T-12: Introducing new batch of parts
 Statistics group
 8/29/2023

Statistics Group

- Martin Chadwick, Intertek
- Min Chen, ExxonMobil
- Travis Kostan, Southwest Research Institute
- Jo Martinez, Chevron Oronite
- Sean Moyer, Test Monitoring Center
- Elisa Santos, Infineum
- Phil Scinto, Lubrizol
- Amanda Stone, Afton
- Amy Ross, Valvoline

Summary

Latest batch of parts:
Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown[W/ Y/ Z/ Q/ F randomized subgroups excluding subgroup A]

- Option 1: do nothing. There are only three data points and, in general, the current ICF is doing a reasonable job => recommended option
- Option 2: apply updated ICFs* for liner wear
- Option 3: apply updated ICFs* for Oil consumption
- Option 4: apply updated ICFs* for liner wear and Oil consumption
*additive or multiplicative
- as more data is gathered, another update can be done

Summary table

		Before and After ICF applied by parameter								
Predicted/ Target					additive ICF		multiplicative ICF			
ALW	In ALW	Lab	original ALW	In ALW	afterCF	Original scale after CF		afterCF	Original scale after CF	$\begin{aligned} & \text { Current ICF } \\ & 09 / 2021 \end{aligned}$ multiplicative
Predicted	3.5086	G	39.5	3.6763	2.9523	19.1	0.794	2.9190	18.5	
TARGET	2.7850	D	33.1	3.4995	2.7755	16.0		2.7786	16.1	0.7610
additive ICF	-0.7240	A	26.7	3.2847	2.5607	12.9		2.6081	13.6	
OILCON	$\begin{gathered} \text { ln } \\ \text { OILCON } \end{gathered}$	Lab	original OILCON	$\begin{gathered} \text { ln } \\ \text { OILCON } \end{gathered}$	afterCF	Original scale after CF		afterCF	Original scale after CF	
Predicted	4.4061	G	94	4.5433	4.2303	68.7	0.929	4.2207	68.1	0.907
TARGET	4.0930	D	72.2	4.2794	3.9664	52.8		3.9756	53.3	
additive ICF	-0.3130	A	86.1	4.4555	4.1425	63.0		4.1392	62.8	
ATRWL	Kеер current ICF as is									0.846
PB	Kеер current ICF as is									
PB2	Keep current ICF as is									

Liner Wear

ALW_ \& CLW vs. Cyl liner/ Top Ring

The updated ICFs are ICF = 0.724 (additive) ICF $=0.794$ (multiplicative)

ALW_ \& 3 more vs. Cyl liner/ Top Ring

- A

After current ICF = 0.761

After applying updated ICF Multiplicative ICF $=0.794$ to W/Y parts

After applying updated ICF Additive ICF $=0.724$
to W/Y parts

LN ALW	$\mathrm{n}=135$								
Expanded Estimates									
Nominal factors expanded to all levels							TARGET	multipl ICF	
						3.5086295	2.7850112	0.794	
Term	Estimate	Std Er	Rati	Prob>\|t					
Intercept	3.102492	0	71	<. 0001	1		additive ICF		
IND 2[PC10E/ 821]	-0.05985	0.1	-0.4	0.6614	1		0.724		
IND 2[821-1]	0.062011	0.1	0.8	0.4261	0				
IND 2[821-2]	0.097775	0.1	1.3	0.1919	0				
IND 2[821-3]	-0.02174	0.1	-0.2	0.8232	0				
IND 2[821-4]	-0.0782	0.1	-0.8	0.425	0				
LTMSLAB[A$]$	0.0757	0	1.8	0.073	0.25				
LTMSLAB[B]	0.072792	0	1.5	0.1468	0.25				
LTMSLAB[D]	-0.00539	0.1	-0.1	0.9222	0.25				
LTMSLAB[F]	-0.00255	0.1	-0	0.9777	0				
LTMSLAB[G]	0.106776	0	2.2	0.0268	0.25				
LTMSLAB[I]	-0.24733	0.1	-2.2	0.032	0				
Cyl liner/ Top Ring[$/$ /]	-0.45397	0.2	-2.9	0.004	0				
Cyl liner/ Top Ring [P/ P]	-0.16255	0.1	-1.2	0.2313	0				
Cyl liner/ Top Ring[R/R]	0.068866	0.1	0.6	0.5369	0				
Cyl liner/ Top Ring[S/R]	-0.55627	0.2	-2.6	0.0122	0				
Cyl liner/ Top Ring[S/ T]	-0.34196	0.1	-4	0.0001	0				
Cyl liner/ Top Ring[U/ U]	0.211912	0.1	1.6	0.1087	0				
Cyl liner/ Top Ring[V/ U]	-0.21052	0.1	-2.5	0.016	0				
Cyl liner/ Top Ring[V/ X]	0.537432	0.1	5.3	<. 0001	0				
Cyl liner/ Top Ring [W/X]	0.503543	0.1	4.4	<. 0001	0				
Cyl liner/ Top Ring[W/ Y]	0.403515	0.1	2.8	0.0066	1				

Top Ring Weight Loss

ATRWL_ \& TRWL vs. Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown*

After Current ICF=0.846
At this time, there is no need for updating the ICF

One test is lower than the other two results

Oil Consumption

The updated ICFs are ICF = 0.313 (additive)
ICF $=0.929$ (multiplicative) Before ICF

After Current ICF $=0.907$

After applying updated ICF additive ICF $=0.313$ to $\mathrm{W} / \mathrm{Y} / \mathrm{F}$ parts

After applying updated ICF multiplicative ICF $=0.929$ to W/Y/F parts

Lab

- A
- B
- F
-

OILCON
ゆ OILCON
† OCFNL官 0.313 additive ICF OILCON ㅁ 0.929 multip ICF OILCON
.

OILCON

Expanded Estimates									
Nominal factors expanded to all levels									
							TARGET	multipl ICF	
Term	Estimate	Std EI	Rati	Prob>\|t			4.4061122	4.093	0.929
Intercept	4.366335	0	209	<. 0001	1				
IND 2[PC10E/ 821]	-0.01522	0	-0.3	0.7585	1		additive ICF		
IND 2[821-1]	0.015656	0	0.6	0.5841	0		0.313		
IND 2[821-2]	0.021244	0	0.8	0.4408	0				
IND 2[821-3]	-0.02111	0	-0.6	0.5638	0				
IND 2[821-4]	-0.00058	0	-0	0.9886	0				
LTMSLAB[A$]$	0.022083	0	1.4	0.1529	0.25				
LTMSLAB[B]	-0.02967	0	-1.6	0.1135	0.25				
LTMSLAB[D]	-0.00735	0	-0.4	0.7173	0.25				
LTMSLAB[F]	-0.03232	0	-1	0.326	0				
LTMSLAB[G]	-0.03982	0	-2.1	0.0353	0.25				
LTMSLAB[I]	0.087089	0	2.1	0.0362	0				
*Cyl liner/ Top Ring/piston crown[N/ N/]	-0.23907	0.1	-3.7	0.0004	0				
*Cyl liner/ Top Ring/piston crown[P/P/]	-0.27417	0.1	-4.7	<. 0001	0				
*Cyl liner/ Top Ring/piston crown[R/R/]	-0.2111	0	-4.4	<. 0001	0				
*Cyl liner/ Top Ring/piston crown[S/R/]	-0.42442	0.1	-4.9	<. 0001	0				
*Cyl liner/ Top Ring/piston crown[S/ T/]	-0.11681	0	-3	0.0036	0				
*Cyl liner/ Top Ring/piston crown[S/T/ T]	-0.11615	0.1	-2	0.0434	0				
*Cyl liner/ Top Ring/piston crown[U/ U/]	0.160829	0	3.2	0.0016	0				
*Cyl liner/ Top Ring/piston crown[U/ U/ U]	0.245309	0.1	3	0.0036	0				
*Cyl liner/ Top Ring/piston crown[V/ U/]	0.160718	0	5	<. 0001	0				
*Cyl liner/ Top Ring/piston crown[V/ U/ A]	0.053386	0	1.2	0.2514	0				
*Cyl liner/ Top Ring/piston crown[V/ U/ B]	-0.03833	0	-1.1	0.2872	0				
*Cyl liner/ Top Ring/piston crown[V/ U/ C]	-0.01006	0	-0.3	0.7973	0				
*Cyl liner/ Top Ring/piston crown[V/ U/ U]	0.128239	0	3.6	0.0004	0				
*Cyl liner/ Top Ring/piston crown[V/X/D]	0.072899	0	2.2	0.029	0				
*Cyl liner/ Top Ring/piston crown[V/X/E]	0.158444	0.1	3.1	0.0025	0				
*Cyl liner/ Top Ring/piston crown[W/X/F]	0.177807	0.1	3	0.0039	0				
*Cyl liner/ Top Ring/piston crown[W/ X/ F494	0.20379	0	5	<. 0001	0				
*Cyl liner/ Top Ring/piston crown [W/ Y/ F]	0.068687	0.1	1.3	0.1828	1				

TRNDPB \& PB vs. Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown*

Pb Oil Consumption Correction

At this time, there is no need to propose new correction

TRNDPB \& PB vs. OILCON

Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown
N/N/L1/J/ •V/U/X/O/B
N/N/L/J/ •V/U/X/O/U
N/N/M/J/ •V/U/Y/P/C
N/N/M/K/
N/N/M/K/
N/N/N/K/
P/P/N/L/
T P/P/P/L/

- $P / P / P / M /$
- $P / P / R / M /$
- $R / R / R / M /$
- $R / R / R / M /$
- R/R/T/M1
- R/R/U/M1/
- S/R/U/M2/
- $\mathrm{S} / \mathrm{T} / \mathrm{W} / \mathrm{N} /$
- $\mathrm{S} / \mathrm{T} / \mathrm{W} / \mathrm{N} / \mathrm{T}$
- U/U/X/O/
- U/U/X/O/U
- V/U/X/O/
- V/U/X/O/A

TRNDPB2 \& PB2 vs. Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown*

Pb2 Oil Consumption Correction

At this time, there is no need to propose new correction

Before ICF

A
B

TRNDPB2 \& PB2 vs. OILCON
Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown

T N/N/L1/J/ •V/U/X/O/B
N/N/L/J/ •V/U/X/O/U
N/N/M/J/ \quad V/U/Y/P/C
T N/N/M/K/
N/N/N/K/ \quad V/X/Y/P/E
$P / P / N / L$-W/X/Y/P/F
T P/P/P/L/ - W/X/Y/P/F4945E
$\therefore P / P / P / M / \quad$? $W / Y / Z / Q / F 4945$
-P/P/R/M/ ? W/Y/Z/Q/F

- $R / R / R / M /$? $W / Y / Z / Q / F(S)$
- $R / R / R / M$
- R/R/S/M/
- R/R/T/M1/
- R/R/U/M1/
- S/R/U/M2/
- $\mathrm{S} / \mathrm{T} / \mathrm{W} / \mathrm{N} /$
- $\mathrm{S} / \mathrm{T} / \mathrm{W} / \mathrm{N} / \mathrm{T}$
- U/U/X/O/
- $\mathrm{U} / \mathrm{U} / \mathrm{X} / \mathrm{O} / \mathrm{U}$
- $\mathrm{V} / \mathrm{U} / \mathrm{X} / \mathrm{O}$
- V/U/X/O/A

Appendix 3: Equations for PB and PB2

PB

Determine the final Δ Lead at EOT result by applying the correction factor calculated according to the following equations:

If $\mathrm{OC}_{100-300}>65.0$
Δ Lead $_{\text {Final }}=\exp \left[\ln (\Delta\right.$ Lead $)+\left(65.0-\right.$ OC $\left.\left._{100-300}\right) \times 0.03234\right]$
If $\mathrm{OC}_{100-300} \leq 65.0$
Δ Lead $_{\text {Final }}=\Delta$ Lead
Where:
Δ Lead $=$ final Δ Lead at EOT
$\mathrm{OC}_{100-300}=$ average oil consumption

PB2

Determine the final Δ Lead (250 to 300) h by applying the correction factor calculated according to the following equations:

If $\mathrm{OC}_{100-300}>65.0$
Δ Lead (250-300) $)_{\text {Final }}=\exp \left[\ln (\Delta \operatorname{Lead}(250-300))+\left(65.0-\right.\right.$ OC $\left._{100-300}\right) \times 0.04089$
If $\mathrm{OC}_{100-300} \leq 65.0$
Δ Lead $(250-300)_{\text {Final }}=\Delta$ Lead $(250-300)$
Where:
Δ Lead (250-300) $=$ final Δ Lead (250 to 300) h
Δ Lead (250-300) $=$ value calculated per XXXX
$\mathrm{OC}_{100-300}=$ average oil consumption

Data Source

- Dataset - LTMS 08/09/2023
- Tests on Reference oil PC-10E/821 and re-blends
- Exclusions:
- Exclude tests with Chart = N (except W/Y/Z/ Q/F)
- Testkeys:
- 98459, 98867 (goofy tests)
- 109182 (thrown out in previous analyses)
- 110864 (VUXPB)
- Total number of tests: 135

General comments

- Latest batch of parts:
- Cyl.Liner/TopRing/Rodbearing/MainBearing/PistonCrown[W/ Y/ Z/ Q/ F randomized subgroups excluding subgroup A]
- Original precision matrix
- LTMS adopted use natural logarithm transformations for $\mathrm{Pb}, \mathrm{Pb} 2$, and OC.
- The most recent review adopted LN transformation for CLW and TRWL

