were processed, distributed and tested.

GM deemed the NF190°F camshafts unsuitable for Based on these test results and a GM specification for phosphate (coating weight & grain formation), testing.

OHT recalled NF190°F material and pursued process changes that meet GM specification (NF200°F Camshafts).

Artechment 9
Page 8
Reference

Camshaft Component Sources

Test Type	Casting	Grind	Phosphate
IIIE	CWC	EPC	N/A
IIIF	CWC	EPC	N/A
IIIG / MK160	CWC	EPC	EPC
IIIG / NF190	CWC	EPC	EPC
IIIG / NF200	CWC	EPC	Outside Vendor

Summary

- The IIIG wear test requires phosphate coated camshafts to eliminate scuffing and generate test results that correctly quantify an oils high temperature wear performance.
- controllable and meet our quality definition. NF200°F process variables are defined,

Attachment 9
Page 10
Reference

IIIG DATA

433-1 Results

Cam	ACLW	PVIS	WPD	Λd∀
MK	35.9	228.4	2.76	8.52
MK	62	149.6	2.37	7.19
NF	37.7	191	2.94	8.46
NF	98.9	TVTM	3.13	8.51

538 Results

Cam	ACLW	PVIS	WPD	APV
MK	14.2	117.3	3.7	8.93
МК	12.8	117.5	3.5	9.16
JN	16.8	118.9	3.3	9.04
NF	17.9	91.6	2.9	8.73
ΝF	Running			
JN	Running			

IIIG CCS & MRV DRAFT REVISION

13.6.1 For non reference oils run a Cold-Cranking Simulator (CCS) test (Test Method D5293) on the end-of-test (100 hour) drain at the temperature specified for the test oils given viscosity grade test at one grade higher (indicated by a five degree increase in temperature). Report CCS results, in Table 1 of SAE J300 Revised DEC1999. If a passing result is not obtained, run a second CCS both at original grade and one higher, if required, on Form 6, Used Oil Analysis Results, in the standardized report form set (See A6).

the Yield Stress in Pa and note the Apparent Viscosity as not measured (NM). If a Yield Stress is SAE J300, Rev. DEC1999A. Report the end-of-test Mini Rotary Viscometer test results as MRV record the Apparent Viscosity in cP. Report the results on Form 6, Used Oil Analysis Results, in Temperature in °C as follows. If a Yield Stress is obtained at the designated temperature, report recommended temperature, based on the passing used oil CCS result, using the table shown in not obtained at the designated temperature, report the Yield Stress as not measured (NM) and 13.6.2 Run the Mini Rotary Viscometer test (Test Method D4684), MRV-TP1, at the the standardized report form set (See A6).

Outliers section of Form 13 (See A6) indicating that the CCS and MRV were not run and enter not IIIG pass limit], the CCS and MRV tests are not required. If CCS is more than one viscosity grade change from original grade no MRV required. A notation is required in the Other Comments & 13.6.3 If the % Viscosity Increase for the kinematic viscosity at EOT is higher than [specified measured (NM) in the standardized report form set (See A6).

Request data dictionary changes.

Oil Filter Revision- The IIIG oil filter has been changed from the AC brand to a WIX #51040.

10

Attachment

Page Reference

Attachment	
Page	
Reference	

ADDENDUM K1

DRAFT TEMPLATE CHECKLIST

P	u	r	D	0	S	e

The Checklist for Comparing Tests to the Template is used to assess progress in new engine test development against the Code Acceptance Criteria and Action Plans. The checklist is updated periodically during the course of test development and is provided to, and discussed with, the appropriate ASTM test development task force.

The rating scale for comparing test development to the Template is as follows:

A -- Completed

B -- In Progress

C -- Planned

D -- No Action

A letter followed by an asterisk (*) indicates this item will be carried over from the IIIF.

Test Name Sequence IIIG

Assessment Date <u>11/5/2002</u>

American Chemistry Council Code of Practice Appendix K - Template for Acceptance of New Tests Checklist for Comparing Tests to the Template

Atta	chment	1
Pag	е	2
Rote	rence	

A. Precision, Discrimination and Parameter Independence

A.1 Precision

 $E_p = d_p/Spp$, $E_p \ge 1.0$ for all pass/fail parameters $d_p = Smallest$ difference of practical importance Spp = Pooled standard deviation at target level of performance

Parameter	dp	Spp	Ер	≥1.0?
Viscosity Increase (%)				
WPD				
APV				
ACLW			······································	
OC	7.015			
MRV	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Comments:

Oil Consumption and CCS will be included in the MAD Survey.

A.2 Discrimination

For each test parameter in A.1, at least one of the oils used in proof-of-concept testing, matrix testing, or calibration testing must be statistically significantly different from at least one of the remaining oils. This difference must be in the correct direction, i.e., a poor oil should not test out as significantly better than a good oil. Significant difference may be declared with a p-value of 10% or less. Multiple comparison techniques (Tukey, Scheffe, Bonferroni, etc.) for the least-square means of the oils are preferred comparison techniques and should be stated in the analysis. Note that these least-squares means are not necessarily proposed LTMS targets.

Attachment	11
Page	<u> </u>
Reference	

Parameter: Viscosity Increase

			p-value for t-test of equal means (Tukey)			
Oil	Least-Square Mean	95% Confidence Interval for Mean	Vs 1	Vs 2	vs 3	

Parameter: APV

			p-value for t-test of equal means (Tukey)			
Oil	Least-Square Mean	95% Confidence Interval for Mean	Vs 1	Vs 2	vs 3	

Parameter: WPD

				p-value for t-test of equal means (Tukey)		
Oil	Least-Square Mean	95% Confidence Interval for Mean	Vs 1	Vs 2	vs 3	

Parameter: ACLW

			p-value for t-test of equal means (Tukey)		
	Least-Square	95% Confidence	Vs	Vs	vs
Oil	Mean	Interval for Mean	1	2	3

Attachment	
Page	4
Reference	

Parameter: OC

			p-value for t-test of equal means (Tukey)		
Oil	Least-Square Mean	95% Confidence Interval for Mean	Vs 1	Vs 2	vs 3

Comments: These tables will be completed upon analysis of matrix data and selection of reference oils. MRV and CCS will most likely be added.

Attachment	
Page Reference	
11010101100	

A.3. Parameter Independence

Each pass/fail parameter has a unique and significant purpose in terms of the engine oil performance standard. Parameter independence is concluded if a correlation coefficient is 0.85 or less.

Pearson Correlation Coefficients for IIIG LTMS Matrix				7	
	TVIS	LAW	WPD	APV	OC
1/SQRT(Vis Inc): TVIS					
LN(ACLW): LAW					
Weighted Piston Deposits: WPD					
Average Piston Varnish: APV					
Oil Consumption: OC					

Pearson Partial Correlation Coeffic	cients for	IIIG LTM	S Matrix	7	
	TVIS	LAW	WPD	APV	OC
1/SQRT(Vis Inc): TVIS					
LN(ACLW): LAW				-	
Weighted Piston Deposits: WPD					
Average Piston Varnish: APV					
Oil Consumption: OC					

Comments: These tables are carry-overs from the IIIF. Transformation will be evaluated upon analysis of the data. MRV and CCS will most likely be added.

		Attachment	11		
В.	Severity and Precision Control Charting	Page	6		
		Reference			
	B.1 Is an LTMS for reference oil tests in place which is cons with CMA Code Appendix A?	istent _	B*		
	B.2 Are appropriate data transforms applied to test results?		_C_		
Comments: Transformations will be determined upon data analysis.					
C.	Interpretation of Multiple Tests				
	Requirements C.1 Is a suitable system in place to handle repeat tests on a candidate oil? Type: MTAC	-	_A*_		
	C.2 Has a method for the determination and handling of outlier results been defined?				
	Comments:				
D.	Action Plan		•		
D.	1 Reference Oils				
	Do the majority of reference oils represent current technolo	gy? _	_C_		
	Are the majority of reference oils of passing or borderline p performance?	ass/fail -	_C_		
Re	commended Approaches				
	D.1.1 Is reference oil supply and distribution handled throan independent organization?	ugh -	_A*_		
	D.1.2 Is a quality control plan defined and in place?	_	_A*_		
	D.1.3 Is a turnover plan defined/in place to ensure unintersupply of reference oil and an orderly transition to re-		_A*_		

D.1.4	F	Page 7
D.1.5	Are oils blended in a homogeneous quantity to last 5 years	?C_
Comn	nents: A GF-4 Reference Oil will be needed.	
D.2 Test	Parts	
Are al	l critical parts identified?	A*_
Is a sy	stem defined/in place to maintain uniform hardware?	A*_
Is the	re a system for engineering support and test parts supply?	A*_
	nded Approaches Are critical parts distributed through a Central Parts Distributor (CPD)?	A*_
D.2.2	Are critical parts serialized, and their use documented in test report?	A*_
D.2.3	Are all parts used on a first in/first out basis?	A*_
D.2.4	Are all rejected critical parts accounted for and returned to the CPD?	A*_
D.2.5	Does the CPD make status reports to the test surveillance body at least semi-annually?	A*_
D.2.6	Is there a QC and turnover plan in place for critical test particular including identification and measurement of key part attria a system for parts quality accountability, a turnover plan in place for simultaneous industry-wide use of new parts or supply sources?	ibutes,
D.2.7	Is the CPD active in industry surveillance panel/group, and in industry sponsored test matrices?	A*_
	nents: According to the test sponsor, the new phosphated CAMS zed. All other parts are carried over from the IIIF.	S will be

D.3 Test	Fuel	Attachment Page Reference	8
	mended Approaches Is the fuel specified and the supplier(s) identified?		A*_
Specified I	Fuels, Haltermann.		
Specified 1	Is a process in place to monitor fuel stability over tiguels sampling.	me?	A*_
	Are approval guidelines in place for fuel certification	on?	A*_
FTP Certi	fication process		
D.3.2	If the test fuel is treated as a critical part of the test Is an approval plan and severity monitoring plan for batch in place?		A*_
FTP Certi	fication process		
FTP Certi	Is a quality control plan defined and in place to ass term quality of the fuel? fication process	ure long	A*_
	Is a turnover plan defined, in place and demonstration uninterrupted supply of fuel?	ted to ensure	A*_
FTP Certi	fication process turnover plan		

Comments: The impact of fuel batch changes has been assumed to be non-critical.

D.	4 Test	Procedure	Attachment Page Reference	9
		mended Approaches		
	D.4.1	Is a technical report published documenting, per A	SIM FlowPla	an:
		Test precision for reference oils?		C
		Field correlation?		_D_
		Test development history?		_C_
	D.4.2	Are test preparation and operation clearly docume a standard format, e.g., ASTM, CEC	nted in	B
	D.4.3	Are test stand configuration requirements docume Standardized?	nted and	A*_
	D.4.4	Are milestones for precision improvements establi	shed	_D_
	D.4.5	Are routine engine builder workshops planned/co	nducted?	_C_
	Comn	nents:		
D.	5 Rati	ng and Reporting of Results		
	Recom	mended Approaches		
	D.5.1	Are the reported ratings from single raters (i.e. not from various raters)?	averages	A*_
	D.5.2	Is a suitable severity adjustment system in place?		B*_
	D.5.3	Is each pass/fail parameter unique and have a sigr purpose for judging engine oil performance?	aificant	C_
Ar	ı analys	is must be performed on the new data.		
	D.5.4	Do all rate and report parameters judge operationa in test interpretation or judge engine oil performan		p C_

	•		
		Attachment	_112
		Page Reference	_10
D.5.5	Are routine rater workshops conducted/planned?		B*_
Comn	nents:		
D.6 Calil	oration, Monitoring and Surveillance		
	mended Approaches Is a process in place for independent monitoring o precision with an action plan for maintaining calib all laboratories?		l A*_
D.6.2	Are stand, lab, and industry reference oil control of pass/fail criteria parameters used to judge calibrate		A*_
D.6.3	Does the specified calibration test interval allow no 15 non-reference oil test between successful calibration.	o more than ation tests?	_C_
D.6.4	Is an industry surveillance panel in place?		A*_
Comn	nents:		
D.7 Guid	delines for Read Across		
	mended Approaches Is a plan defined to establish data for development BOI and VGRA?	of	B
	nent: VGRA guidelines from IIIF will be carried over to Single Technology Matrix is planned for BOI.	the IIIG.	
D.7.2	Has VGRA and BOI data been summarized and in the technical report in D.4.1?	cluded in	C

RATING SCALE: A - Completed; B - In Progress; C - Planned; D - No Action A letter followed by an asterisk (*) indicates this item will be carried over from the IIIF.

Comments:

Motions & Action Items Sequence IIIF Surveillance Panel November 21, 2002 As Recorded at the Meeting by Ben Weber

- 1. Previous meeting minutes accepted in "good faith".
- 2. CRC rating functions are not clear at this point and into the future. A Task Force lead by Scott Parke of TMC with members of the SP chairs will be formed to look into coordinating the CRC and ASTM functions. In the meantime, ASTM/TMC will proceed with scheduling a February 2003 light-duty rating workshop.
- 3. It was suggested that a time limit be placed on when MRV and CCS samples need to be initiated. 72 hrs is suggested. Labs are encouraged to consult with their chemical analysis experts to see if that is acceptable.
- 4. See the meeting minutes from this meeting for the previous action items that are still open.
- 5. The TMC report was accepted as presented.
- 6. TMC was asked to investigate if there was any hardware issues that might explain the shift in WPD and APV severity that occurred during this reporting period.
- 7. Phil S and TMC will look into if the IIIF HD viscosity increase stats were incorrectly set given the huge cusumm severity shift in the severe direction. Or, are the severity adjustments taking care of the situation? Phil S found his earlier analysis of the targets, and after review of this data it was determined that there was no need to go back and review the initial targets. There was plenty of data that was used in generating these targets. Bill N will notify Jim McGeehan of this issue.
- 8. [Charlie L & Pat L] Motion to table the introduction of 1009 until the next Sequence III SP meeting. Passed unanimously.
- 9. The RSI report was accepted as presented.
- 10. Haltermann notified the SP that they have been periodically adding light ends to the EEE fuel. Haltermann will go back and let the SP know how many times with dates they have added light ends to the fuel, what percentage and what the material was (same request as in the VG SP meeting). It was decided that Haltermann should go back 3 years for this analysis.
- 11. [Bill N & Pat L] Motion was made to add a sulfur specification of 5 15 to the EEE test fuel. Passed unanimously.
- 12. The CPD report was accepted as presented. OHT did mention that they have recently changed vendors to try and improve the plating oxidation that sometimes occurs when the oil coolers set without use for a long period of time.
- 13. GM gave a short verbal report that was accepted as presented. Inventory levels are high at GM Motorsports. The front cover recently experienced a casting change that resulted in a rougher surface finish in some spots than in the past. GM will investigate this change further. There was not a new part number to distinguish this change.
- 14. In 60 days, Power Cool is no longer allowed unless the lab bought it before today or the supplier can prove that it is chemically identical to what is listed in the test method.
- 15. [Dwight B & Gordon F] Motion to accept part number 12568877 for the mass airflow sensor as equivalent to the current part number 24508238 pending Sid C's review. Passed unanimously.
- 16. [Dwight B & Charlie L] Motion was made to accept the Ingersall-Rand EVS125-10E as an equivalent alternative torque wrench. Passed unanimously.
- 17. Future action items for the O&H include:
 - Change to the flush cart to help prevent the re-circulation of casting sand during the flush
 - Standardization of the flush solvent
 - Batch concept/hardware control task force to generate Information Letter 60 type document
- 18. Sid C and Pat L will work to change the table on Form 5 entitled Oil Consumption Data to list the calculated oil consumption. The oil level and consumption worksheet will also be modified appropriately.
- 19. Sid C will continue to pursue the assembly manual revision system. It was suggested that this update take place quarter via electronic distribution through TMC similar to the Information Letter system.

Attachment 12 (continued)

- 20. Sid C and TMC will work on an upcoming motion and information letter regarding the control system clarification. This can be completed via e-mail ballot.
- 21. Bill N will notify the HD class panel chair that the IIIF HD reference oil will not happen at this time.
- 22. It was suggested that within the next couple of weeks, GM publish a test plan for future IIIG development work.
- 23. GM clarified the CCS and MRV test procedures. See the meeting minutes for the long details. This will require changes to the data dictionary.
- 24. The IIIG oil filter has been changed from an AC brand to a WIX #51040. We won't be running these WIX filters in IIIF testing for at least another six months.
- 25. Bill N will check with Chris May to see if the changes proposed today concerning the MRV and CCS procedures will take care of Chris' concerns.
- 26. GM will consider the continuation and use of photographs. GM stated that they will want to see photographs on every factor fill approval granted by GM. There were also concerns regarding LRI needs
- 27. Monica B questioned the 365kPa specification for fuel rail pressure. Is this a specification to run tests against? She noted that several labs run at a different specification. GM stated that the specification might be increased, but they will review this with their design people and get back to the group.