HEAVY-DUTY ENGINE OIL CLASSIFICATION PANEL

OF

ASTM D02.B0.02 June 26, 2018 JW Marriott Desert Ridge Resort and Spa – Phoenix, AZ

THIS DOCUMENT IS NOT AN ASTM STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. *COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959.*

ACTION ITEMS

MINUTES

1.0 Call to order

1.1 The Heavy Duty Engine Oil Classification Panel (HDEOCP) was called to order by Chairman Shawn Whitacre at 1:30 p.m. on Tuesday, June 26, 2018, in the Grand Sonoran Room of the JW Marriott Desert Ridge Resort and Spa, Phoenix, AZ.

- 1.2 There were 16 members present and 66 guests present. The attendance list is included as Attachment **2**.
- 2.0 Agenda
 - 2.1 The agenda circulated prior (included as Attachment 1) was not changed.
- 3.0 Minutes
 - 3.1 The December 5, 2017 minutes were approved as written.

4.0 Membership

- 4.1 There were 3 membership changes. The ExxonMobil member is now Shayna Butler replacing Mike Alessi. The Cummins member changed from Ryan Denton to Autumnlynn Glass. The GM member will change from Eric Johnson to someone to be named later.
- 5.0 Existing tests/categories
 - 5.1 Sean Moyer gave an update on the existing tests. **Attachment 3.** Not much has changed since December. Availability date will be changed to a rolling 5 year projection. CAT tests likely available. Mack tests likely available. Cummins tests no issues. RFWT, EOAT and IIIF/IIIG with issues.
 - 5.2 Hind Abi-Akar updated the panel on the COAT. **Attachment 4.** Test is unavailable and subgroup is working on reducing variability. A common measurement system has been designed, 3 copies constructed by one source and distributed across labs. After improvements, both reference oils shifted aeration levels but not equally. Reference oil discrimination has been reduced. Much work is ongoing and the work is being divided among the labs to speed up the process. The plan is to keep meeting and studying to bring the test back online. This group will continue to be updated.

5.3 Suzanne Neal provided an update on the DD13. **Attachment 5.** The Surveillance Panel spent the last 6 months working on approving a new batch of liners. Pistons are the limiting factor, but approximately 266 builds still available.

6.0 Old Business

- 6.1 Pat Joyce gave the Ford 6.7L update for Ron Romano. **Attachment 6.** Test is 2 phases: 10 hour soot generation phase and a 200 hour wear phase. The independent labs are starting to run prove-out tests. The table of results has been updated with one additional result labeled Blue 2. A question was asked about the timeline for the next 6 months. The independent labs should be finished by end of summer, Q3. They would run prove-out oils multiple times. Development is still handled within a small group of labs and Ford.
- 6.2 Frank Farber discussed ballot items as updates to D4485. Frank acknowledged Lyle Bowman's contributions and that he was addressing ballots right up to his passing. Subcommittee B will handle negative ballot results. There are 5 Ballots: 2 will go through, 3 have negatives.
- 6.3 A specific ballot item with a CLOG recommendation regarding IIIH PVIS was discussed. The ballot had a typographical error, so will be re-balloted. The IIIH panel made a change to the transform. The Passenger Car Engine Oil Classification Panel is looking at a 70 hour test. The 70 hour result may only be reported if the requestor asks for it. A draft information letter has been developed. **Attachment 7**. The information letter will come from the Surveillance Panel, then a corrected ballot can be re-issued.
- 7.0 New Business
 - 7.1 None
- 8.0 Next meetings
 - 8.1 The next meeting will be December 11, 2018 at the JW Marriott Atlanta.
- 9.0 The meeting was adjourned at 2:05 pm.

AGENDA D02.B0.02.1 Heavy-Duty Engine Oil Classification Panel Tuesday, June 26, 2018 1:30pm MST JW Marriott Desert Ridge Resort and Spa Phoenix, Arizona USA

1) Call to Order/Anti-trust statement

2) Minutes – Approval of Minutes from December 5, 2017 Meeting in Houston, TX, USA

3) Membership

a) Review current panel membership

4) Existing tests/categories

- a) Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories (Sean Moyer, TMC)
- b) Update on CAT Oil Aeration Test (Hind Abi-Akar, Caterpillar)
- c) Update on DD13 Scuffing Test (Suzanne Neal, DTNA)

5) Old Business

- a) Update on Ford 6.7L Wear Test Development (Patrick Joyce, Lubrizol)
- b) Status of D4485 Ballot Items from Previous Semester (Frank Farber, TMC)
 - i) Sequence IIIH to Sequence IIIF for API CH-4, CI-4, and CJ-4 (Robert Stockwell, Chevron Oronite, Chair Seq. III SP)

6) New Business

7) HDEOCP Adjournment (transition to DEOAP)

HDEOCP Attendance: June 26, 2018

LastName	FirstName	MiddleName	e Company	Business Phone	E-mail Address
Abi-Akar	Hind		Caterpillar Inc.	309-578-9553	abi-akar_hind@cat.com
Alessi	Michael	L.	ExxonMobil R&E	856-224-2309	michael.l.alessi@exxonmobil.com
Andersen	Jason		PACCAR Technical Center	360-757-5324	jason.andersen@paccar.com
Ansari	Matthew		Chevron Lubricants		ansa@chevron.com
Arcy	Dan		Shell Global Solutions	281-544-6586	dan.arcy@shell.com
Bates	Terry		Manesty Consultant Ltd.	44-151-348-4084	batesterryw@aol.com
Belay	Mesfin		Detroit Diesel Corp.	313-592-5970	mesfin.belay@daimler.com
Brown	Mike	G.	SK Lubricants Americas	908-751-5030	mike.brown@sk-houston.com
Butler	Shana		ExxonMobil Research and Engineering	856-224-3360	shayna.d.butler@exxonmobil.com
Calcut	Brent		Afton Chemical Corporation	248-350-0640	brent.calcut@aftonchemical.com
Carter	James	E.	Gage Products	517-896-1150	jcarter@gageproducts.com
Carter	Jason		Idemitsu Lubricants Americas	248-615-4357	jcarter@ilacorp.com
Cassim	Abdul		John Deere	319-292-5242	cassimabdulh@johndeere.com
Castanien	Chris		Neste Corp	440-290-9766	chris.castanien@neste.com
Cisneros	Lizbeth		Motiva Enterprises, LLC	713-751-3756	lizbeth.cisneros@motiva.com
Clark	Sid		ASTM Facilitator	586-873-1255	slclark@comcast.net
Cushing	Tim		GM		timothy.cushing@gm.com
Dennis	Barbara		BP	973-686-3313	barbara.dennis@bp.com
Denton	Vicky		Fuels & Lubes Asia		editor@fuelsandlubes.com

HDEOCP Attendance: June 26, 2018

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Dougherty	Rick		ExxonMobil Research and Engineering		richard.dougherty@exxonmobil.com
Esche	Carl	К.	Vanderbilt Chemicals	804-740-1658	cesche@vanderbiltchemicals.com
Evans	Joan		Infineum	908-474-6510	joan.evans@infineum.com
Farber	Frank	M.	ASTM - TMC	412-365-1030	fmf@astmtmc.cmu.edu
Ferrick	Kevin		ΑΡΙ	202-682-8233	ferrick@api.org
Fox	Brian		Lanxess	203-714-8670	edward.fox@lanxess.com
Franklin	Joe		Intertek Automotive Research	210-523-4671	joe.franklin@intertek.com
Gault	Roger		EMA	312-929-1974	rgault@emamail.org
Gbadamosi	Muibat		Royal Purple	713-705-9197	mgbadamosi@royalpurple.com
Girard	Luc		Sanjuro Consulting	647-648-9704	lgirard@sanjuroconsulting.com
Glass	Autumnlynn		Cummins Inc.	812-350-1081	autumnlynn.glass@cummins.com
Haffner	Steve	G.	SGH Consulting		sghaffner2013@gmail.com
Hauschild	Matthew		Chevron Oronite	510-242-2825	mhauschild@chevron.com
Hsu	Jeffrey		Shell	281-544-8619	j.hsu@shell.com
Hu	Gang		Infineum	908-676-2778	gang.hu@infineum.com
Humphrey	Brian	К.	PetroCanada	440-537-2851	brian.humphrey@petrocanadalsp.com
Јоусе	Patrick		The Lubrizol Corporation	440-347-4656	patrick.joyce@lubrizol.com
Jung	Kangmin		SK Innovation	82-102-831-5501	kangmin.jung@sk.com
Kalberer	Eric	W.	Shell	346-814-0224	eric.kalberer@shell/com

HDEOCP Attendance: June 26, 2018

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Koglin	Cory		Afton Chemical Corporation	248-350-0640	cory.koglin@aftonchemical.com
Kozub	Daniel		Detroit Diesel Corp.	313-592-7589	daniel.kozub@daimler.com
Kunselman	Michael		Center for Quality Assurance	248-234-3697	mkunselman@centerforqa.com
Kuntschik	Larry		ILMA	281-693-2410	lfkuntschik@aol.com
Lanctot	Dan		TEI	210-933-0301	dlanctot@tei-net.com
Leinen	Todd	C.	BG Products	316-265-1197	tleinen@bgprod.com
Linden	Jim		Total Lubricants, USA	248-321-5343	lindenjim@jlindenconsulting.com
Lochte	Michael		Southwest Research Institute	210-522-5430	mlochte@swri.org
Loop	John		The Lubrizol Corporation	440-347-5365	john.loop@lubrizol.com
Martinez	Jo	G.	Chevron Oronite	510-242-5563	jogm@chevron.com
Matasic	Jim		The Lubrizol Corporation	440-347-2487	james.matasic@lubrizol.com
Matheson	Greg		The Lubrizol Corporation	440-347-5032	greg.matheson@lubrizol.com
McCord	James		Southwest Research Institute	210-522-3439	jmccord@swri.org
Mills	Justin		Evonik Oil Additives USA, Inc.	215-706-5816	justin.mills@evonik.com
Moritz	Jim		Intertek Automotive Research	210-523-4601	jim.moritz@intertek.com
Moyer	Sean		Test Monitoring Center	412-365-1035	sam@astmtmc.cmu.edu
Murphy	Edward		Valvoline	859-699-2149	ermurphy@valvoline.com
O'Ryan	Bill		The Lubrizol Corporation	440-347-4545	william.oryan@lubrizol.com
Purificati	Darryl		Petro-Canada Lubricants Inc.	226-387-1790	darryl.puificati@petrocanadalsp.com

HDEOCP Attendance: June 26, 2018

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Putz	Jim		Petro Canada	905-467-0277	jim.putz@petrocanadalsp.com
Qu	Jun		ORNL	865-576-9304	qujn@ornl.gov
Raley	Greg		Motiva Enterprises, LLC	713-427-3417	gregory.raley@motiva.com
Richardson	Chuck		Ford Motor Co.	313-805-0380	cricha12@ford.com
Roell	Bernard		MidContinental Chemical Company	913-286-3023	bernardr@mcchemical.com
Rostami	Amir		ChevronOronite		arqy@chevron.com
Salguerio	Robert		Infineum	908-474-2492	bob.salguerio@infineum.com
Shank	Greg	L.	Volvo Groups Technology	301-790-5817	greg.shank@volvo.com
Sheehan	Michael	Ρ.	ExxonMobil Chemical Company	281-834-2080	michael.p.sheehan@exxonmobil.com
Simons	Scott		Safety-Kleen	219-742-1370	scott.simons@safety-kleen.com
Stockwell	Robert	Т.	Chevron Oronite	210-232-3188	robert.stockwell@chevron.com
Styer	Jeremy		Vanderbilt Chemicals	848-234-7176	jstyer@vanderbiltchemicals.com
Sutherland	Mark		TEI	210-867-8397	msutherland@tei-net.com
Sutherland	Bob		Shell	346-302-1141	risutherland@shell.com
Swedberg	S.	E.	Consultant	623-551-4220	steveswedberg@cox.net
Thompson	E.A.	Нар	Global PPL Standards Assc.	904-287-9596	hapjthom@aol.com
Tomaro	Joe		The Lubrizol Corporation	440-347-1564	joseph.tomaro@lubrizol.com
Tumati	Prasad		Haltermann Solutions	313-300-8300	ptumati@jhaltermann.com
Van Hecke	Mike		Southwest Research Institute	210-522-5495	mvanhecke@swri.org

HDEOCP Attendance: June 26, 2018

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Warholic	Michael		Valvoline	609-744-6782	mdwarholic@valvoline.com
Whitacre	Shawn		Chevron Lubricants	510-242-3557	shawnwhitacre@chevron.com
Willis	Angela		GM	734-904-7714	angela.p.willis@gm.com
Yeo	Seung Min		Shell	281-544-8521	Seung-Min.Yeo@shell.com
Yoon	Andy		SK Lubricants	82-109-934-9553	andy.yoon@sk.com
Zielinski	Chris		ExxonMobil		christine.a.zielinski@exxonmobil.com

D02.B0.02 Maintenance Report

June 2018

Calibrated Labs and Stands*

Test	Labs	Stands
IK	2	2
IN	2	5
IM-PC	I	I
IP	2	2
IR	I	I
CI3	3	3
ISB	2	2
ISM	2	2
EOAT	0	0
RFWT	0	0
T-8/E	2	3
T-11	3	4
T-12/T-12A	3/3	3/3
T-13	4	5
COAT	0	0
DD13	I	I

*As_of_03/30/2018

Availability of API CH-4 through CJ-4 Tests

Test	Hardware Issues	Availability Through 2023	Notes
Cat IK/IN	Auxiliary components	Likely	1980's vintage engine. Ongoing resolution of issues with auxiliary stand and miscellaneous components.
Cat IP/IR	No current issues	Likely	1990's vintage engine. Crankshaft can be ordered. Rings and Liners backordered.
Cat C13	No current issues	Likely	Engine block, injectors, turbos only available through reman. Liners with new material and processing but same specs were introduced IQ 2018.

Additional Caterpillar Test Issues

> Caterpillar Oil Aeration Test

> Aeration measurement system upgrades complete at each lab. Reference tests run and surveillance panel analyzing results.

CATERPILLAR CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests

D

Test	Hardware Issues	Availability Through 2023	Notes
Mack T-8	No current issues	Likely	Engine block supply limited
Mack T-1 I	Oil Consumption	Likely	Engine production ended 2006. Finite number of engine blocks. Engine build life issues with oil consumption.
Mack T-12	Oil Consumption, head gasket	Likely	Engine production ended 2006. Low demand.

MACK CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2023	Notes
Cummins ISM	No current issues	Likely	None
Cummins ISB	No current issues	Likely	None

CUMMINS CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2023	Notes
RFWT	None	Likely	Long term supply of test parts at CPD. 6.5 L engine no longer in production at AM General, but available through supply network. Injection pump still available.
Seq IIIF/IIIG	Hardware depletion Q4 2018	No	Hardware depletion projected 4Q 2018.
EOAT	Using last known hardware	Νο	Oil Temperature runs higher w/ current EOAT engine. Still no official EOAT / COAT correlation. Engine hardware available for one rebuild.
			11

B2 Action Items

- > No Action Items
- Comments

1

COAT Updates

ASTM HDEOCP

Hind Abi-Akar Caterpillar Inc.

Arizona, June 26, 2018

Caterpillar: Confidential Green

COAT – Provisional Licensing

- Caterpillar Surveillance Panel voted to suspend candidate oil testing:
 - Test optimization and reducing variability across labs
- Caterpillar Aeration Test Subgroup is currently working on reducing the variability across labs and potentially improving test repeatability

Main steps taken

Common Micromotion Box across labs

• Built and tested by one lab - same hardware

Changes to filter base

• Filter base modified and communized across labs

Density calculations via one mechanism

 Working with MM supplier, optimized constants and parameters to determine density based on MM output

On going work

Aeration levels have shifted up for both reference oils, but not uniformly

Reference oil discrimination has suffered: The working group is investigating the root causes.

- Engine hardware changes/ updates
- Several calculated aeration methods are being considered

HA

Current activities

- Weekly Caterpillar Aeration Test Subgroup meetings
- Scrutiny of test data
 - Deep dive into engine operational parameters
- Parts swap among labs: determine impact on aeration and differences among labs
- Systematic plan to test parameters one at a time.
 - Determined that some parameters have no impact (see heated line on the right)
 - Working on others

Plans

- Continue Caterpillar Aeration
 Test Subgroup meetings
- Continue in-depth root cause analysis to restore reference oil discrimination and bring engine test back online for candidate oil testing
- Updates will be shared with the Industry as progress is made

DAIMLER

ASTM 8074 - DD13 Scuffing Test Suzanne Neal & Patrick Joyce ASTM D02 - Phoenix, AZ June 26th, 2018

Daimler Trucks

Daimler Surveillance Panel

Initiated	ASTM June 2016
Chairman	Patrick Joyce – Lubrizol Corporation
Secretary	Jose Starling – Southwest Research Institute
OEM Representative	Suzanne Neal – Daimler
TMC Representative	Sean Moyer
Next Meetings	TBD

Test Status & Parts Availability

• Status of the Test

- Available
- Surveillance Panel approved Batch C Liners May 2018
 - Liner roughness limits were implemented
- Editorial Changes to LTMS System June 2018

• Parts Availability

- Referencing new batch of top rings
 - ~ 2200
 - ~ 366 Engine Builds (6 Top Rings per engine)
- Referencing new batch of Pistons
 - ~ 1600 Pistons
 - ~ 266 Engine Builds (6 Pistons per engine)
- Referenced new batch of Liners
 - ~ Ordered 2000 Batched Liners
 - ~ 333 Engine Builds (6 Liners per engine)

Ford 6.7L VTW Test Update ASTM June 2018

Patrick Joyce (Lubrizol)

On behalf of

Ron Romano (Ford)

Test Development Progress

- Working on getting Southwest Research and Intertek running 210 hour test
 - Test is two phases: Soot Generation Phase and Wear Phase
- Work was completed to run Soot Generation Phase equivalent between all 3 labs
 - Soot Generation Phase length of fixed at 10 hours
- Still investigating soot generation during Wear Phase to achieve equivalency between the three labs
- Will be starting prove out testing at SwRI and Intertek within the next month
- 63-pg written test procedure 90% complete
 - First procedure review was completed by the three labs on 3 June 2018

Test Development Data

- HWO "PC11B"
 - 3.0 HTHS150
 - 800 ppm phosphorus
- LWO CJ-4 Factory Fill
 - 3.5 HTHS150
 - 1100 ppm phosphorus
- Blue S/A CJ-4 Factory Fill w/Low HTHS150
 - 3.0 HTHS150
 - 1100 ppm phosphorus
- Green S/A HWO w/High HTHS150
 - 3.5 HTHS150
 - 800 ppm phosphorus

Test Monitoring Center

@ Carnegie Mellon University 6555 Penn Avenue, Pittsburgh, PA 15206, USA http://astmtmc.cmu.edu 412-365-1000

Sequence IIIH Information Letter 18-3 Sequence No. 8 June , 2018

ASTM consensus has not been obtained on this information letter. An appropriate ASTM ballot will be issued in order to achieve such consensus.

TO: Sequence III Mailing List

SUBJECT: Addition of Interpolated 70 hour Percent Viscosity Increase Result

During a recent conference call, the Sequence III Surveillance Panel agreed to add an interpolated 70 hour Percent Viscosity Increase to the Test Method. Section12.4.8 has been added to describe the method for interpolating a 70 hour viscosity increase result.

The attached change to Test Method D8111-18 is effective with the issuance of this letter.

James Ryan Head of Materials, Fasteners & Engrg Standards FCA US LLC Frank M. Farber Director ASTM Test Monitoring Center

Attachments

c: http://www.astmtmc.cmu.edu/ftp/docs/gas/ChryslerIIIH/procedure_and_ils/il18-3_IIIH.pdf

Distribution: Electronic Mail

Modifies Test Method D8111-18 as modified by Information Letters 18-001 and 18-002

12.4.8 *Interpolated 70 hour Percent Viscosity Increase*—Calculate a 70 hour Percent Viscosity Increase result using the following equation;

$$PVIS@70H = \left(\frac{\sqrt{PVIS@60H} + \sqrt{PVIS@80H}}{2}\right)^2$$

Where PVIS@60H = % Viscosity Increase at 60 Hours and PVIS@80H = % Viscosity Increase at 80 Hours

Record the interpolated result on Form 4.

Report On Sequence IIIH Evaluation

Version

Conducted For

V = Valid
I = Invalid
N = Results cannot be interpreted as representative of oil performance (Non-
reference oil) and shall not be used for multiple test acceptance

NR = Non-reference oil test
RO = Reference oil test

Test Number									
Test Stand		Runs Since Last Cali	bration	Total 1	Runs on Stand				
Oil Code	Oil Code								
Formulation/Stand									
Alternate Codes									
EOT Date									

In my opinion this test been conducted in a valid manner in accordance with the Test Method, D8111, and appropriate amendments. The remarks included in the report describe the anomalies associated with this test.

Submitted By:

Testing Laboratory

Signature

Typed Name

Title

Sequence IIIH Form 2 <u>Table of Contents</u>

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Operational Summary	Form 5
6.	Oil Consumption Data Plot	Form 6
7.	Used Oil Analysis	Form 7
8.	Used Oil Analysis	Form 7a
9.	Summary of Ring Sticking	Form 8
10.	Summary of Piston Deposits	Form 9
11.	Blowby Values & Plot	Form 10
12.	Viscosity Increase Plot	Form 11
13.	Hardware Information	Form 12
14.	Downtime Report Form	Form 13
15.	Test Comments	Form 14
16.	American Chemistry Council Code Of Practice Test Laboratory	Form 15
	Conformance Statement	

Sequence IIIH Form 3 Summary of Test Method

The Sequence IIIH Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, and oil consumption. Such oils include both single viscosity grade and multi-viscosity grade oils that are used in spark-ignition, gasoline-fueled engines, as well as diesel engines. The Sequence IIIH Test utilizes a 2012 Chrysler Pentastar 3.6 Liter, water-cooled, 4 cycle, V-6 engine as the test apparatus. The Sequence IIIH test engine is an overhead valve design (OHV) and uses dual overhead camshafts operating both intake and exhaust valves. The engine uses two intake and two exhaust valve per cylinder. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, rings, etc.) are replaced.

The Sequence IIIH Test consists 90 hours of engine operation at moderately high speed, load, and temperature conditions. The 90-hour segment is broken down into four 20-hour test segments and one 10-hour segment. Following each 20-hour segment, the 10 hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 20-hour segment samples and 10 hour segment samples are compared to the viscosity of the initial sample to determine the viscosity increase of the test oil.

The Sequence IIIH Test is operated at the following test states during the 90-hour portion of the test:

Parameter	Set Point
Engine Speed	3900 r/min
Engine Load	250 N·m
Oil Temperature, Block	151°C
Coolant Outlet Temperature	115°C
Fuel Temperature	30 °C
Intake Air Temperature	35 °C
Intake Air Pressure	0.05 kPa
Intake Air Dew Point	16.1 °C
Exhaust Back Pressure	4.5 kPa
Engine Coolant Flow	170 L/min
Coolant Pressure	200 kPa

Sequence IIIH Form 4

Test Result Summary

Lab		Oil Code	
Stand		Test No.	
Laboratory Oil Code			
Formulation Stand Code		Code	

Date Started	Engine No.
Time Started	Fuel Batch
Date Completed	SAE Viscosity
Time Completed	Reference Oil ^A
Test Length	

Pass/Fail Results									
	Viscosity Increase (%)	Average Weighted Piston Deposits (merits)	Phosphorus Retention %	Mini Rotary Viscometer Viscosity, D 4684					
Original Units									
Transformed Results ^B									
Industry Correction Factor									
Corrected Transformed									
Severity Adjustment									
Final Transformed Result									
Final Original Unit Result									

Additional Results

Oil Consumption Hours, h ^B	Oil Consumption, L	
Average Oil Ring Plugging, %	Number of Cold-Stuck Rings	
Number of Hot-Stuck Ring	Average Piston Varnish,	
Interpolated 70 Hour Result		

A Reference Oil Tests Only B Test Hours at which Oil Consumption was calculated

Cold Crank Simulator Results, D 5293

Specified Temperature, °C	
Cold-Crank Simulator Viscosity at Specified Temperature, mPa·s	
MRV Temperature, °C	
Yield Stress, Pa	

Sequence IIIH Form 5 Operational Summary

Lab		Oil Code	
Stand		Test No.	
Laboratory Oil Code			
Formulation Stand Code			

			OI	БОТ			Standard	Numb	oer of
	Parameter	Units	Q1 Threshold	QI	Target	Average	Deviation	Samples	BQD
	Speed	r/min	0.000		3900				
LS	Load	N·m	0.000		250				
ete	Oil, Block	°C	0.000		151				
m	Coolant Out	°C	0.000		115				
ara	Coolant System	kPa			200				
l P	Intake Air	°C	0.000		35				
lle	Intake Air	kPa	0.000		0.05				
tro	Dew Point	°C	0.000		16.1				
0U	EBP Rt.	kPa	0.000		4.5				
C	EBP Lt.	kPa	0.000		4.5				
	Fuel @ Rail	°C	0.000		30				
	Fuel @ Rail	kPa			420				
	Coolant Flow	L/min	0.000		170				

				Standard	Num	ber of
	Parameter	Units	Average	Deviation	Samples	BQD
	Oil Sump	°C				
70	Oil Pump	°C				
ers	Oil Cooler (Optional)	°C				
net	Coolant In	°C				
rar	Oil Gallery	kPa				
Pa	Oil Pump	kPa				
ed	Manifold Absolute Pressure	kPaA				
llo:	Right Exhaust Temperature	°C				
ntr	Left Exhaust Temperature	°C				
S S	Fuel Flow	kg/H				
OD	Crankcase	kPa				
Z	Right NOx	mg/kg				
	Left NOx	mg/kg				
	AFR, Rt.					
	AFR, Lt.					

Sequence IIIH Form 6 Oil Consumption Data Plot

Lab		Oil Code	
Stand		Test No.	
Laboratory Oil Code			
Formulation Stand Code			

Oil Consumption Data

Hours			ЕОТ
Level low (mL)			
Total Oil Consumed (L)			

Oil Consumption Plot

Sequence IIIH

Form 7

Used Oil Analysis Results

Lab		Oil Code		
Stand		Test No.		
Labora	Laboratory Oil Code			
Formulation Stand Code				

V	Viscosity Increase Data (mm²/s @40 °C)										
Hours	Viscosity ^A	Change	Percent								
New Oil											
Initial ^B											
EOT											

A 8000 cSt is maximum allowable viscosity B Initial = At end of leveling run

Highest Detergent Metal and Phosphorus Results by ICP (D 5185									
Modified)									
	Detergent	Phosphorus (P)	Phosphorus Retention ^C						
est Hour	Metal								
	mg/kg	mg/kg	Percent (%)						
Initial ^B									
EOT									
ergent Metal u	sed for this test								
est Hour	Detergent Metal mg/kg sed for this test	Modified) Phosphorus (P) mg/kg	Phosphorus Retention Percent (%)						

C Phosphorus results analyzed by IIIGB Method.

Sequence IIIH Form 7a Used Oil Analysis Results

Lab		Oil Code	
Stand		Test No.	
Labora	tory Oil Code	2	
Formulation Stand Code			

		Oxidatio	on & Nitratio	on Results			
Parameter	Method		20 hours	40 hours	60 hours	80 hours	ΕΟΤ
DIR Oxidation	E168 IIIG A	Area					
DIR Nitration	E168 IIIG A	Area					
				_			
	•	Tot	al Acid Num	ber			
Parameter	Me	ethod	20 hours	40 hours	60 hours	80 hours	EOT
TAN	D	664					
TBN	D4	4739					
	Me	tals Element A	Analysis – IC	P Method I	05185		
Element	New Oil	Initial ^A	20 hours	40 hours	60 hours	80 hours	EOT
Aluminum (Al)							
Boron (B)							
Calcium (Ca)							
Copper (Cu)							
Iron (Fe)							
Potassium (K)							
Magnesium (Mg)							
Manganese (Mn)							
Molybdenum (Mo)							
Sodium (Na)							
Phosphorus (P)							
Lead (Pb)							
Silicon (Si)							
Tin (Sn)							
Zinc (Zn)							

A Initial = At end of leveling run

Sequence IIIH Form 8

Summary of Ring Sticking

Lab		Oil Code			
Stand		Test No.			
Laborator	Laboratory Oil Code				
Formulat	Formulation Stand Code				
Rater				Rating Date	

	% Oil Ring	Ring S	Sticking ^A
Piston	Plugging	Hot-Stuck Rings	Cold-Stuck Rings
1			
2			
3			
4			
5			
6			
Total			
Average			

^A Possible values

T = top compression ring

B = bottom compression ring

- O = oil ring
- N = none

Sequence IIIH Form 9 Summary of Piston Deposits

Lab		Oil	l Code	•	•		
Stand		Te	st No.				
Laboratory	Oil Code						
Formulation	n Stand Code						
Rater					Rating Date		

	Un-weighted Piston Deposits, merits										ston Donosita
		Grooves	5	La	nds	TT 1	Pisto	on Boss V	arnish	weighted F	ston Deposits
	1	2	3	2	3	Undercrown	Front	Rear	Average		Merits
Piston 1										Piston 1	
Piston 2										Piston 2	
Piston 3										Piston 3	
Piston 4										Piston 4	
Piston 5										Piston 5	
Piston 6										Piston 6	
WF	0.05	0.10	0.20	0.15	0.30	0.10			0.10	Average	

Sequence IIIH Form 10 Blowby Values & Plot

T .1.		$O(1 C \cdot 1)$	-
Lab		Ull Code	
Stand		Test No.	
Laborato	ory Oil Code		
Formulation Stand Code			

Blowby Plot

Test Hours	Blowby, L/min	Test Hours	Blowby, L/min	Test Hours	Blowby, L/min
				Average	

Sequence IIIH Form 11 Viscosity Increase Plot

Lab		Oil Code	
Stand		Test No.	
Labora	tory Oil Code	;	
Formulation Stand Code			

Sequence IIIH Form 12 Hardware Information

Lab		Oil Code	
Stand		Test No.	
Laboratory Oil Code			
Formulation Stand Code			

Hardware Information					
Engine Build Date					
Block Serial Number					
Ring Batch Code					
Oil Control (OC) Ring Batch Code					
Expander Ring (EXP) Batch Code					
Cylinder Head Serial Number, Left					
Cylinder Head Serial Number, Right					
Lab Block Number					
Piston Batch Code					

Cylinder Bore Measurements								
Cylinder	Transverse				Longitudinal			
	Тор	Middle	Bottom	Taper	Тор	Middle	Bottom	Taper
2								
4								
6								
1								
3								
5								

Cylinder Surface Finish Measurements								
Cylinder	Rk	Rpk	Rvk	Rz	Mr2			
2								
4								
6								
1								
3								
5								

Piston Ring End Gap (inches)								
Top Ring Pre-Test								
2 nd Ring Pre-Test								

Sequence IIIH Form 13 Downtime Summary

Lab	Oil	Code	
Stand	Test	st No.	
Labora	tory Oil Code		
Formulation Stand Code			

Number of Downtime Occurrences			
Test Hours	Date	Downtime	Reasons
			Total Downtime (hours) – Maximum allowable downtime: 24 hours

Sequence IIIH Form 14 Test Comments

Lab	Oil Code	
Stand	Test No.	
Labora	tory Oil Code	
Formu	lation Stand Code	

Number of Comment Lines		

Sequence IIIH

Form 15 American Chemistry Council Code of Practice Test Laboratory Conformance Statement

Test Laboratory		
Test Sponsor		
Formulation / Stand Code		
Test Number		
Start Date	Start Time	Time Zone

Declarations

- No. 1 All requirements of the ACC Code of Practice for which the test laboratory is responsible were met in the conduct of this test. Yes _____ No____ *
- No. 2 The laboratory ran this test for the full duration following all procedural requirements; and all operational validity requirements of the latest version of the applicable test procedure (ASTM or other), including all updates issued by the organization responsible for the test, were met. Yes _____ No_____*

If the response to this Declaration is "No", does the test engineer consider the deviations from	
operational validity requirements that occurred to be beyond the control of the laboratory? Ye	s
* No	

No 3. A deviation occurred for one of the test parameters identified by the organization responsible for the test as being a special case. Yes _____* No_____ (This currently applies only to specific deviations identified in the ASTM Information Letter System)

Operational review of this test indicates that the results should be included in the
Multiple Test Acceptance Criteria calculations.
*Operational review of this test indicates that the results should not be included in the
Multiple Test Acceptance Criteria calculations.

Note: Supporting comments are required for all responses identified with an asterisk.

Comments

Signature

Date

Typed Name

Title