HEAVY-DUTY ENGINE OIL CLASSIFICATION PANEL

OF ASTM D02.B0.02 December 6, 2016 Hilton Orlando Lake Buena Vista – Palm 3 Lake Buena Vista, Florida, USA

THIS DOCUMENT IS NOT AN ASTM STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959.

ACTION ITEMS

1. HDEOCP monitor activity with Seals SP regarding long term bias shifts.

1.0 Call to order

MINUTES

- 1.1 The Heavy Duty Engine Oil Classification Panel (HDEOCP) was called to order by Chairman Shawn Whitacre at 1:30 p.m. on Tuesday December 6, 2016, in the Palm 3 Room of the Hilton Orlando Lake Buena Vista Hotel, Lake Buena Vista, Florida.
- 1.2 There were 14 members present and 71 guests present. The attendance list is included as Attachment **2.**
- 2.0 Agenda
 - 2.1 The agenda circulated prior to the meeting (included as **Attachment 1**) was modified slightly. New items are a short report on the DD13 test and Laura Birnbaumer will provide an update on a ballot item.
 - 2.2 The Anti-trust statement was presented. Attachment 1a
- 3.0 Minutes
 - 3.1 Fix the start time of the last meeting. The December 2015 and June 2016 meeting minutes were approved.
- 4.0 Membership
 - 4.1 There were three membership changes. Cory Koglin replaces Mike McLaughlin for Afton. Mary Dery replaces Galen Greene for BASF. Don Smolenski replaces David Gray from Evonik.
- 5.0 Existing tests/categories
 - 5.1 Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories (Sean Moyer, TMC). **Attachment 3**
 - 5.1.1 Sean and Mark Cooper combined efforts for Sean to give one unified report. The EOAT is currently uncalibrated. CAT tests will have availability for the foreseeable future. COAT still working on Micromotion instrument software and calibration issues. Mack legacy tests still have Oil Consumption as a concern. T-12 ring batch available

in January 2017. Cummins tests have no issues. Statement was made that Cummins are looking at an ISX replacement test. No new update for the RFWT. IIIF/IIIG Hardware projected to be depleted 1Q17. A correlation between the 2 tests is expected to be complete by 1Q17. The EOAT using last known hardware and having oil temp control issues. May need provisional licensing until COAT to EOAT correlation is complete.

6.0 Old Business

- 6.1 Replacement of TMC 1006 reference oil (Brent Calcut, Afton). Attachment 4
 - 6.1.1 Reference oil1006 is running out. Much activity has occurred to get a replacement. 1006 Group 1 basestock is not available so it can't be made anymore. There is about a 1.5 year supply. There are 8 test areas that use this fluid; the most critical areas are seals testing. A task force was formed. Input was solicited from elastomer experts. Existing oils were tried and rejected. A clone oil was tried which is the best option. Seals tests scoping for Light Duty and Heavy Duty seals were evaluated. Engine tests will have enough 1006 and new tests do not need 1006. The Sequence VIII might need 1006. Elastomers will use clone and further testing will take place. Group has found a reliably sourced Group 1 basestock. Naming and numbering may or may not change for OEM specs.
 - 6.1.2 Mike Alessi led a related task force to determine if absolute limits could be set for elastomers instead of relative limits.
- 6.2 Evaluation of fixed limits for elastomer compatibility (Michael Alessi, ExxonMobil). Attachment 5
 - 6.2.1 Statistical differences exist between laboratories. Attachment 5a. Until lab differences are fixed, fixed limits can't be implemented. The Seals SP had a workshop to improve things. Improved supply buys some time but differences are a problem. TMC cumulative summation (cusum) plots don't look good. Attachment 5b. Seals issues have been going on a long time and formal request has been sent to SP chairman. Need to keep this issue in front of HDEOCP. Reference bands are wide and reference tests are not failing. Need to get EMA perspective on this.
- 6.3 Update on DD13 Scuffing (Suzanne Neal, DTNA; Patrick Joyce, Lubrizol). Attachment 6
 - 6.3.1 Suzanne Neal of Daimler and Patrick Joyce of Lubrizol presented an update. A timeline was given of the history getting to an ASTM test method. In October the method received D8074. They invited members to join the SP if interested.

7.0 New Business

- 7.1 Phosphorus limits for API CK-4 and API FA-4 (Ron Romano, Ford). Attachment 7
 - 7.1.1 Ron provided Ford's position on 6.7L wear test and concerns about CK-4 oils less than 1000 ppm phosphorus. Testing internally showed some wear concerns. Showed photos of parts with wear. Ford will not be recommending CK-4 or FA-4 oils and will keep recommending CJ-4 oils. Ford would like a phosphorous limit in D4485. An alternative is to have a phosphorus label on the container. Ford has released a new spec and has an official approval program in place. Optional ways exist to get a formulation approved without the wear test. 200+ products approved already. Status of test is the procedure could be available middle of 1Q17. Ford will start a public task force when ready to release procedure. (Get right presentation from Ron). Ford has published a position statement.

- 7.2 Review of Ballot item WK51995 to revise ASTM D4485-15a (Laura Birnbaumer, Chevron Oronite). Attachment. 8
 - 7.2.1 Laura has a suggestion to modify how PC-11 should be included into D4485. 3 more items need their own ballots. Proposal 1 is to copy CI-4 D5800 language to newer categories. Proposal 2 is to change "requirement" to "required" for T-11 for the Used Oil MRV. Proposal 3 is to break out all viscosity grades for CK-4 to have multiple columns to make it crystal clear. Laura was asked to create the actual proposal.
- 8.0 Next meetings
 - 8.1 The next meeting will be at the call of the chairman or during ASTM in Boston June 2017.
- 9.0 The meeting was adjourned at 2:47 pm.

AGENDA D02.B0.02.1 Heavy-Duty Engine Oil Classification Panel Tuesday, December 6, 2016 1:30pm EST Hilton Orlando Lake Buena Vista – Palm 3 Lake Buena Vista, Florida, USA

1) Call to Order

2) Minutes – Approval of Minutes from June 28, 2016 Meeting in Bellevue, Washington, USA

3) Membership

a) Review current panel membership

4) Existing tests/categories

a) Review of status of carry-over engine tests that support API CK-4, FA-4 and legacy categories (Sean Moyer, TMC)

5) Old Business

- a) Replacement of TMC 1006 reference oil (Brent Calcut, Afton)
- b) Evaluation of fixed limits for elastomer compatibility (Michael Alessi, ExxonMobil)
- c) Update on DD13 Scuffing Test (Suzanne Neal, DTNA; Patrick Joyce, Lubrizol)

6) New Business

- a) Phosphorus limits for API CK-4 and API FA-4 (Ron Romano, Ford)
- b) Review of Ballot item WK51995 to revise ASTM D4485-15a (Laura Birnbaumer, Chevron Oronite)

7) HDEOCP Adjournment (transition to DEOAP)

D02.B0.02.1 HDEOCP

Shawn Whitacre Chairman Heavy-Duty Engine Oil Classification Panel

December 6, 2016 Lake Buena Vista, FL USA

Antitrust Statement

- ASTM International is a not-for-profit organization and developer of voluntary consensus standards. ASTM's leadership in international standards development is driven by the contributions of its members: more than 30,000 technical experts and business professionals representing 135 countries.
- The purpose of antitrust laws is to preserve economic competition in the marketplace by prohibiting, among other things, unreasonable restraints of trade. In ASTM activities, it is important to recognize that participants often represent competitive interests. Antitrust laws require that all competition be open and unrestricted.
- It is ASTM's policy, and the policy of each of its committees and subcommittees, to conduct all business and activity in full compliance with international, federal and state antitrust and competition laws. The ASTM Board of Directors has adopted an antitrust policy which is found in Section 19 of ASTM Regulations Governing Technical Committees. All members need to be aware of and compliant with this policy. The Regulations are accessible on the ASTM website (http://www.astm.org/COMMIT/Regs.pdf) and copies of the antitrust policy are available at the registration desk.
- For a complete list of standards see http://www.astm.org/COMMIT/SUBCOMMIT/D02B0.htm

ASTM-HDEOCP Membership

	Oil and Additive Companies		OEMs
1	Shawn Whitacre - Chevron	1	Greg Shank – Volvo Power Train
2	Mike Alessi- ExxonMobil	2	Ryan Denton - Cummins Inc.
3	Dan Arcy - Shell	3	Mesfin Belay - Detroit Diesel
4	Corey Taylor - BP Castrol	4	Hind Abi-Akar - Caterpillar Inc.
5	Josh Frederick - Valvoline	5	Heather DeBaun – Navistar
6	Mary Dery- BASF**	6	Ken Chao - John Deere
7	David Gray - Evonik	7	Eric Johnson- GM Powertrain
8	Cory Koglin – Afton*	8	Jason Andersen- Paccar
9	Robert Stockwell - Oronite	9	Ron Romano - Ford
10	Gail Evans - Lubrizol		
11	Robert Salgueiro - Infineum U.S.A.		
12	David Taber - Phillips 66 Lubricants		
13	Rodney Walker, Safety-Kleen		

- * Replaces Mike McLaughlin
- ** Replaces Galen Greene

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Abi-Akar	Hind		Caterpillar Inc.	309-578-9553	abi-akar_hind@cat.com
Acosta	Ali		Infineum	908-514-6155	ali.acosta@infineum.com
Alessi	Michael	L.	ExxonMobil R&E	856-224-2309	michael.l.alessi@exxonmobil.com
Ames	Phil		Afton Chemical Corporation	804-788-7453	phil.ames@aftonchemical.com
Andersen	Jason		PACCAR Technical Center	360-757-5324	jason.andersen@paccar.com
Ansari	Matthew		Chevron Lubricants		ansa@chevron.com
Arcy	Dan		Shell Global Solutions	281-544-6586	dan.arcy@shell.com
Belay	Mesfin		Detroit Diesel Corp.	313-592-5970	mesfin.belay@daimler.com
Bennett	Elizabeth		ExxonMobil	703-937-7719	elizabeth.m.bennett@exxonmobil.com
Birnbaumer	Laura		Chevron Oronite		labi@chevron.com
Booth	James		Chevron Oronite	510-778-4712	james.booth@chevron.com
Bowden	Jason		OH Technologies, Inc.	440-354-7007	jhbowden@ohtech.com
Bowden	Matthew		OH Technologies	440-354-7007	mjbowden@ohtech.com
Calcut	Brent		Afton Chemical Corporation	248-350-0640	brent.calcut@aftonchemical.com
Campbell	Bob		Afton Chemical Corporation		bob.campbell@aftonchemical.com
Carter	James	E.	Gage Products	517-896-1150	jcarter@gageproducts.com
Castanien	Chris		Neste Corp	440-290-9766	chris.castanien@neste.com
Davis	Scott	Α.	Croda Inc	312-925-8876	scott.davis@croda.com

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Denton	Vicky		Fuels & Lubes Asia		editor@fuelsandlubes.com
Denton	Ryan		Cummins Inc.	812-377-1543	ryan.denton@cummins.com
Dery	Mary		BASF	914-785-2061	mary.dery@basf.com
Dougherty	Rick		ExxonMobil Research and Engineering		richard.dougherty@exxonmobil.com
Duncan	Dave		The Lubrizol Corporation	440-347-2018	david.duncan@lubrizol.com
Dvorak	Todd		Afton Chemical Corporation	804-788-6367	todd.dvorak@aftonchemical.com
Esche	Carl	К.	Vanderbilt Chemicals	804-740-1658	cesche@vanderbiltchemicals.com
Evans	Joan		Infineum	908-474-6510	joan.evans@infineum.com
Evans	Gail		The Lubrizol Corporation		gail.evans@lubrizol.com
Farber	Frank	M.	ASTM - TMC	412-365-1030	fmf@astmtmc.cmu.edu
Ferrick	Kevin		ΑΡΙ	202-682-8233	ferrick@api.org
Fox	Brian		Chemtura Corporation	203-714-8670	brian.fox@chemtura.com
Gaal	Dennis		ExxonMobil Research and Engineering	856-224-2240	dennis.a.gaal@exxonmobil
Gault	Roger		EMA	312-929-1974	rgault@emamail.org
Gbadamosi	Muibat		Royal Purple	713-705-9197	mgbadamosi@royalpurple.com
Girard	Luc		Sanjuro Consulting	647-648-9704	lgirard@sanjuroconsulting.com
Goldmints	Isabella		Infineum	908-474-2629	isabella.goldmints@infineum.com
Guilherme	Jacintho		ANP	5561-9-9284	gjachintho@anp.gov.br

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Haffner	Steve	G.	Infineum	908-474-2549	steven.haffner@infineum.com
Humphrey	Brian		PetroCanada	440-537-2851	brhumphrey@suncor.com
Јоусе	Patrick		The Lubrizol Corporation	440-347-4656	patrick.joyce@lubrizol.com
Kalberer	Eric	W.	The Lubrizol Corporation	440-497-8327	erklr@lubrizol.com
Kennedy	Steve		ExxonMobil R&E	856-224-2432	steven.kennedy@exxonmobil.com
Koglin	Cory		Afton Chemical Corporation	248-350-0640	cory.koglin@aftonchemical.com
Kozub	Daniel		Detroit Diesel Corp.	313-592-7589	daniel.kozub@daimler.com
Kunselman	Michael		Center for Quality Assurance	248-234-3697	mkunselman@centerforqa.com
Lanctot	Dan		TEI	210-933-0301	dlanctot@tei-net.com
Leinen	Todd	C.	BG Products	316-265-1197	tleinen@bgprod.com
Leitner	Peter	C.	Afton Chemical Corporation	804-788-5342	peter.leitner@aftonchemical.com
Lochte	Michael		Southwest Research Institute	210-522-5430	mlochte@swri.org
Marty	Steve		Southwest Research Institute	210-522-5929	smarty@swri.org
Matasic	Jim		The Lubrizol Corporation	440-347-2487	james.matasic@lubrizol.com
Mathie	Leslie		Chevron	510-242-2036	Imathie@chevron.com
McCord	James		Southwest Research Institute	210-522-3439	jmccord@swri.org
McMillan	Michael	L.	MLM Consulting, Inc.	586-677-9198	mmcmillan123@comcast.net
Miranda	Greg		The Lubrizol Corporation	440-347-8516	greg.miranda@lubrizol.com

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Moritz	Jim		Intertek Automotive Research	210-523-4601	jim.moritz@intertek.com
Moyer	Sean		Test Monitoring Center	412-365-1035	sam@astmtmc.cmu.edu
Neal	Suzanne		Detroit Diesel Corp.	313-592-7130	suzanne.neal@daimler.com
O'Malley	Kevin		The Lubrizol Corporation	440-347-4141	kvom@lubrizol.com
O'Ryan	Bill		The Lubrizol Corporation	440-347-4545	william.oryan@lubrizol.com
Parsons	Gary		Chevron Oronite	510-242-1026	gmpa@chevron.com
Pridemore	Dan		Afton Chemical Corporation	804-350-0640	dan.pridemore@aftonchemical.com
Purificati	Darryl		Petro-Canada Lubricants Inc.	519-304-2351	dpurificati@suncor.com
Quatorze	Mathias		Couexo Inc.	678-792-4692	mathiasq@couexotest.com
Rajala	Scott		Idemitsu Lubricants	248-455-1460	srajala@ilacorp.com
Raley	Greg		Motiva Enterprises, LLC	713-427-3417	gregory.raley@motivaent.com
Romano	Ron		Ford Motor Co.	313-845-4068	rromano@ford.com
Rutherford	James	Α.	Chevron Oronite	510-242-3410	jaru@chevron.com
Salguerio	Robert		Infineum	908-474-2492	bob.salguerio@infineum.com
Scanlon	Eugene		BASF	914-785-2755	eugene.scanlon@basf.com
Schorzman	Bryan		Motiva Enterprises, LLC	713-427-3561	bryan.g.schorzman@motivaent.com
Shank	Greg	L.	Volvo Groups Technology	301-790-5817	greg.shank@volvo.com
Sheehan	Michael	Ρ.	ExxonMobil Chemical Company	281-834-2080	michael.p.sheehan@exxonmobil.com

LastName	FirstName	MiddleName	Company	Business Phone	E-mail Address
Smolenski	Don	J.	Evonik Oil Additives	313-806-7072	donald.smolenski@evonik.com
Stockwell	Robert	т.	Chevron Oronite	210-232-3188	robert.stockwell@chevron.com
Sutherland	Mark		TEI	210-867-8397	msutherland@tei-net.com
Swedberg	S.	E.	Consultant	623-551-4220	steveswedberg@cox.net
Tang	Haiying		Fiat Chrysler Automobile	248-512-0593	haiying.tang@fcagroup.com
Taylor	Chris		VP Racing Fuels	210-710-4627	chris.taylor@vpracingfuels.com
Thompson	E.A.	Нар	Global PPL Standards Assc.	904-287-9596	hapjthom@aol.com
Tomaro	Joe		The Lubrizol Corporation	440-347-1564	joseph.tomaro@lubrizol.com
Van Hecke	Mike		Southwest Research Institute	210-522-5495	mvanhecke@swri.org
Warholic	Michael		Valvoline	609-744-6782	mdwarholic@valvoline.com
Whitacre	Shawn		Chevron Lubricants	510-242-3557	shawnwhitacre@chevron.com
Williams	Graylon		Phillips 66 Lubricants	918-977-5458	graylon.k.williams@p66.com
Wong	Lawrence		Chevron Base Oils	510-242-1444	lwong@chevron.com

D02.B0.02 Maintenance Report

December 2016

Calibrated Labs and Stands*

Test	Labs	Stands
IK	I	Ι
IN	4	5
IM-PC	I	Ι
IP	3	3
IR	I	I
C13	3	3
ISB	3	5
ISM	4	4
EOAT	0	0
RFWT	2	2
T-8/E	2	3
Т-11	4	5
T-12/T-12A	4	7
T-13	5	10
COAT	3	3
DD13	3	5

*As of 09/30/2016

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2020	Notes
Cat IK/IN	Auxiliary components	Likely	1980's vintage engine. Ongoing resolution of issues with auxiliary stand and miscellaneous components.
Cat IP/IR	Crankshaft	Likely	1990's vintage engine. Crankshaft supplier has been identified by Caterpillar.
Cat CI3	New liners – references anticipated Oct 2016 – Not yet run.	Likely	Engine block, injectors, turbos only available through reman. Liners with new material and processing but same specs will be introduced mid-2017. New batch of current liners produced.

Additional Caterpillar Test Issues

> Caterpillar Oil Aeration Test

> Surveillance panel working with micro-motion manufacturer on instrument software and calibration standardization across labs.

CATERPILLAR CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2020	Notes
Mack T-11	Oil Consumption	Likely	Engine production ended 2006. Finite number of engine blocks. Engine build life issues with oil consumption.
Mack T-12	Oil Consumption, head gasket	Likely	Engine production ended 2006. Next ring batch available January 2017. Severity to be determined with coordinated references, plus correction factor updates.

Additional Mack Test Issues

≻ **T-I2**

> Procurement of new top ring batch and coordinated references expected January 2017.

MACK CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2020	Notes
Cummins ISM	No current issues	Likely	Cummins is looking at backwards-compatible development using ISX.
Cummins ISB	No current issues	Likely	No current issues.

Cummins Test Surveillance Panel

≻ ISM

> Cummins looking at possibility of developing backwards-compatible ISX test.

≻ ISB

> No current test issues.

CUMMINS CANDIDATE ACTIVITY

Availability of API CH-4 through CJ-4 Tests for PC-11

Test	Hardware Issues	Availability Through 2020	Notes
RFWT	Engine configuration	Likely	Long term supply of test parts at CPD. 6.5 L engine no longer in production at AM General, but available through supply network. Injection pump still available.
Seq IIIF/IIIG	Hardware depletion Dec 2016	No	Hardware depletion projected IQ 2017. Projected IQ2017 IIIH to IIIF and IIIH to IIIG correlations.
EOAT	Using last known hardware	No	Oil temperature control issues with last known EOAT engine. Test uses controlled coolant temperature but not controlled oil temperature. Lab determining cause. Unavailable?
			13

Engine Oil Aeration Test Surveillance Panel

No reference tests in last 6 months

- Additional engines are now impossible to source.
 - Last remaining engine is currently in use.
 - Test could be declared unavailable at any point.
- EOAT Panel transferred to CAT panel and correlation work is ongoing.

Roller Follower Wear Test Surveillance Panel

• One reference tests in last 6 months.

- Test is in control and at historical levels.
- No issues to report. Hardware supply available at CPD.

B2 Action Items

- > No Action Items
- Comments

RO-1006 Replacement

Brent Calcut November 2016

Background

TMC Reference Oil 1006 was originally introduced in 1997 as an ILSAC GF-2 category reference oil

Two subsequent batches were made to support industry reference testing, RO 1006-1 and RO 1006-2

RO 1006 cannot be reblended because the Group I basestock used in the formulation is no longer in production

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

Current Status

1006-2 Status

- TMC Inventory of 1006-2 is at 2200 gallons
 - It can not be re-blended
- 1.5-year usage
 - SF105 345 gallons
 - Specified in ASTM D471 & GM Standards
 - EOEC/LDEOC 461 gallons
 - IVA/VG/VIII
 140 gallons
 - Total 946 gallons
- Estimated Life ~24 months

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

Current Usage

RO 1006 is used as a reference oil in many tests

- Heavy Duty Engine Oil Elastomer Compatibility
- Light Duty Engine Oil Elastomer Compatibility
- ▲ ASTM D471 Service Liquid 105
- ▲ SAE J2643 Service Liquid 105
- ▲ ASTM D6891 Seq IVA
- ▲ ASTM D6593 Seq VG
- ▲ ASTM D6709 Seq VIII
- ▲ ASTM D6557 Ball Rust Test

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

Overview of Events

Task Force was formed after June ASTM meeting to identify possible replacements for RO 1006-2

 Members include Afton, Chevron, ExxonMobil, Infineum, OHT, SwRI, TMC and Volvo

Input was also solicited from elastomer experts

Existing alternatives were investigated and rejected

Several 'Clone' formulations were developed and screened through LDEOEC and HDEOEC

- ▲ Additive package is very similar, though not exactly the same
- ▲ A leading replacement candidate was selected

Summary

Conclusion: everyone is happy with RO 1006

▲ Minimize change

Step 1: initial LDEOEC and HDEOEC scoping of RO 1006 Clones

- ▲ Leading option will use common Group II base stock
- ▲ Back-up option will use a similar Group I base stock

Step 2: select best option from Step 1, blend a drum or two for more extensive evaluation

- Update ASTM classification and surveillance panels to develop further test plans and acceptance
- Update SAE and OEM / Elastomer stakeholders
- ▲ Scope performance in Seq VIII

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

7

TMC RO-1006 Replacement – Seals Test Scoping

All tests were run at SwRI and completed on October 14 – 27, 2016

Confidential and Proprietary - not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation. 2016© Afton Chemical Corporation, All Rights Reserved

Elastomer Compatibility Test – D7216 Annex A2 (LDEO) 150°C, 336 Hr

		DI-A / Group-II	DI-A / Group-I	DI-B / Group-II	DI-B / Group-I	
Polyacrylate (ACM1-16)	Spec Limits					Reference
Volume Change	-5, 9	2.20 (4.77)	5.56 (4.85)	1.74 (4.77)	5.27 (4.85)	See (data)
Hardness	-10, 10	2 (-2)	-2 (-3)	3 (-2)	-2 (-3)	See (data)
Tensile Strength	-40, 40	-5.7 (-8.8)	-1.9 (-1.6)	-3 (-8.8)	-5.2 (-1.6)	See (data)
Hydrogenated Nitrile (HNBR1-17)					
Volume Change	-5, 10	-0.06	1.65	-0.64	1.08	1.95
Hardness	-10, 5	0	-2	1	0	-1
Tensile Strength	-20, 15	-9.1	-4.9	-11.0	-8.9	-1.6
Silicone (VMQ1-19)						
Volume Change	-5, 40	30.08 (31.89)	32.52 (33.74)	29.42 (31.89)	31.92 (33.74)	See (data)
Hardness	-30, 10	-21 (-22)	-24 (-24)	-20 (-22)	-23 (-24)	See (data)
Tensile Strength	-50, 5	-21 (-27.6)	-35.3 (-32.8)	-21.3 (-27.6)	-24.6 (-32.8)	See (data)
Fluorocarbon (FKM1-17)						
Volume Change	-2, 3	0.44 (0.6)	0.32 (0.52)	0.41 (0.52)	0.53 (0.52)	See (data)
Hardness	-6, 6	4 (4)	5 (6)	0 (6)	0 (6)	See (data)
Tensile Strength	-65, 10	-44.6 (-52.1)	-49.3 (-53.4)	-25.6 (-53.4)	-31.9 (-53.4)	See (data)
Ethythene Acrylic (AEM1-17)						Reference
Volume Change	-5, 30	18.65	24.26	18.28	23.93	25.07
Hardness	-20, 10	-10	-14	-11	-15	-15
Tensile Strength	-30, 30	-12.4	-14.8	-6.4	-11.8	-17.7

Confidential and Proprietary - not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation. 2016© Afton Chemical Corporation, All Rights Reserved
9

Elastomer Compatibility Test – D7216 Annex A2 (HDEO) 150°C, 336 Hr

		DI-A / Group-II	DI-A / Group-I	DI-B / Group-II	DI-B / Group-I		
							Acceptable Limits
Polyacrylate (ACM)	Spec Limits	ACM-17	ACM-19	ACM-17	ACM-19	Reference	Updated on 3/1/2008
Volume Change	-3, 5	-0.58 (1.47)	0.96 (1.44)	- 0.72 (1.47)	0.94 (1.44)	See (data)	-3.62, 5.62
Hardness	-5, 8	2 (-1)	0 (-2)	3 (-1)	0 (-2)	See (data)	-6, 9
Tensile Strength	-15, 18	10.3 (3.2)	-4.5 (1.4)	12.6 (3.2)	4. 3 (1.4)	See (data)	-23.2, 26.2
Elongation	-35, 10	-9.9 (-8.1)	-10.2 (6.4)	-12.8 (-8.1)	7.3 (6.4)	See (data)	-44.1, 19.1
Nitrile (NBR-19)							
Volume Change	-3, 5	0.00	1.29	-1.02	0.56	1.79	3.62, 5.62
Hardness	-5, 7	10	10	13	11	5	-6, 8
Tensile Strength	-TMC1006, 10	-61.8	-59.2	-63.3	-61.9	-29.2	-39.8, 17.3
Elongation	-TMC1006, 10	-71	-69.1	-71.5	-70.6	-53.5	-61.6, 15.7
Silicone (VMQ1-20)							
Volume Change	-3, TMC1006	31.34	32.02	31.03	31.72	32.67	-4.50, 35.02
Hardness	-TMC1006, 5	-23	-23	-22	-22	-24	-27, 6
Tensile Strength	-45, 10	-29.9	-27.1	-26.8	-28.2	-30.0	-58.7, 15.7
Elongation	-30, 20	-24.9	-19.9	-22.6	-21.1	-24.0	-38.1, 28.1
Fluorocarbon (FKM-19)							
Volume Change	-2, 5	0.53	0.5	0.58	0.76	0.61	-2.13, 5.13
Hardness	-5, 7	7	8	0	1	9	-6, 8
Tensile Strength	-TMC1006, 10	-68.3	-69.1	-39.4	-49.2	-72.0	-78.1, 13.9
Elongation	-TMC1006, 10	-64.0	-65.5	-42.6	-47.2	-69.8	-81.5, 16.3
VAMAC-13							
Volume Change	3, TMC1006	13.96	11.19	13.59	8.56	19.75	-4.67, 22.37
Hardness	-TMC1006, 5	-6	-11	-7	-12	-12	-13, 6
Tensile Strength	-TMC1006, 10	-17.1	-14.4	-3.7	-10.6	-14.2	-25.0, 17.1
Elongation	-TMC1006, 10	-39.1	-25.4	-18.8	-14.0	-25.0	-38.0, 19.0

Confidential and Proprietary - not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation. 2016© Afton Chemical Corporation, All Rights Reserved

Replacement Plans

Currently Using RO 1006-2	Future Plan
HDEOEC (D4485)	RO 1006 Clone
LDEOEC (API 1509 & D4485)	RO 1006 Clone
ASTM D471 (SL 105)	RO 1006 Clone
SAE J2643 (SL 105)	RO 1006 Clone
ASTM D6891 – Seq IVA	TMC to set aside sufficient RO 1006-2 Seq IVB to use other ref. oils.
ASTM D6593 – Seq VG	RO 1006-2 Seq VH to use other ref. oils
ASTM D6709 – Seq VIII	?
ASTM D6557 – Ball Rust Test	TMC to set aside sufficient RO 1006-2

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

Final Thoughts

The selected Group I replacement basestock is expected to be available for the foreseeable future

RO 1006 Clone will be assigned a new TMC code

Those responsible for ASTM D471 and SAE J2643 will ultimately decide whether to use this Clone and assign a new Service Liquid #, if desired

EOEC SP continues efforts to improve r&R

Task Force will continue efforts to set fixed limits in HDEOEC

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

2016 © Afton Chemical Corporation, All Rights Reserved. Not to be copied, shared, or reproduced in any media without the express written permission of Afton Chemical Corporation.

Development of Fixed Limits for HD Elastomers

- As part of the replacement of TMC 1006, it was hoped that fixed limits could be developed for the EOEC test elastomers
 - Should simplify any future changes in reference oil
- Analysis of the reference data has indicated a statistical difference in performance between laboratories
 - The difference shows up in both fresh elastomer and used elastomers
- Until the laboratory differences are addressed it will not be possible to develop fixed limits for the test
- Surveillance Panel Workshop identified some possible areas for improvement:
 - Bath Setup and Fluid
 - Tensile strength measurement of cross-sectional area
 - Elastomer storage
 - Instrumentation for hardness testing
- If test can be brought into control, fixed limits can then be developed

ExonMobil

EOEC BASELINE ANALYSIS

D. Boese June 27, 2014

Performance you can rely on.

© INFINEUM INTERNATIONAL LIMITED 2014. All rights reserved.

Summary

- Only statistical significance is considered in this document, no consideration of practical significance of lab differences is made.
- For all parameters (Hardness, Tensile Strength and Elongation), there are labs whose result means are statistically significantly different.
- The elastomer ranking of the mean Hardness and Tensile Strength for one lab differed relative to that of the other four labs.

Data and Analysis

- The purpose of this study is to determine if Instron measurements differ by lab without the confounding effect of differing bath designs.
- Experiment design
 - Developed and facilitated by Mike Birke.
 - Samples of two elastomers were supplied to and tested by five different labs (IAR, ISP, Lubrizol, SwRI and Valvoline).
 - Hardness, Tensile Strength and Elongation were measured for each elastomer sample (fresh – not processed in water bath) at each lab.
- For this document, the labs are identified by a randomly assigned code of K through O. If desired, each lab can request their lab code.
- Analyses for each parameter or measurement type include the follow components:
 - A plot by Lab and Elastomer for visual comparison
 - A table including the means and standard deviations for each lab
 - Regression analysis:
 - Combining the results of both elastomers with factors of Lab, Elastomer and Lab × Elastomer.
 - Separate analysis for each elastomer utilizing Tukey HSD procedure for determining which labs have means which differ from each other.
- Analyses are only concerned with statistical significance. No discussion of practical significance of differences among labs is made.

HARDNESS

- All labs, except Lab K, show a similar difference in Hardness for Elastomers 1 and 2.
- For each elastomer, there is obvious lack of overlap among the labs.

Hardness Summary Statistics

Hardness Summary Table							
Lab	Sampl	e Size		Mean		Pooled	
	Elastomer 1	Elastomer 2	Elastomer 1 Elastomer 2 Difference Std. Dev.				
K	12	12	73	71	-2	0.51	
L	12	12	71	78	7	0.36	
М	12	12	68	75	7	0.73	
N	12	12	73	78	5	0.78	
0	12	12	70	78	8	0.84	

- The range of Hardness means for Elastomers 1 and 2 are 5 and 7, respectively.
- Again, Lab K's difference between the mean Hardness of the two elastomers stands out relative to that of the others.

Performance you can rely on

Hardness Regression Analysis

- Combining the results from both elastomers:
 - The Lab effect is strongly statistically significant.
 - The Elastomer × Lab effect is also strongly statistically significant, largely due to the reversal of lab K means for the two elastomers.
- Analyzing the results from each elastomer separately:
 - Labs are statistically significantly different.
 - For both elastomers, Lab N is in Level Code group 1.
 - Lab K has Level Code 1 for Elastomer 1 and Level Code 2 for Elastomer 3.

Hardness Effect Test

Factor	DF	p-Value
Elastomer	1	<.0001
Lab	4	<.0001
Elastomer*Lab	4	<.0001

Hardness Least Square Means

Elastomer	Lab	Level Code	LS Mean
1	Ν	1	73
	K	1	73
	L	2	71
	0	2	70
	М	3	68
2	L	1	78
	0	1	78
	Ν	1	78
	М	2	75
	K	3	71

Labs not connected by the same Level Code are statistically significantly different.

TENSILE STRENGTH

Tensile Strength Plot

- Relative to the other labs, there is a lack of overlap of the Lab L results for both elastomers and likewise with Elastomer 2 for Lab K.
- For each lab, other than Lab K, Elastomer 1 has the higher mean Tensile Strength.

Performance you can rely on

Tensile Strength Summary Statistics

Tensile Strength Summary Table							
Lab Sample Size Mean						Pooled	
	Elastomer 1	Elastomer 2	Elastomer 1	Elastomer 2	Difference	% Change	Std. Dev.
K	9	9	14.9	29.2	-14.4	-97	0.65
L	12	10	22.8	14.9	7.9	35	0.96
М	12	12	13.4	9.2	4.1	31	0.57
N	12	12	13.6	9.4	4.2	31	0.45
0	12	12	14.4	9.3	5.1	35	0.57

• For each lab except K, % Change is similar though the Lab L elastomer means are quite different from the other labs.

Tensile Strength Regression Analysis

- Combining the results from both elastomers:
 - The Lab effect is strongly statistically significant.
 - The Elastomer × Lab effect is also strongly statistically significant, largely due to the reversal of Lab K means for the two elastomers.
- Analyzing the results from each elastomer separately:
 - Labs are statistically significantly different.
 - For both elastomers, Labs M and N are in Level Code group 3.
 - For both elastomers, Labs K and L are in Level Code groups 1 and 2.

Factor	DF	p-Value				
Elastomer	1	<.0001				
Lab	4	<.0001				
Elastomer*Lab	4	<.0001				

Tensile Strength Least Square Means

Elastomer	Lab	Level Code	LS Mean
1	L	1	22.7
	K	2	14.9
	0	2	14.4
	Ν	3	13.6
	М	3	13.3
2	K	1	29.2
	L	2	14.8
	Ν	3	9.4
	0	3	9.3
	М	3	9.2

Labs not connected by the same Level Code are statistically significantly different.

Performance you can rely on

ELONGATION

Elongation Plot

- One of the Lab N Elongation results is an outlier for Elastomer 1.
- For all labs, the mean Elongation for Elastomer 1 is greater than that for Elastomer 2.
- For each elastomer, there is a lack of overlap for the labs.

Elongation Summary Statistics

Elongation Summary Table							
Lab	Samp	e Size		Mean			
	Elastomer 1	Elastomer 2	Elastomer 1	Elastomer 2	Difference	% Change	Std. Dev.
K	9	9	551	335	217	39.3	22.9
L	12	10	304	165	139	45.9	18.9
М	12	12	334	239	96	28.6	17.2
Ν	12	12	351	227	124	35.4	46.5
0	12	12	385	225	161	41.7	27.2

• The difference in means for the Elongation of Elastomer 1 and 2 for the labs ranges from 96 to 217 but the range of % Change is 28.6 to 45.9%.

Elongation Regression Analysis

- Combining the data for both elastomers, the Elastomer, Lab and their interaction effects are statistically significant.
- Analyzing the results from each elastomer separately:
 - Labs are statistically significantly different.
 - For both elastomers, Lab K has the highest elongation and Lab L the lowest.

Elongation Effect Test

Factor	DF	p-Value
Elastomer	1	<.0001
Lab	4	<.0001
Elastomer*Lab	4	<.0001

Elongation Least Square Means

Elastomer	Lab	Level Code	LS Mean
1	K	1	551
	0	2	385
	Ν	3	347
	М	3	334
	L	4	304
2	K	1	334
	М	2	238
	Ν	2	225
	0	2	222
	L	3	163

Labs not connected by the same Level Code are statistically significantly different.

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited. The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability, accuracy, reliability, and completeness of the information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

© INFINEUM INTERNATIONAL LIMITED 2014. All rights reserved

"INFINEUM, PARATAC, SYNACTO, VISTONE and the interlocking ripple device are Trade Marks of Infineum International Limited

Performance you can rely on

REFERENCE SILICON ELONGATION CHANGE AVERAGE

COUNT IN COMPLETION DATE ORDER

02DEC16:08:01

REFERENCE SILICON POINTS HARDNESS CHANGE AVERAGE

REFERENCE SILICON TENSILE STRENGTH CHANGE AVERAGE

REFERENCE SILICON VOLUME CHANGE AVERAGE

REFERENCE NITRILE ELONGATION CHANGE AVERAGE

REFERENCE NITRILE POINTS HARDNESS CHANGE AVERAGE

REFERENCE NITRILE TENSILE STRENGTH CHANGE AVERAGE

REFERENCE NITRILE VOLUME CHANGE AVERAGE

REFERENCE POLYACRYLATE ELONGATION CHANGE AVERAGE

REFERENCE POLYACRYLATE POINTS HARDNESS CHANGE AVER

REFERENCE POLYACRYLATE TENSILE STRENGTH CHANGE AVE

REFERENCE POLYACRYLATE VOLUME CHANGE AVERAGE

REFERENCE SILICON ELONGATION CHANGE AVERAGE

EOEC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON POINTS HARDNESS CHANGE AVERAGE

COUNT IN COMPLETION DATE ORDER

EOEC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON TENSILE STRENGTH CHANGE AVERAGE

COUNT IN COMPLETION DATE ORDER

EOEC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON VOLUME CHANGE AVERAGE

COUNT IN COMPLETION DATE ORDER

DAIMLER

DD13 Scuffing Test Update Suzanne Neal & Patrick Joyce 23NOV2016

Daimler Trucks

BHARATBENZ

DD13 Scuffing Test Timeline Update

ASTM Website - 11/23/2016

STANDARD REFERENCES

Products and Services / Standards & Publications / Standards Products

ASTM D8074 - 16 🖲

Standard Test Method for Evaluation of Diesel Engine Oils in DD13 Diesel Engine

Active Standard ASTM D8074 | Developed by Subcommittee: D02.B0

Book of Standards Volume: 05.05

MORE D02.80 STANDARDS

Recommended
Standards Tracker
Standards Subscriptions

	Format	Pages	Price		
74	PDF	49	\$72.00	1 ADD TO CART	
	Hardcopy (shipping and handling)	49	\$72.00	1 ADD TO CART	
Reprints and Permissions					
Per	rmissions to reprint documents can be acquired th	VISIT COPY	VISIT COPYRIGHT CLEARANCE CENTER		
Co	pyright Clearance Center 👩				
	ASTM License Agreement				
	Shipping & Handling				

RELATED PRODUCTS

Daimler Surveillance Panel

Daimler Surveillance Panel				
Initiated	ASTM June 2016			
Chairman	Patrick Joyce – Lubrizol Corporation			
Secretary	Jose Starling – Southwest Research Institute			
OEM Representative	Suzanne Neal – Daimler			
TMC Representative	Sean Moyer			
Next Meeting	December 14 th , 2016 11:00 AM to 2:00 PM Eastern Time Zone			

Ford Position on CK-4 and FA-4

New Ford Diesel Motor Specification

Heavy Duty Engine Oil Classification Panel

Ron Romano December 6, 2017

Concerns about CK-4 and FA-4

- Some formulations may not be as robust on wear protection as existing CJ-4 formulations with >1000 ppm phosphorus.
- Ford has seen accelerated 6.7L valve train wear with some CK-4 and FA-4 formulations that we haven't seen with existing CJ-4 formulations.
- We have wear concerns about CK-4 and FA-4 formulations with less than 1000 ppm phosphorus in new and older Ford engines.
- Some examples of observed wear attached. Attached photographs does not include all tests conduct. See January 28, 2015 presentation for more data.

Durability Tests in 6.7L with 5W-30 PC-11B

Example of accelerated wear on pushrod ends

Durability Tests in 6.7L with 10W-30 PC-11A

Example of accelerated wear on rocker arm fulcrums

Durability Tests in 6.7L with 10W-30 PC-11A

Example of accelerated wear on rocker arm fulcrums

Ford Diesel Motor Oil Recommendations Going Forward

- Ford will not be recommending CK-4 or FA-4 to service any Ford diesel engines at this time.
- Ford will continue to recommend CJ-4 oils with more than 1000 ppm phosphorus. These should be oils that are license to CJ-4 only without CK-4 in the donut.
- Historically Ford has always recommended API diesel categories but will depart from this for CK-4 since some products will contain <1000 ppm phosphorus.
- Ford recommends that API change CK-4 and CJ-4 to include a minimum phosphorus limit of 1000 ppm.
- Ford recommends that if no phosphorus limit is put in CK-4/CJ-4 then, API require as part of licensing, oils with <1000 ppm phosphorus be labeled "Low Phosphorus".
- Ford released an OEM specification that will contain addition wear requirements compared to CK-4.
 - WSS-M2C171-F1
- Ford has an official approval program for this spec and will publish an approved products list. Recommend working through your additive company for approval.
- Contact Ron Romano or Chuck Richardson to begin the approval process or for more information.

WSS-M2C171-F1

- Contains all CK-4 requirements and limits
- 6.7L valve train wear test
 - Development in progress
 - Estimated completion 1Q17
 - Upon completion turn over to ASTM to be published as an ASTM test procedure.
- Need approved formulations until test development is complete.
- Optional/additional requirements to approve formulations without the 6.7L engine test
 - 1000-1200 ppm phosphorus
 - CJ-4 formulations licensed prior to January 2016 with an antioxidant boost for T-13.
- Other engine testing conducted on the 6.7L engine may be used if approved by Ford Motor Company prior to testing.

Summery and Next Steps

- WSS-M2C171-F1 published
- Ford position statement published
- 200+ products approved to WSS-M2C171-F1
- Publish an approved products list. Shown in Motor Oil Tab on <u>https://www.fcsdchemicalsandlubricants.com</u> /main/.
- Complete 6.7L wear test development.

Ford Motor Company CK-4/FA-4 Ford Position Statement

Starting on December 1, 2016 the American Petroleum Institute (API) will begin licensing two new diesel motor categories CK-4 and FA-4. API CK-4 is being released to replace CJ-4. FA-4 is a low viscosity diesel oil released for diesel engines designed for a lower viscosity oil.

API FA-4

Due to its low viscosity FA-4 should not be used in any Ford diesel vehicles at this time.

API CK-4

Ford will not be recommending the use of CK-4 motor oils in any Ford diesel engines, new or old. Testing Ford has done on some CK-4 formulations have shown inadequate wear protection compared to CJ-4 formulations developed and licensed before 2016.

Like many other diesel engine manufacturers, with their own internal OEM specification, Ford will now be recommending oils that meet an OEM specification, Ford Material Engineering Specification WSS-M2C171-F1. The customer should use an oil showing that it meets this specification.

An oil showing CJ-4 in the API donut without showing CK-4 would be acceptable for service even if not showing WSS-M2C171-F1. This oil would most likely be an older CJ-4 formulation, developed and licensed prior to 2016. These oils could be around for about a year after CK-4 licensing begins, December 1, 2016. Field experience and Ford testing has shown that these older CJ-4 formulations provide acceptable 6.7L engine protection.

To insure you protect your Ford diesel engine use an oil meeting Ford specification WSS-M2C171-F1 like Motorcraft Super Duty Motor oil.

Attachment 7; Page 10 of 10

Questions

Suggested Edits to ASTM D4485 for PC-11

Laura Birnbaumer December 6, 2016

Oronite

Chevron

Suggested Edits to ASTM D4485 for PC-11

- I felt there were six items that could be changed to increase the clarity and usability of the standard.
- The all of the suggestions are editorial and do nothing to change the technical aspect of the D4485 ballots.
- Three of the items were accepted as editorial changes and I editorially withdrew my negative.
 - Capitalize the "A" for the T-11A, include "for used oils" in the description of the MRV method, change the T-13 parameter name to "T-13 FTIR Peak Height Oxidation"
- The other three items to make the standard clearer and easier to use need their own ballots.

Oronite

Chevron

Suggested Edits to ASTM D4485 for PC-11

 6.9 {Test Procedures} Lists D5800 as a test necessary for API CK-4 and API FA-4 but D5800 is not included in 4.1.6 {Performance Classification}.

- 4.1.6 provides an explanation of the test methods required for these API Service Categories.
- D5800 is not included in 4.1.5 {Performance Classification} for API CJ-4 while it is included in 6.8.
- But a D5800 description does occur in 4.1.4 for API CI-4.

 Proposal: Copy 4.1.4.11 to both 4.1.5 and 4.1.6 in an appropriate location and number appropriately.

Chevron Oronite

Suggested Edits to ASTM D4485 for PC-11

 In the bench test section, D6896 (MRV TP-1) includes new language "(D7156 Engine test requirement)".

- I understand the desire to emphasize that the used oil for this D6896 comes from a D7156 but since you can schedule a T-11A without a T-11.
- Proposal: change "requirement" to "required" so the first line would now be "D6896 (Sooted Oil MRV TP-1) "(D7156 Engine test required)".

Oronite

Chevron

Suggested Edits to ASTM D4485 for PC-11

 Combining the two viscosity grades as one column of limits under CK-4 is confusing where there are different limits for the different viscosity grades especially HTHS Viscosity at 150 °C.

- Another area where the difference in limits by viscosity grade is controlled by the row title is viscosity after 90 cycle shear.
- Proposal: Make a column of limits by viscosity grade or summer viscosity grade under CK-4 so that there are multiple columns of CK-4 limits.