ESCIT

Afton Catalyst Test and Other Related Issues for GF-5

Greg Guinther Afton Chemical August 8, 2006

ACT Goals and Conditions Quick Overview

- Goals
 - Discern relevance of PEI250 to catalyst protection
 - Develop knowledge base for volatility-related engine oil properties on catalyst protection
- Test Conditions
 - 240-hour test in "flush and run" 4.6L Ford V8
 - 10 oil changes
 - Steady-state aging at moderate catalyst inlet temperatures
 - 550C catalyst inlet temperature
 - 150C oil temperature
 - 122C coolant temperature
 - Catalysts tested before and after aging
 - "T50" calculated

Since last update

- Completed testing on zero-phos field test oil and compiled results.
- Evaluated oils with volatility level of GF-4 chemistry
- Developing possible recommendations for ESCIT

New and Aged Oil Properties

N	F	Λ	/
		VV	

AGED

FT Oil 32 FT Oil 33 FT Oil 34				
RB10357	RB10358	RB10360		
21	21	21		
15	46	0		
А	А	А		
984	0	973		
673	0	678		
200	201	195		
949	932	0		
1065	1055	1082		
RB10357	RB10358	RB10360		
1443	0	1244		
1006	0	856		
301	277	261		
1006	944	6		
1337	1365	1345		
	FT Oil 32 RB10357 21 15 A 984 673 200 949 1065 RB10357 1443 1006 301 1006 301	FT Oil 32 FT Oil 33 F RB10357 RB10358 21 21 15 46 A A 984 0 673 0 200 201 949 932 1065 1055 RB10357 RB10358 1443 0 1006 0 301 277 1006 944 1337 1365		

High PEI Low PEI					
RB10332					
15					
11					
A					
2139					
0					
0					
1019					
1159					
RB10332					
2503					
0					
0					
973					
1203					

Loss of Conversion Efficiency (T50)

As measured by the increase in temperature where 50% conversion efficiency occurs

GF-2-Style FT Oils				Comparison Oils		
Oil Code	FT 32	FT33	FT34		RB10331	RB10332
PEI250, mg/L	15	46	0		90	11
Pollutant						
HC	36	53	-1		19	35
CO	37	57	9		28	66
NOx	34	53	6		28	60

GF-4-Volatility PEI

✓ GF-2 Field Test oils were ranked according to Ford/Afton/Delphi SAE Paper.

X High PEI RB10331 had better performance than low PEI RB10332

T50 Hydrocarbon Comparison

T50 Carbon Monoxide Comparison

T50 NOx Comparison

Calculated Phosphorus Retention

From SAE 2002-01-2680 Calculation for % phos retention: $(Ca_{new} / Ca_{hrx})^*$ (Phos_{hrx}/Phos_{new}) *100

Calculated phosphorus retention*

Phosphorus Depletion Mechanisms

- Consistent with SAE 2004-01-2909, analysis of blowby condensate from ACT suggests at least three mechanisms for phosphorus depletion occurring in the engine
 - Volatilization of phosphorus from bulk oil
 - Volatilization of phosphorus from cylinder wall oil film
 - Consumption of oil mist
- Phosphorus throughput and resulting catalyst poisoning is a complicated mechanism dependent on oil formulation variables in addition to phosphorus volatility

Conclusions

- No strong evidence that PEI₂₅₀ relates to increased phosphorus throughput and resulting catalyst poisoning
- PEI₂₅₀ does not appear to be related to phosphorus retention when fully-formulated oils are considered.
- No indication that "Phos Retention" is related to catalyst protection
- Alkaline-earth metal detergents are carried out with blowby to varying degrees. In Afton testing the high PEI₂₅₀ oil carried out the most detergent chemistry.
- Observation in SAE 2002-01-2680 about elevated PEI₂₅₀ leading to increased catalyst poisoning is most likely related to lack of detergent.

Forward Plan

- Afton to work cooperatively with Savant, Inc to develop bench testing methodology that correlates with ACT and field.
- Goal is to have proposal for ESCIT by end of 2006.
- Note: Afton is willing to test limited number of outside oils with field data in ACT, in conjunction with SAVANT, with input from ESCIT.