Measurement of Phosphorus Volatility Using TEOST MHT-4

Glenn A. Mazzamaro ESCIT Meeting October 4, 2006

Glenn A. Mazzamaro

Background: TEOST MHT-4 Protocol

adapted for P Volatility measurements

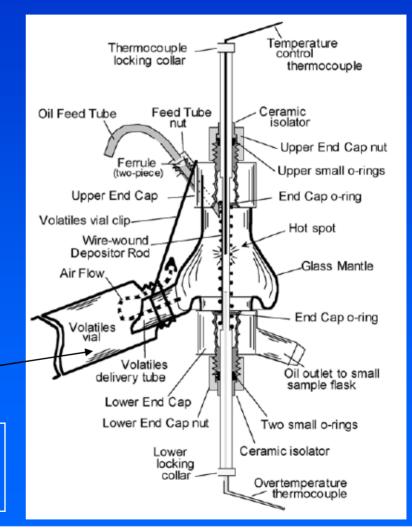
Description of Test Oils
P Volatility Calculations

% Phosphorus Retention (%PR)
Phosphorus Emissions Index (PEI)

Results & Conclusions

2

Background


- TEOST MHT-4 study conducted during 2006-2007 comprising over 30 runs
 - primary purpose to assess high temperature deposit performance of engine oils treated with antioxidant boosters (not originally intended for P volatility work)
- Tests conducted in-house per ASTM D 7097
- Data and samples collected during study allowed for post-assessment of phosphorus volatility

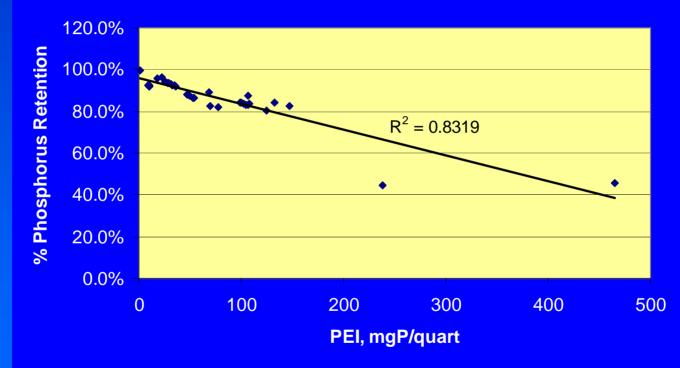
TEOST MHT-4 test overview

- Oil sample size: ~8.4 g
- Oil flow rate: 0.25 g/min
- Air flow rate: 10 mL/min
- Organo-metallic catalyst: 0.1 g (Fe/Pb/Sn)
- Rod temperature: 285°C
- Test length: 24 hours
- Volatiles collected, weighed and retained

MHT-4 is good model of crankcase oil being pumped into piston ring zone. Sump is turned over nearly 50 times during test

TEOST MHT-4 P Volatility protocol

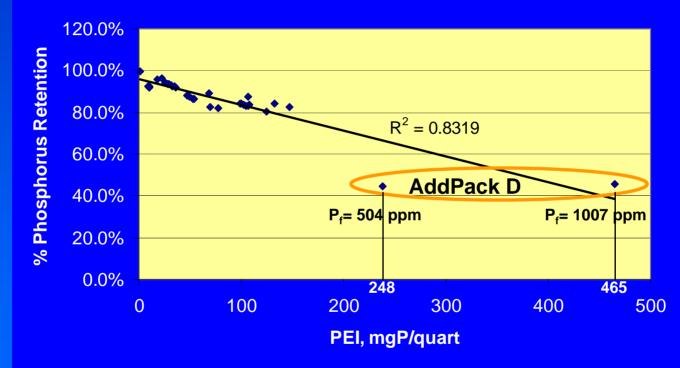
- Weight of sample and volatiles (g) determined (W_s , W_v)
 - Volatiles collected ranged from 2.2g to 5.0g (26% to 59% of fresh oil), with average of 3.4g (40% of fresh oil)
- P content (ppm) of sample and volatiles measured by ICP (P_s, P_v)
- Calculations:
 - % P volatilized = 100 x $(P_v W_v) / (P_s W_s)$
 - % P retention = (100 %P volatilized)
 - assumes all P that is not collected as volatiles is retained
 - PEI (mg P per quart of oil) = 0.85 ($P_v W_v / W_s$)
 - Phosphorus Emissions Index



Phosphorus Volatility via TEOST Test Oils (34 total)

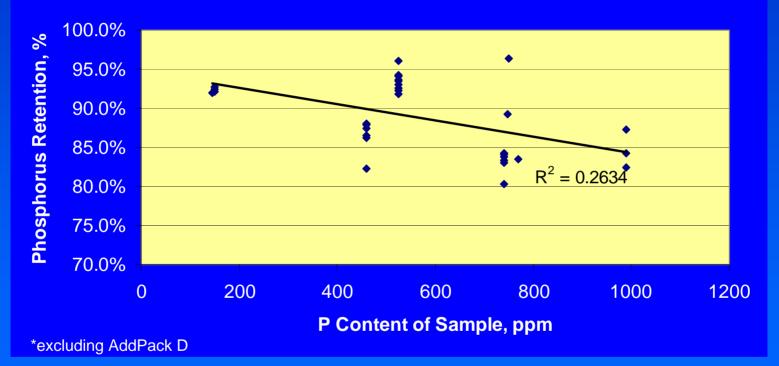
AddPack	SAE	Grade	#	Comment	
А	5W-20	GF-4	9	~500 ppm P	
В	15W-40	CD/SF	3	~1000 ppm P	
С	5W-20	GF-4	11	~500 & ~750 ppm P	
D	5W-20	GF-4	3	Short chain 1º ZDDP	
E	5W-20	GF-5	5	~150 ppm P	
PC-1	5W-20	GF-4	1	Commercial PCMO	
PC-2	5W-30	GF-4	1	Commercial PCMO	
PC-3	5W-20	GF-4	1	Commercial PCMO	

Phosphorus Retention vs. PEI

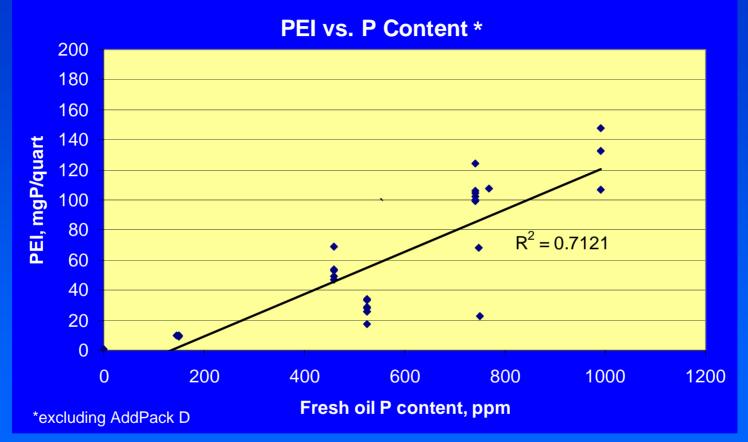


There is a relationship between %PR and PEI

- an engine oil with higher phosphorus retention gives lower PEI

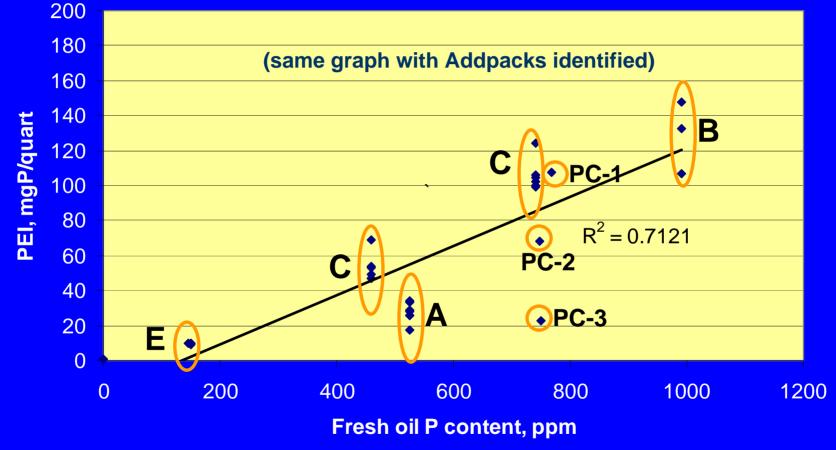

Phosphorus Retention vs. PEI

- PEI appears to relate directly to fresh oil P content
- %PR appears to be independent of fresh oil content

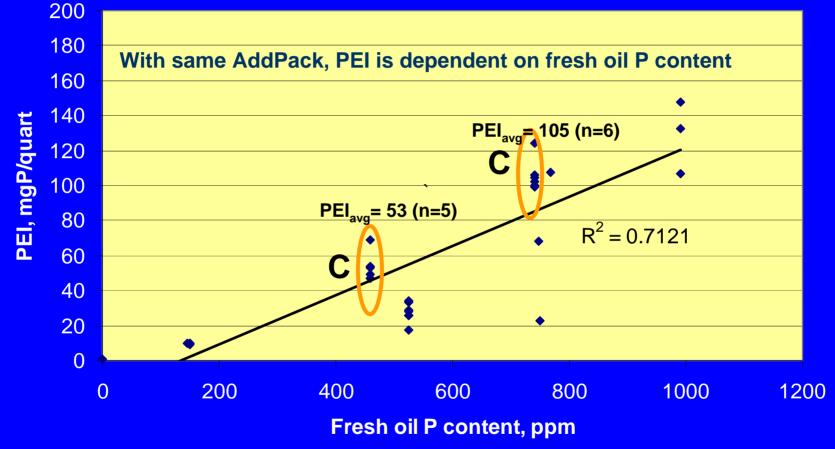


%P Retention vs. P Content*

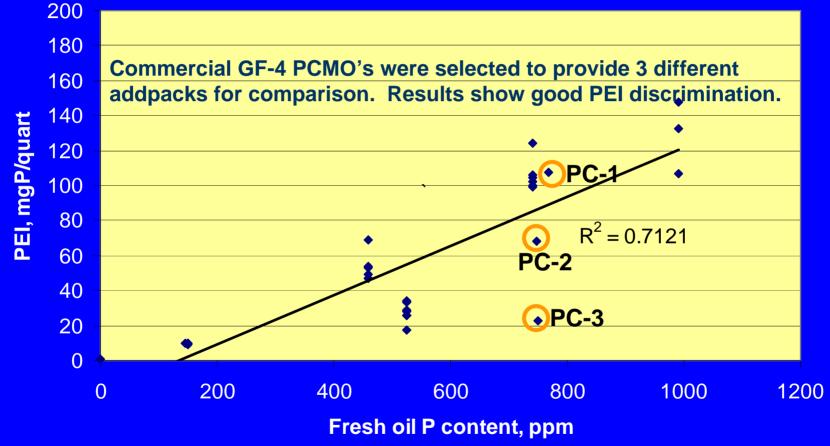
 There is no relationship between phosphorus retention and the phosphorus content of the fresh oil


There is a relationship between PEI and P content of the fresh oil

- the higher the fresh oil content, the higher the PEI


10

PEI vs. P Content



PEI vs. P Content

PEI vs. P Content

Test Precision

- One sample with AddPack C was run in duplicate
- One sample with Addpack A was run in triplicate
- Tests run on different days with same operator

AddPk	Wv	Pv	Wf	Pf	%PR	PEI	
А	2.59	138	8.42	~500	91.9%	36	
А	2.53	122	8.41	~500	93.0%	31	33.7 <u>+</u> 2.5 92.4% <u>+</u> 0.6%
А	3.65	93	8.43	~500	92.3%	34	
С	4.12	256	8.43	~750	83.1%	106	104 <u>+</u> 2.8
С	3.76	269	8.41	~750	83.7%	102	∫ 83.4%<u>+</u>0.4%

Conclusions

- TEOST MHT-4PV (phosphorus volatility) appears to have acceptable discrimination and precision to be considered by ESCIT as candidate test method for measurement of phosphorus volatility
- ASTM D 7097 is an existing test method which does not require further method development
 - already part of ILSAC GF-4 & API SL/SM specifications
- Further evaluation of ESCIT oils is warranted

Acknowledgement

 Many thanks to Mike Russo in RTV Petroleum Applications Laboratory for his help in organizing the TEOST MHT-4 testing, and to Dee Gomez in RTV Analytical Laboratory for ICP testing

