The Influence of Lubricant Formulation on Emissions from a CIDI Engine: Basestock and Additive Effects

Shawn D. Whitacre
National Renewable Energy Lab June 4, 2002

Future Car Congress 2002

Catalyst compatible lubricants

- 2007 HD standards and Tier 2 LD standards will require aftertreatment
- Growing concern over lube oil sulfur and ash
- Potential to interfere with catalyst performance
- NO_{x} adsorber poisoning
- Diesel particle filter plugging
- APBF-DEC has established a multi-year project to quantify lubricant effects on emissions and catalyst performance
- Objective: Determine which, if any, lubricant derived emission components are detrimental to ECS performance or durability.

Workgroup Participants

- BP
- Caterpillar
- ChevronTexaco
- Chevron Oronite
- Ciba Specialty Chemicals
- Cummins, Inc.
- Equilon
- Ethyl Corporation
- ExxonMobil
- Infineum
- International
- John Deere
- Lubrizol
- Mack
- Marathon-Ashland Petroleum
- Motiva
- Pennzoil-Quaker State
- RohMax
- Shell Global Solutions
- Toyota
- Valvoline

Test Laboratory

- Subcontractor: Automotive Testing Laboratories (East Liberty, OH)
- Principal Investigators:
- Chris Tennant, Lisa Lanning
- Team members:
- Michael Traver
- Tom McDaniel
- Brian Mace

Test Engine

- 1999 International T444E
- 7.3L OHV V-8
- Direct injection, turbocharged w/ wastegate
- 215 hp at 2400 rpm
- 540 ft -lbs torque at 1500 rpm
- Exhaust gas recirculation (retrofit)
- Closed crankcase ventilation with filter
- Lube system capacity: 18 quarts

Emissions Measurements

- PM (three sample trains)
$\{$ - total weight
- SOF and sulfate
- metals
- PAHs
- Four mode steady-state (OICA)
- NO_{x}
- SO_{2}
- Hydrocarbons
- CO

Torque ft- lb

Test Cell Layout

To blower

Particulate Matter Sample Collection

-Train \#1: PM mass (ATL/ORNL)

- 70 mm Pallflex ‘Emfab’ (glass fiber w/bonded PTFE)
- analysis for sulfate and soluble organic fraction (ORNL)
-Train \#2: PM Metals
- 47 mm Gelman ‘Teflo’ (PTFE w/ PMP support)
- determined by x-ray fluorescence (DRI)
-Train \#3: Poly-cyclic Aromatic Hydrocarbons (PAH)
- 70 mm Pallflex 'Fiberfilm’ (glass fiber w/bonded TFE)
- Determined by GC-MS (SwRI)

Sample Train 1\&2 Configuration

PM Sample Train 3 Configuration

SO_{2} Analysis - Overview

- SO_{2} measured via impingement in aqueous hydrogen peroxide (wet chemistry method)
$-\mathrm{SO}_{2}$ converted to SO_{4}
- Modeled after EPA methods 6, 8, 16
- Post-test quantification of SO_{4} concentration using ion chromatograph yields SO2 emission rate (exhaust flow measured)

Additive Systems Selected

Element	a	b	c	d	e	f	g	h	i	j	k	1	r
Ash Level（\％）	1.2	0	1.2	1.5	1.85	0.75	1.4407	1.4016	0.6	1.4	0.3	0.23	1.35
S	0	5	4950	4500	6590	2785	3246	2921	4226	2224	20	725	4454
Ca	3484	0	3950	800	4770	1820	3130	3130	1748	4128	870	415	3412
Zn	0	0	0	1900	1560	860	1319	865	0	0	0	225	1269
N	0	950	2000	1200	970	1286	1182	1137	0	1560	2235	1457	855
P	0	670	600	1700	1420	760	1201	788	0	0	0	587	1156
B	1099	0	0	300	150	60	1235	143	0	0	985	176	0
Cl	100	0	＜100	200	0	126	0	0	100	18	0	60	80
Mo	0	0	0	0	170	0	0	284	0	0	0	0	0
Mg	0	0	＜50	1700	0	0	277	277	0	0	0	0	0
Reference Oil					uplicat								

Additives supplied by：

Ciba，Chevron Oronite，Ethyl，Infineum，Lubrizol

Base Oils Selected

- Group I: Valero (Paulsboro)
- 4800-5600-ppm S, 75\% saturates
- Group II: Excel (Lake Charles)
- <20-ppm S, >99\% saturates
- Group III: Motiva (Houston)
- <5-ppm S, >99\% saturates
- Group IV: BP
- PAO (poly-alpha olefin, synthetic)
- 0 sulfur
- 5\% ester for additive solubility

Material Balance

Ca in PM Emissions

- Ca emissions directly correlated with concentration in oil
- No apparent composition effects
-46\% recovery rate

Zn in PM Emissions

- Zn emissions directly correlated with concentration in oil
-Possible composition effects
- 43\% recovery rate

P in PM Emissions

－P emissions directly correlated with concentration in oil
－Oil C significantly deviates
－90\％recovery rate（excl．Oil C）

Sulfur in Emissions

-S emissions directly correlated with concentration in oil

- Oil I significantly deviates
-113\% recovery rate (excl. Oil I)
- uncertainty in fuel S level

Base Oil and Additive Effects on SO_{2} Emissions

Summary

－Preliminary results show the effects of oil composition on selected emissions，including metals and sulfur
－Results indicate that emissions from certain formulations deviate from those using more traditional chemistry
－Data from all additive／basestock combinations are currently being analyzed and will be reported in late summer．
－Phase II will focus on development of a rapid catalyst aging protocol to determine lubricant effects on durability

Acknowledgements

- Special thanks to:
- Oil and additive suppliers
- International Truck and Engine
- APBF-DEC Lubricants Project Workgroup
- U.S. Department of Energy (John Garbak and Steve Goguen)
- Battelle (Hsing-Chuan Tsai and John Orban) for statistical analysis
- APBF-DEC Funding Partners: ACC, API, CARB, DOE, EMA, MECA, SCAQMD

