HEAVY-DUTY ENGINE OIL CLASSIFICATION PANEL

OF ASTM D02.B0.02 December 7, 2021 Anaheim Marriott – Anaheim, CA

THIS DOCUMENT IS NOT AN ASTM STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. *COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959.*

ACTION ITEMS

1.0 Call to order

MINUTES

- 1.1 The Heavy-Duty Engine Oil Classification Panel (HDEOCP) was called to order by Chairman Shawn Whitacre at 1:30p.m. on Tuesday, December 7, 2021, in the Grand Ballroom C/D of the Anaheim Marriott in Anaheim California.
- 1.2 There were 14 members present and 55 guests present. The attendance list is included as **Attachment 2.**
- 2.0 Agenda
 - 2.1 The agenda circulated prior (included as Attachment 1) was not changed.
- 3.0 Minutes
 - 3.1 The December 12, 2019, minutes were approved as written.

4.0 Membership

4.1 Dave Taylor of Phillip 66 was added as a member.

5.0 TMC Update; Attachment 3

5.1 No verbal update.

6.0 CLOG Update- Brent Calcut. Attachment 4

- 6.1 Working on 4 HDEO topics, Mack T-12 ring / liner, Mack T-12 Lead, Mack T-11 & T-11A and C13 / 1N redundancy.
- 6.2 T-12 is required for all API "C" categories. CLOG needs to establish equivalency for these categories. They are also working on merit equivalency.
- 6.3 SAE paper 2005-01-3713 was referenced as a history on the development of the Mack T-12. The paper states that intake manifold temperature was used for liner corrosion and not intake manifold pressure.
- 6.4 Higher soot was typical before SCR technology was introduced to reduce NOx.
- 6.5 CLOG current Status
 - 6.5.1 Volvo T13 is not a viable option since it does not generate same wear as T-12.

- 6.5.2 ACC data shows a correlation with ISB cam lobe wear.
- 6.5.3 Ford 6.7 was also considered to replace the T-12 but the test is still new and more data would be required to fully assess any correlation.
- 6.6 CLOG members asked if a valve train wear test can be used to correlate ring and liner wear. There were low comfort levels.
- 6.7 Data provided to ACC shows a bit of relationship between T-12 and ISB, not perfect. Analysis needs more study.
- 6.8 API and EMA members could identify a set of tests that could correlate back to T-12.
- 6.9 Lead parameter originally used T9 test. Prior to CH-4 the Sequence VIII was used.
- 6.10 Can the T13 be used as a corrosion test?
- 6.11 Request ACC for Volvo T13, HTCBT and Sequence VIII data for comparison.
- 6.12 CLOG is investigating the Mack T8E and the Mack T-11. Replacement tests will be required for all existing 'C' categories.
- 6.13 ISM and ISB are similar as they produce as much soot as the T-11.
- 6.14 No data exist for T-11A. Need to create a proposal to collect MRV data from ISM and ISB.
- 6.15 Caterpillar requested CLOG to study redundancy of Cat 1N to C13.
- 6.16 PC-11 TF did not do much digging for redundancy, mainly because there was no real incentive to eliminate the 1N, but now there may be.
- 6.17 In summary
 - 6.17.1 Not easy to find replacements for Mack tests. Still looking for ideas
 - 6.17.2 RFWT followed a similar exercise as CAT tests. Re-analyzed old data and found support to for redundancy and advised that test is not needed for future categories.

7.0 COAT/EOAT Compatibility Study- Bob Warden. Attachment 5

- 7.1 Coat and EOAT compatibility, looking to use COAT to replace EOAT test.
- 7.2 3 labs ran tests on 1005-5. Found weird dip in data. Labs found operational data was good and the only unexpected thing was the oil.
- 7.3 New oil supplied. 1005-6
- 7.4 SwRI ran new oil, oil seems to respond well but still unsure if its compatible to EOAT
- 7.5 Next steps re-run matrix
- 7.6 Looking to mid next year to provide data for resolution.
- 7.7 Hope to have resolution by next meeting on new oil. To have limits established.
- 7.8 **Question:** Who will be paying for the new tests? **Answer:** API helped but will need to ask again for funding of the new matrix.
- 7.9 **Question**: Is the new oil the resolution? **Answer:** Only one run at the moment, however the one data point looks good. All three labs showed same anomaly on the old oil which led them to believe the oil is the issue.
- 8.0 Elastomer Compatibility- Joe Franklin, and Robert Stockwell. Attachment 6
 - 8.1 Original discussion was to use SL107, not the same oil but similar. Suggest using fixed limits vs variable limits. Data analysis was used to come up with fixed limits.
 - 8.2 Proposed limits were based on calculations.
 - 8.3 The new proposal limits make it easy to understand if a test passed or failed.
 - 8.4 Slide14, shows difference in both oils.
 - 8.5 Rest of slide show very good similarities.
 - 8.6 **Question:** Was industry stats group used to review data? **Answer:** Simple answer, yes. stats group need more time to look at data.
 - 8.7 Question: From EMA perspective what is the preference? Answer: No clear definition
 - 8.8 A Request was made for EMA on which method they preferred since 1006 is almost out?
 - 8.9 **Question:** Should the stats group officially be asked? Simple answer is yes.
 - 8.10 Shawn W will ask to get data for June ASTM
 - 8.11 **Comment:** Variable limits account for variability in elastomer. Need to consider this before setting fixed limits.

- 8.12 Next steps, entire stats group to evaluate and proposal and data will be reviewed with EMA directly to help them better understand the two scenarios. No motion or vote required at this time.
- 9.0 No New business
- 10.0 Next Meeting
 - 10.1 The next meeting is scheduled for June 28, 2022, at the Hyatt Regency in Seattle Washington, or at the call of the Chair.
- 11.0 The Meeting was Adjourned at 2:37 p.m. PST

AGENDA D02.B0.02.1 Heavy-Duty Engine Oil Classification Panel Tuesday, December 7, 2021 1:30pm PST Anaheim Marriott Anaheim, California USA

1) Call to Order/Anti-trust statement

2) Minutes – Approval of Minutes from December 10, 2019 Meeting in New Orleans, LA USA

3) Membership

a) Review current panel membership

4) Existing tests/categories

- a) Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories (Sean Moyer, TMC)
- b) CLOG Update (Brent Calcut, Afton)
- c) EMA Perspective on Test Replacement Needs/Priorities (Tia Sutton, EMA)
- d) EOAT/COAT Update (Hind Abi-Akar, Caterpillar)

5) Old Business

a) EOEC Fixed limits (Joe Franklin, Intertek)

6) New Business

7) HDEOCP Adjournment (transition to DEOAP)

LastName	FirstName	Company	Business Phone	E-mail Address
Abi-Akar	Hind	Caterpillar Inc.	309-578-9553	abi-akar_hind@cat.com
Alessi	Michael	ExxonMobil F&L	856-224-2309	michael.l.alessi@exxonmobil.com
Andersen	Jason	PACCAR Technical Center	360-757-5324	jason.andersen@paccar.com
Ansari	Matthew	Chevron Lubricants		ansa@chevron.com
Barnhill	William	Chevron	951-626-3645	william.barnhill@chevron.com
Birnbaumer	Laura	Chevron Oronite	510-242-59942	labi@chevron.com
Boese	Doyle	Infineum	908-474-3176	doyle.boese@infineum.com
Bowden	Jason	OH Technologies, Inc.	440-354-7007	jhbowden@ohtech.com
Bowden	Matthew	OH Technologies	440-354-7007	mjbowden@ohtech.com
Brass	David	Infineum	908-474-3374	david.brass@infineum.com
Calcut	Brent	Afton Chemical Corporation	248-350-0640	brent.calcut@aftonchemical.com
Campbell	Bob	Afton Chemical Corporation	804-788-5340	bob.campbell@aftonchemical.com
Castanien	Chris	Neste Corp	440-290-9766	chris.castanien@neste.com
Cisneros	Lizbeth	Motiva Enterprises, LLC	713-751-3756	lizbeth.cisneros@motiva.com
Сох	Gordon			
DeBaun	Heather	Navistar, Inc.	331-332-1285	heather.debaun@navistar.com
Deegan	Michael	Ford Motor Co.	313-805-8942	mdeegan@ford.com
Denton	Vicky	Fuels & Lubes Asia		editor@fuelsandlubes.com

LastName	FirstName	Company	Business Phone	E-mail Address
Donndelinger	Vince	The Lubrizol Corporation	440-347-6589	vince.donndelinger@lubrizol.com
Evans	Joan	Infineum	908-474-6510	joan.evans@infineum.com
Farber	Frank	ASTM - TMC	412-365-1030	fmf@astmtmc.cmu.edu
Franklin	Joe	Intertek Automotive Research	210-523-4671	joe.franklin@intertek.com
Gaal	Dennis	ExxonMobil Research and Engineering	856-224-2240	dennis.a.gaal@exxonmobil
Gao	Hong	Shell	281-544-7243	hong.gao@shell.com
Gbadamosi	Muibat	Royal Purple	713-705-9197	mgbadamosi@royalpurple.com
Girard	Luc	Sanjuro Consulting	647-648-9704	lgirard@sanjuroconsulting.com
Goodrich	Barb	John Deere	319-292-8007	GoodrichBarbaraE@JohnDeere.com
Haffner	Steve	SGH Consulting / NOVVJ		sghaffner2013@gmail.com
Harmening	Jeff	API	202-682-8310	harmeningJ@api.org
Haumann	Karin	Shell	281-544-6986	karin.haumann@shell.com
Hsu	Jeffrey	Shell	281-544-8619	j.hsu@shell.com
Jetter	Steven	ExxonMobil	908-335-3774	steven.m.jetter@exxonmobil.com
Johnson	Andrew	AG Processing Inc		ajohnson@agp.com
Kalberer	Eric	Shell	346-814-0224	eric.kalberer@shell/com
Koglin	Cory	Afton Chemical Corporation	248-996-0386	cory.koglin@aftonchemical.com
Kostan	Travis	SwRI		travis.kostan@swri.org

LastName	FirstName	Company	Business Phone	E-mail Address
Kress	Kyle	Phillips 66	832-765-5760	kyle.r.kress@p66.com
Kunselman	Michael	Center for Quality Assurance	248-234-3697	mkunselman@centerforqa.com
Lanctot	Dan	TEI	210-933-0301	dlanctot@tei-net.com
Laroo	Chris	EPA		laroo.chris@epa.gov
Laufer	Caroline	Infineum	347-423-6445	caroline.laufer@infineum.com
Lee	David	Chevron Oronite	925-548-1281	david.lee@chevron.com
Lochte	Michael	Southwest Research Institute	210-522-5430	mlochte@swri.org
Loop	John	The Lubrizol Corporation	440-347-5365	john.loop@lubrizol.com
Martinez	Jo	Chevron Oronite	510-242-5563	jogm@chevron.com
Matasic	Jim	The Lubrizol Corporation	440-347-2487	james.matasic@lubrizol.com
Moyer	Sean	Test Monitoring Center	412-365-1035	sam@astmtmc.cmu.edu
Murphy	Edward	Valvoline	859-699-2149	ermurphy@valvoline.com
Neal	Suzanne	Daimler Trucks NA	313-592-7130	suzanne.neal@daimler.com
O'Ryan	Bill	The Lubrizol Corporation	440-347-4545	william.oryan@lubrizol.com
Purificati	Darryl	Petro-Canada Lubricants Inc.	226-387-1790	darryl.purificati@petrocanadalsp.com
Qin	Wein	Cummins Inc.		
Ramos	Adam			
Rodgers	Jennifer	ASTM		jrodgers@astm.org

LastName	FirstName	Company	Business Phone	E-mail Address
Siebert	Nathan	General Motors	248-343-7274	nathan.siebert@gm.com
Smith	Andrew	Intertek Automotive Research	210-823-8501	andrew.c.smith@intertek.com
Stevens	Andrew	The Lubrizol Corporation	440-227-2517	and rew.stevens@lubrizol.com
Stockwell	Robert	Chevron Oronite	210-232-3188	robert.stockwell@chevron.com
Styer	Jeremy	Vanderbilt Chemicals	848-234-7176	jstyer@vanderbiltchemicals.com
Sutton	Tia	EMA	312-929-1976	tsutton@emamail.org
Swedberg	S.	Consultant	623-551-4220	steveswedberg@cox.net
Tang	Haiying	Fiat Chrysler Automobile	248-512-0593	haiying.tang@fcagroup.com
Taylor	Dave	Phillip 66		dave.taylor@p66.com
Tonhel	Bruce	Valvoline	901-603-6541	bruce.tonhel@valvoline.com
Van Hecke	Mike	Southwest Research Institute	210-522-5495	mvanhecke@swri.org
Vega	Juan	Intertek Automotive Research	210-269-6959	juan.vega@intertek.com
Warden	Robert	Southwest Research Institute	210-522-5621	robert.warden@swri.org
White	Garrett	Intertek Automotive Research	254-931-9661	garrett.white@intertek.com
Willis	Angela	Willis Advance Consultant	734-904-7714	angelawillis@willisadvanceconsulting.com

D02.B0.02 Maintenance Report

December 2021

ALL TEST CANDIDATE ACTIVITY

Attachment 3; Page 2 of 12

Calibrated Labs and Stands*

Test	Labs	Stands
IK	I	I
IN	3	5
IM-PC	0	0
IP	0	0
IR	L	I
CI3	2	2
ISB	4	5
ISM	3	3
EOAT	I. I.	L
RFWT	2	2
T-8/E	I. I.	L
T-11	2	4
T-12/T-12A	3/3	3/3
T-13	4	6
COAT	2	2
DD13	3	3

*As of 09/30/2021

Availability of API CH-4 through CJ-4 Tests

Test	Hardware Issues	Availability Through 2024	Notes
IK/IN	Auxiliary components	Likely	Ongoing resolution of issues with stand auxiliary systems and miscellaneous components.
IP/IR	No current issues	Likely	None
CI3	No current issues	Likely	Engine block, injectors, turbos only available through reman.
COAT	None	Likely	

Additional Caterpillar Test Issues

> IMPC

Reference oil supply remaining for 1 test. Reference oil can not be re-blended. Test will be unavailable once reference oil supply is depleted.

> COAT

EOAT to COAT correlation testing in progress. New testing to commence in IQ 2022.

CATERPILLAR CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests

Test	Hardware Issues	Availability Through 2024	Notes
Т-8	No current issues	Likely	Engine block supply limited. Final liner batch ordered to take test to 2026
T-11	Liners, Pistons, Rings	Likely	Initial coordinated references on new FINAL liner batch showed higher than historic norm oil consumption. Testing found combination of batched hardware with acceptable oil consumption.
T-12	Liners, Pistons, Rings	Likely	Initial coordinated references on new FINAL liner batch showed highest ever Stage I oil consumption. Testing found combination of batched hardware with acceptable oil consumption.
T-13	Cylinder head	Likely	Cylinder head no longer in production and panel investigating whether superseding part is acceptable for test. Multiple other "out of production" parts identified.

MACK CANDIDATE ACTIVITY

Attachment 3; Page 8 of 12

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2024	Notes
ISM	None	Likely	None.
ISB	None	Likely	None.

CUMMINS CANDIDATE ACTIVITY

Attachment 3; Page 10 of 12

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2024	Notes
RFWT	None	Likely	Long term supply of test parts at CPD. 6.5 L engine no longer in production at AM General, but available through supply network. Injection pump still available.
EOAT	Using last engine block	No	Oil Temperature runs higher w/ current EOAT engine. Working on EOAT / COAT correlation.

B2 Action Items

No Action Items

> Comments

CLOG Update at ASTM

Dec. 7, 2021

CLOG HDEO Topics

- Mack T-12 Ring/Liner
- Mack T-12 Lead
- Mack T-11 & T-11A
- C13 and 1N

Mack T-12 Equivalency

• Mack T-12 is required in all current API 'C' categories

	Target Test & Parameter(s) for Tie-Back
Test	Parameters
	Average Liner Wear, normalized to 1.75 % soot, μm ma
Т-9	Average Top Ring Mass Loss, mg max
	EOT Used Oil Lead Content less New Oil Lead Content,
	Liner wear, µm, max
T_10	Ring wear, mg, max
1-10	Lead content at EOT, mg/kg, max
	Merit rating, min
	Liner wear, µm, max
T_12	Top Ring Mass Loss, mg, max
1-12	Lead content at EOT, mg/kg, max
	Merit rating, min

1000 merits, min. Different rating systems

CK-4 backwards compatibility also expected in PC-12A

Mack T-12 Ring/Liner Mechanism

- Mack T-10 and T-12 developed for similar wear mechanism based on SAE 2005-01-3713
 - "Acid condensate in the cylinder wall film may contribute to corrosive wear of piston ring and cylinder liner surfaces." (regarding Mack T-10)
 - "From 2007 2009, engine manufacturers will use higher EGR rates to reduce NOx." (regarding Mack T-12)
 - "Phase 1 intake manifold and coolant temperatures were chosen to cause condensation to occur at the cylinder wall and not in the intake manifold."

	Phase 1 EGR	Phase 2 EGR	Soot after Phase 1	Soot after Phase 2
Mack T-9	0%	0%	1.5-2.0%	2.0-2.5%
Mack T-10	16.5%	2.5%	5.0±0.3%	5.5±0.3%
Mack T-12	35%	15%	4.3±0.3%	6.0±0.3%

Mack T-12 Ring/Liner Wear

- CLOG current status:
 - Volvo T-13 is not a viable option

 - CEC TDG-L-116 is not a viable option and its future is uncertain ACC data shows a correlation with ISB cam lobe wear (next slide) • Ford 6.7L was mentioned; no comparison data available
- CLOG members discussed trying to correlate ring and liner wear to a valvetrain wear test (either ISB or 6.7L)
 - Mechanisms are different; limited support voiced for this approach
- CLOG is open to suggestions for other potential wear tests

PAPTG HDD Test Redundancy Analysis

T-12 cylinder liner wear vs ISB camshaft lobe wear As T-12 moves in passing direction, ISB moves in passing direction

Status: Mack T-12 Ring/Liner Wear

- A replacement test will be required to license all existing 'C' categories No existing wear tests produce enough ring or liner wear to replace T-12
- 1. Minimal interest to attempt statistical correlation to a valvetrain wear test parameter with a different wear mechanism
- 2. API and EMA members could identify a replacement test or tests that provide equivalent wear protection and declare it backwards compatible with previous categories
 - Direct correlation with T-12 ring and liner wear is not necessary

Mack T-12 Lead Mechanism

- Mack considers the lead parameters as both corrosion and oxidation related "Ultimate the 500 hour test length and bearing corrosion allowed Mack T-9 test to replace the gasoline fueled L-38 (Seq. VIII) test as the bearing wear test in the API CH-4
 - category."
 - Regarding the Mack T-10, "In addition acid condensates can be transported into the crankcase." and "Mack indicated the heat rejection to the crankcase lubricant could increase by 30 to 40% due to the addition of cooled EGR. This would drive up oil temperatures ..."
 - Regarding the Mack T-12, "Mack decided that a new ring and liner wear / oxidation test would be necessary ..."

	Phase 2 Oil Gallery Temp, °C	Phase 2 Oil Sump Temp, °C
Mack T-9	105	110
Mack T-10	113	118
Mack T-12	116	129

Mack T-12 Lead

- A replacement test will be required to license all existing 'C' categories
- No existing tests generate enough lead to replace T-12
 - and KV40 % Increase, confirming that lead increase is driven by oxidation
- Requested ACC CETAG to collect existing data comparing:
 - Volvo T-13
 - Consider limits at shorter test length
 - HTCBT
 - Seq. VIII

In CK-4, T-12 Lead is replaced by T-13 measuring Oxidation using IR Peak Height

TABLE A5.2 Mack T-12 Merit System							
	Cylinder Liner Wear, µm	Top Ring Mass Loss, mg	Delta Lead, Final mg/kg	Delta Lead, (250 – 300) h mg/kg	Oil Consumption, g/h		
Weight (Total =	250 : 1000)	200	200	200	150		
Maximum	24.0	105	35	15	85.0		
Anchor	20.0	70	25	10	65.0		
Minimum	12.0	35	10	0	50.0		

ASTM D4485

Mack T8E/T-11 Equivalency

Mack T-8E or Mack T-11 is required in all current API 'C' categories

Target Test & Parameter(s) for Tie-Back			Categories at Stake if Tie-Back Not Established				
Toct	Daramotors	CH-4	CI-4	CI-4 PLUS	CJ-4	CK	
TESt	Relative Viscosity at 4.8 % Soot by TGA max			_		_	
Ext. T-8E	Viscosity increase at 3.8 % Soot by TGA, mm2/s, max		-	_	-	-	
T-11	TGA % Soot at 4.0 mm2/s increase, at 100 °C, min	_	-		\checkmark	V	
	TGA % Soot at 12.0 mm2/s increase, at 100 °C, min	_	- ($\mathbf{\overline{\mathbf{A}}}$		
	TGA % Soot at 15.0 mm2/s increase, at 100 °C, min	_	_		$\mathbf{\overline{\mathbf{A}}}$	V	
T-11A	Sooted Oil MRV TP-1, D6896 Viscosity at 180h	-	-			V	
	Yield Stress of 180h used oil sample	_	-		\mathbf{V}	\checkmark	

Status: Mack T-8E/T-11

- A replacement test will be required to license all existing 'C' categories
- Cummins ISM and ISB tests produce nearly as much soot as the T-11
- ISB, which generate nearly as much soot as T-11
- Requested ACC CETAG to collect data comparing T-11, ISM and ISB
- No data exists comparing used oil MRV from ISM or ISB to T-11A
 - A proposal of when to collect used samples and test matrix are needed
 - T-11 replacement and sooted oil MRV tests need not be the same

CLOG will compare viscosity increase at given soot levels in Cummins ISM and

Status: Cat 1N

- Caterpillar requests that CLOG update the 2013 study on redundancy between C-13 and 1N deposit tests
 - PC-11 Redundancy TF evaluated C-13 v. 1N in 2013. Most data supports
 - Concept: if new data show redundancy, 1N may not be needed for PC-12
- Requested ACC CETAG to collect data comparing C-13 and 1N

redundancy. A few data points passed on C-13 Merits but failed 1N parameters.

Summary

- a significant challenge
 - We have eliminated some options and continue to pursue others
- Thanks to CLOG membership for input so far
 - We are open to more ideas, if anyone has any suggestions
- take several months. We appreciate CETAG's support.

Identifying replacement tests for the Mack T-12 and T-11 is proving to be

Suggestions and volunteers to explore new or different ideas are encouraged

Requests for comparison data to ACC CETAG are pending and expected to

COAT/EOAT Compatibility Study

SOUTHWEST RESEARCH INSTITUTE®

December 2021 Update

FUELS & LUBRICANTS RESEARCH

©SOUTHWEST RESEARCH INSTITUTE

swri.org

1

Background

- The Caterpillar Oil Aeration Test (COAT) replaced the Engine Oil Aeration Test (EOAT) for CK/FA-4 aeration protection
- The EOAT uses a half model-year engine from 1994, difficult to find at this point
 - Last few have been pulled from salvage yards
- Need to establish equivalency from COAT to EOAT exists

	EOAT	COAT
Introduced	CG-4	CK/FA-4
Engine	MY94 7.3L	C13
Duration	20 Hours	50 Hours
Measurement Method	Graduated Cylinders	Real-time Density
D4485 Limit	10.0% (CG) or 8.0% (CH, CI, CJ)	11.8%

Source for replacement EOAT Engines

Equivalency Matrix Results

- Unusual behavior seen across all labs running TMC 1005-5
 - Older reference oil for T8, EOAT, and IP era tests as well as some bench tests, in use Jan 2015
 - Extensive operational data review by full Surveillance Panel was conducted
- May have been happening in EOAT, but measurement is discrete and may not capture
- New blend of 1005-5 requested, received at TMC November 2021. Labeled 1005-6

1005-6 Results

- Initial check indicates stable performance with no dip in aeration
- More data needed for equivalency conclusion
- Not tested in other methods using TMC 1005 as a reference oil at this point

SwRI

FUELS & LUBRICANTS RESEARCH

Next Steps

- Working group to meet and discuss plan for path forward in January 2022
- Options include;
 - Complete matrix using 1005-6
 - Test 1005-6 in EOAT to verify performance vs 1005-5 (current EOAT reference oil)
 - Identify another fluid for use
- Both aeration tests are relatively short duration, should be able to move quickly once a path is decided upon

Elastomer Compatibility EOEC Limits Proposals

Joe Franklin / Robert Stockwell / Jo Martinez / Laura Birnbaumer

Dec. 2, 2021

Attachement 6; Page 1 of 35

Fixed Limits Path Forward – Option 1

- Some of the elastomer compatibility limits for EOEC are Variable Limits based on TMC 1006.
- Supply of TMC 1006 is diminishing and a new reference oil SL107 is now being used.
- Instead of using SL107 as a replacement for TMC 1006 in the Variable Limits, Joe Franklin proposed to convert the Variable Limits to Fixed Limits in his presentation to ASTM D02.B in Dec. 2019.
- This analysis follows Joe Franklin's proposal with updated data on 1006-2.
- This method makes it easy for anyone to understand if a test passed or failed

Proposed Fixed Limits for EOEC based on 1006-2

Current Specification Limits

D7216 (Elastomer Compatibility)

Note—These are the unadjusted specification limits for elastomer compatibility. Candidate oils shall, however, conform to the adjusted specification limits, the calculation of which is described in Annex A4.

Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation			
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)	(+10, –TM			
Silicone (VMQ)	(+TMC 1006, -3)	(+5, –TMC 1006)	(+10, -45)	(+20, -30)			
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, –15)	(+10, -35)			
Fluoroelastomer (FKM)	(+5, -2)	(+7, –5)	(+10, -TMC 1006)	(+10, –TM			
Vamac G	(+TMC 1006, –3)	(+5, –TMC 1006)	(+10, -TMC 1006)	(+10, –TM			
Note—TMC 1006 is the designation for the reference oil used in this test method. This designation represents the original blend or subsequent appro-							

1006.

Proposed Fixed Limits

Note – These are the *unadjusted specification limits* for elastomer compatibility. Candidate oils shall, however, conform to the *adjusted specification limits*, the calculation of which is described in Annex A4.

Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break Change, %
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, - <mark>47</mark>)	(+10, <mark>-66</mark>)
Silicone (VMQ)	(<mark>+41</mark> , -3)	(+5, <mark>-27</mark>)	(+10, -45)	(+20, -30)
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
Fluoroelastomer (FKM)	(+5, -2)	(+7 <i>,</i> -5)	(+10, <mark>-76</mark>)	(+10, <mark>-77</mark>)
Vamac G	(<mark>+25</mark> , -3)	(+5, <mark>-14</mark>)	(+10, <mark>-24</mark>)	(+10, <mark>-40</mark>)

Attachement 6: Page 3 of 35

n at Break Change, %

C 1006)

C 1006)

C 1006)

ved re-blends of TMC

Variable Limits Path Forward – Option 2

- The variable limits are more in alignment with the original intent of the elastomer tests.
- Back in the mid 1990's the OEMs met and decided that as long as future oils were no more aggressive to seals than Service Oil 105 they would be OK. Service oil 105 was later renamed TMC 1006.
- Variable limits require looking at more data to determine if a test passed or failed.

• With either Option 1 or Option 2 an information letter will complete the full B ballot process before the change is made to D4485

Proposed Variable Limits for EOEC based on SL107

Current Specification Limits

D7216 (Elastomer Compatibility)

Note—These are the unadjusted specification limits for elastomer compatibility. Candidate oils shall, however, conform to the adjusted specification limits, the calculation of which is described in Annex A4.

Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation				
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)	(+10, –TM				
Silicone (VMQ)	(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -45)	(+20, -30)				
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, –15)	(+10, -35)				
Fluoroelastomer (FKM)	(+5, -2)	(+7, -5)	(+10, -TMC 1006)	(+10, –TM				
Vamac G	(+TMC 1006, –3)	(+5, –TMC 1006)	(+10, -TMC 1006)	(+10, –TM				
Note—TMC 1006 is the design	Note—TMC 1006 is the designation for the reference oil used in this test method. This designation represents the original blend or subsequent appro-							

oved re-blends of TMC 1006.

Proposed Variable Limits

Note – These are the *unadjusted specification limits* for elastomer compatibility. Candidate oils shall, however, conform to the *adjusted specification limits*, the calculation of which is described in Annex A4.

Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break Change, %
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, - <mark>SL107-30</mark>)	(+10, - <mark>SL107-15)</mark>
Silicone (VMQ)	(+ <mark>SL107</mark> , -3)	(+5 <i>,</i> - <mark>SL107+2</mark>)	(+10, -45)	(+20, -30)
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
Fluoroelastomer (FKM)	(+5, -2)	(+7, -5)	(+10, - <mark>SL107+3</mark>)	(+10, - <mark>SL107+3</mark>)
Vamac G	(+ <mark>SL107+2</mark> , -3)	(+5, - <mark>SL107-2</mark>)	(+10, - <mark>SL107-2</mark>)	(+10, - <mark>SL107+14</mark>)

n at Break Change, %

C 1006)

C 1006)

C 1006)

Data

- Analysis includes LTMS data with validity AC, AG and AO as of August 13, 2021. Extreme outliers were excluded.
- With the proposed fixed limits, 1006-2 probability of pass is ~100% for most parameters and materials.
- With the variable limits based on SL107, the factor was calculated as the difference between the limits for 1006-2 and SL107 having probability of pass as ~100%.
- The proposed limits also align with the TMC 1006 calibration limits.

Comparison with Joe Franklin's Proposal in Dec 2019 for Unadjusted Fixed Limits

	Elastomer	Spec Limits	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break Change, %
	Nitrilo (NPP)	Current	(+5 <i>,</i> -3)	(+7, -5)	(+10, -TMC1006)	(+10, -TMC1006)
		Proposed	(+5 <i>,</i> -3)	(+7, -5)	(+10, <mark>-47</mark>)	(+10, - <mark>66</mark>)
	Silicope (\/MO)	Current	(+TMC1006, -3)	(+5, -TMC1006)	(+10, -45)	(+20, -30)
Oropito'o		Proposed	(+41 , -3)	(+5 <i>,</i> -27)	(+10, -45)	(+20, -30)
Oronite S	Polyacrylate (ACM)	Current	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
Update		Proposed	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
	Eluoroelastomer (EKM)	Current	(+5, -2)	(+7, -5)	(+10, -TMC1006)	(+10, -TMC1006)
		Proposed	(+5, -2)	(+7, -5)	(+10, - <mark>76</mark>)	(+10, -77)
	Vamac G	Current	(+TMC1006, -3)	(+5, -TMC1006)	(+10, -TMC1006)	(+10 <i>,</i> -TMC1006)
	Vallacio	Proposed	(+25 , -3)	(+5, - <mark>14</mark>)	(+10, - <mark>24</mark>)	(+10, - <mark>40</mark>)
	Elastomer		Volume	Hardness Change,	Tensile Strength	Elongation at Break
			Change, %	Points	Change, %	Change, %
oe	Nitrile (NBR)	(+	+5, —3)	(+7, —5)	(+10, — <mark>38</mark>)	(+10, — <mark>59</mark>)
Franklin's	Silicone (VMQ)	(+	+ <mark>37</mark> , —3)	(+5, — <mark>24</mark>)	(+10, —45)	(+20, —30)
	Polyacrylate (AC	M) (+	+5, —3)	(+8, —5)	(+18, —15)	(+10, —35)
	Fluoroelastomer (FKM)	(+	+5, —2)	(+7, —5)	(+10, — <mark>71</mark>)	(+10, — <mark>69</mark>)
	Vamac G	(+	+ <mark>32</mark> , —3)	(+5, — <mark>17</mark>)	(+10, — <mark>17</mark>)	(+10, — <mark>33</mark>)

Proposed Fixed Limits Comparison with TMC 1006 Calibration Limits

A reference is run together with the candidate to validate the test. Since some labs are still using TMC 1006, the calibration limits should align with the proposed fixed limits as shown below.

Elastomer	Limits	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break Change, %
Nitrilo (NDD)	Proposed Spec	(+5, -3)	(+7, -5)	(+10, <mark>-47</mark>)	(+10, - <mark>66</mark>)
NITLIE (NBR)	TMC 1006 Cal	(+3, -2)	(+7, -4)	(-5, -49)	(-31, -71)
Silicono $()/(100)$	Proposed Spec	(<mark>+41</mark> , -3)	(+5, <mark>-27</mark>)	(+10, -45)	(+20, -30)
Silicone (VIVIQ)	TMC 1006 Cal	(+41, 23)	(-15, -28)	(-22, -44)	(-5, -43)
Dolugorulato (ACNA)	Proposed Spec	(+5, -3)	(+8 <i>,</i> -5)	(+18, -15)	(+10, -35)
Polyacrylate (ACIVI)	TMC 1006 Cal	(+3, -1)	(+4, -7)	(+25, -23)	(+9, -45)
Fluere electomer (FKM)	Proposed Spec	(+5, -2)	(+7 <i>,</i> -5)	(+10, - <mark>76</mark>)	(+10, -77)
	TMC 1006 Cal	(+1, 0)	(+14, 1)	(-53 <i>,</i> -85)	(-32, -86)
Vamac G	Proposed Spec	(+25 , -3)	(+5, <mark>-14</mark>)	(+10, - <mark>24</mark>)	(+10, - <mark>40</mark>)
	TMC 1006 Cal	(+25, 17)	(-6, -12)	(+1, -28)	(-2, -47)

Proposed Limits Comparison with SL107 Calibration Limits

A reference is run together with the candidate to validate the test so the calibration limits should align with the proposed limits as shown below.

Elastomer	Limits	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break C
	Proposed Spec	(+5, -3)	(+7, -5)	(+10, - <mark>SL107-30</mark>)	(+10, - <mark>SL107-1</mark>
Nitrile (NBR)	TMC 1006 Cal	(+3, -2)	(+7, -4)	(-5, -49)	(-31, -71)
	SL107 Cal	(+4, -1)	(+7, -3)	(-25, -19)	(-14, -54)
	Proposed Spec	(+ <mark>SL107</mark> , -3)	(+5, - <mark>SL107+2</mark>)	(+10, -45)	(+20, -30)
Silicone (VMQ)	TMC 1006 Cal	(+41, 23)	(-15, -28)	(-22, -44)	(-5, -43)
	SL107 Cal	(+41, 23)	(-16, -28)	(-23, -45)	(-6, -44)
	Proposed Spec	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
Polyacrylate (ACM)	TMC 1006 Cal	(+3, -1)	(+4, -7)	(+25, -23)	(+9, -45)
	SL107 Cal	(+2, -2)	(+5, -5)	(+24, -24)	(+4, -49)
	Proposed Spec	(+5, -2)	(+7, -5)	(+10, - <mark>SL107+3</mark>)	(+10, - <mark>SL107</mark> +3
Fluoroelastomer (FKM)	TMC 1006 Cal	(+1, 0)	(+14, 1)	(-53, -85)	(-32, -86)
	SL107 Cal	(+1, 0)	(+15, 1)	(-55, -87)	(-32, -85)
	Proposed Spec	(+SL107+2, -3)	(+5, - <mark>SL107-2</mark>)	(+10, - <mark>SL107-2</mark>)	(+10, - <mark>SL107+1</mark>
Vamac G	TMC 1006 Cal	(+25, 17)	(-6, -12)	(+1, -28)	(-2, -47)
	SL107 Cal	(+23, 14)	(-5, -10)	(-1, -30)	(-13, -57)

Note: Original presentation was missing the "-" before Nitrile SL results

Nitrile (NBR)

VOLC (+5, -3)

• TMC 1006

Distributions IND= 1006-1					
	⊿ Quantil	les		⊿ 💌 Summary Stat	istics
	100.0%	maximum	3.38	Mean	1.7596084
	99.5%		3.19015	Std Dev	0.7769226
n l	97.5%		3.08	Std Err Mean	0.0246177
	90.0%		2.66	Upper 95% Mean	1.8079171
	75.0%	quartile	2.23	Lower 95% Mean	1.7112998
	50.0%	median	1.88	Ν	996
	25.0%	quartile	1.44		
	10.0%		0.58		
LSL -2 -1 0 1 2 3 4 USL	2.5%		0.02925		
	0.5%		-0.94885		
	0.0%	minimum	-2.01		

Distributions IND = 1006-2

4	Quanti	es		Summary Statistics			
	100.0%	maximum	3.23	Mean	2.2310991		
	99.5%		3.20675	Std Dev	0.4651699		
	97.5%		3.10375	Std Err Mean	0.021595		
	90.0%		2.75	Upper 95% Mean	2.2735354		
	75.0%	quartile	2.49	Lower 95% Mean	2.1886628		
	50.0%	median	2.25	Ν	464		
	25.0%	quartile	2.01				
	10.0%		1.72				
	2.5%		1.36625				
	0.5%		-0.23875				
	0.0%	minimum	-0.81				

• SL107

LTMSDATE

Chevro

-1

-2-

	🖉 💌 Summary Stat	istics
2.68	Mean	1.5538065
2.68	Std Dev	0.4822368
2.391	Std Err Mean	0.0387342
2.2	Upper 95% Mean	1.6303254
1.9	Lower 95% Mean	1.4772875
1.51	Ν	155
1.28		
1.106		
0.192		
-0.14		
-0.14		

ADDING UP

HARD (+7, -5)

• TMC 1006

Distributions IND= 1006-1					
⊿ 💌 HARD					
	Quanti	les	4	🖉 💌 Summary Stat	istics
	100.0%	maximum	7	Mean	2.9618474
	99.5%		6	Std Dev	1.5859148
	97.5%		6	Std Err Mean	0.0502516
	90.0%		5	Upper 95% Mean	3.0604587
	75.0%	quartile	4	Lower 95% Mean	2.863236
	50.0%	median	3	Ν	996
	25.0%	quartile	2		
	10.0%		1		
LSL -2 0 2 4 USL 10	2.5%		0		
	0.5%		-1.01		
	0.0%	minimum	-3		

Distributions IND = 1006-2

🖉 💌 HARD

Quantiles			🖉 💌 Summary Stat	istics
00.0%	maximum	6	Mean	3.174569
9.5%		6	Std Dev	1.178332
97.5%		5	Std Err Mean	0.0547027
90.0%		4	Upper 95% Mean	3.2820653
75.0%	quartile	4	Lower 95% Mean	3.0670727
50.0%	median	3	Ν	464
25.0%	quartile	3		
0.0%		2		
2.5%		1		
).5%		-1		
).0%	minimum	-2		

• SL107

12

ADDING UP

TENS (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -47 or -SL107-30)

• TMC 1006

Distributions IND = 1006-1 TENS Quantiles Summary Statistics ٩. 100.0% maximum 3.3 -31.06064 Mean 99.5% -6.2985 Std Dev 6.829825 97.5% -16.0625 Std Err Mean 0.2164113 Upper 95% Mean -30.63597 90.0% -23.3 Lower 95% Mean 75.0% quartile -26.8 -31.48532 50.0% median -31.4 N 996 25.0% quartile -35.5 10.0% -39.1 0 USL 20 -60 -40 -20 2.5% -43.36 0.5% -47.806 0.0% minimum -51.5

Distributions IND = 1006-2

✓ TENS

Quantil	es		Summary Statistics			
100.0%	maximum	-9.6	Mean	-31.48233		
99.5%		-13.86	Std Dev	6.006378		
97.5%		-18.9	Std Err Mean	0.2788391		
90.0%		-24.2	Upper 95% Mean	-30.93438		
75.0%	quartile	-27.925	Lower 95% Mean	-32.03027		
50.0%	median	-31.4	Ν	464		
25.0%	quartile	-35.375				
10.0%		-39				
2.5%		-43.8				
0.5%		-47.87				
0.0%	minimum	-48.2				

Option 1

Current

• SL107

Attachement 6: Page 13 of 35

Option 2

		⊿	Summary Stat	istics
n	15.2		Mean	-2.470323
	15.2		Std Dev	5.2923392
	7.82		Std Err Mean	0.4250909
	4.22		Upper 95% Mean	-1.630561
е	1		Lower 95% Mean	-3.310085
n	-2.6		N	155
e	-5.9			
	-8.84			
	-14.27			
	-15.9			
n	-15.9			

ELON (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -66 or -SL107-15) **Option 1 Option 2** Current

• SL107

• TMC 1006

Distributions IND = 1006-1 🖉 💌 ELON Summary Statistics Quantiles -111-**...** -694+ 100.0% maximum -28.3 Mean -53.17149 -34.358 5.392691 99.5% Std Dev 97.5% -40.8 Std Err Mean 0.170874 90.0% -46.57 Upper 95% Mean -52.83617 75.0% quartile -50.325 Lower 95% Mean -53.5068 -53.6 N 50.0% 996 median -56.7 25.0% quartile 10.0% -59.33 -80 -60 -40 -20 0 USL 2.5% -62.4075 0.5% -66.0135 -69.7 0.0% minimum

🛛 💌 Distributions IND= 1006-2

🖉 💌 ELON

Quantiles		⊿	Summary Stat	istics
maximum	-37.2		Mean	-53.32866
	-39.1225		Std Dev	4.8178952
	-42.925		Std Err Mean	0.2236652
	-47.2		Upper 95% Mean	-52.88914
quartile	-50.225		Lower 95% Mean	-53.76819
median	-53.85		N	464
quartile	-56.3			
	-58.4			
	-63.9375			
	-68.09			
minimum	-70.2			
	les maximum quartile median quartile minimum	maximum -37.2 -39.1225 -42.925 -47.2 -47.2 quartile -50.225 median -53.85 quartile -56.3 -58.4 -63.9375 -68.09 -68.09 minimum -70.2	les 4 maximum -37.2 -39.1225 -42.925 -47.2 -47.2 quartile -50.225 median -53.85 quartile -56.3 -58.4 -63.9375 -68.09 -68.09 minimum -70.2	Ies Imaximum -37.2 Mean -39.1225 Std Dev 54 -42.925 Std Err Mean -47.2 -47.2 Upper 95% Mean -47.2 Lower 95% Mean quartile -50.225 N quartile -56.3 -58.4 -63.9375 -68.09 -68.09 minimum -70.2 -70.2

0.0%

minimum

Attachement 6: Page 14 of 35

	🖉 💌 Summary Stat	istics
-17.6	Mean	-36.25355
-17.6	Std Dev	5.6859622
-22.29	Std Err Mean	0.4567075
-29.06	Upper 95% Mean	-35.35133
-32.7	Lower 95% Mean	-37.15577
-36.6	Ν	155
-40		
-42.32		
-47.87		
-49.5		
-49.5		

Silicone (VMQ)

VOLC (+TMC 1006, -3) Proposed Spec Limit (+TMC 1006 or +41 or +SL107, -3)

• TMC 1006

Current

955

Option 1

• SL107

Distributions IND = 1006-2

Quanti	es	4	🛚 💌 Summary Stat	istics
100.0%	maximum	40.88	Mean	33.660701
99.5%		40.852	Std Dev	2.8235579
97.5%		39.842	Std Err Mean	0.1301027
90.0%		37.794	Upper 95% Mean	33.916356
75.0%	quartile	34.93	Lower 95% Mean	33.405046
50.0%	median	33.28	Ν	471
25.0%	quartile	32.28		
10.0%		30.09		
2.5%		28.124		
0.5%		27.4776		
0.0%	minimum	26.12		

Attachement 6; Page 16 of 35

		🛛 💌 Summary	/ Statis	tics
ı	42.12	Mean		33.85637
	42.12	Std Dev	ź	2.7470192
	40.45475	Std Err Mear	n (0.2273449
	38.035	Upper 95% I	Mean 3	34.305708
е	34.5325	Lower 95% N	/lean 3	33.407032
n	33.645	Ν		146
е	32.795			
	30.419			
	28.6435			
	23.91			
n	23.91			
				ND • SL107 • 1006-1 • 1006-2

HARD (+5, -TMC 1006) Proposed Spec Limit (+5, -TMC 1006 or -27 or -SL107+2) **Option 1 Option 2** Current

• SL107

• TMC 1006

Distributions IND = 1006-1 A 💌 HARD Summary Statistics Quantiles 100.0% maximum -10 Mean -19.09843 99.5% -12.78 Std Dev 2.5914607 97.5% Std Err Mean 0.0838577 -14 90.0% Upper 95% Mean -18.93386 -16 75.0% quartile -18 Lower 95% Mean -19.263 Ν 955 50.0% median -19 -21 25.0% quartile -23 10.0% 0 USL 10 -20 2.5% -24 -30 -10 0.5% -25 0.0% minimum -25

Distributions IND = 1006-2

A 💌 HARD

ntil	ntiles		⊿	Summary Stat	istics
0%	maximum	-16		Mean	-22.69639
%		-17		Std Dev	1.6679608
%		-18		Std Err Mean	0.0768556
%		-20.2		Upper 95% Mean	-22.54537
%	quartile	-22		Lower 95% Mean	-22.84741
%	median	-23		N	471
%	quartile	-24			
%		-24			
•		-25			
•		-25.64			
•	minimum	-26			

Attachement 6: Page 17 of 35

	4	💌 Summary Stat	istics
	-16	Mean	-23.44521
	-16	Std Dev	1.8938405
	-17.675	Std Err Mean	0.1567354
	-21	Upper 95% Mean	-23.13542
<u>,</u>	-23	Lower 95% Mean	-23.75499
	-24	N	146
è	-25		
	-25		
	-26		
	-27		
	-27		

ADDING UP

TENS (+10, -45)

• TMC 1006

Distributions IND= 1006-1						
⊿ 💌 TENS						
	⊿ Quanti	les		🖉 💌 Summary Stat	istics	
	100.0%	maximum	-1.7	Mean	-20.22775	
	99.5%		-4.89	Std Dev	8.5913097	
	97.5%		-8.48	Std Err Mean	0.2780083	
	90.0%		-11.6	Upper 95% Mean	-19.68217	
	75.0%	quartile	-14.4	Lower 95% Mean	-20.77333	
	50.0%	median	-17.5	Ν	955	
	25.0%	quartile	-25.2			
	10.0%		-34.48			
LSL -30 -20 -10 0 USL 20	2.5%		-39.81			
	0.5%		-42.888			
	0.0%	minimum	-43.9			

Distributions IND = 1006-2

Quanti	les	4	Summary Statistics			
100.0%	maximum	-16.6	Mean	-31.85435		
99.5%		-21.936	Std Dev	4.5489603		
97.5%		-22.88	Std Err Mean	0.209605		
90.0%		-26.02	Upper 95% Mean	-31.44247		
75.0%	quartile	-28.5	Lower 95% Mean	-32.26623		
50.0%	median	-31.8	Ν	471		
25.0%	quartile	-35.2				
10.0%		-37.8				
2.5%		-40.8				
0.5%		-43.092				
0.0%	minimum	-43.5				

• SL107

		🖉 💌 Summary Stat	istics
1	-22.6	Mean	-31.64863
	-22.6	Std Dev	4.882442
	-23.1	Std Err Mean	0.4040738
	-25.1	Upper 95% Mean	-30.84999
9	-28	Lower 95% Mean	-32.44727
n	-31.5	Ν	146
9	-35.25		
	-38		
	-41.95		
	-44.6		
1	-44.6		
			IND • SL107 • 1006-1
			• 1006-2
		a start and	
	8.0		
		•••••	
	-00N9C0	•	
7031	7101 8011 8071 8071 8112 8112	9020 9071 9071 9071 9071 900 100 100 100 100 100 100 100 100 10	
2222	2222222		

ELON (+20, -30)

• TMC 1006

Distributions IND= 10	06-1					
		[⊿] Quanti	es		🖉 💌 Summary Stat	istics
• •••	€・	100.0%	maximum	0	Mean	-22.00325
		99.5%		-3.934	Std Dev	6.682704
		97.5%		-8.3	Std Err Mean	0.2162472
	_	90.0%		-13.66	Upper 95% Mean	-21.57887
		75.0%	quartile	-17.6	Lower 95% Mean	-22.42762
		50.0%	median	-22.2	Ν	955
		25.0%	quartile	-26.5		
		10.0%		-29.94		
-60 LSL	0 USL	2.5%		-34.51		
		0.5%		-40.328		
		0.0%	minimum	-52.4		

⊿

Distributions IND = 1006-2

🖉 💌 ELON

Quantil	Quantiles			Summary Stat	istics
100.0%	maximum	-8.7		Mean	-25.60382
99.5%		-10		Std Dev	5.8974414
97.5%		-12.46		Std Err Mean	0.2717398
90.0%		-18.2		Upper 95% Mean	-25.06985
75.0%	quartile	-21.7		Lower 95% Mean	-26.1378
50.0%	median	-25.8		N	471
25.0%	quartile	-29			
10.0%		-33.2			
2.5%		-37.72			
0.5%		-40.656			
0.0%	minimum	-40.9			

• SL107

		4	Summary Stat	istics
n	-9.2		Mean	-24.03288
	-9.2		Std Dev	6.695795
	-11.0675		Std Err Mean	0.5541479
	-15.34		Upper 95% Mean	-22.93763
e	-19.875		Lower 95% Mean	-25.12813
n	-24		N	146
e	-28.1			
	-33.23			
	-37.8475			
	-41.5			
n	-41.5			
				IND • SL107 • 1006-1 • 1006-2

Oronite

Polyacrylate (ACM)

© 2021 Chevron

VOLC (+5, -3)

• TMC 1006

Distributions IND= 1006-1					
	⊿ Quanti	les		⊿ 💌 Summary Stat	istics
	100.0%	maximum	3.12	Mean	1.6448196
	99.5%		3.0501	Std Dev	0.7315792
	97.5%		2.90025	Std Err Mean	0.0231577
	90.0%		2.481	Upper 95% Mean	1.6902631
	75.0%	quartile	2.15	Lower 95% Mean	1.5993761
	50.0%	median	1.75	Ν	998
	25.0%	quartile	1.28		
	10.0%		0.559		
LSL -2 0 2 4 USL 6	2.5%		-0.09		
	0.5%		-0.411		
	0.0%	minimum	-1.01		

Distributions IND = 1006-2

¹ Quantiles				Summary Stat	istics
100.0%	maximum	3.12		Mean	2.2221577
99.5%		3.11585		Std Dev	0.4530781
97.5%		3.04925		Std Err Mean	0.0206371
90.0%		2.857		Upper 95% Mean	2.2627078
75.0%	quartile	2.53		Lower 95% Mean	2.1816076
50.0%	median	2.21		N	482
25.0%	quartile	1.95			
10.0%		1.61			
2.5%		1.28075			
0.5%		0.8398			
0.0%	minimum	0.71			

• SL107

	🖉 💌 Summary Stat	tistics
3.34	Mean	1.869418
3.34	Std Dev	0.3649019
2.4225	Std Err Mean	0.0265427
2.3	Upper 95% Mean	1.9217778
2.08	Lower 95% Mean	1.8170582
1.9	Ν	189
1.69		
1.45		
0.925		
0.75		
0.75		
0.75		IND • SL107 • 1006-1 • 1006-2

HARD (+8, -5)

• TMC 1006

Distributions IND= 1006-1							
	⊿ Quanti	les	4	🗷 Summary Stat	istics		
	100.0%	maximum	3	Mean	-1.299599		
	99.5%		3	Std Dev	1.523938		
	97.5%		2	Std Err Mean	0.0482394		
	90.0%		1	Upper 95% Mean	-1.204937		
	75.0%	quartile	0	Lower 95% Mean	-1.394262		
	50.0%	median	-1	Ν	998		
	25.0%	quartile	-2				
	10.0%		-3				
LSL -2 0 2 4 6 USL 10	2.5%		-4				
	0.5%		-5				
	0.0%	minimum	-5				

Distributions IND= 1006-2

⊿	Quantil	es	4	Summary Statistics				
	100.0%	maximum	3	Mean	-1.40249			
	99.5%		3	Std Dev	1.5080636			
	97.5%		2	Std Err Mean	0.0686904			
	90.0%		1	Upper 95% Mean	-1.267519			
	75.0%	quartile	0	Lower 95% Mean	-1.53746			
	50.0%	median	-2	Ν	482			
	25.0%	quartile	-2					
	10.0%		-3					
	2.5%		-4					
	0.5%		-4.585					
	0.0%	minimum	-5					

• SL107

. ..

••

.

LTMSDATE

-4

200

..........

	4	🗹 💌 Summary Stat	istics
I	5	Mean	-1.100529
	5	Std Dev	1.7940355
	3	Std Err Mean	0.1304969
	2	Upper 95% Mean	-0.843103
è	0	Lower 95% Mean	-1.357955
1	-1	Ν	189
9	-2		
	-3		
	-4		
	-5		
I	-5		
		•	
			• \$1 107
			• 1006-1
			• 1006-2

TENS (+18, -15)

• TMC 1006

Distributions IND= 1006-1					
⊿ ▼ TENS					
	🛮 Quanti	les		🖉 💌 Summary Stat	istics
	100.0%	maximum	22.1	Mean	-0.250802
	99.5%		19.201	Std Dev	7.0118695
	97.5%		12.5025	Std Err Mean	0.2219568
	90.0%		8.11	Upper 95% Mean	0.1847546
	75.0%	quartile	4.425	Lower 95% Mean	-0.686358
	50.0%	median	0.15	Ν	998
	25.0%	quartile	-4.5		
	10.0%		-9.6		
-60 -40 LSL 0 USL 40	2.5%		-15.52		
	0.5%		-20.802		
	0.0%	minimum	-23.1		

Distributions IND = 1006-2

Summary Statistics								
n	24.6	Mean	0.8690871					
	20.455	Std Dev	6.0761401					
	12.4925	Std Err Mean	0.2767606					
	7.97	Upper 95% Mean	1.4128963					
e	4.725	Lower 95% Mean	0.325278					
n	1.05	Ν	482					
e	-2.6							
	-6.8							
	-12.1925							
	-17.102							
n	-21.4							

• SL107

	⊿	Summary Stat	istics
20.7		Mean	-1.015873
20.7		Std Dev	6.920311
11.475		Std Err Mean	0.5033786
7.3		Upper 95% Mean	-0.022877
3.55		Lower 95% Mean	-2.008869
-0.4		N	189
-5.3			
-8.8			
-17			
-22.6			
-22.6			

ELON (+10, -35)

• TMC 1006

Distributions IND= 1006-1							
	⊿ Quanti	les		🖉 💌 Summary Stat	istics		
	100.0%	maximum	8.7	Mean	-13.16703		
	99.5%		7.3005	Std Dev	8.6076291		
	97.5%		4.5	Std Err Mean	0.2724697		
	90.0%		-2.08	Upper 95% Mean	-12.63235		
	75.0%	quartile	-7.375	Lower 95% Mean	-13.70171		
	50.0%	median	-13	Ν	998		
	25.0%	quartile	-18.925				
	10.0%		-24.3				
-50 LSL -20 -5 USL 25	2.5%		-30.7075				
	0.5%		-36.701				
	0.0%	minimum	-41.5				

Distributions IND = 1006-2

• SL107

		🖉 💌 Summary Stat	istics
um	4	Mean	-19.33651
	4	Std Dev	10.025722
	0.225	Std Err Mean	0.7292639
	-6.5	Upper 95% Mean	-17.89792
tile	-12.2	Lower 95% Mean	-20.7751
ian	-18.6	Ν	189
tile	-26.45		
	-32.7		
	-39.575		
	-40.8		
um	-40.8		

Fluoroelastomer (FKM)

VOLC (+5, -2)

• TMC 1006

■ ■ Distributions IND= 1006-1					
	⊿ Quantil	les	4	🗹 💌 Summary Stat	istics
∮-∐-₿	100.0%	maximum	1.05	Mean	0.6077956
	99.5%		1.04	Std Dev	0.159495
	97.5%		0.95	Std Err Mean	0.0050487
	90.0%		0.83	Upper 95% Mean	0.6177029
	75.0%	quartile	0.7	Lower 95% Mean	0.5978882
	50.0%	median	0.6	Ν	998
	25.0%	quartile	0.5		
	10.0%		0.41		
-3 LSL -1 0 1 2 3 4 USL 6	2.5%		0.31		
	0.5%		0.21		
	0.0%	minimum	0.17		

Distributions IND = 1006-2

		⊿	Summary Stat	istics
num	1.05		Mean	0.5713548
	1.0367		Std Dev	0.1536892
	0.9735		Std Err Mean	0.0071272
	0.744		Upper 95% Mean	0.5853604
artile	0.645		Lower 95% Mean	0.5573493
dian	0.56		N	465
artile	0.48			
	0.4			
	0.26			
	0.19			
num	0.18			

• SL107

	4	🖉 💌 Summary Stat	istics
n	0.88	Mean	0.4053049
	0.88	Std Dev	0.1729833
	0.82	Std Err Mean	0.0135077
	0.65	Upper 95% Mean	0.4319776
е	0.5	Lower 95% Mean	0.3786322
n	0.4	Ν	164
e	0.29		
	0.205		
	0.055		
	0.04		
n	0.04		
•			IND • SL107

HARD (+7, -5)

• TMC 1006

Distributions IND= 1006-1					
I 💌 HARD					
	🖉 Quanti	les		🖉 💌 Summary Stat	istics
	100.0%	maximum	12	Mean	7.3787575
	99.5%		11.005	Std Dev	1.7366281
	97.5%		10	Std Err Mean	0.054972
	90.0%		9	Upper 95% Mean	7.4866316
	75.0%	quartile	9	Lower 95% Mean	7.2708834
	50.0%	median	8	Ν	998
	25.0%	quartile	6		
	10.0%		5		
-10 LSL 0 USL 10 15	2.5%		4		
	0.5%		1.995		
	0.0%	minimum	-1		

Distributions IND = 1006-2

• SL107

	4	Summary Stat	istics
ım	12	Mean	8.1707317
	12	Std Dev	2.1410672
	11	Std Err Mean	0.1671893
	10	Upper 95% Mean	8.5008677
tile	10	Lower 95% Mean	7.8405957
an	9	N	164
tile	7		
	5		
	2		
	2		
ım	2		

TENS (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -76 or -SL107+3) **Option 2**

• TMC 1006

Distributions IND= 1006-1					
⊿ ▼ TENS					
	⊿ Quanti	les		🖉 💌 Summary Stat	istics
●─────────	100.0%	maximum	-39.5	Mean	-69.9527
	99.5%		-55.0875	Std Dev	3.4052599
	97.5%		-61.6975	Std Err Mean	0.1077916
	90.0%		-65.89	Upper 95% Mean	-69.74118
	75.0%	quartile	-68.4	Lower 95% Mean	-70.16423
	50.0%	median	-70.5	Ν	998
	25.0%	quartile	-72.2		
	10.0%		-73.3		
-80 -60 -40 -20 0 USL	2.5%		-74.8		
	0.5%		-76.202		
	0.0%	minimum	-78.4		

Distributions IND = 1006-2

;			Summary Stat	istics
naximum	-56.8		Mean	-68.68882
	-61.097		Std Dev	2.6152742
	-62.6		Std Err Mean	0.1212804
	-65.4		Upper 95% Mean	-68.45049
quartile	-66.95		Lower 95% Mean	-68.92714
median	-68.9		N	465
quartile	-70.7			
	-71.9			
	-73			
	-73.801			
ninimum	-74.9			

Current

Option 1

• SL107

Attachement 6; Page 28 of 35

		4	💌 Summary Stat	istics
ım	-58		Mean	-70.0878
	-58		Std Dev	3.302514
	-61.0125		Std Err Mean	0.257883
	-64.8		Upper 95% Mean	-69.57858
ile	-68.925		Lower 95% Mean	-70.59703
an	-70.9		Ν	164
ile	-72.375			
	-73.4			
	-74.575			
	-79.2			
ım	-79.2			

ELON (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -77 or -SL107+3) **Option 2**

• TMC 1006

Distributions IND= 1006-1						
⊿ 💌 ELON						
	⊿ Quanti	les		🖉 💌 Summary Stat	istics	
	100.0%	maximum	-34.1	Mean	-63.73206	
	99.5%		-41.195	Std Dev	6.528631	
	97.5%		-45.8925	Std Err Mean	0.2066602	
	90.0%		-55.89	Upper 95% Mean	-63.32653	
	75.0%	quartile	-61.2	Lower 95% Mean	-64.1376	
	50.0%	median	-64.5	Ν	998	
	25.0%	quartile	-67.7			
	10.0%		-70.71			
-80 -60 -40 -20 0 <mark>USL</mark>	2.5%		-74.5			
	0.5%		-77.801			
	0.0%	minimum	-79			

Distributions IND = 1006-2

Current

Option 1

• SL107

465

Attachement 6: Page 29 of 35

		🖉 💌 Summary Stat	istics
ım	-32	Mean	-64.78598
	-32	Std Dev	5.6138729
	-48.9875	Std Err Mean	0.4383698
	-60.1	Upper 95% Mean	-63.92036
ile	-63.225	Lower 95% Mean	-65.65159
an	-65.45	Ν	164
ile	-67.5		
	-69.4		
	-72.475		
	-76.6		
ım	-76.6		

Vamac G

Attachement 6; Page 30 of 35

VOLC (+TMC 1006, -3) Proposed Spec Limit (+TMC 1006 or +25 or +SL107+2, -3)

Current

Option 1

Option 2

• SL107

Distributions IND = 1006-2

• TMC 1006

⊿ (Quantiles				Summary Stat	istics
1	00.0%	maximum	25.42		Mean	21.579956
9	9.5%		25.1449		Std Dev	1.1699691
9	7.5%		24.15		Std Err Mean	0.0551529
9	0.0%		23.039		Upper 95% Mean	21.688345
7	75.0%	quartile	22.295		Lower 95% Mean	21.471566
5	50.0%	median	21.49		N	450
2	25.0%	quartile	20.88			
1	0.0%		20.195			
2	2.5%		19.4275			
0).5%		18.24245			
0).0%	minimum	15.61			

Attachement 6: Page 31 of 35

		4	Summary Stat	istics	
ı	22.97		Mean	18.816419	
	22.97		Std Dev	1.2399216	
	21.667		Std Err Mean	0.1019209	
	20.801		Upper 95% Mean	19.017838	
e	19.3475		Lower 95% Mean	18.614999	
n	18.62		Ν	148	
e	17.88				
	17.447				
	16.9825				
	16.64				
ı	16.64				

HARD (+5, -TMC 1006) Proposed Spec Limit (+5, -TMC 1006 or -14 or -SL107-2)

• TMC 1006

Distributions IND = 1006-1								
A HARD								
		⊿ Quanti	les		🖉 💌 Summary Stat	istics		
		100.0%	maximum	-6	Mean	-9.832718		
		99.5%		-6	Std Dev	1.332268		
		97.5%		-7	Std Err Mean	0.0467247		
		90.0%		-8	Upper 95% Mean	-9.741003		
		75.0%	quartile	-9	Lower 95% Mean	-9.924434		
		50.0%	median	-10	Ν	813		
		25.0%	quartile	-11				
		10.0%		-12				
-2	20 -15 -10 -5 0 USL 10	2.5%		-12				
		0.5%		-12				
		0.0%	minimum	-12				

Distributions IND = 1006-2

Current

Option 1

• SL107

450

Attachement 6: Page 32 of 35

Option 2

		⊿	Summary Stat	istics
ım	-5		Mean	-8.385135
	-5		Std Dev	1.1810502
	-5.725		Std Err Mean	0.0970817
	-7		Upper 95% Mean	-8.193279
ile	-8		Lower 95% Mean	-8.576991
an	-8.5		Ν	148
ile	-9			
	-10			
	-10			
	-11			
ım	-11			

TENS (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -24 or -SL107-2)

Current

• SL107

• TMC 1006

Distributions IND = 1006-1 TENS Quantiles Summary Statistics 1. . . . Mean -13.98905 100.0% maximum 8.4 -3.707 Std Dev 4.8591583 99.5% 97.5% 0.1704181 -5.8 Std Err Mean 90.0% -8.4 Upper 95% Mean -13.65454 Lower 95% Mean -14.32356 75.0% -10.8 quartile 50.0% median -13.7 Ν 813 25.0% quartile -16.5 10.0% -19.8 -30 -20 -10 USL 2.5% -25.865 -40 0 0.5% -33.495 0.0% -35.7 minimum

Distributions IND = 1006-2

les		⊿	Summary Stat	istics
maximum	-2.5		Mean	-13.49778
	-3.7785		Std Dev	3.7078914
	-6.6825		Std Err Mean	0.1747917
	-9		Upper 95% Mean	-13.15427
quartile	-10.9		Lower 95% Mean	-13.84129
median	-13.2		N	450
quartile	-15.825			
	-18.49			
	-21.3725			
	-23.845			
minimum	-24.7			

Distributions IND = SL107 TENS Quantiles -• • 100.0% maximum 99.5% 97.5% 90.0% 75.0% quartile 50.0% median 25.0% quartile 10.0% -30 -20 USL 2.5% -40 -10 0 0.5% 0.0% minimum

Option 1

Attachement 6: Page 33 of 35

Option 2

	🖉 💌 Summary Stat	istics
-1.7	Mean	-15.29257
-1.7	Std Dev	4.1356932
-7.235	Std Err Mean	0.3399519
-10.28	Upper 95% Mean	-14.62074
-12.5	Lower 95% Mean	-15.96439
-15.4	Ν	148
-17.9		
-20.52		
-23.7		
-26.4		
-26.4		

ELON (+10, -TMC 1006) Proposed Spec Limit (+10, -TMC 1006 or -40 or -SL107+14) **Option 2**

• TMC 1006

Distributions IND = 1006-1									
				⊿ Quanti	les		🖉 💌 Summary Stat	istics	
	4	ρ	<u>L</u> h -	100.0%	maximum	6	Mean	-25.4599	
				99.5%		-4.177	Std Dev	7.1111559	
				97.5%		-10.935	Std Err Mean	0.2493991	
				90.0%		-16	Upper 95% Mean	-24.97036	
				75.0%	quartile	-21.4	Lower 95% Mean	-25.94944	
				50.0%	median	-25.9	Ν	813	
				25.0%	quartile	-29.95			
				10.0%		-33.8			
-60	-40	-20	0 USL 20	0 2.5%		-39.93			
				0.5%		-44.744			
				0.0%	minimum	-46			

Distributions IND = 1006-2

les	4	🛛 💌 Summary Stat	istics
maximum -3.8		Mean	-26.6417
	-7.314	Std Dev	6.037948
	-14.455	Std Err Mean	0.284631
	-19	Upper 95% Mean	-26.082
quartile	-22.9	Lower 95% Mean	-27.2011
median	-26.6	Ν	45
quartile	-30.4		
	-34.98		
	-39.1175		
	-40.7725		
minimum	-41.6		

Current

Option 1

• SL107

Attachement 6; Page 34 of 35

		⊿	Summary Stat	istics
ım	-18.8		Mean	-37.03649
	-18.8		Std Dev	6.4416919
	-21.6975		Std Err Mean	0.5295038
	-29.38		Upper 95% Mean	-35.99006
ile	-33.425		Lower 95% Mean	-38.08291
an	-37.5		N	148
ile	-41.1			
	-44.11			
	-49.4925			
	-55.6			
ım	-55.6			

ADDING UP
After discussion will someone make a motion to accept: **Option 1 Fixed Limits** or **Option 2 Variable Limits** or **Propose another option** As a path forward for HD elastomer testing

Thank you

35

