### Southwest Research Institute <sup>®</sup>

### **Engine Lubricants Research Department**

**Update on SwRI's IR&D Program To Study Engine Oil Formulation Effects on Catalyst Poisoning in an Engine Dynamometer Test** 

**Presented to the GF-5** Emissions System Compatibility Improvement Team by **Scott Ellis** 



# **Recap of IR&D Project**

- One-year funding by SwRI started in July '05
- Initial test cycle had thermal & chemical degradation of catalyst, high speed/load, high catalyst temps
- First test extreme thermal degradation, unresolved
- Six-month extension granted in July '06
- Changed course to lower speed/load, lower catalyst temps in September '06



# Implemented Afton's Test Operating Conditions For Catalyst Aging

- 2000 rpm
- 65.5 kPa MAP
- Externally heated oil sump to 150 °C
- Catalyst inlet temp ~530 °C
- Target PCV rate ~110 L/min



- Replaced PCV valve w/pneumatic control valve
- Flowed PCV gases into impinger at -65 °C, 1000 sec
- Analyzed condensate collected for P, Ca, H<sub>2</sub>O





• Tested range of flow rates with OEM system

| PCV     | Р        | Ca       | P/Ca  | Sample  | H2O   | Oil     | Oil cons. |
|---------|----------|----------|-------|---------|-------|---------|-----------|
| flow,   | content, | content, | Ratio | mass, g | wt. % | mass, g | 240 hr,   |
| L/min   | ppm      | ppm      |       |         |       |         | Liter     |
| new oil | 981      | 2092     | 0.469 |         |       |         |           |
| 70      | 10       | 21       | 0.476 | 48      | 55.1  | 21.6    | 21.2      |
| 88      | 17       | 45       | 0.378 | 24      | 9.6   | 21.7    | 21.4      |
| 124     | 624      | 1429     | 0.437 | 193     | 25.4  | 143.9   | 141.8     |



- Revised PCV system configuration
- Routed fresh air directly into crankcase above oil level in two locations
- Evacuate PCV gases out of both rocker covers





#### • **Tested range of flow rates with revised PCV system**

| PCV     | Р        | Са       | P/Ca  | Sample  | H2O   | Oil     | Oil cons. |
|---------|----------|----------|-------|---------|-------|---------|-----------|
| flow,   | content, | content, | Ratio | mass, g | wt. % | mass, g | 240 hr,   |
| L/min   | ppm      | ppm      |       |         |       |         | Liter     |
| new oil | 981      | 2092     | 0.469 |         |       |         |           |
| 120     | 535      | 1129     | 0.474 | 72.7    | 21.3  | 57.2    | 54.2      |
| 100     | 11       | 12       | 0.917 | 12.6    | 86.4  | 1.7     | 1.6       |
| 110     | 15       | 12       | 1.250 | 12.9    | 97.8  | 0.3     | 0.3       |



- Measuring catalyst performance on the test stand
- Air-to-air heat exchanger for exhaust temp control

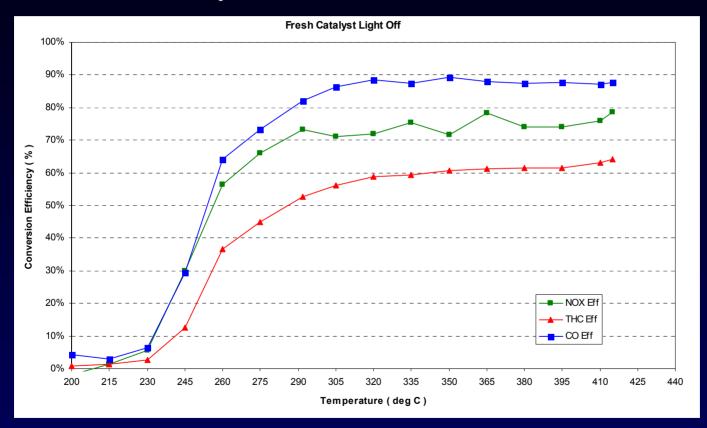




#### Huge amounts of air required

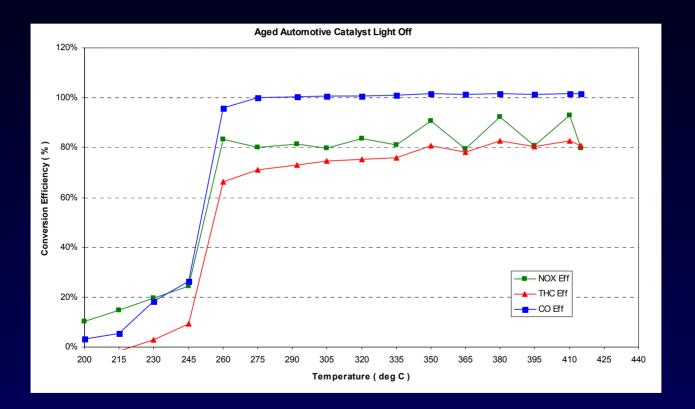





• Automated sampling process before & after catalyst



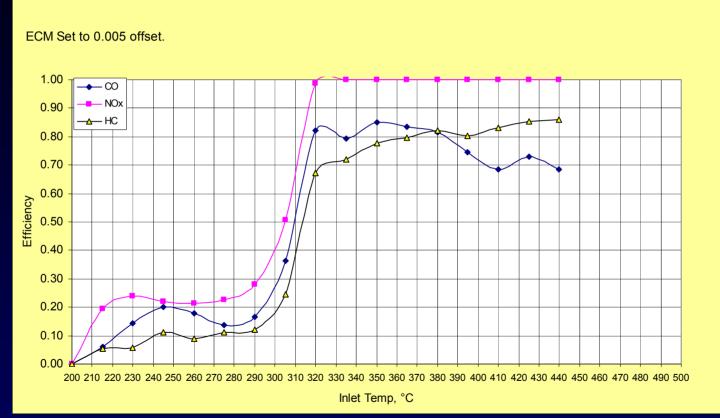



12 December 2006

#### **Practice catalyst** 0






#### **Used Catalyst from Afton**





12 December 2006

#### Afton's measurements on same catalyst





# **Future Plans**

- **Request 6 month extension for project**
- **Further revise PCV and light-off procedures**
- **Conduct Test Matrix** 
  - **Oil 33** 1.
  - **Oil 33 (with PCV diverted to atmosphere)** 2.
  - 3. **Oil 35 (no Phosphorus, discrimination?)**
  - **Oil 33 (repeat-check) 4**.

