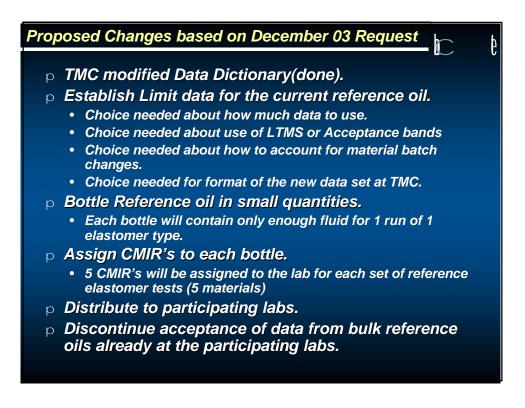


ATTACHMENT 13, 1 OF 5

ATTACHMENT 13, 2 OF 5



Details	s of Pas	s/Fail o	calcula	tions				
	Volume Chg.		Hardness Chg.		Tensile S. Chg.		Elongation Chg.	
Туре	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
NBR	(-3)	(+5)	(-5)	(+7)	Ref.	(+10)	Ref.	(+10)
VMQ	(-3)	Ref.	Ref.	(+5)	(-45)	(+10)	(-30)	(+20)
АСМ	(-3)	(+5)	(-5)	(+8)	(-15)	(+18)	(-35)	(+10)
FKM	(-2)	(+5)	(-7)	(+7)	Ref.	(+10)	Ref.	(+10)
Typical	values for I	Ref. oil TM	C SF 105 (1006) (Spe	cific value	s are gener	ated w/ Ca	ndidate)
NBR	0.6		0.2		-25		-52	
VMQ	26		-15		-12		-22	
АСМ	1.1		-1.7		0.9		-20	
FKM	0.8		5		-66		-48	
Vamac	19		-8		-26		-31	

Values in () are non-critical and adjusted by a factor of the industry "total" SD. (= + or - [s / $\ddot{0}6$]*2)

Ref. values are also non-critical and adjusted by a factor of the industry "within Lab" SD .(= + or - [s / $\ddot{0}$ 6]*2)

ATTACHMENT 13, 3 OF 5

General Statements

- **p** TMC makes sure that tests have adequate precision.
 - Test precision is generally getting better or leveling off over time.
- D TMC makes sure that data which is not normally distributed about the mean is not validated.
 - Test mean values are generally normally distributed despite batch changes in the elastomers.
- p TMC maintains control of the tests it monitors.
 - Test is in control.
- p TMC takes action to control variation between labs and across material/hardware batches.
 - Test is designed to account for lab and material variation when determining pass / fail. The limits are also set up in a "no harm" scenario.

TTACHMENT 13, 4 OF 5

Conclusions

Adding a full TMC monitoring system would not likely advance the usefulness of the test data.

 \mathbb{C}

þ

- P The Features of a proposed monitoring system would serve to further complicate the scheduling and operation of the test.
- P The fees to the laboratories combined with the additional complication would increase the cost of the test without increasing the value of the data.