ISB Report Packet

Warren Totten
February 19, 2004
Chicago, IL

ATTACHMENT 10, 2 OF

Scope

 Scope – To develop a lubricant performance test on a Cummins ISB test platform that can discriminate and provide a quality assessment of motor oils in a sliding tappet engine under cyclic conditions. The ISB test development will consider the following parameters for lubricant quality evaluation:

Primary Parameters

Tappet Weight Loss

Cam Lobe Wear

Cam Journal Wear

Secondary Parameters

Push tube scuffing

Sludge

Oil filter delta P

Adjusting screw wt. loss

Crosshead weight loss

Objectives

- 1. Draft of test procedure 12/03
 - Preliminary draft completed 01/04
 - "ASTM-like" in process
- 2. Test engines to six labs 1/04
 - ExxonMobil, Lubrizol, SwRI, Valvoline
 - PerkinElmer and Ethyl engines 2/04
- 3. Initiate matrix design 1/04
 - Preliminary proposal
- 4. Begin matrix testing To meet API timing

ATTACHMENT 10, 4 OF

Test Development

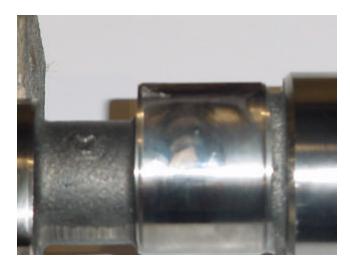
- The test method is derived from proven tests at Cummins and will have the same repeatability and discrimination
- Labs will receive 1 engine for shakedown and matrix testing
- Labs will receive all necessary parts for matrix testing
- This test will need to have completed matrix testing and be available to the industry by 3Q 2005
- ➤ Remember that sliding tappets will be used on the design of the 2007 engine

ISB Operating Conditions

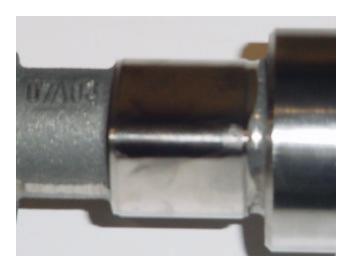
- 2004 EPA Compliant ISB engine rated at 300 HP and 600 ft-lbs torque
 - 100 hours at 1600 RPM and 325 ft-lbs torque
 - 13 16 deg retarded timing to meet soot target
 - Soot target 3.5% at 100 hours
 - -250 hours engine wear cycle

ISB Test Parameters

- Parameters to be rated
 - –Primary Parameters
 - Tappet Wear
 - -mg wt loss
 - Cam lobe wear
 - mm wear
 - »ADCOLE measurement
 - »Cams will be pre and post measured by CPD
 - Cam journal wear
 - mm wear
 - »ADCOLE measurement

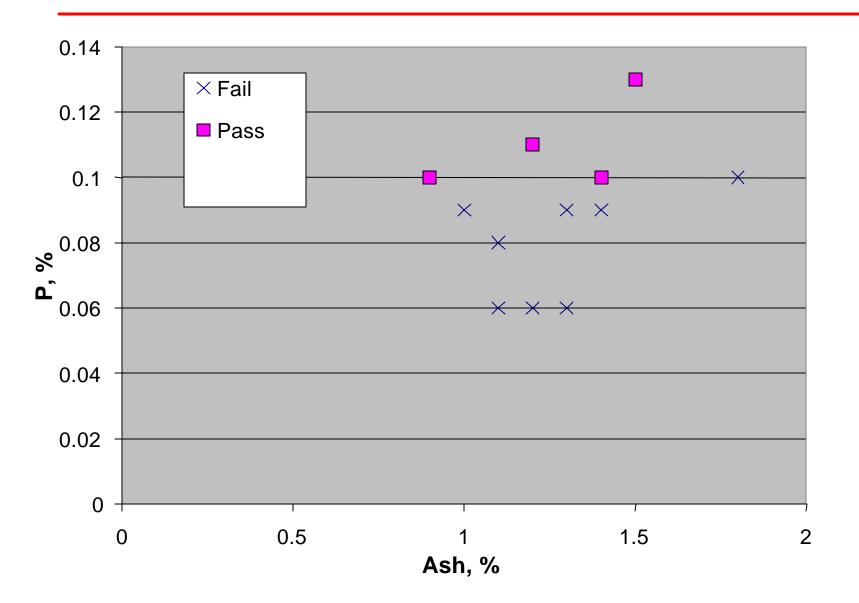


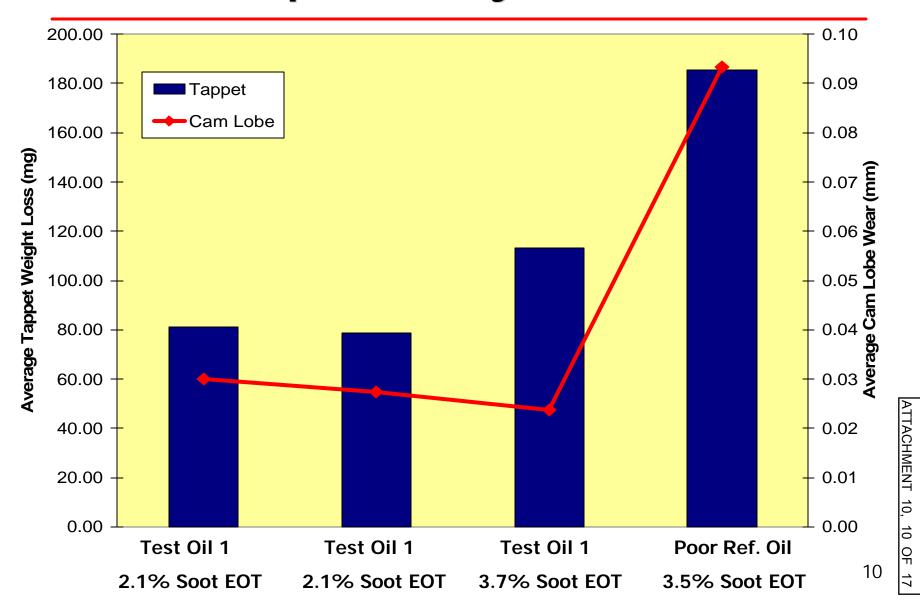
ATTACHMENT 10, 7

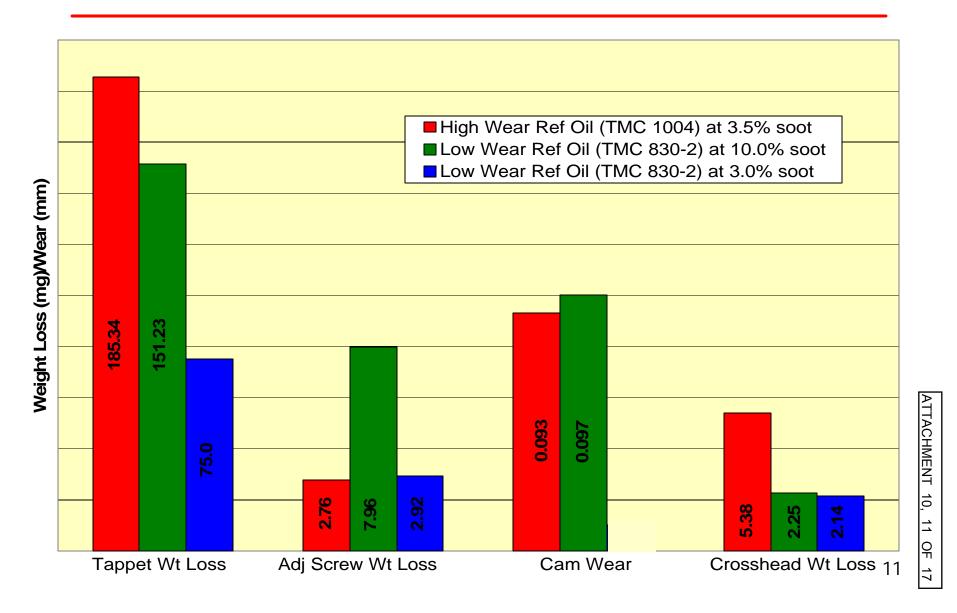

ISB Test Parameters

- Parameters to be rated
 - -Secondary Parameters
 - Overhead wear
 - -Crosshead Weight Loss, mg loss
 - -Adjusting Screw Weight Loss, mg loss
 - -Push Tube Scuffing
 - Other parameters
 - -Oil Filter Delta Pressure, kPa
 - -Sludge, rocker cover and oil pan

Cam and Tappets After Test






B Cam Test History

ISB '02 Repeatability/Discrimination

ISB '02 Wear Data

ATTACHMENT 10, 12 O

Preliminary ISB Matrix Designs

Assumptions

- 3 DI/VI combinations, 3 base oils, and 1 Reference Oil
- Every factor level should be run at least 3 times to maintain Power, and at least 4 valid test results in each Matrix stand to account for bias
- At least 8 degrees of freedom (DF) to estimate test variability, and at least 6 repeats on identified Reference Oils
- Main effects and 2-Way Interactions (Except with Stand) are estimable
- No VGRA
- Decision rules for Industry Matrix Testing have been satisfied

Experimental Test Matrix Design Oils

- 9 matrix oils are formed. Note that PC-10A is the primary featured oil and
- PC-10H is the secondary featured oil.

	Technology		
Base Oil	X	Y	Z
Base Oil 1	PC-10A	PC-10D	PC-10G
Base Oil 2	PC-10B	PC-10E	PC-10H
Base Oil 3	PC-10C	PC-10F	PC-10J

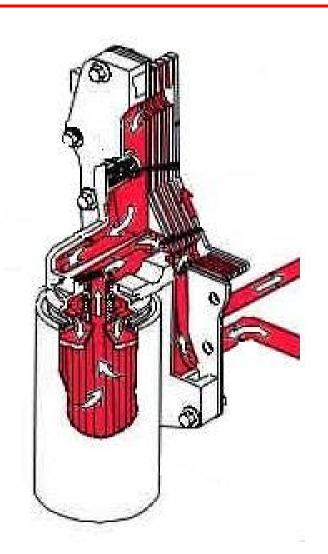
Test Design 1

Stand 1	Stand 2	Stand 3	Stand 4
J	D	G	В
Е	Н	C	F
F	С	Е	Н
G	В	D	J
A	A	A	A
A	A	A	A

- 24 Runs
- BOI but No VGRA
- 8 Runs on One Reference Oil
- 12 df to Estimate Test Standard Deviation

Test Design 2

Stand 1	Stand 2	Stand 3	Stand 4
A	В	С	С
Е	F	D	Е
J	G	Н	G
В	D	J	A
A	A	A	A


- 20 Runs
- BOI but No VGRA
- 6 Runs on One Reference Oil
- 8 df to Estimate Test Standard Deviation

Test Design 3

Stand 1	Stand 2	Stand 3	Stand 4
A	В	С	С
E	F	D	Е
J	G	Н	G
В	D	J	A
A	A	A	A
Н	Н	Н	Н

- 24 Runs
- BOI but No VGRA
- 6 Runs on Primary Reference Oil and 5 Runs on Secondary Reference Oil
- 12 df to Estimate Test Standard Deviation

Hardware Modifications

ATTACHMENT