HEAVY-DUTY ENGINE OIL CLASSIFICATION PANEL

OF ASTM D02.B0.02 December 5, 2017 Houston Marriott Marquis – Houston, TX

THIS DOCUMENT IS NOT AN ASTM STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. *COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959.*

ACTION ITEMS

MINUTES

1.0 Call to order

- 1.1 The Heavy Duty Engine Oil Classification Panel (HDEOCP) was called to order by Chairman Shawn Whitacre at 1:30 p.m. on Tuesday, December 5, 2017, in the Houston 1 Room of the Houston Marriott Marquis Hotel, Houston, TX.
- 1.2 There were 15 members present and 84 guests present. The attendance list is included as Attachment **2**.
- 2.0 Agenda
 - 2.1 The agenda circulated prior was modified as attached. Attachment 1, page 2. The Anti-Trust Statement was presented. Attachment 1, page 3.
- 3.0 Minutes
 - 3.1 The June meeting minutes were approved as written.
- 4.0 Membership
 - 4.1 There were five membership changes. Ed Murphy replaced Josh Frederick for Valvoline, Matthew Hauschild replaced Robert Stockwell for Oronite, John Loop replaced Gail Evans for Lubrizol, Justin Mills replaced Don Smolenski for Evonik, and Abdul Cassim replaced Ken Chao for John Deere. There was one proxy: Mike Alessi of ExxonMobil was represented by Gordon Lee. **Attachment 1, page 4.**
- 5.0 CLOG Update
 - 5.1 Thom Smith gave the update for CLOG (Category Life Oversight Group). Attachment 3. CLOG met 12/4/17. CLOG is responsible for keeping categories alive with tests becoming unavailable. Key tests for HDEOCP consideration are to use the IIIH for the IIIF and replace the EOAT with the COAT test. Equivalent limits in the IIIH for the IIIF were determined and CLOG recommended that the HDEOCP adopt the limits in the attachment. 70 hour limit would be interpolated because there is no 70 hour oil sample. An informal CLOG survey found 8 in favor, 2 not in favor with some concerns. There is not much difference using square root or natural log. The limits currently based on piston batch; limits would not change with different batches, but Industry Correction Factors could be used if

necessary. Other equivalencies in presentation. Some recommendations did not have consensus, but all were sent to Lubes Group to decide. API voting members should vote. The COAT is working on other issues before recommending equivalent limits. CLOG recommends that the HDEOCP approve the limits for the IIIF to IIIH. EMA stated they did not have an opportunity to fully review the proposal.

- 6.0 Sequence IIIH to Sequence IIIF for API CH-4, CI-4, and CJ-4
 - 6.1 Jim Rutherford presented statistical review of IIIH/IIIF analysis. Attachment 4. Three candidate data pairs were submitted along with matrix data. Statisticians did look at several ways to interpolate the 70 hour value. Further discussion on interpolation values as there is not a 70 hour sample. Unlikely that there will be more data. CLOG moved to adopt the recommended limits. Discussion followed. Mary Gery seconded. There were 17 affirmative votes, 0 no votes, and 2 waives. Motion carries and this recommendation will be delivered to Sub B.
- 7.0 Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories
 - 7.1 Sean Moyer gave a report combined with Mark Cooper's report. Attachment 5. CAT 1K/1N SP working through extending life of auxiliary stand components. CAT 1P crankshafts can be ordered. CAT C13 will introduce new liners with coordinated references in early 2018. COAT is having 3 measurement systems built by a single source for each lab to use starting in 2018. T-11/T-12. ISM no issues. ISB updated CF and LTMS. RFWT no change. IIIF/IIIG hardware is anticipated to run out this month. EOAT no update on COAT correlation. EOAT engine has enough hardware for one more rebuild extending its life. There was a request to extend the timeline beyond 2020 for the next report. IIIF/IIIG could actually extend to 1Q18.
- 8.0 Update on DD13 Scuffing Test
 - 8.1 Suzanne Neal gave an update on the DD13 Scuffing Test. **Attachment 6.** Waiting on a new batch of liners. Will also have new rings and pistons.
- 9.0 Update on CAT Oil Aeration Test
 - 9.1 Hind Abi-Akar updated the panel on the COAT. **Attachment 7.** There have been many meetings with small working group and full Surveillance Panel. The group visited Emerson to understand the flow meter better. One lab is building the 3 measurement systems so they are more alike. Another plea for data run in both the EOAT and COAT, otherwise a correlation will be based on only 1005.
- 10.0 Cummins ISB Correction Factors
 - 10.1 Jim Moritz discussed the updated Industry Correction Factors (ICF) and new style LTMS introduced for the Cummins ISB test. **Attachment 8.**
- 11.0 Old Business
 - 11.1 Update on Ford 6.7L Wear Test Development
 - 11.1.1 Ron Romano gave an update on the latest Ford developed wear test. Attachment 9. The test is 200 hours run continuously. A High Wear Oil (HWO) and Low Wear Oil (LWO) have been run. Some tests had some parts replaced at 150 hours to get a comparison of 150 vs. 200 hours. Two other oils were developed and run which were modified versions of the 2 previous oils. There are 32 rocker arms and pushrods per engine. HWO and LWO separated. Six

tests were conducted. Rocker arm weight loss includes 3 wear points on each rocker arm. Results suggest the test responds to chemistry and viscosity. One test had higher EOT soot. EOT soot is 6-7%. This level of soot is higher than seen in the field, which is approximately 3% soot. Push rod weight loss didn't show much. Higher soot was due to a dirty injector after 2 tests. New injectors are now used each time. Iron levels for HWO are higher than others. Test details have been shared with independent test labs. All 6 runs on same short block, with new heads and valve train for each test. Soot correction factors have not been looked at; will consider it. Similar soot levels in other test types. Injection timing is not adjusted, but soot is targeted based on time between 7-10 hours.

- 11.1.2 The next steps are to get other labs going, create an ASTM test method and ask for a category or supplement. A Task Force will be opened up to other stake-holders.
- 12.0 New Business
 - 12.1 D4485 Definitions
 - 12.1.1 Laura Birnbaumer had an update to D4485. Attachment 10. Removing Sequence VI and "Resource Conserving" uncovered some inconsistencies with D4485. Laura moved to recommend to Sub B to change D4485 as shown in the attachment. Mary Dery seconded. There were 16 affirmative votes, 0 no votes, and 2 waives. Motion carries and this recommendation will be delivered to Sub B.
 - 12.2 Proposal to modify D4485 table structure
 - 12.2.1 Laura also had a recommendation to change the table structure in D4485. Attachment 11. The HDEOCP is a technical body with responsibility of maintaining D4485. Table 3 is basically all categories in one table. Laura worked with ASTM publication department to update the document and improve it. A new grouping was proposed. API 1509 uses separate tables. ASTM is supportive of changing it. Why not CK-4 and FA-4 together since tests are same? Since FA-4 is not backward compatible, could be separate; could actually be 5 tables. Other categories could be added or removed easier. Mary Dery seconded. A ballot would have to show the table change. Exact table layout would be in the ballot. This would be a formal letter ballot through Sub B; need this group to reach consensus on moving forward. Seconder wants 5 tables. Laura accepts 5 tables. Motion to make 5 tables; one per category. There were 18 affirmative votes, 0 no votes, and 0 waives. Motion carries and this recommendation will be delivered to Sub B.

13.0 Next meetings

- 13.1 The next meeting will in Phoenix during the June 2018 ASTM Meeting.
- 14.0 The meeting was adjourned at 3:10 pm.

D02.B0.02.1 HDEOCP

Shawn Whitacre Chairman Heavy-Duty Engine Oil Classification Panel

December 5, 2017 Houston, TX USA

AGENDA D02.B0.02.1 Heavy-Duty Engine Oil Classification Panel Tuesday, December 5, 2017 1:30pm CST Marriott Marquis Houston Houston, Texas USA

1) Call to Order/Anti-trust statement

2) Minutes – Approval of Minutes from June 27, 2017 Meeting in Boston, MA, USA

3) Membership

a) Review current panel membership

4) Existing tests/categories

- a) CLOG Update (Thom Smith, Valvoline)
- b) Sequence IIIH to Sequence IIIF for API CH-4, CI-4, and CJ-4 (Jim Rutherford, Chevron Oronite)
- c) Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories (Sean Moyer, TMC/Mark Cooper, Oronite)
- d) Update on DD13 Scuffing Test (Suzanne Neal, DTNA)
- e) Update on CAT Oil Aeration Test (Hind Abi-Akar, Caterpillar)
- f) Cummins ISB Correction Factors (Jim Moritz, Intertek)

5) Old Business

a) Update on Ford 6.7L Wear Test Development (Ron Romano, Ford)

6) New Business

- a) D4485 Definitions (Laura Birnbaumer, Chevron Oronite)
- b) Proposal to modify D4485 table structure (Laura Birnbaumer, Chevron Oronite)

7) HDEOCP Adjournment (transition to DEOAP)

INTERNATIONAL

Antitrust Statement

- ASTM International is a not-for-profit organization and developer of voluntary consensus standards. ASTM's leadership in international standards development is driven by the contributions of its members: more than 30,000 technical experts and business professionals representing 135 countries.
- The purpose of antitrust laws is to preserve economic competition in the marketplace by prohibiting, among other things, unreasonable restraints of trade. In ASTM activities, it is important to recognize that participants often represent competitive interests. Antitrust laws require that all competition be open and unrestricted.
- It is ASTM's policy, and the policy of each of its committees and subcommittees, to conduct all business and activity in full compliance with international, federal and state antitrust and competition laws. The ASTM Board of Directors has adopted an antitrust policy which is found in Section 19 of ASTM Regulations Governing Technical Committees. All members need to be aware of and compliant with this policy. The Regulations are accessible on the ASTM website (http://www.astm.org/COMMIT/Regs.pdf) and copies of the antitrust policy are available at the registration desk.
- For a complete list of standards see http://www.astm.org/COMMIT/SUBCOMMIT/D02B0.htm

ASTM-HDEOCP Membership

	Oil and Additive Companies		OEMs
1	Shawn Whitacre - Chevron	1	Greg Shank – Volvo Power Train
2	Mike Alessi- ExxonMobil*	2	Ryan Denton - Cummins Inc.
3	Dan Arcy - Shell	3	Mesfin Belay - Detroit Diesel
4	Corey Taylor - BP Castrol	4	Hind Abi-Akar - Caterpillar Inc.
5	Ed Murphy – Valvoline ¹	5	Heather DeBaun – Navistar
6	Mary Dery- BASF	6	Ken Chao - John Deere
7	Don Smolenski - Evonik	7	Eric Johnson- GM Powertrain
8	Cory Koglin – Afton	8	Jason Andersen- Paccar
9	Matthew Hauschild – Oronite ²	9	Ron Romano - Ford
10	John Loop – Lubrizol ³		
11	Robert Salgueiro - Infineum U.S.A.		
12	David Taber - Phillips 66 Lubricants		
13	Jim Linden, TOTAL Lubricants		
	* Gordon Lee (EM) has proxy	2.	Replacing Josh Frederick Replacing Robert Stockwell Replacing Gail Evans

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address	
Abi-Akar	Hind		Caterpillar Inc.	309-578-9553	abi-akar_hind@cat.com	
Alemayehu	Matti		ExxonMobil	806-444-2170	matti.b.alemayehu@exxonmobil.com	
Andersen	Jason		PACCAR Technical Center	360-757-5324	jason.andersen@paccar.com	
Ansari	Matthew		Chevron Lubricants		ansa@chevron.com	
Arcy	Dan		Shell Global Solutions	281-544-6586	dan.arcy@shell.com	
Bachelder	Dennis	L.	API	202-682-8182	bachelderd@api.org	
Baumann	Christoph		Optimol Instruments	49 (0) 89 45 09 12-36	christoph.baumann@optimol-instruments.de	
Belay	Mesfin		Detroit Diesel Corp.	313-592-5970	mesfin.belay@daimler.com	
Birnbaumer	Laura		Chevron Oronite		labi@chevron.com	
Bowden	Jason		OH Technologies, Inc.	440-354-7007	jhbowden@ohtech.com	
Brown	Mike	G.	SK Lubricants Americas	908-751-5030	mike.brown@sk-houston.com	
Calcut	Brent		Afton Chemical Corporation	248-350-0640	brent.calcut@aftonchemical.com	
Campbell	Bob		Afton Chemical Corporation		bob.campbell@aftonchemical.com	
Сао	Chundi		Phillips 66 Lubricants	918-9777311	chundi.cao@p66.com	
Carter	James	E.	Gage Products	517-896-1150	jcarter@gageproducts.com	
Cassim	Abdul		John Deere	319-292-5242	cassimabdulh@johndeere.com	
Castanien	Chris		Neste Corp	440-290-9766	chris.castanien@neste.com	
Cisneros	Lizbeth		Motiva Enterprises, LLC	713-751-3756	lizbeth.cisneros@motiva.com	
Cooper	Mark		Chevron Oronite	210-731-5606	mawc@chevron.com	

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address	
DeBaun	Heather	J.	Navistar, Inc.	331-332-1285	heather.debaun@navistar.com	
Dennis	Barbara		BP	973-686-3313	barbara.dennis@bp.com	
Denton	Ryan		Cummins Inc.	812-377-1543	ryan.denton@cummins.com	
Denton	Vicky		Fuels & Lubes Asia		editor@fuelsandlubes.com	
Dery	Mary		BASF	914-785-2061	mary.dery@basf.com	
Donndelinger	Vince		Lubrizol Corporation	440-347-6589	vince.donndelinger@lubrizol.com	
Dougherty	Rick		ExxonMobil Research and Engineering		richard.dougherty@exxonmobil.com	
Duncan	Dave		The Lubrizol Corporation	440-347-2018	david.duncan@lubrizol.com	
Evans	Gail		The Lubrizol Corporation		gail.evans@lubrizol.com	
Evans	Joan		Infineum	908-474-6510	joan.evans@infineum.com	
Farber	Frank	M.	ASTM - TMC	412-365-1030	fmf@astmtmc.cmu.edu	
Ferrick	Kevin		ΑΡΙ	202-682-8233	ferrick@api.org	
Fox	Brian		Lanxess	203-714-8670	brian.fox@chemtura.com	
Franklin	Joe		Intertek Automotive Research	210-523-4671	joe.franklin@intertek.com	
Frederick	Josh		Valvoline	859-357-2248	jrfrederick@valvoline.com	
Gaal	Dennis		ExxonMobil Research and Engineering	856-224-2240	dennis.a.gaal@exxonmobil	
Gault	Roger		EMA	312-929-1974	rgault@emamail.org	
Gbadamosi	Muibat		Royal Purple	713-705-9197	mgbadamosi@royalpurple.com	
Girard	Luc		Sanjuro Consulting	647-648-9704	lgirard@sanjuroconsulting.com	

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address	
Glass	Autumnlynn		Cummins Inc.	812-350-1081	autumnlynn.glass@cummins.com	
Goodrich	Barb		John Deere	319-292-8007	GoodrichBarbaraE@JohnDeere.com	
Haffner	Steve	G.	SGH Consulting		sghaffner2013@gmail.com	
Haumann	Karin		Shell	281-544-6986	karin.haumann@shell.com	
Hauschild	Matthew		Chevron Oronite	510-242-2825	mhauschild@chevron.com	
Не	Herman		Shell	86-21-260-75020	herman.he@shell.com	
Holmes	Patrick		Volvo	717-658-8007	patrick.holmes@volvo.com	
Норе	Ken		ChevronPhillips Chemical Company	832-813-4327	hopekd@cpchem.com	
Hosseini	S.	Mahboobeh	Chevron Oronite	510-242-3462	Mahboob.Hosseini@Chevron.com	
Humphrey	Brian	К.	PetroCanada	440-537-2851	brian.humphrey@petrocanadalsp.com	
Johnson	Eric		General Motors	248-705-1086	eric.r.johnson@gm.com	
Kalberer	Eric	W.	The Lubrizol Corporation	440-497-8327	erklr@lubrizol.com	
Kassir	Jamal		Idemitsu Lubricants	313-443-7440	jkassir@ilacorp.com	
Katrenya	Christine		Vanderbilt Chemicals	203-853-1400	ckatrenya@vanderbiltchemicals.com	
Koglin	Cory		Afton Chemical Corporation	248-350-0640	cory.koglin@aftonchemical.com	
Kostan	Travis		Southwest Research Institute	210-522-2407	travis.kostan@swri.org	
Kuntschik	Larry		ILMA	281-693-2410	lfkuntschik@aol.com	
Lagona	Jason		Croda Inc	301-257-1274	jason.lagona@croda.com	
Lanctot	Dan		TEI	210-933-0301	dlanctot@tei-net.com	
Lagona	Jason		Croda Inc	301-257-1274	jason.lagona@croda.com	

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address	
Lang	Patrick		Southwest Research Institute	210-522-2820	plang@swri.org	
Lee	Gordon		ExxonMobil	856-224-4609	gordon.h.lee@exxonmobil.com	
Leinen	Todd	C.	BG Products	316-265-1197	tleinen@bgprod.com	
Lochte	Michael		Southwest Research Institute	210-522-5430	mlochte@swri.org	
Loop	John		The Lubrizol Corporation	440-347-5365	john.loop@lubrizol.com	
Martinez	Jo	G.	Chevron Oronite	510-242-5563	jogm@chevron.com	
Matasic	Jim		The Lubrizol Corporation	440-347-2487	james.matasic@lubrizol.com	
McCollum	Clarence		Total	248-622-6784	clarence.mccollum@total.com	
McCord	James		Southwest Research Institute	210-522-3439	jmccord@swri.org	
Moritz	Jim		Intertek Automotive Research	210-523-4601	jim.moritz@intertek.com	
Morris	Jeanelle		Navistar, Inc.	331-332-1661	jeanelle.morris@navistar.com	
Moyer	Sean		Test Monitoring Center	412-365-1035	sam@astmtmc.cmu.edu	
Murphy	Edward		Valvoline	859-699-2149	ermurphy@valvoline.com	
Neal	Suzanne		Detroit Diesel Corp.	313-592-7130	suzanne.neal@daimler.com	
O'Ryan	Bill		The Lubrizol Corporation	440-347-4545	william.oryan@lubrizol.com	
Overly	Madison		Shell	281-544-9454	madison.overly@shell.com	
Parsons	Gary		Chevron Oronite	510-242-1026	gmpa@chevron.com	
Pridemore	Dan		Afton Chemical Corporation	804-350-0640	dan.pridemore@aftonchemical.com	
Purificati	Darryl		Petro-Canada Lubricants Inc.	519-304-2351	darryl.puificati@petrocanadalsp.com	

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address	
Rakestraw	Bridgett		BASF	914-785-2283	bridgett.rakestraw@basf.com	
Raley	Greg		Motiva Enterprises, LLC	713-427-3417	gregory.raley@motiva.com	
Richardson	Chuck		Ford Motor Co.	313-805-0380	cricha12@ford.com	
Romano	Ron		Ford Motor Co.	313-845-4068	rromano@ford.com	
Rutherford	James	Α.	Chevron Oronite	510-242-3410	jaru@chevron.com	
Salguerio	Robert		Infineum	908-474-2492	bob.salguerio@infineum.com	
Scanlon	Eugene		BASF	914-785-2755	eugene.scanlon@basf.com	
Shank	Greg	L.	Volvo Groups Technology	301-790-5817	greg.shank@volvo.com	
Sheehan	Michael	Ρ.	ExxonMobil Chemical Company	281-834-2080	michael.p.sheehan@exxonmobil.com	
Smith	Thom		Valvoline LLC	859-357-2766	trsmith@valvoline.com	
Smolenski	Don	J.	Strategic Management of Oil	313-801-3983	donald.smolenski@gmail.com	
Stevens	Andrew		Lubrizol Corporation	440-227-2517	and rew.stevens@lubrizol.com	
Styer	Jeremy		Vanderbilt Chemicals	848-234-7176	jstyer@vanderbiltchemicals.com	
Sutherland	Mark		TEI	210-867-8397	msutherland@tei-net.com	
Tang	Haiying		Fiat Chrysler Automobile	248-512-0593	haiying.tang@fcagroup.com	
Tang	Tom		SI Group	803-378-5070	tom.tang@siigroup.com	
Thompson	E.A.	Нар	Global PPL Standards Assc.	904-287-9596	hapjthom@aol.com	
Tomaro	Joe		The Lubrizol Corporation	440-347-1564	joseph.tomaro@lubrizol.com	
Totten	Warren		Intertek Automotive Research	210-209-7683	warren.totten@intertek.com	

LastName	FirstName	MiddleName Company	Business Phone	E-mail Address
Van Hecke	Mike	Southwest Research Institute	210-522-5495	mvanhecke@swri.org
Warholic	Michael	Valvoline	609-744-6782	mdwarholic@valvoline.com
Whitacre	Shawn	Chevron Lubricants	510-242-3557	shawnwhitacre@chevron.com
Wong	Lawrence	Chevron Base Oils	510-242-1444	lwong@chevron.com

CLOG Update to HDEOCP

Marriott Marquis Houston, TX 2017.12.05

What is at risk

• The following categories may be in jeopardy if alternative tests and equivalent limits cannot be established

API HD Categories	API PC Categories	ILSAC Categories
CH-4	SJ	GF-5
CI-4	SL	
CJ-4	SM	
	SN	
	Resource Conserving	

Summary of Status

Current Test	Replacement Test	Status	Timing
IIIF	ШН	Recommendations to be made to API LG and HDEOCP	Dec/Jan
IIIG	IIIH	Completed	Done
IIIGA	ROBO	Completed	Done
IIIGB	IIIHB	Completed	Done
IVA	IVB	Awaiting precision matrix	Jan/Feb 2018
VG	VH	Recommendations to be made to API LG	Jan/Feb 2018
VID	VIE	API LG gone to Ballot	Nov 2017 if approved
VID (XW-16)	VIF	Completed	Done
EOAT	COAT	Awaiting SP recomendation	1Q18

- Sequence IIIF deposits & Vis Increase
 - Proposed S category Limits to be sent to API LG
 - Proposed C category limits to be sent to ASTM HDEOCP
 - IIIF Life expectancy: Q1 2018
 - IIIH Equivalency: to discuss today

	ΑΡΙ	60 PVIS, max	80 PVIS, max	WPD, min	PSV, min
IIIF Limits	SJ	325	-	3.2	8.5
	SL	-	275	4.0	9.0
	CH-4	295	-	-	-
	CI-4	-	275	-	-
	CJ-4	-	275	-	-

Proposa	ΑΡΙ	60 PVIS,	70 PVIS,	WPD,	PSV,
I		max	max	min	min
	SJ	120	-	1.9	6.6
	SL	-	370	2.3	7.2
IIIH	CH-4	110	-	-	-
Limits	CI-4	-	370	-	-
	CJ-4	-	370	-	-

CLOG IIIF / IIIH Equivalency Survey November 2017

At the November 9 CLOG meeting the Statisticians Group put forward proposed Sequence IIIH limits to be used in place of the current Sequence IIIF limits for API categories CH-4, CI-4 and CJ-4. These are shown in the table below.

ΑΡΙ	Current IIIF	Current Equivalent IIIH		Equivalent
Category	Parameter	IIIF Limit Parameter		IIIH Limit
CH-4	60hr pVis	295 Max 60hr pVis		110 Max
CI-4	80hr pVis	275 Max	70hr pVis (interpolated)	370 Max
CJ-4	80hr pVis	275 Max	70hr pVis (interpolated)	370 Max

Please indicate below whether or not you agree that CLOG should review the proposal with HDEOCP and recommend this proposal to the API Lubricants Group.

Yes, I agree the HD proposal should be Reviewed with HDEOCP and recommended to API LSG Yes = 8

No, the HD proposal should NOT be Reviewed with HDEOCP and recommended to APILSG No = 2

Comments from Survey

With the uncertainty of the Sequence IIIH performance based on piston batch differences, and because the Sequence IIIF is still available, the establishment of equivalent limits for the IIIH to IIIF should not be completed until the IIIH piston batch issue is resolved.

CLOG needs to understand these issues before recommending limits for HDEOCP ballot.

- What is the impact of alternate interpolation methods (square root vs Log e) for determining the 70hr PVIS?
- Which method better describes the typical oxidation curve of a IIIF formulation?
- If Log e was used, what would the P/F limits be for CI-4/CJ-4?
- On Slide 6 the final bullet states that these limits are based on batch 4 pistons (unadjusted) and further suggests that the limits be corrected with subsequent IIIH batches. It would be impractical to have Pass/Fail limits that are piston batch specific.
- It is generally believed that Batch 4 pistons are mild, then if balloted as is, these limits would be unduly severe for future piston batches.

- Sequence IIIG deposits & Vis Increase
 - IIIH Limits for API SN/ILSAC GF-5 and SM approved by LG
 - IIIG Life Expectancy: Q1 2018

	ΑΡΙ	ILSAC	EOT PVIS	WPD	Hot Ring Stick
IIIG	API SN	GF-5	150 Max	4.0 Min	None
Limits	API SM	-	150 Max	3.5 Min	None

Approved	ΑΡΙ	ILSAC	EOT PVIS	WPD	Hot Ring Stick
ШН	API SN	GF-5	150 Max	3.7 Min	None
Limits	API SM	-	150 Max	3.2 Min	None

- Sequence IIIGA used oil MRV
 - API LG agreed that the ROBO could be used as a substitute test
- Sequence IIIGB Phosphorus Retention
 - API LG approved use of the IIIHB

	ΑΡΙ	ILSAC	% P Retention
IIIGB Limits	API SN	GF-5	79% Min

Approved	ΑΡΙ	ILSAC	% P Retention
IIIHB Limits	API SN	GF-5	81% Min

• Sequence IIIF, IIIG and VE wear

• It was determined that these parameters could be waived based upon a minimum P requirement of 0.06% and a Sequence IVA or IVB requirement.

• Sequence IVA Cam wear

- Awaiting completion of the Sequence IVB precision matrix
- Life expectancy of IVA: 2022
- IVB equivalency: Q1 2018

	ΑΡΙ	ILSAC	Average Cam Wear
	SN	GF-5	90µ max
Sequence	API SM	-	90µ max
IVA Limits	API SL	-	120µ max
	API SJ	-	120µ max

	API	ILSAC	Average Cam Wear
	API SN	GF-5	TBD
Sequence	API SM	-	TBD
IVB Limits	API SL	-	TBD
	API SJ	-	TBD

- Sequence VG Sludge and Varnish
 - Stats Group and Ford recommendations to be sent to API LG
 - VID Life Expectancy: Q1 2018
 - VH Equivalency:

	API	ILSAC	AES	RAC	AEV	APV	OSC	Hot Stuck Rings	
Sequenc e VG	SN	GF-5	8.0 min	8.3 min	8.9 min	7.5 min	15% max	None	
Limits	SL, SM & SJ	-	7.8 min	8.0 min	8.9 min	7.5 min	20% max	None	
Proposals	API	ILSAC	AES	RAC	AEV	APV	OSC	Hot Stuck Rings	
Sequenc	SN	GF-5	7.2 min	7.7 min	8.6 min	7.4 min	TBD	None	Stats Group
e VH Limits			7.6 min	7.6 min	8.7 min	7.6 min	TBD	None	Ford
Linits	SL, SM & SJ	-	TBD	TBD	TBD	TBD	TBD	TBD	

- Sequence VID Fuel Economy HTHS ≥ 2.6 cP
 - API LG currently balloting an equivalency proposal
 - VID Life Expectancy: Ended
 - VIE Equivalency: Nov 2017 if ballot approved

			XW-20		XW-30		10W-30 and others	
Sequence	ΑΡΙ	ILSAC	FEI 2	FEI Sum	FEI 2	FEI Sum	FEI 2	FEI Sum
VD Limits	SN/ RC	GF-5	1.2 min	2.6 min	0.9 min	1.9 min	0.6 min	1.5 min

Proposa	being Ball	otted	XW-20		XW-30		10W-30 and others	
Sequence	ΑΡΙ	ILSAC	FEI 2	FEI Sum	FEI 2	FEI Sum	FEI 2	FEI Sum
VIE Limits	SN/ RC	GF-5	1.5 min	3.2 min	1.2 min	2.5 min	1.0 min	2.2 min

- Sequence VID Fuel Economy HTHS ≥ 2.3 cP
 - Sequence VIF equivalent limits approved by LG
 - VID Life Expectancy: Ended
 - VIF Equivalency: October 2017 if approved

		XW	-16
Sequence	ΑΡΙ	FEI 2	FEI Sum
VID Limits	SN/ RC	1.3 min	2.8 min

Appro	ved	XW-16		
Sequence VIF Limits	ΑΡΙ	FEI 2	FEI Sum	
	SN/ RC	1.8 min	3.7 min	

Engine Oil Aeration Test

- Proposal based solely on oil 1005 made
- Request has gone out for data on other oils
- Surveillance Panel is reviewing proposals
- EOAT Life Expectancy: Q4 2018
- COAT Equivalency: Q1 2018

	API	% Aeration
EOAT Limits	CJ-4	8.0 max
	CI-4	8.0 max
	CH-4	8.0 max

	API	% Aeration		
	CJ-4	TBD		
COAT Limits	CI-4	TBD		
	CH-4	TBD		

IIIH / IIIF Data Analysis

Analysis group

Update: 07 November 2017 for CLOG 09 November 2017

Overview

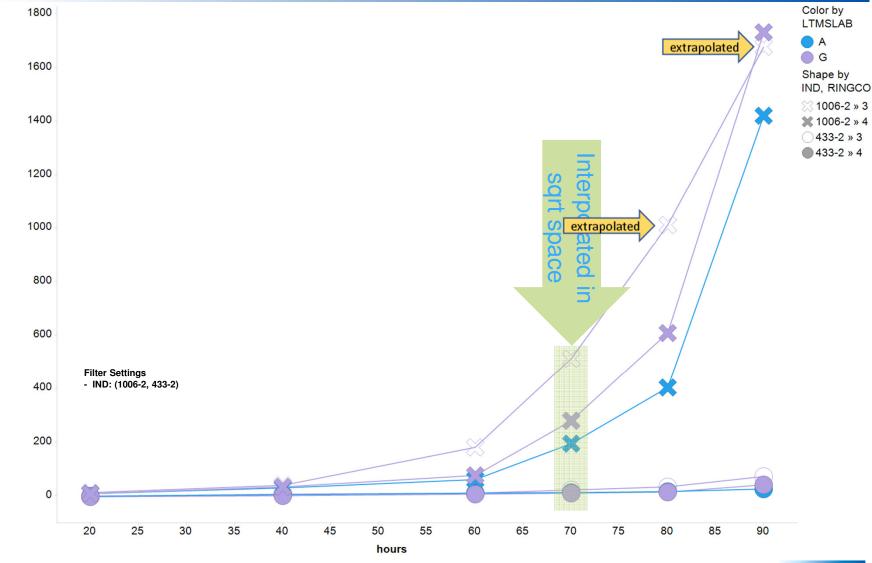
• Need IIIH limits to replace IIIF limits in older categories:

Targ	et Test & Para Bac	meter(s) for Tie- k	Cate Conti	Potential Surrogate Tests for Tie-Back				
Test	Parameters	Transformation	SJ	SL	CH-4	CI-4	CJ-4	
IIIF	60hr - %KV40 (55hr)	In	✓ 325		✓ 295			IIIH pVis
IIIF	80hr - %KV40 (70hr)	1/sqrt		✓ 275		✓ 275	✓ 275	IIIH pVis
IIIF	80hr - WPD	na	✓ 3.2	✓ 4.0				IIIH WPD
IIIF	80hr - APV	na	✓ 8.5	✓ 9.0				IIIH APV

- IIIF will be unavailable early 2018? < 200 runs left
 - Some controversy about how many runs left and whether test will be available to all sponsors into 2018
- CLOG ran four IIIH tests with the current reference oil from IIIF (433-2) and a reference oil last used in IIIF in 2013 (1006-2)
- Two tests ran with batch 3 hardware and two ran with batch 4 hardware. The tests with batch 3 hardware were rerun by the lab with batch 4 hardware.
- The Surveillance Panel is working to bring the IIIH back to target severity.

CLOG IIIH → IIIF Analysts Participants

- Elisa Santos
- Martin Chadwick
- Thom Smith
- Robert Stockwell
- Art Andrews
- Lisa Dingwell
- Abaigeal Ritzenthaler
- Todd Dvorak
- Rich Grundza
- Kevin O'Malley
- Travis Kostan
- Jo Martinez
- Jim Rutherford


Since CLOG September 25 Update

- Two new references since, one in stand G2
- Three candidate data pairs submitted
- We might look at different "WPD" than current rating.
 - More investigation could be done but not promising.
- · Look at IR oxidation, metals, other used oil analyses.
 - No one reported anything.
- Looked at interpolations / extrapolation in square root space to produce following proposal because square root is in IIIF test method. Without 70 hour viscosity data in IIIH, we can't evaluate what transformation would be most appropriate.
- If we use other criteria than PVIS90 and WPD in IIIH, they should be added as "non critical" criteria for Itms.
- APV in IIIH is average of UNWEIGHTED PISTON BOSS VARNISH AVERAGE PIS across six cylinders

IIIH CLOG tests with interpolation

© 2017 Chevron

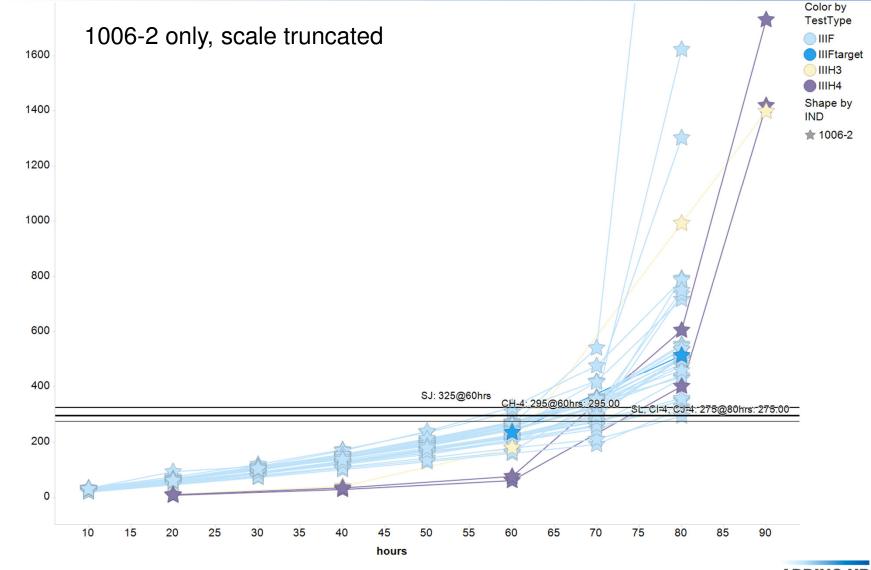
pvish

ADDING UP

Current Proposal

Target Test & Parameter(s) for Tie- Back Categories at Stake that Cannot Be Continued if Tie- Back Not Established					tablished	_	Potential Surrogate Tests for Tie-Back	IIIF outcomes in target datasets	Suggested limits to attain same probability of pass for 1006-2 and 433- 2	data pairs	Proposed Limits	
Test	Parameters	Transformation	SJ	SL	CH-4	CI-4	CJ-4					
IIIF	60hr %KV40	In	✔ 325					IIIH pVis	433-1 nowhere near failing 1006-2 just barely fails SJ	=> 60hr PVIS 117 70hr interpolated PVIS 388 80hr PVIS 1300 calc 90hrPVIS 3600 sa90hrPVIS 5000 break between 60 and 80 hours	all 3 high prob pass ==>	120 @ 60 hrs
IIIF	60hr %KV40	In			✔ 295			IIIH pVis	433-1 nowhere near failing 1006-2 2/30 fail CH-4	=> 60hr PVIS 106 70hr interpolated PVIS 386 80hr PVIS 1100 calc 90hrPVIS 3100 sa90hrPVIS 4300 break between 60 and 80 hours	all 3 high prob pass ==>	110 @ 60 hrs
IIIF	80hr %KV40	1/sqrt		✓ 275 (@70 hrs)		✓ 275 (@70 hrs)	✓ 275 (@70 hrs)	IIIH pVis	433-1 nowhere near failing 1006-2 all fail, limit slightly below lowest 1006- 2	=> 60hr PVIS 60 80hr PVIS 400 calc90hrPVIS 1400 sa 90hr 1800 break between 60 and 80 hours	A-03 pp 275@70hrs ==>	370 @ 70 hrs interpolated in square root space
IIIF	80hr - WPD	na	✔ 3.2					IIIH WPD	433-1 easily passes 1006-2 just passes	=> calc WPD 1.9 saWPD 1.7		=> calc WPD: 1.9
IIIF	80hr - WPD	na		✔ 4.0				IIIH WPD	433-1 fails 9/31 1006-2 fails 19/30	=> calc WPD 2.3 saWPD 2.2		=> calc WPD: 2.3
IIIF	80hr - APV	na	✓ 8.5					IIIH Apv	433-1 easily passes 1006-2 easily passes	=> calc APV 6.6 saAPV 6.3		=> calc APV: 6.6
IIIF	80hr - APV	na		₽ 9.0				IIIH Apv	433-1 fails 5/31 1006-2 fails 3/30	=> calc APV 7.2 saAPV 6.8		=> calc APV: 7.2
IIIF	Hot Stuck Rings		none	none								no hot stuck rings

- OR (1) measure viscosity at 70 hours in the IIIH
- OR (2) use sensor to measure viscosity continuously
- OR use above limits until 1 or 2 is done
- If we determine limits in IIIH batch 4 without severity adjustment, we could maybe readjust limits if the test is ever brought back to target.

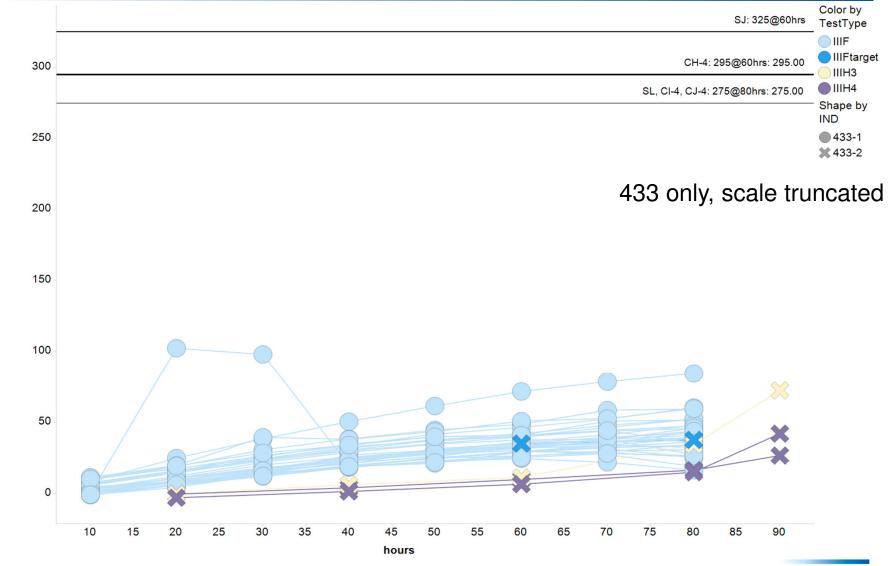


Oronite

For 100 Years

Chevron

September 25, 2017 summary for CLOG

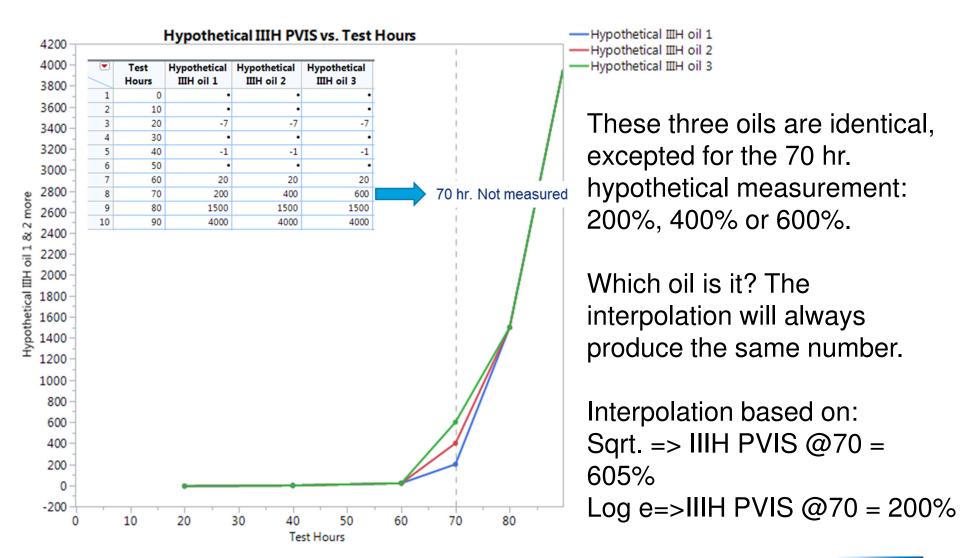

Vislnc

ADDING UP

For 100 Years

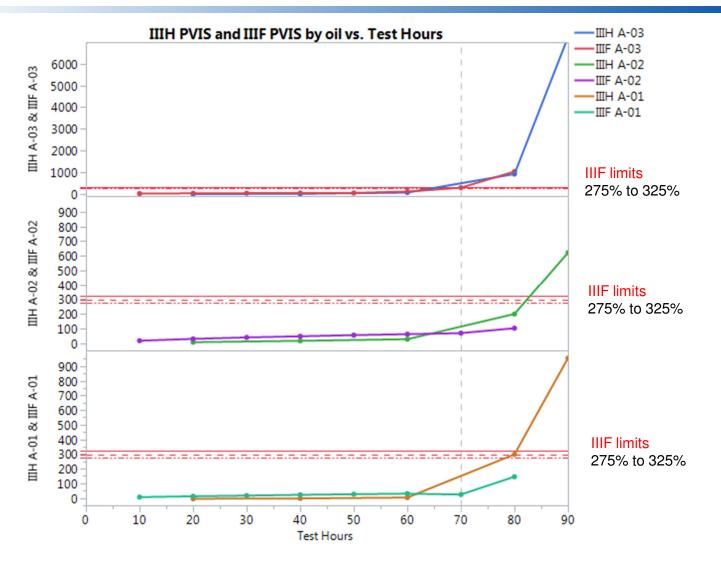
September 25, 2017 summary for CLOG

Vislnc


Candidate data pairs

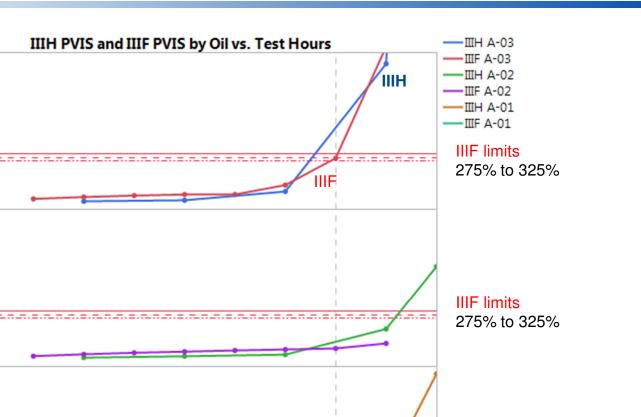
Oil															
Oil Code	VISGrade	BOGroup	BOSaturates	BOSulfur	BOVI	FONoack									
				number	number	number									
A-01	15W40	2	98	0.0006	107	7									
A-02	15W40	2	95	0.0008	105	10									
A-03	15W40	1	81	0.0372	99	10									
Oil	ШН														
Oil Code	EOTDate	PISTBAT	PVIS20	PVIS40	PVIS60	PVIS80	PVIS90	PVIS90	WPD	WPD	APV				
	date	string	number	number	number	number	number	final	unadjusted	final	final				
A-01	4/16/2017	4	-4.67	-2.37	3.41	297.98	955.2	1153.6	6.13	6.11	9.63				
A-02	6/13/2017	4	7.07	16.18	27.14	199.2	621.02	1093.4	6.26	6.1	9.82				
A-03	6/20/2017	4	1.43	8.33	66.97	922.07	7240.26	12748.1	5.83	5.67	9.95				
Oil	IIIF														
Oil Code	EOTDate	PISTBAT	PVIS10	PVIS20	PVIS30	PVIS40	PVIS50	PVIS60	PVIS70	PVIS80	PVIS80	WPD	WPD	APV	APV
	date	string	number	number	number	number	number	number	number	number	final	unadjusted	final	unadjusted	final
A-01	2/18/2016	1	6.58	12.25	17.12	22.34	26.49	30.09	24.14	145.68	24.1	6.3	6.3	9.84	9.49
A-02	2/18/2017	2	17.07	29.29	39.37	47.29	55.04	61.38	68.75	102.33	68.8	6.62	6.62	9.79	9.42
A-03	12/11/2015	1	17.38	29.79	39.45	46.81	46.7	109.95	290.25	1036.49	290.2	6.52	6.52	9.82	9.47

Concern: There is no IIIH data at 70 hr. to properly evaluate the transformation selection used with the 70 hr. interpolation



Oronite

Candidate data: Below there are three stacked panels Each panel shows a pair of hourly candidate data by Oil: PVIS IIIF vs. PVIS IIIH



Oronite

ADDING UP

For 100 Years

Candidate data: PVIS IIIF vs. PVIS IIIH by Oil (common scale) Scales are truncated to show more detail for lower values

IIIF limits

275% to 325%

900

800

700

600

500

400

300 3

200

100 0 900

400

300 5

200 -100 -0 -900 -

800 700

600 500

400

300

200 100 0

10

20

30

40

Test Hours

A-03

& IIIF

IIIH A-03

& IIIF A-02

IIIH A-02 8

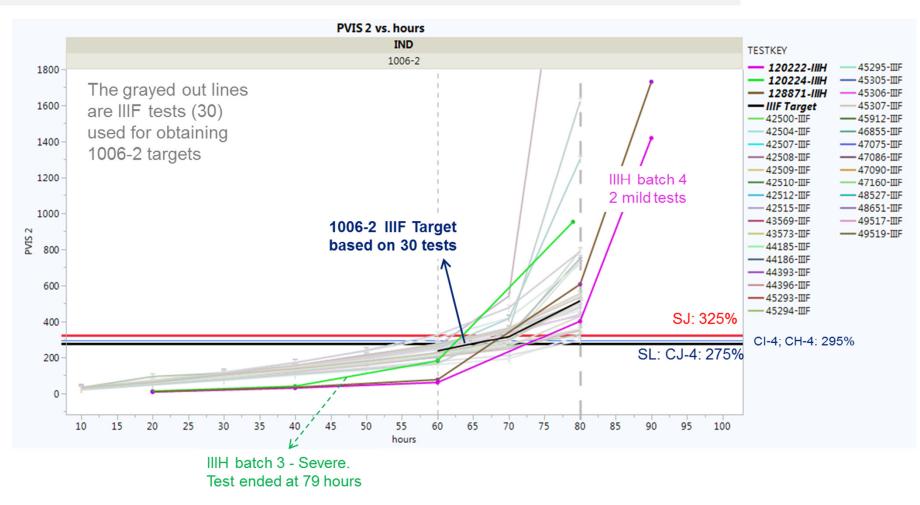
A-01

& IIIF

IIIH A-01

60

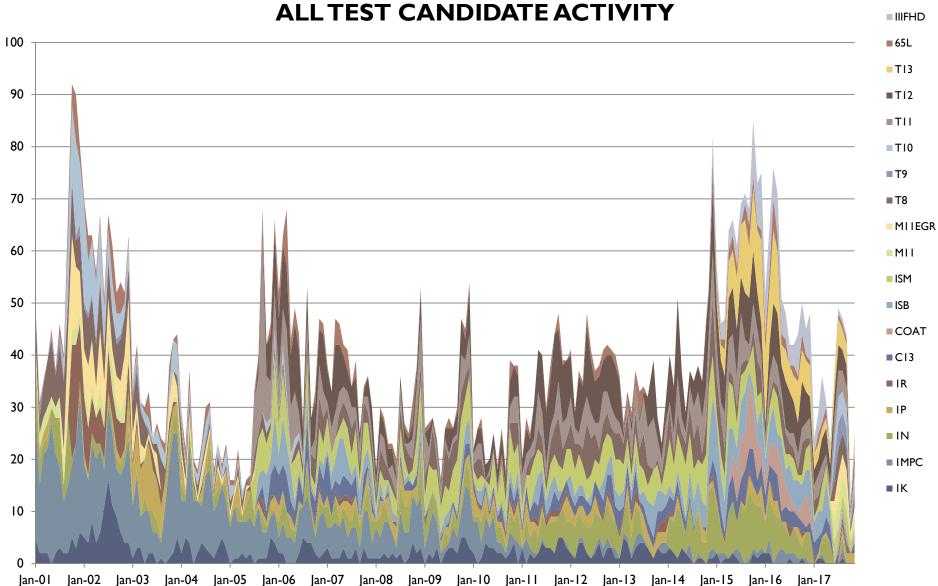
70


80

90

50

IIIF hourly PVIS: GF-2 Oil 1006-2


- 1006-2 IIIF Target (based on 30 tests listed on the legend) and three IIIH tests are highlighted below (two from batch 4 and one from batch 3 – this test ended at 79 hours
- The grayed out lines correspond to PVIS IIIF tests used for calculating the target for oil 1006-2 (the PVIS scale is truncated for test 47086)
- Note that IIIH samples every 20 hours, while the IIIF samples every 10 hours

D02.B0.02 Maintenance Report

December 2017

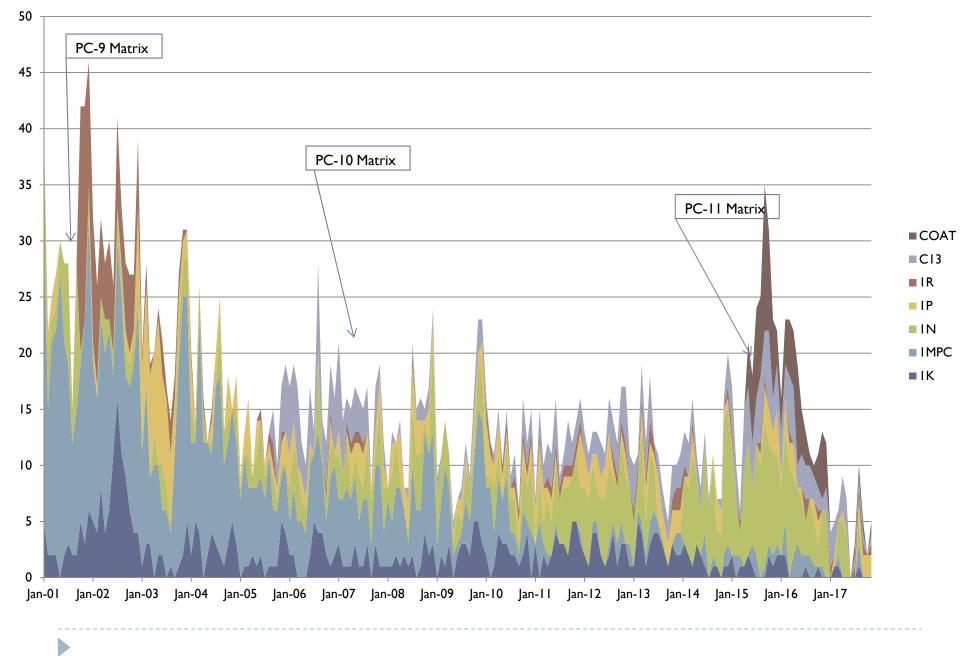
Attachment 5; Page 2 of 12

Calibrated Labs and Stands*

Test	Labs	Stands	
IK	I	I	
IN	4	8	
IM-PC	0	0	
IP	3	3	
IR	I	I	
C13	3	3	
ISB	3	5	
ISM	5	5	
EOAT	I	I	
RFWT	2	2	
T-8/E	2	4	
T-11	I	I	
T-12/T-12A	4/4	6/6	
T-13	4	5	
COAT	3	3	
DD13	3	4	

*As_of_09/30/2017_

Availability of API CH-4 through CJ-4 Tests for PC-11

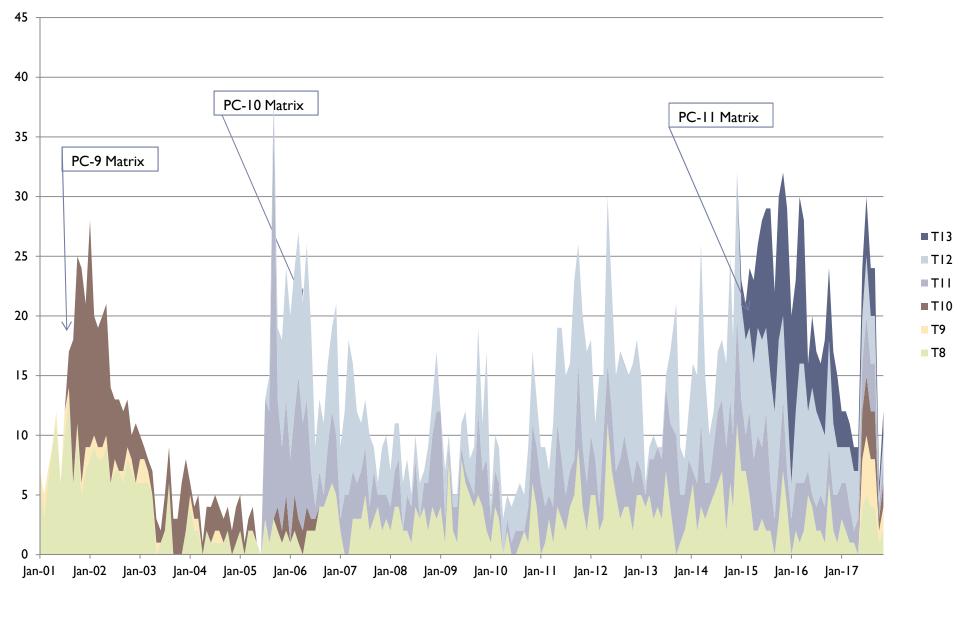

Test	Hardware Issues	Availability Through 2022	Notes
Cat IK/IN	Auxiliary components	Likely	1980's vintage engine. Ongoing resolution of issues with auxiliary stand and miscellaneous components.
Cat IP/IR	No current issues	Likely	1990's vintage engine. Crankshaft can be ordered. Rings and Liners backordered.
Cat CI3	New liners – references anticipated January 2018	Likely	Engine block, injectors, turbos only available through reman. Liners with new material and processing but same specs will be introduced early 2018.

Additional Caterpillar Test Issues

> Caterpillar Oil Aeration Test

Surveillance panel working to create identical aeration measurement systems for each lab. Anticipated completion before end of the year. Introduction of new systems at each lab with reference tests anticipated beginning of 2018.

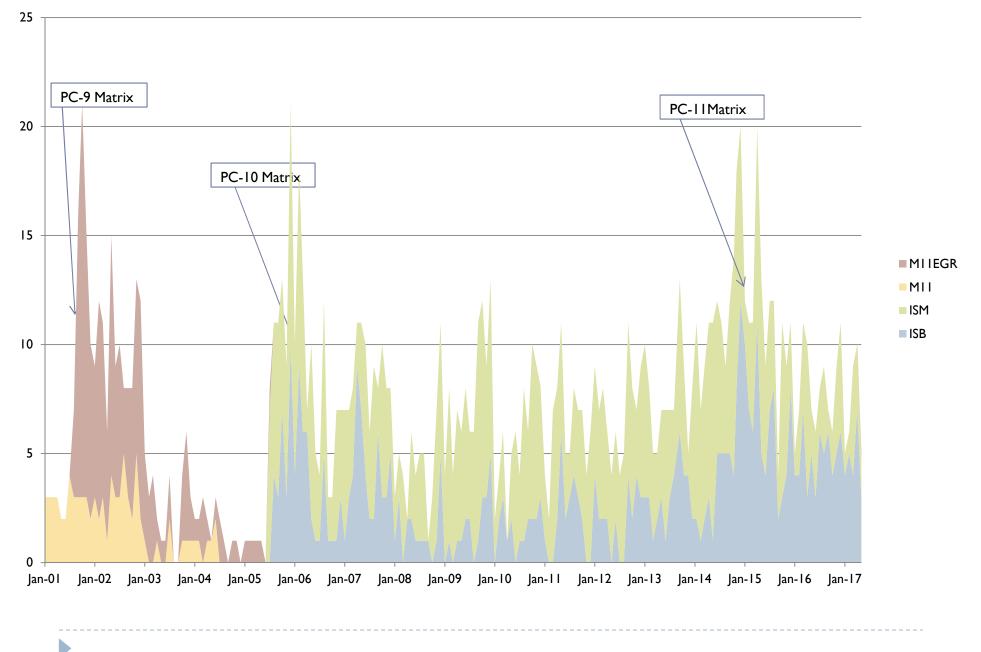
CATERPILLAR CANDIDATE ACTIVITY



Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2022	Notes
Mack T-11	Oil Consumption	Likely	Engine production ended 2006. Finite number of engine blocks. Engine build life issues with oil consumption.
Mack T-12	Oil Consumption, head gasket	Likely	Engine production ended 2006. Low demand.

D


MACK CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2022	Notes
Cummins ISM	No current issues	Likely	None
Cummins ISB	No current issues	Likely	Update correction factors for both tappet weight loss and camshaft wear. LTMS updated in November.

CUMMINS CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

		0	
Test	Hardware Issues	Availability Through 2022	Notes
RFWT	None	Likely	Long term supply of test parts at CPD. 6.5 L engine no longer in production at AM General, but available through supply network. Injection pump still available.
Seq IIIF/IIIG	Hardware depletion Dec 2017	No	Hardware depletion projected 4Q 2017. IIIH to IIIG limits to be defined by industry.
EOAT	Using last known hardware	No	Oil Temperature runs higher w/ current EOAT engine. Still no official EOAT / COAT correlation. Engine hardware available for one rebuild.
			11

B2 Action Items

- > No Action Items
- Comments

DAIMLER

ASTM 8074 - DD13 Scuffing Test Suzanne Neal & Patrick Joyce December 5th, 2017

Daimler Trucks

BHARATBENZ

Daimler Surveillance Panel

Initiated	ASTM June 2016
Chairman	Patrick Joyce – Lubrizol Corporation
Secretary	Jose Starling – Southwest Research Institute
OEM Representative	Suzanne Neal – Daimler
TMC Representative	Sean Moyer
Next Meetings	To be determined – waiting on shipment of liners to arrive.

Test Status & Parts Availability

Status of the Test

- Available,
- Test labs are planning reference more test stands. Waiting for all batched parts to be available.

Parts Availability

- Referencing new batch of top rings
 - ~ 2200
 - ~ 366 Engine Builds (6 Top Rings per engine)
- Referencing new batch of Pistons
 - ~ 1600 Pistons
 - ~ 266 Engine Builds (6 Pistons per engine)
- In Progress Batched liners to TEI
 - ~ Ordered 2000 Batched Liners waiting on shipment
 - ~ 333 Engine Builds (6 Liners per engine)

Caterpillar Oil Aeration Test Updates

Hind Abi-Akar HDEOCP Meeting Dec 5, 2017 Houston, TX

6/1/2018

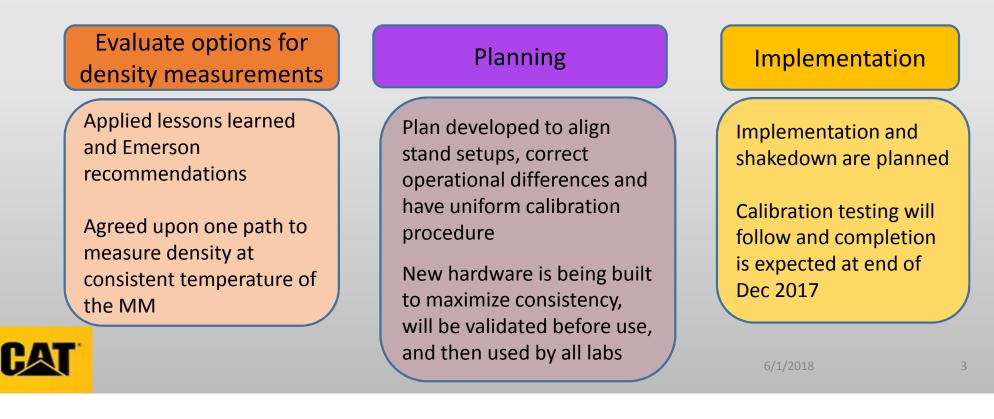
COAT Status

Meetings:

- Working group and Surveillance panel
 - Multiple remote meetings and face-to-face meeting
 - Meeting with Flow meter supplier Emerson, Aug 2017

Test is available for candidate testing

• One stand is referenced and available for testing


Current activities Goal: decrease variability and variation among labs

- Based on an analysis and statistical models of the test matrix, no changes to the current standard deviations were required
- TMC: additions to data dictionary (Form 6) and to the Test Summary (Form 4)

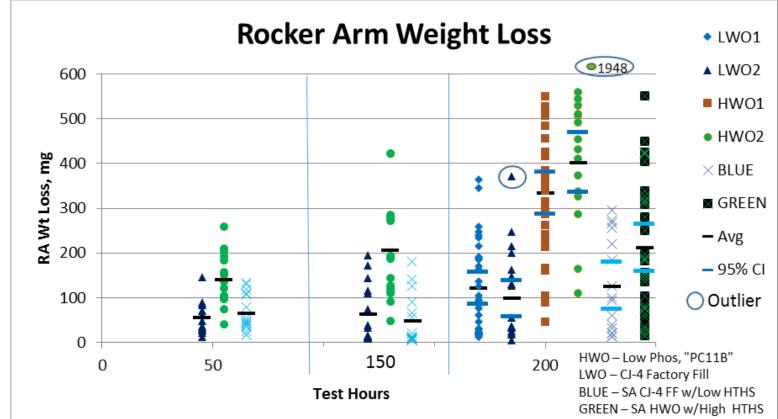
COAT IMPROVEMENT PLAN

Caterpillar Surveillance Panel goal: Improve the current COAT test and bring all labs closer to target

Cummins ISB Industry Correction Factor changes and LTMS Update

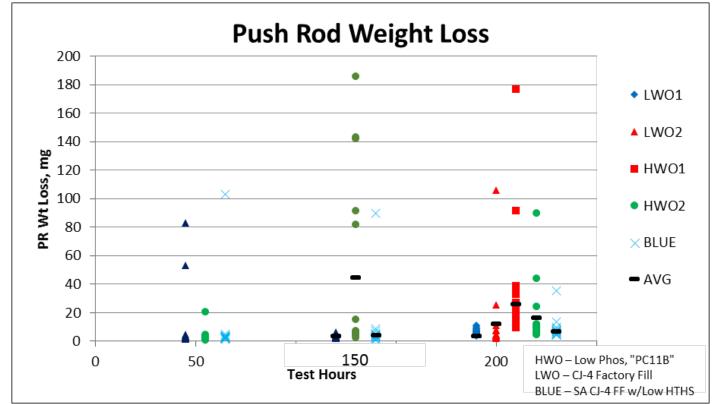
Effec	tive	Condition	Description
From	То	Condition	Description
21-Apr-11	18-Oct-17	All tests using batch B tappets with batch E, F, and G cams	Multiply ATWL by 0.637; Add -9.5 to ACSW
11-Dec-11	12-Nov-12	All tests using batch C tappets with batch H cams	Multiply ATWL by 0.637; Add -9.5 to ACSW
13-Nov-12	18-Oct-17	All tests using batch C tappets with batch H and J cams	Multiply ATWL by 0.711; Add -5.6 to ACSW
None	18-Oct-17	All test using batch D tappets and batch K cams	Multiply ATWL by 1; Add -11.3 to ACSW
19-Oct-17	***	All test using batch D tappets, batch K cams, and batch E crossheads	Multiply ATWL by 0.7851; Add -18.5 to ACSW

Also, the Cummins Surveillance Panel adopted the 'newer' style LTMS for the ISB test and Severity Adjustments (stand based) for the first time. This is currently out for 2 week review.


6.7L Valvetrain Wear Test Update

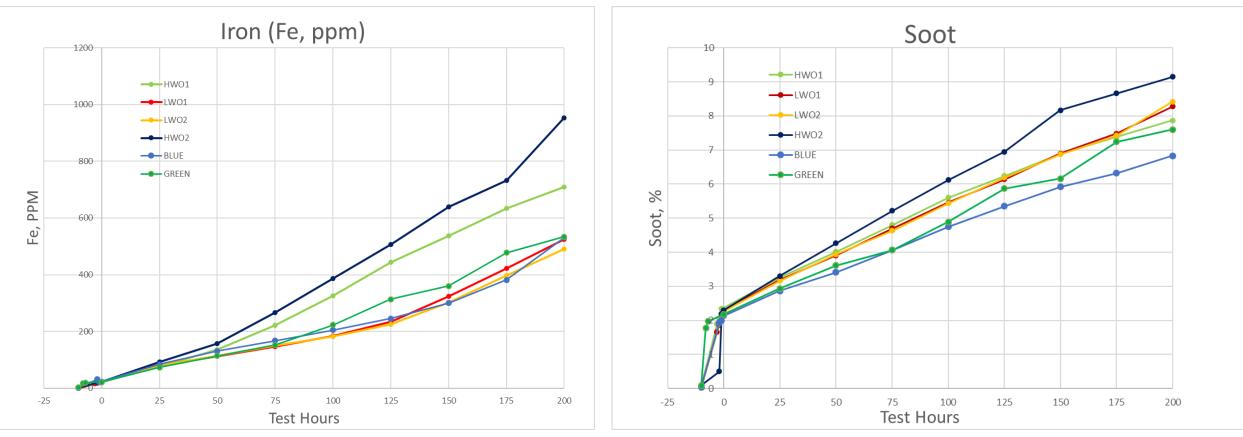
Ron Romano December 5, 2017

6.7L Valvetrain Wear Test


- Procedure
 - 7-10 hour soot stage 2600 rpm/WOP (740 Ft-#) Target 2-2.5% soot
 - 200 hour wear stage Peak Power 2800 rpm/825 Ft-#
 - 1st High Wear Oil (HWO), Low Wear Oil (LWO) and Green tests ran 200 hours on all the Valve Train (VT) components
 - 2nd HWO, LWO and Blue oil ran 200 hours on right VT components and 150 hours on left VT components. (to observe time effect)
- Oils tested
 - HWO "PC11B"
 - 3.0 HTHS150
 - 800 ppm phosphorus
 - LWO CJ-4 Factory Fill
 - 3.5 HTHS150
 - 1100 ppm phosphorus
 - Blue S/A CJ-4 Factory Fill w/Low HTHS150
 - 3.0 HTHS150
 - 1100 ppm phosphorus
 - Green S/A HWO w/High HTHS150
 - 3.5 HTHS150
 - 800 ppm phosphorus

Rocker Arm Weight loss

- 200 hours
 - Good separation on average weight loss between the HWO and LWO
 - Good repeatability between tests
 - Acceptable overlap between HWO and LWO on the individual Rocker Arm weight loss.
 - Considered good measurement criteria
 - Blue oil provided similar wear results to the LWO indicating that the test responds to anti-wear chemistry
 - Green oil results were between LWO and Blue oils and the HWO indicating that test responds to viscosity
- 150 hours
 - Showed good separation on the average weight loss but not as much as 200 hour components
 - Unacceptable overlap in the data between the HWO and LWO. HWO only having a few (6) data point outside the LWO range


Push Rod Weight Loss

- Push rod wear showed large variation in wear throughout the engine
 - Only a small number of rods in each engine showed high wear in the HWO making the average wear relatively meaningless.
- The high variation led to poor discrimination between the HWO and LWO
- Due to large variability in wear within the engine, push rod wear was eliminated as a measurement criteria

Oil Analysis

Attachment 9; Page 5 of 6

- Iron levels were repeatable
- Soot levels were repeatable. Blue and green oil tests used new injectors for both these tests. Injectors were replaced after the 4th test (HWO@ due to higher soot than the previous tests.
- Blue oil provided similar iron levels to the LWO again indicating that the test responds to anti-wear chemistry.
- Green oil test showed slightly higher iron levels than the LWO and Blue oil tests correlating with the increased rocker arm wear

Attachment 9; Page 6 of 6

Questions

ASTM D4485 3 Terminology & 4 Performance Classification

Laura Birnbaumer Automotive Engine Oil Product Qualification

ASTM Houston, TX

December 4-6, 2017

ASTM D4485 3 Terminology & 4 Performance Classification

WK59621 to align D4485 with API 1509 reveled some surprises with missing entries and the incorrect labeling of some examples:

I move the following changes be made to D4485 Sections 3 and 4

- 1. Remove "Resource Conserving" from 3.1.2 category,
- 2. Add 3.1.X *supplementary classification, n-in engine oils*, a designation, such as Resource Conserving and SN Plus, for a given level of performance beyond that of a category in specified engine and bench tests.
- 3. Add 3.2.X *Resource Conserving supplementary classification, n*-the group of engine oils that have demonstrated fuel economy benefits, greater emission system and turbocharger protection and help protect engines operating on ethanol-containing fuels up to E85.
- 4. Add 3.2.X *F category, n*-a group of certain XW-30 oils specifically formulated for use in diesel engines designed to meet 2017 model year on-highway greenhouse gas (GHG) emission standards.
- 5. Add "F" and "Resource Conserving" to 4.1 after "S," and "C," and change the "three" to "four."

ASTM D4485 3 Terminology & 4 Performance Classification

3.1.2 category, *n*—in engine oils, a designation such as SJ, SL, SM, SN, CH-4, CI-4, CJ-4, CK-4, FA-4, Energy Conserving, Resource Conserving, and so forth, for a given level of performance in specified engine and bench tests.

3.1.3 *classification*, *n*—*in engine oils*, the systematic arrangement into categories in accordance with different levels of performance in specified engine and bench tests.

3.1.4 heavy duty, adj—in internal combustion engine operation, characterized by average speeds, power output, and internal temperatures that are generally close to the potential maximums.

3.1.5 heavy-duty engine, n—in internal combustion engine types, one that is designed to allow operation continuous at or close to its peak output.

3.1.6 *light-duty, adj—in internal combustion engine operation*, characterized by average speeds, power output, and internal temperatures that are generally much lower than the potential maximums.

3.1.7 *light-duty engine*, *n*—*in internal combustion engine types*, one that is designed to be normally operated at substantially less than its peak output.

3.1.7.1 *Discussion*—This type of engine is typically installed in automobiles and small trucks, vans, and buses.

3.1.8 lugging, adj—in internal combustion engine operation, characterized by a combined mode of relatively low-speed and high-power output.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *C* category, *n*—the group of engine oils that are intended primarily for use in diesel and certain gasoline-powered vehicles.

3.2.2 Energy Conserving category, n—the group of engine oils that have demonstrated fuel economy benefits and are intended primarily for use in automotive gasoline engine applications, such as passenger cars, light-duty trucks, and vans.

3.2.3 engine oil, n—a lubricating liquid with additives that reduces friction or wear, or both, between the moving parts within an engine; removes heat, serves as a combustion-gas sealant for piston rings; and reduces potentially harmful effects such as rusting, deposit formation, oil oxidation, and foaming resulting from engine operation.

3.2.4 *S* category, *n*—the group of engine oils that are intended primarily for use in automotive gasoline engine applications, such as passenger cars, light-duty trucks, and vans.

4. Performance Classification

4.1 Automotive engine oils are classified in three general arrangements, as defined in 3.2; that is, S, C, and Energy Conserving. These arrangements are further divided into categories with performance measured as follows:

4.1.1 SJ—Oil meeting the performance requirements measured in the following gasoline engine tests and bench tests:

4.1.1.1 Test Method D5844, the Sequence IID, gasoline engine test has been correlated with vehicles used in short-trip

4.1.1.2 Test Method D5533, the Sequence IIIE gasoline engine test, has been correlated with vehicles used in hightemperature service prior to 1988,⁹ particularly with regard to oil thickening and valve train wear. (Alternatives are Test Method D6984, the Sequence IIIF test, or Test Method D7320, the Sequence IIIG test.)

4.1.1.3 Test Method D5302, the Sequence VE gasoline engine test, has been correlated with vehicles used in stopand-go service prior to 1988,¹⁰ particularly with regard to sludge and valve train wear. (An alternative is the combination of Test Method D6593, the Sequence VG test, and Test Method D6891, the Sequence IVA test.)

4.1.1.4 Test Method D5119, the L-38 gasoline engine test, is used to measure copper-lead bearing weight loss under hightemperature operating conditions. (An alternative is Test Method D6709, the Sequence VIII test.)

(1) Test Method D5119 (or Test Method D6709) is also used to determine the ability of an oil to resist permanent viscosity loss due to shearing in an engine.

4.1.1.5 In addition to passing performance in the engine tests, specific viscosity grades shall also meet bench test requirements (see Table 1), which are discussed in the following subsections:

(1) The volatility of engine oils is one of several factors that relates to engine oil consumption.

(2) Test Method D6795, the EOFT screens for the formation of precipitates and gels that form in the presence of water and can cause oil filter plugging.

(3) Phosphorus compounds in excessive amounts can cause glazing of automotive catalysts and exhaust gas oxygen sensors and, thereby, deactivate them. Control of the phosphorus level in the engine oil may reduce this tendency.

(4) The flash point may indicate if residual solvents and low-boiling fractions remain in the finished oil.

(5) Excessive foaming in engine oil can cause valve lifter collapse and a loss of lubrication due to the presence of air in the oil. Test Methods D892 and D6082 empirically rate the foaming tendency and stability of oils.

(6) Test Method D6922, the H and M Test indicates the compatibility of an oil with standard test oils.

(7) Newer engines designed to provide increased power and improved driveability and to meet future federal emissions and fuel economy requirements may be sensitive to internal deposits caused by elevated engine operating temperatures. Test Method D6335, the TEOST test, may be useful in determining the deposit control of oils recommended for these engines.

⁸ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1473. Contact ASTM Customer Service at service@astm.org.

⁹ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1471. Contact ASTM Customer Service at service@astm.org.

¹⁰ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1273. Contact ASTM Customer Service at service@astm.org.

Laura Birnbaumer Automotive Engine Oil Product Qualification

ASTM Heavy Duty Class Panel Houston, TX

December 5, 2017

All of the current API C Service Categories are contained within the same table in ASTM D4485 – presently Table 3.

During the last update to Table 3, the addition of CK-4 and FA-4, Jessica L. Barrett, Manager of ASTM Standards Publications was quoted as saying "This was a doozy, and I'm sorry it took me so long to get it to you. The tables were a lot of work, and they're still very messy. I think you could consider breaking Table 3 into several smaller tables and be just fine." [Barrett, Jessica L. " RE: Finally, review of ASTM D4485-16, item #53 and 54 on D021604", message to Lyle Bowman, Birnbaumer, Laura, Fick, Alyson 2/17/2017 E-mail]

This is because physically "Table 3 is really a collection of several smaller tables." [2/27/2017] "it's basically 8ish different tables scotch-taped together." [2/22/2017] "It was already a complicated table to begin with and became more complicated for me to include new information". [2/22/2017]

Ms. Barrett's perspective is from an editorial/publication standpoint and her comments more "about how unwieldy the table" [2/22/2017] is. She is leaving it up to us "technical experts" to decide how to group the API C Service Categories.

I propose the following grouping of the API C Service Categories in ASTM D4485 Tables:

The first table: CH-4 and CI-4 The second table: CJ-4 and CK-4 The third table: FA-4.

Standard Specification for Performance of Active API Service Category Engine Oils¹

This standard is issued under the fixed designation D4485; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

INTRODUCTION

This specification covers all the currently active American Petroleum Institute (API) engine oil performance categories that have been defined in accordance with the ASTM consensus process. There are organizations with specifications not subject to the ASTM consensus process, such as the International Lubricant Standardization and Approval Committee (ILSAC), American Petroleum Institute (API – SM, SN Specifications), and the Association des Constructeurs Europeans d'Automobiles (ACEA). Certain of these specifications, which have been defined primarily by the use of current ASTM test methods, have also been included in the Appendixes for information.

In the ASTM system, a specific API designation is assigned to each category. The system is open-ended, that is, new designations are assigned for use with new categories as each new set of oil performance characteristics are defined. Oil categories may be referenced by engine builders in making lubricant recommendations, and used by lubricant suppliers and customers in identifying products for specific applications. Where applicable, candidate oil programs are conducted in accordance with the American Chemistry Council (ACC) Petroleum Additives Product Approval Code of Practice.

Other service categories not shown in this document have historically been used to describe engine oil performance (SA, SB, SC, SD, SE, SF, SG, SH and CA, CB, CC, CD, CD-II, CE, CF, CF-2, CF-4, CG-4) (see 3.1.2). SA is not included because it does not have specified engine performance requirements. SH is not included because it was a category that could not be licensed for gasoline engine oil use in the API Service Symbol after Dec. 2, 2010. (Note—The SH category has been included because they are based on test methods for which engine parts, test fuel, or reference oils, or a combination thereof, are no longer available. Also, the ASTM 5-Car and Sequence VI Procedures are obsolete and have been deleted from the category Energy Conserving and Energy Conserving II (defined by Sequence VI). Information on excluded older categories and obsolete test requirements can be found in SAE J183.

1. Scope*

1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. 1.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or oceangoing vessels.

1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹This specification is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.B0 on Automotive Lubricants.

Current edition approved Dec. 15, 2016. Published March 2017. Originally approved in 1985. Last previous edition approved in 2015 as D4485 – 15a. DOI: 10.1520/D4485-16.

↓ D4485 = 16

TABLE 3 C Engine Oil Categories

Category	Test Method	Rated or Measured Parameter Primary Performance Criteria						
Category	Test Method	hated of Medshed Falanciel	One-test	Two-test ^A	Three-test ^A			
CH-4	D6681 (1P) ^B	Weighted demerits (WDP), max	350	378	390			
	20001 (11)	Top groove carbon (TGC), demerits, max	36	39	41			
		Top land carbon (TLC), demerits, max	40	46	49			
		Average Oil Consumption, g/h (0 h – 360 h), max	12.4	12.4	12.4			
		Final Oil Consumption, g/h (312 h – 360 h), max	14.6	14.6	14.6			
		Piston, ring, and liner scuffing	none	none	none ^C			
	D6750 (1K) ^D	Weighted demerits (WDK), %, max	332	347	353			
	D0750 (TK)	Top groove fill (TGF), %, max	24	27	29			
			4	5	5			
		Top land heavy carbon (TLHC), %, max						
		Average Oil Consumption, g/kWh ($0 h - 252 h$), max	0.54	0.54	0.54			
		(g/MJ) (0 h – 252 h), max	(0.15)	(0.15)	(0.15)			
		Piston, ring, and liner scuffing	none	none	none			
	D6483 (T-9)	Average Liner Wear, normalized to 1.75 % soot, µm max	25.4	26.6	27.1			
		Average Top Ring Mass Loss, mg max ^E	120	136	144			
		EOT Used Oil Lead Content less New Oil Lead						
		Content, mg/kg, max	25	32	36			
	or, D6987/D6987M (T-10)	Liner wear, µm, max	32	34	35			
		Ring wear, mg, max	150	159	163			
		Lead content at EOT, mg/kg, max	50	56	59			
	or, D7422 (T-12)	Liner wear, µm, max	30.0	30.8	31.1			
		Top Ring Mass Loss, mg, max	120	132	137			
		Lead content at EOT, mg/kg, max	65	75	79			
					0.36			
	D5966 (RFWT)	Average Pin Wear, mils, max	0.30	0.33				
	Doopo Ittati	(μm) max	(7.6)	(8.4)	(9.1)			
	D6838 (M11) ^F	Rocker Pad Average Mass Loss, normalized to 4.5 %						
		soot,						
		mg max	6.5	7.5	8.0			
		Oil Filter Differential Pressure at EOT, kPa max	79	93	100			
		Average Engine Sludge, CRC Merits at EOT, min	8.7	8.6	8.5			
	or, D7468 (ISM)	Crosshead wear, mg, max	7.5	7.8	7.9			
		Oil filter delta pressure, at 150 h, kPa, max	79	95	103			
		Sludge rating, CRC merits, min	8.1	8.0	8.0			
	D5967 (Ext. T-8E) ^G	Relative Viscosity at 4.8 % Soot by						
	,	TGA, max	2.1	2,2	2.3			
		Viscosity increase at 3.8 % Soot by TGA, mm ² /s, max	11.5	12.5	13.0			
	D6984 (Sequence IIIF)	60 h Viscosity at 40 °C, increase from 10 min sample, %						
	Dood4 (Ocquerice ini)	max	295	295 (MTAC) ^H	295 (MTAC) ⁺			
	an DZ000 (Casuanan IIIO)		150	150 (MTAC)	150 (MTAC)			
	or D7320 (Sequence IIIG)	Kinematic viscosity, % increase at 40 °C max						
	D6894 (EOAT)	Aeration, volume, % max	8.0	8.0 (MTAC) ^H	8.0 (MTAC) ⁴			
	D6594 (135 °C, HTC BT)	Used Oil Elemental Concentration						
		Copper, mg/kg increase, max	20					
		Lead, mg/kg increase, max		120				
		Tin, mg/kg increase		report				
		Copper strip rating, ^K max		3				
	D892 (Option A	Foaming/Settling, ^L mL, max						
	not allowed)							
		Sequence I	10/0					
		Sequence II	20/0					
		Sequence III	10/0					
			SAE 10W-30	SAE 15W-40				
	D5800 or	percent volatility loss at 250 °C, max	20	18				
	D6417	percent volatility loss at 371 °C, max	17	15				
	D6278	Kinematic Viscosity after shearing.	SAE XW-30	SAE XW-40				
	00210	mm ² /s, min	9.3	12.5				
		(101175, 1001	5.0	12.0				
			One-test	Two-test ^M	Three-test ^M			
1-4	D6002 (1P)	Weighted demerits (WDR), max	382	396	402			
/1-4	D6923 (1R)		52	57	59			
		Top groove carbon (TGC), demerits, max						
		Top land carbon (TLC), demerits, max	31	35	36			
		Initial oil consumption (IOC),	13.1	13,1	13.1			
		(0 h - 252 h), g/h, average	100	100	100			
		Final oil consumption,	IOC + 1.8	IOC + 1.8	IOC + 1.8			
		(432 h – 504 h), g/h, average, max						
		Piston, ring, and liner distress	none	none	none			
		Ring sticking	none	none	none			
	or, D6681 (1P)	Weighted demerits (WDP), max	350	378	390			
	25 <u>5</u> <u>5</u>	Top groove carbon (TGC), demerits, max	36	39	41			
		Top land carbon (TLC), demerits, max	40	46	49			
		Average oil consumption, g/h (0 h – 360 h), max	12.4	12.4	12.4			
		Final oil consumption, g/h (312 h – 360 h), max	14.6	14.6	14.6			
		Piston, ring, and liner scuffing	none	none	none			
	DC007/DC007H (T + 0)	Marit rating M min	4000	4000				
	D6987/D6987M (T-10)	Merit rating, ^M min	1000	1000	1000			
	D6987/D6987M (T-10) or the T-12 (T-10) test D6975 (M11 EGR)	Merit rating, ^M min Merit rating, ^M min Average crosshead mass. loss, mg, max	1000 1000 20.0	1000 1000 21.8	1000 1000 22.6			

۰.

| 3 Licensee=Chevron Corporate Wide/1000001100, User=Bimbaumer, Laura Not for Resale, 03/20/2017 18 22 52 MDT

Category	Test Method	F	lated or Measured Parameter	Prin	nary Performance Crite	eria
		Average top rir	ig mass loss, mg	report	report	report
		Oil filter differer		275	320	341
		at 250 h, kPa		210	020	0+1
			e sludge, CRC merits	7.8	7.6	7.5
		at EOT, min			1.0	1.5
	or, D7468 (ISM)	Crosshead wear, mg, max		7.5	7.8	7.9
			sure at 150 h, kPa, max	55	67	74
			CRC Merits, min	8.1	8.0	8.0
	D5967 (Ext. T-8E) ^G		ity at 4.8 % soot ^N	1.8	1.9	2.0
	D6984 (Sequence IIIF) ^o	Kinematic visco		275	275 (MTAC)	275 (MTAC
	/	percent increas		210	213 (11170)	END (MITAO
	or D7320(Sequence IIIG)		osity, percent increase at 40 °C max	150	150 (MTAC)	150 (MTAC
	D6750 ^P		erits (WDK), max	332	347	353
		Top groove fill		24	27	29
	18		carbon (TLHC), %, max	4	5	29
			sumption, g/kWh (0 h - 252 h), max	0.54	0.54	0.54
		(g/MJ) (0 h -		(0.15)	(0.15)	
		Piston, ring, an		none	none	(0.15) none
	D5966	Average pin we		0.30	0.33	0.36
	(RFWT)	or (µm), max	ar, mio, max	(7.6)	(8.4)	(9.1)
	D6894 (EOAT)		ne percent, max	8.0	8.0 (MTAC) ^H	8.0 (MTAC)
	CI-4 Bench Tests		Measured Parameter	0.0	Primary Perform	
D4683 (Hig D5481	gh temperature/High shear) or	D4741 or	Viscosity after shear, ^R min		3.5 mPa-s	
D5481-			The following limits are confided to CAT			
D4004 (IVII	(((((((((((((((((((((((((((((((((((((((The following limits are applied to SAE vis 0W, 5W, 10W and 15W:	scosny grades		
			Viscosity of 75 h used oil sample from T-1	0 1-1 / - T (015		
			test)	iu test (or 1-10A≊		
			or 100 h used oil sample from T-12 test (c	or T-12A ^T test		
			tested at -20 "C, mPa-s, max		25 00	ю
			If yield stress is detected, use modified	25 00	0	
			D4684 ^U (external preheat), then mPa-s, n	nax		
			and yield stress, Pa		<35	
D5800 (No	ack)		Evaporative loss at 250 °C, %, max		15	
D6594 (13)	5 °C HTCBT)		Copper, mg/kg increase, max		20	
			Lead, mg/kg increase, max		120	
			Tin, mg/kg increase		repo	rt
		Copper strip rating, K max		3		
D6278			Kinematic viscosity after shearing.		SAE XW-30 / 5	SAE XW-40
			mm²/s, min		9.3/12	
	D892 (Option A not allowed)		Foaming/settling. ^L mL, max			
D892 (Opti			Sequence I		10/0)
D892 (Opti						
D892 (Opli			Sequence II		20/0)
D892 (Opti						

TABLE 3 Continued

Unadjusted Specification Limits for Elastomer Compatibility

Note—These are the *unadjusted specification limits* for elastomer compatibility. Candidate oils shall, however, conform to the *adjusted specification limits*, the calculation of which is described in Annex A4. Note—TMC 1006 is the designation for the reference oil used in this test method. This designation represents the original blend or subsequent approved re-blends of

TMC 1006.

100							
	Elastomer	astomer Volume Change, % Hardness Change, Points Tensile Strength Change, 9		h Change, %	Elongation at Break Change, 9		
Nitrile (N	BR)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)		(+10, -TMC 1	006)
Silicone ((VMQ)	(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -45)		(+20, -30)	
Polyacryl	ate (ACM)	(+5, -3)	(+8, -5)	(+18, -15)		(+10, -35)	
Fluoroela	istomer (FKM)	(+5, -2)	(+7, -5)	(+10, -TMC 1006)		(+10, -TMC 1	006)
Catego	ory	Test Method	Rated or Measured Para	ameter	Prim	ary Performanc	e Criteria
					One-test	Two-test	Three-test
CJ-4	D7422 (T-1	2)	Merit rating, ^v min	-	1000	1000	1000
	D7468 (ISM	1)	Merit rating, ^v min		1000	1000	1000
			Top ring mass loss, mg, max		100	100	100
	D7549 (C13	3)	Merit rating, ^v min_		1000	1000	1000
			Hot-stuck piston ring		none	none	none
	D7156 (T-1	1)	TGA % Soot at 4.0 mm ² /s increase, at 100 °C, min		3.5	3.4	3.3
			TGA % Soot at 12.0 mm ² /s increase at 100 °C, min	í.	6.0	5.9	5.9
D7484 (ISB)			TGA % Soot at 15.0 mm ² /s increase at 100 °C, min	i	6.7	6,6	6,5
		3)	Slider tappet mass loss, mg, average	e, max	100	108	112
			Cam lobe wear, µm, average, max		55	59	61
			Crosshead mass loss, mg, average		report	report	report
	D6750 (1 N)		Weighted demerits (WDN), max		286.2	311.7	323.0
			Top groove fill (TGF), %, max		20	23	25

D4485 - 16

Category Test Method	Rated or Measured Parameter	Primary Performance Criteria			
	Top land heavy carbon (TLHC), %, max	3	4	5	
	Oil consumption, g/kWh, (0 h - 252 h), max	0.54	0.54	0.54	
	(g/MJ) (0 h - 252 h), max	(0.15)	(0.15)	(0.15)	
	Piston, ring, and liner scuffing	none	none	none	
	Piston ring sticking	none	none	none	
D5966 (RFWT)	Average pin wear, mils, max	0.30	0.33	0.36	
	(µm) max	(7.6)	(8.4)	(9.1)	
D6984	Kinematic viscosity (at 40 °C),	275	275 (MTAC)	275 (MTAC)	
(Sequence IIIF)	% increase, max		· · ·	SCIM	
or, alternately, D7320 (Sequence IIIG)	Kinematic viscosity (at 40 °C),	/= 150	150 (MTAC)	150 (MTAC)	
or, anomatoly, Drozo (Doqueneo may	% increase, max	-	, , ,	and the second s	
D6894 (EOAT)	Aeration, volume, %, max	8.0	8.0 (MTAC)	8.0 (MTAC)	
CJ-4 Bench Tests	Measured Parameter		Primary Perfo	ormance Criteria	
04683 (High temperature/High shear) or 04171 or	Viscosity at 150 °C, mPa-s, min			3.5	
05481 06594 (135 °C HTCBT)	Copper, mg/kg increase, max		20		
100 0 1110017	Lead, mg/kg increase, max	120			
	Copper strip rating, max			3	
07109	Kinematic viscosity after 90 pass		SAE XW-30 / SAE XW-40		
57105	shearing, mm ² /s at 100 °C, min			3/12.5	
05800 (Noack)	Evaporative loss at 250 °C, %, max			13	
55000 (1154010)	(Viscosities other than SAE 10W-30)				
	Evaporative loss at 250 °C, %, max			15	
	(SAE 10W-30 viscosity)				
0892	Foaming/settling, mL, max				
J052	Sequence I			0/0	
	Sequence II			20/0	
	Sequence III			10/0	
D6896 (MRV TP-1)	Viscosity of the 180 h used oil drain sample			5 000	
	from a T-11 test, tested at -20 °C,		-		
	mPa-s, max				
	If yield stress is detected, use the modified		2!	5 000	
	test method (external preheat), then		24		
	measure the viscosity, mPa-s, max				
	Measure the vield stress, Pa			<35	
	Chemical Limits (non-critical)			100	
0874	Mass fraction sulfated ash, %, max			1.0	
D4951	Mass fraction phosphorus, %, max			0.12	
D4951	Mass fraction sulfur, %, max			0.4	

CJ-4 Bench Tests, cont'd-D7216 (Seal Compatibility)

Unadjusted Specification Limits for Elastomer Compatibility

Note—These are the *unadjusted specification limits* for elastomer compatibility. Candidate oils shall, however, conform to the *adjusted specification limits*, the calculation of which is described in Annex A4. Note—TMC 1006 is the designation for the reference oil used in this test method. This designation represents the original blend or subsequent approved re-blends of TMC

1006.

	Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change,	% Elong	ation at Break Change, %
Nitrile (NBF	3)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)	(+10, -	TMC 1006)
Silicone (VI		(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -45)	(+20, -3	30)
Polyacrylate		(+5, -3)	(+8, -5)	(+18, -15)	(+10, -:	35)
Fluoroelaste	omer (FKM)	(+5, -2)	(+7, -5)	(+10, -TMC 1006)	(+10, -	TMC 1006)
Vamac G		(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -TMC 1006)	(+10, -	TMC 1006)
Category	Test Method	Rated or Measured	Parameter		formance Crit	teria
				One-test 7	ſwo-test [™]	Three-test ^M
CK-4 or FA-4	D7422 (T-12)	Top Ring Mass Loss	, mg, max	105	105	105
		Cylinder Liner Wear,	µm, max	24.0	24.0	24.0
	D8048 (T-13)	IR Peak at EOT, Abs	s., cm ⁻¹	125	130	133
		Kinematic Viscosity	Increase at 40 °C, % max	75	85	90
		Avg. Oil Consumptio	on, 48 h to 192 h, g/h, max	Report	Report	Report
	D7156 (T-11)	TGA % Soot at 4.0 r	mm ² /s increase, at 100 °C, min	3.5	3.4	3.3
		TGA % Soot at 12.0	mm ² /s increase, at 100 °C, min	6.0	5.9	5.9
		TGA % Soot at 15.0	mm ² /s increase, at 100 °C, min	6.7	6.6	6.5
	D7549 (C13)	Merit rating, ^M min		1000	1000	1000
	D8047 (COAT)	Average Aeration, ^M	40 h to 50 h, %	11.8	11.8	11.8
	D7484 (ISB)	Slider tappet mass l	oss, mg, average, max	100	108	112
		Cam lobe wear, µm,	average, max	55 59		61
		Crosshead mass los	is, mg, average	Report	Report	Report
	D7468 (ISM)	Top Ring Mass Loss	s, mg, max	100	100	100
		Merit Rating, ^M		1000	1000	1000
	D6750 (IN)	Weighted demerits (WDN), max	286.2	311.7	323.0
		Top groove fill (TGF), %, max	20	23	25
		Top land heavy carb	on (TLHC), %, max	3	4	5

	Oil consumption, g/kWh, (0 h to 252 h), max (g to 252 h), max Piston, ring, and liner scuffing Piston, ring, and liner scuffing	(0.15) none	0.54 (0.15) none 0.33 (8.4)	0.54 (0.15) none	
D5966 (RFWT)	Piston ring sticking Average pin wear, mils, max (µm) max	none 0.30 (7.6)		none 0.36 (9.1)	
CK-4 and FA-4 Bend	4 7	Primary Performance Crite		(9.1)	
Measured Param	neter Cl	(-4	FA-4		
SAE J300 Viscosity Grade		xW-40	xW-3	0	
04683 (High temperature/High sheat Viscosity at 150 °C, mPa s	ar) or D4741 or D5481				
W-30 Grades min	3	5	2.9		
xW-30 Grades max	n	'a	3.2		
W-40 Grades	Meet S	AE J300	n/a		
D6594 (135 °C HTCBT)					
Copper, mg/kg increase, max	2	0	20		
_ead, mg/kg increase, max	1	20	120		
Copper strip rating, max	:	3	3		
D7109 Kinematic viscosity after 90 Shearing, mm ² /s at 100 °C, min	pass				
xW-30	9	3	9.3		
0W-40	12	2.5	n/a		
Other xW-40	12	2.8	n/a		
HTHS Viscosity (see above method xW-30 Grades	ls) at 150 °C, min 3	.4	2.8		
D5800 (Noack) Evaporative loss at	250 °C, %, max	3	13		
D892 Foaming/settling, mL, max					
Sequence I		10/0		10/0	
Sequence II	20	20/0		20/0	
Sequence III	10	0/0	10/0		
D6896 (Sooted Oil MRV TP-1) (D7156 Engine test required)					
Viscosity, 180 h used oil sample fro tested at -20 °C, mPa-s, max	om a T-11/T-11A test, 25	000	25 00	0	
Yield stress of the 180 h used oil s	ample above, Pa max s	35	==35		
Chemical Limits (non-critical)					
D874 Mass fraction sulfated ash,	%, max 1	.0	1.0		
D4951 Mass fraction phosphorus		12	0.12		
D4951 Mass fraction sulfur, %, m		4	0.4		

CK-4 and FA-4 Bench Tests, continued-D7216 (Seal Compatibility)

Unadjusted Specification Limits for Elastomer Compatibility

Note—These are the unadjusted specification limits for elastomer compatibility. Candidate oils shall, however, conform to the adjusted specification limits, the calculation of which is described in Annex A4.

Note—TMC 1006 is the designation for the reference oil used in this test method. This designation represents the original blend or subsequent approved re-blends of TMC 1006.

Elastomer	Volume Change, %	Hardness Change, Points	Tensile Strength Change, %	Elongation at Break Change, %
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)	(+10, -TMC 1006)
Silicone (VMQ)	(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -45)	(+20, -30)
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)
Fluoroelastomer (FKM)	(+5, -2)	(+7, -5)	(+10, -TMC 1006)	(+10, -TMC 1006)
Vamac G (AEM)	(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -TMC 1006)	(+10, -TMC 1006)

⁴ See Annex A2 for additional information.

^B Refer to RR:D02-1441

^C If three or more operationally valid tests have been run, the majority of these tests shall not have scuffing. The scuffed tests are considered uninterpretable, and all data from these tests are eliminated from averaging.

D Refer to RR:D02-1273

E Refer to RR:D02-1440

F Refer to RR:D02-1439.

^G A passing T-11 (TGA % soot at 12.0 mm²/s increase, at 100 °C, min)—6.00 (first test), 5.89 (second test), and 5.85 (third test)—can be used in place of a T-8E in the applicable categories. This is not intended to indicate equivalence.

^HSee Annex A1; use method without transformations.

'The Sequence IIIG limits shown are more restrictive than the corresponding limits in Sequence IIIF, and are not intended to indicate equivalence. Results meeting the Sequence IIIG criteria stated can be used in lieu of Sequence IIIF.

^JRefer to RR:D02-1379.

^k The rating system in Test Method D130 is used to rate the copper coupon in Test Method D6594.

^L Ten minutes for Sequence I, II, and III,

^M See Annex A6 for additional information.

^N Relative Viscosity (RV) = viscosity at 4.8 % soot/viscosity of new oil sheared in Test Method D6278.

^o Refer to RR:D02-1391.

16 Licensee=Chevron Corporate Wide/1000001100 User=Bimbaumer Laura Not for Resale 03/20/2017 18 22 52 MDT

^P Refer to RR:D02-1273. Alternatively, Test Method D6750 (1N) can be used; if this test method is used, the measured parameters and primary performance criteria are the same as those shown for Test Method D6750 (1N) in the CJ-4 category.
^O Tests as allowed in SAE J300.

^R Noncritical specification as defined by Practice D3244; may be superseded only by applicable higher limits set by SAE J300.

^S The T-10A test is the name given to a T-10 test run for 75 h to generate the sample for measurement by Test Method D4684.

⁷The T-12A test is the name given to a T-12 test run for 100 h to generate the sample for measurement by Test Method D4684.

URefer to RR.D02-1517.

^v See Annex A5 for additional information.

ANNEXES

(Mandatory Information)

A1. MULTIPLE TEST ACCEPTANCE CRITERIA

A1.1 Multiple Test Acceptance Criteria (MTAC) is any data-based approach for evaluation of the quality and performance of a formulation where more than one test may be run. Generally for a candidate tested once, test data for each criterion shall be a pass. For a candidate tested twice, the mean

(average) value of each result shall be a pass. For a candidate tested three or more times, one test might be declared an outlier and thus discarded and the mean (average) value of retained test data for each result shall be a pass. Data are rounded in accordance with the procedures specified in Practice E29.

Test Method	Rated Parameter	Transformation
D5844 (Sequence IID)	Average engine rust	NAA
05533 (Sequence IIIE)	Viscosity increase ^B (h to 375 %)	NA
	Average engine sludge	-LN (10-AES)
	Average piston varnish	NA
	Oil ring land deposits	NA
	Average camshaft plus lifter wear ^C	LN (ACLW)
	Maximum camshaft plus lifter wear ^C	LN (MCLW)
	Oil-related ring sticking	NA
06984 (Sequence IIIF - as used in CH-4)	Percent viscosity increase at 60 h	LN
06894 (EOAT)	Aeration, volume %	NA
06984 (Sequence IIIF)	Viscosity, % increase	1/square root of the % viscosity increase at
		80 h
	Average piston varnish	NA
	Weighed piston deposits	NA
	Screened average camshaft plus lifter wear	NA
	Hot stuck rings	NA
	Oil Consumption	NA
D7320 (Sequence IIIG)	Viscosity, % increase	LN
D6891 (Sequence IVA)	Cam wear	NA
D5302 (Sequence VE)	Average engine sludge	-LN (9.65 - AES)
	Rocker cover sludge	-LN (9.65 - RCS)
	Average piston varnish	NA
	Average engine varnish	NA
	Average camshaft wear	Square root of ACW
	Maximum camshaft wear	NA
	Oil screen clogging	NA
	Ring sticking	NA
D6593 (Sequence VG)	Average engine sludge	NA
	Rocker arm cover sludge	NA
	Average piston skirt varnish	NA
	Average engine varnish	NA
	Oil screen clogging	LN (Oil screen clogging + 1)
	Hot stuck compression rings	NA
D6202 (Sequence VIA)	Fuel economy improvement	NA
D6837 (Sequence VIB)	Fuel economy improvement	NA
D5119 (L-38)	Total bearing weight loss	NA
D6709 (Sequence VIII)	Total bearing weight loss	NA

^A NA stands for Not Applicable.

⁹ For tests reaching 375 % viscosity increase after 64 h, estimated hours = 64 + (6.163-LN (viscosity increase at 64 h + 100)/0.072). For tests reaching 375 % viscosity increase before 64 h, estimated hours are determined by a straight line interpolation between the two nearest 8 h points.

^C When more than one test is run and if maximum wear is more than six times the average wear on any one test, the highest mating cam lobe/lifter result can be discarded and the remaining eleven combinations used to calculate a new maximum and average wear. This can only be done for one retained test.