

Engine Tests for B20 Effects on Lube Performance

D M Stehouwer for ASTM HDEOCP Review June 2008

Attachment 4; Page 1 of 43

Engine Lube Tests with B-20

- Objective: To determine if there are any effects on lubricant performance from the use of B-20 fuel
- Plan: Run standard engine tests with B-20 using reference oils to compare lube performance with # 2 diesel

 Does NOT cover high fuel dilution conditions
 Fuel: B-20 blended from PC-10 fuel and B-100 meeting D 6751

Engine Tests for B-20 Evaluation

ISB, C13, T-12 cover critical lube performance measures

None of the standard tests cover high fuel dilution conditions

API CJ-4 Engine Test and Performance Criteria									
	Cummins	Cummins	GM	Cat	Cat	Mack	Mack	Gasoline	Navistar
Performance	ISM	ISB	6.5L	C13	1N	T-12	T-11(A)	IIIG / IIIF	7.3L
Valve Train Wear	X	Х	Х						
Liner Wear						Х			
Ring Wear	X					Х			
Bearing Corrosion						Х			
Oxidation						Х		Х	
Oil Consumption				Х	Х	Х			
Iron Piston Deposits				Х					
Aluminum Piston									
Deposits					X				
Soot Viscosity Increase							Х		
Sludge	X								
Filter Plugging	X								
Aeration									Х
Low Temp Pump @ 5.2% Soot							х		
Performance areas covered in B-20 testing									

"API CJ-4: Diesel Oil Category for Both Legacy Engines and Low Emission Engines Using Diesel Particulate Filters" James A McGeehan, et.al. <u>SAE 2006-01-3439</u> SAE 2006 Transactions Journal of Fuels and Lubricants.

Engine Tests for B20 Effects Cummins ISB

Engine

 Cummins '04 ISB 5.9L, EGR with VG Turbo, 300 bhp @ 2600 rpm

Test Cycle

- 100 hr retarded timing
- 3.0 3.5% soot window
- 250 hr cycle from low idle to rated to peak torque
- Wear Parameters
 - Rotating Tappet Wt Loss, mg
 - Cam Nose Wear, um

15 ppm Fuel Sulfur Soot: 3.5%

Rotating Tappet Camshaft

"API CJ-4: The Most Robust Diesel Engine Oil Category for All Engines" J. A. McGeehan, Lubrication Magazine, http://www.lubricantsuniversity.com/images/stories/LubricationMagazine_March2008_LoRes.pdf

June 2008

Engine Tests for B20 Effects Cat C13

- Engine
 - Cat C-13, 12.5L ACERT, Twin Turbo '04, 430 bhp @ 1800 rpm

Test Cycle

- Constant 1800 rpm@ 430 bhp for 500 hr
- Fuel rate: 159 lb/hr
- Oil temp: 98 °C
- Low Soot: ~ 2%
- Control Parameters
 - Oil Consumption Increase
 - Top Land Carbon
 - Top Grove Carbon
 - 2nd Ring Top Face Carbon

"API CJ-4: The Most Robust Diesel Engine Oil Category for All Engines" J. A. McGeehan, Lubrication Magazine, http://www.lubricantsuniversity.com/images/stories/LubricationMagazine_March2008_LoRes.pdf

15 ppm Fuel Sulfur

Caterpillar C13 Piston Temperature °C

Engine Tests for B20 Effects Mack T-12

Engine

 E-Tech V, 12L, Cooled EGR, VG Turbo

Test Cycle

- 100 hr retarded timing
- 35% cooled EGR@ 1800 rpm
- Soot target 4.3%
- 200 hr @ peak torque, 1200rpm
- 15% EGR
- Oil temp: 116 °C gallery 127 °C sump
- EOT Soot 6%
- Control Parameters
 - Ring wt loss, mg
 - Liner step wear, um
 - EOT Lead and Delta Lead

"API CJ-4: The Most Robust Diesel Engine Oil Category for All Engines" J. A. McGeehan, Lubrication Magazine, http://www.lubricantsuniversity.com/images/stories/LubricationMagazine_March2008_LoRes.pdf

June 2008

Engine Tests for B20 Effects Mack T-12

- Mack T-12 Parts (Cont'd)
- Control Parameters
 - Ring wt loss, mg
 - Liner step wear, um
 - EOT Lead and Delta Lead
- Bearing Corrosion
 - Bearings not rated
 - Oxidative corrosion
 - Measured by used oil lead
 - Sensitive to acids, oil temperature and oxidation

15 ppm Fuel Sulfur

Oxidative Corrosion Control at 260°F (127°C) Sump Temperature

"API CJ-4: The Most Robust Diesel Engine Oil Category for All Engines" J. A. McGeehan, Lubrication Magazine, http://www.lubricantsuniversity.com/images/stories/LubricationMagazine_March2008_LoRes.pdf

June 2008

B-20 Blend Meets EMA Fuel Spec.

Item	Performance Characteristics	Requir	B-20	
		D1 Blends	D2 Blends	Blend
1	Flash Point, °C, min.	38	52	69
2	Water and sediment, vol %, max.	0.05	0.05	0
3	Physical Distillation, T90, °C, max.	343	343	333
4	Kinematic Viscosity, cSt@40C	1.3~4.1	1.9~4.1	2.56
5	Ash, mass%, max.	0.01	0.01	0
6	Sulfur, wt%, max.	Per	Per	
		regulation	regulation	9
7	Copper strip corrosion rating, max.	No. 3	No. 3	1A
8	Cetane Number, min.	43	43	47
9	Cloud point ¹	Per footnote	Per footnote	-14
10	Ramsbottom carbon residue on 10%	0.15	0.35	
	distillation residue, wt%, max.			0.09
11	Lubricity, HFRR@60C, micron, max.	460	460	190
12	Acid number, mg KOH/g, max.	0.3	0.3	0.17
13	Phosphorus, wt%, max.	0.001	0.001	0.0001
14	Total Glycerin			
15	Alkali metals (Na+K),ppm, max.	Nd	Nd	0
16	Alkaline metals (Mg+Ca), ppm max.	Nd	Nd	0
17	Blend fraction, vol. $\%^2$	+/- 2%	+/- 2%	19
18	Thermo-oxidative Stability,	10	10	
	insolubles, mg/100 mL, max.			
19	Oxidation Stability, Induction time,	6	6	
	hours, minimum			10.3
	Specfic Gravity		0.842	0.857

ISB Operational Data

Stage 1: Control to hit soot window

 "More retard in timing than PC-10 fuel"
 Statistically insignificant anecdotal comment

 Stage 2: Control to throttle position to match cycle

 Load is within observed band

ISB Test Cycle

June 2008

ISB Operational Data

Fuel Flow

Load

National Biodiesel Board

Test Results Presentation

- For each test there are two plots
- Actual test results of control parameters
 - Blue bars show TMC Acceptance Levels
 - Yellow triangles show Intertek reference runs
 - Red diamond is the B20 run
- Normalized data shown as a range expressed as # of Standard Deviations from the mean
 - Blue bars show TMC Acceptance Levels
 - Yellow triangles show Intertek reference runs
 - Red diamond is the B20 run

ISB Engine Data with B 20

National Biodiesel Board

June 2008

Attachment 4; Page 13 of 43

ISB Used Oil Analysis

B-20 test vs. recent 831 reference data

- TBN Loss within range
- TAN Increase just above range
- PB Corrosion is not an issue in this test

National Biodiesel Board

Attachment 4; Page 14 of 43

ISB Used Oil Analysis

- B-20 test vs. recent 831 reference
 - Viscosity @ 100 C higher @ EOT
 - No samples showed measurable fuel dilution by GC

ISB Used Oil Analysis

B-20 test vs recent 831 reference

- Timing adjusted to hit soot window
- Fe wear is comparable

National Biodiesel Board

June 2008

Attachment 4; Page 16 of 43

C-13 Operational Data

Fuel flow set @ 1200 gm / min

Load falls within the band for all tests

National Biodiesel Board

C13 Engine Data with B-20

National Biodiesel Board

June 2008

Attachment 4; Page 18 of 43

C13 Statistical Data with B-20

National Biodiesel Board

Attachment 4; Page 19 of 43

C-13 Rate & Report Factors

2 "Cold Stuck" rings were observed

Lab reported a "cold stuck" ring on 2 other occasions with TMC 831

- Tendency is there with high 2RTC
- But the highest carbon ring was not the one stuck.
- This is an item to watch but it is not associated with high oil consumption in this test.

Cat C-13 Used Oil Analysis

B-20 test vs. 831 reference clata

- 500 Hr TAN is near top of range of reference data
- 500 Hr TBN loss is at mean of reference data

Cat C-13 Used Oil Analysis

Oxidation (DIR) appears higher; IR shows some ester
 No samples showed fuel dilution by GC

Viscosity increase is within range

June 2008

Attachment 4; Page 22 of 43

Cat C-13 Used Oil Analysis

B-20 test vs recent 831 reference
 No issues with Fe, Pb or other wear metals

National Biodiesel Board

June 2008

Attachment 4; Page 23 of 43

Cat C-13 Parts Cleanliness

National Biodiesel Board

June 2008

Attachment 4; Page 24 of 43

T12 Operational Data

Stage 1: Ran to meet Soot Window

 "More retard in timing than PC-10 fuel"
 Statistically insignificant anecdotal comment

 Stage 2: Load critical

 Adjust fuel flow to meet "typical load"
 Set point raised from 63.5 to 65.0 Kg / Hr.

T12 Operational Data

Load

Fuel Flow

Attachment 4; Page 26 of 43

T12 Engine Data with B-20

June 2008

T12 Statistical Data with B-20

Attachment 4; Page 28 of 43

- B-20 test vs 821 reference data
 - TAN higher at EOT
 - TBN loss similar to mean reference data
 - Pb increase significant for last 100 hrs

Mack T-12 Used Oil Data

Oxidation is significantly higher, but Viscosity is not affected
 No samples showed fuel dilution by GC but IR showed some ester

B-20 test vs recent 821 reference
 No issues with Soot or Oil Cons

National Biodiesel Board

B-20 test vs recent 821 reference

- Fe and Cu: no issues

National Biodiesel Board

- Low temperature viscosity @ 100 hr
 - Previous stand reference MRV @ -20 C 11,500 cP
 - B-20 used oil MRV @ -20 C 11,100 cP
- No evidence that a unique soot was formed from the B-20 fuel
 - Low temp viscometrics
 - Wear data from T12, ISB

Used Oil Low Temp Viscosity

Data from Rhomax

Very good vis properties for sooted oils

			MRV TP-1		MRV TP-1		MRV TP-1
Oil ID	Oil ID	YS	@ -15°C	YS	@ -20°C	YS	@ -25°C
65293	Cummins ISB 350	0	11,470	0	20,239	0	45,360
66302	Caterpillar C13 500	0	7910	0	15,270	0	30,720
62996	Can -1 Mack T12 300	0	9490	0	20,407	0	38,700
62996	Can - 2 T12 300	0	9500	0	18,750	0	38,200

Mack T-12 Piston Deposits Un-weighted Piston Demerits

June 2008

National Biodiesel Board

Attachment 4; Page 35 of 43

Mack T-12 Piston Deposits

Top Land Carbon

Top Grove Carbon

National Biodiesel Board

Mack T-12 Parts Cleanliness

National Biodiesel Board

Mack T-12 Parts Cleanliness

T12 / SME B20 Test No. L12-0030-T121-0253 ROCKER COVERS

National Biodiesel Board

June 2008

Attachment 4; Page 38 of 43

Used Oil Data Summary

- ISB

- TBN Loss: Upper Range (More TBN) ^
- TAN Increase: Higher than Range ^^
- Viscosity: Significantly Higher
- Oxidation: No comparison
- **C-13**
 - TBN Loss: Near Mean -
 - TAN Increase: Upper part of Range ^
 - Viscosity: Upper part of Range ^
 - Oxidation: Significantly Higher ^^^

T-12

- TBN Loss: Near Mean -
- TAN Increase: Significantly Higher ^^^
- Viscosity: Lower part of range
- Oxidation: Significantly Higher ^^^

T-12 Used Oil FTIR of B20 vs. PC10 EOT Oil

Attachment 4; Page 40 of 43

Summary

- Examination of the control parameters for these engine tests:
 - All wear data within acceptance limits
 - No evidence of unique, higher wear type of soot
 - All controlled piston / ring deposits within acceptance limits
 - Low temperature viscometrics not an issue
 - Only Pb Corrosion and T 12 oxidation are worse than acceptance limits

Summery (cont'd)

Non rated engine parts appeared clean and free of sludge

- General trend toward higher TAN
 - Without corresponding loss of TBN
- IR shows more oxidation and esters
 - "Oxidation" not clearly associated with viscosity increase

June 2008

Summary (cont'd)

Mack T-12 issues

- Sensitive to oxidation and TAN / TBN
- Oxidation and Pb corrosion are an issue
 - Also reported by Infineum & Oronite papers
- Piston deposits (not normally rated) show similar range of TLC, Demerits for B20 vs. PC-10 fuel
- May indicate that an oil could demonstrate some level of "Biodiesel Performance" by passing a Mack T-12 using B-20 blended with PC-10 fuel.
- High fuel dilution not represented in this testing