ExxonMobil Phosphorus Volatility Studies – 2/22/07 Update

ESCIT February 22, 2007

1

Presentation Overview

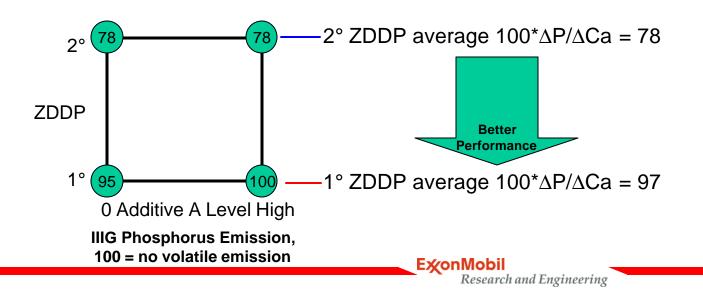
- Review previous ExxonMobil phosphorus volatility studies (9/28 ESCIT meeting)
 - Phosphorus volatility characteristics of a LMW 2°ZDDP vs a HMW 1°ZDDP
- Update using PEI₁₆₅₋₁₆
- PEI₁₆₅₋₁₆ methodology

XOM Phosphorus Volatilization Conclusions – 9/28

- Impact of HMW 1° & LMW 2° ZDDP on phosphorus volatilization in several tests was studied
- Literature, TGA, IIIG, VIB, Bulk oxidation test, & the ROBO test indicate that the LMW 2° ZDDP volatilizes more P than the HMW 1° ZDDP
 - Magnitude of Phosphorus loss varies for each test

PEI₂₅₀₋₁ ranking did not agree with other tests

 PEI₂₅₀₋₁ results found more P volatilized from the HMW 1° ZDDP than LMW 2° ZDDP


ExxonMobil Phosphorus Volatility 2/22 Update

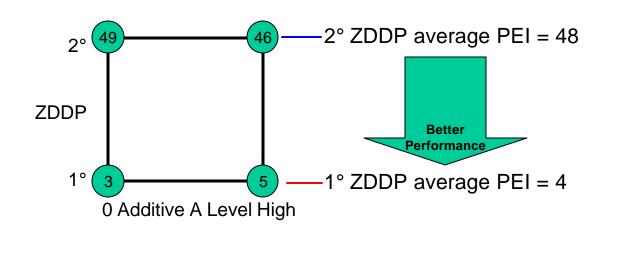
- 4 Oils previously reported with IIIG data were tested in the PEI₁₆₅₋₁₆ test
 - 0W-30 formulations
 - 0.075% P
 - 2 oils contain HMW 1° ZDDP
 - 2 oils contain LMW 2° ZDDP

Phosphorus Volatility - IIIG Data

IIIG oils studied

- 0W-30 formulations
- 0.075% P
- 2 oils contain HMW 1° ZDDP
- 2 oils contain LMW 2° ZDDP
- EOT sump oil analyzed
- Ca increase used as a marker
- Measure retained phosphorus [DP/DCa]*100
 - +100 = no phosphorus emissions (higher number is better)
- 1° ZDDP has significant P emission benefit over 2° ZDDP in the IIIG

Phosphorus Volatility – PEI₁₆₅₋₁₆ Data


IIIG oils studied

- 0W-30 formulations
- 0.075% P
- 2 oils contain High Molecular Weight (HMW) 1° ZDDP
- 2 oils contain Low Molecular Weight (LMW) 2° ZDDP

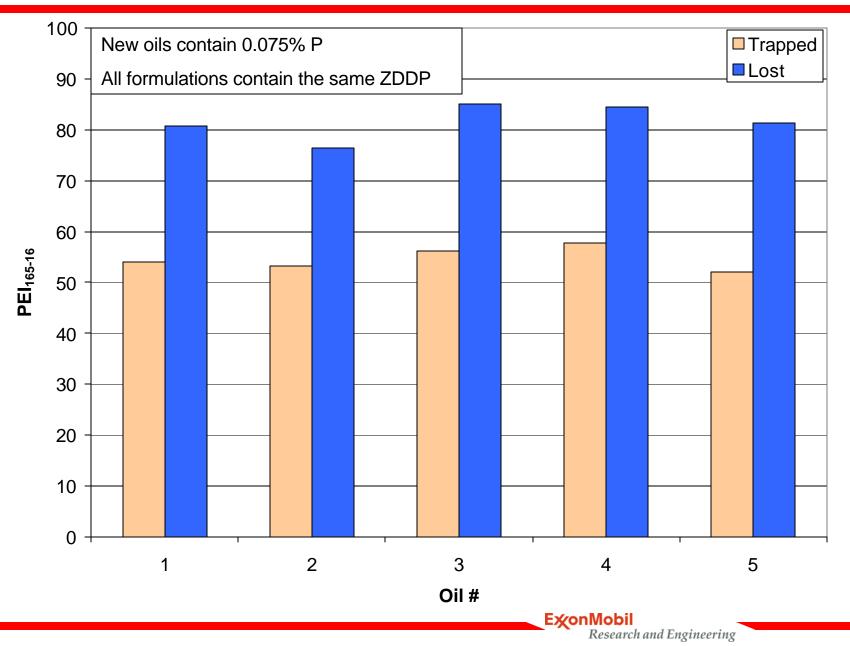
Phosphorus Emission Index (PEI) details

- Conditions = 165°C, 16 hours
- Units = (mg P volatilized) (855/65) (lower number is better)

1° ZDDP has significant P emission benefit over 2° ZDDP

Ex/onl

ExxonMobil Phosphorus Volatility Conclusions


- A HMW 1° ZDDP was found to volatilize less than a LMW 2° ZDDP in several bench & engine tests
 - IIIG
 - VIB (9/28 data)
 - ROBO (9/28 data)
 - ExxonMobil bulk oxidation test (165°C) (9/28 data)
- PEI testing at 250°C for 1 hour indicated that the HMW 1° ZDDP volatilizes more than a LMW 2° ZDDP
- PEI testing at 165°C for 16 hours indicated that the HMW 1° ZDDP volatilizes less than a LMW 2° ZDDP
- While additional studies are needed, the PEI₁₆₅₋₁₆ volatility ranking agrees with the IIIG, VIB, ROBO, & Bulk oxidation test
- Discrimination of phosphorus volatiles is possible with either a bench or an engine test
- These findings support the use of performance based tests to quantify the impact of phosphorus volatiles on TWCs

PEI₁₆₅₋₁₆ Methodology Considerations

- Current PEI₁₆₅₋₁₆ measures trapped phosphorus volatiles
 - How rigorous is the trap?
- Alternate approach is measuring lost phosphorus
 - Lost P = (Fresh oil P non-volatile P)
 - propagation of errors is a concern

Volatile Phosphorus Measurement Technique

PEI₁₆₅₋₁₆ Methodology Conclusions

Limited PEI₁₆₅₋₁₆ data indicates

- Strong correlation between Trapped P & Lost P
- Lost P values are ~40% higher
- Trap may not capture all P volatilized
- Additional studies are needed