

The Influence of Lubricant Formulation on Emissions from a CIDI Engine: Basestock and Additive Effects

Shawn D. Whitacre National Renewable Energy Lab June 4, 2002

Future Car Congress 2002

Catalyst compatible lubricants

- 2007 HD standards and Tier 2 LD standards will require aftertreatment
- Growing concern over lube oil sulfur and ash
 - Potential to interfere with catalyst performance
 - NO_x adsorber poisoning
 - Diesel particle filter plugging
- APBF-DEC has established a multi-year project to quantify lubricant effects on emissions and catalyst performance
- **Objective:** Determine which, if any, lubricant derived emission components are detrimental to ECS performance or durability.

Workgroup Participants

- BP
- Caterpillar
- ChevronTexaco
- Chevron Oronite
- Ciba Specialty Chemicals
- Cummins, Inc.
- Equilon
- Ethyl Corporation
- ExxonMobil
- Infineum
- International

- John Deere
- Lubrizol
- Mack
- Marathon-Ashland Petroleum
- Motiva
- Pennzoil-Quaker State
- RohMax
- Shell Global Solutions
- Toyota
- Valvoline

Test Laboratory

- Subcontractor: Automotive Testing Laboratories (East Liberty, OH)
- Principal Investigators:
 - Chris Tennant, Lisa Lanning
- Team members:
 - Michael Traver
 - Tom McDaniel
 - Brian Mace

Test Engine

- 1999 International T444E
 - 7.3L OHV V-8
 - Direct injection, turbocharged w/ wastegate
 - 215 hp at 2400 rpm
 - 540 ft-lbs torque at 1500 rpm
 - Exhaust gas recirculation (retrofit)
 - Closed crankcase ventilation with filter
 - Lube system capacity: 18 quarts

Emissions Measurements

- PM (three sample trains)

 - total weightSOF and sulfate
 - metals
 - PAHs
- Four mode steady-state (OICA)

- NO_{x}
- SO_2
- Hydrocarbons
- CO

Test Cell Layout

To blower

Particulate Matter Sample Collection

•Train #1: PM mass (ATL/ORNL)

- 70 mm Pallflex 'Emfab' (glass fiber w/bonded PTFE)
- analysis for sulfate and soluble organic fraction (ORNL)
- •Train #2: PM Metals
 - 47 mm Gelman 'Teflo' (PTFE w/ PMP support)
 - determined by x-ray fluorescence (DRI)
- •Train #3: Poly-cyclic Aromatic Hydrocarbons (PAH)
 - 70 mm Pallflex 'Fiberfilm' (glass fiber w/bonded TFE)
 - Determined by GC-MS (SwRI)

Sample Train 1&2 Configuration

PM Sample Train 3 Configuration

SO₂ Analysis - Overview

- SO₂ measured via impingement in aqueous hydrogen peroxide (wet chemistry method)
 SO₂ converted to SO₄
- Modeled after EPA methods 6, 8, 16
- Post-test quantification of SO₄ concentration using ion chromatograph yields SO2 emission rate (exhaust flow measured)

Additive Systems Selected

Element	а	b	С	d	е	f	g	h	i	j	k	I	r
Ash Level (%)	1.2	0	1.2	1.5	1.85	0.75	1.4407	1.4016	0.6	1.4	0.3	0.23	1.35
S	0	5	4950	4500	6590	2785	3246	2921	4226	2224	20	725	4454
Са	3484	0	3950	800	4770	1820	3130	3130	1748	4128	870	415	3412
Zn	0	0	0	1900	1560	860	1319	865	0	0	0	225	1269
Ν	0	950	2000	1200	970	1286	1182	1137	0	1560	2235	1457	855
Р	0	670	600	1700	1420	760	1201	788	0	0	0	587	1156
В	1099	0	0	300	150	60	1235	143	0	0	985	176	0
CI	100	0	<100	200	0	126	0	0	100	18	0	60	80
Мо	0	0	0	0	170	0	0	284	0	0	0	0	0
Mg	0	0	<50	1700	0	0	277	277	0	0	0	0	0
		Reference Oil			Duplicate test								

Additives supplied by:

Ciba, Chevron Oronite, Ethyl, Infineum, Lubrizol

Base Oils Selected

- Group I: Valero (Paulsboro)
 - 4800-5600-ppm S, 75% saturates
- Group II: Excel (Lake Charles)
 - <20-ppm S, >99% saturates
- Group III: Motiva (Houston)
 - <5-ppm S, >99% saturates
- Group IV: BP
 - PAO (poly-alpha olefin, synthetic)
 - 0 sulfur
 - 5% ester for additive solubility

Material Balance

Ca in PM Emissions

Zn in PM Emissions

P in **PM** Emissions

Sulfur in Emissions

Base Oil and Additive Effects on SO₂ Emissions

Summary

- Preliminary results show the effects of oil composition on selected emissions, including metals and sulfur
- Results indicate that emissions from certain formulations deviate from those using more traditional chemistry
- Data from all additive/basestock combinations are currently being analyzed and will be reported in late summer.
- Phase II will focus on development of a rapid catalyst aging protocol to determine lubricant effects on durability

Acknowledgements

- Special thanks to:
 - Oil and additive suppliers
 - International Truck and Engine
 - APBF-DEC Lubricants Project Workgroup
 - U.S. Department of Energy (John Garbak and Steve Goguen)
 - Battelle (Hsing-Chuan Tsai and John Orban) for statistical analysis

APBF-DEC Funding Partners: ACC, API, CARB, DOE, EMA, MECA, SCAQMD