Preliminary Summary of the Mack T10 Precision/BOI Matrix

jar for the PC-9 Statistical Task Group Presented to the HDEOCP July 11, 2001 Changes due to deletion of CMIR 38815 or other correction noted

Summary

- This is a very preliminary summary. One more test will enter the data set. Others might leave. When the Task Force approves the data set, the statistical task group will reach consensus analysis.
- Delta lead {DELETED "and top ring weight loss"} benefits from natural log transformations.
- No other transformations seem necessary.
- The matrix data were not evaluated for ACC precision requirements or for determination of LTMS parameters.

Summary (continued)

- Labs had significant effects for delta lead, upper bearing weight loss, and oil consumption.
- The Technology by Base Oil interaction was significant for delta lead.
- Technology had a significant effect for delta lead and upper bearing weight loss.
- Base Oil had a significant effect for cylinder liner wear.
- Observations with large Studentized residuals were seen for delta lead, top ring weight loss, and oil consumption.

Table 1. Mack T10 Precision Matrix Plan

	Technology						
Base Oil	Х	Y	Z				
Base Oil 1	PC-9A	PC-9D	PC-9G				
Base Oil 2	PC-9B	PC-9E	PC-9H				
Base Oil 3	PC-9C	PC-9F	PC-9J				

Lab/Stand								
La	b 1	Lab 2	La	b 3	Lab 4	Lab 5		
1	2	3	4	5	6	7		
А	А	А	А	А	А	А		
G	Α	G	D	А	А	D		
E	E	В	Н	E	Η	В		
С	J	F	С	J	F	J		

ATTACHMENT 7, 4 OF 20

4

	from TMC 07/05/01											
Obs	CMIR	Lab	Stand	EOT Date	Öiľ	Tech	Base Oil	DPBFNL	ABWLU	ATRWLFNL	CLWFNL	OILCON
1	38809	А	1	20001219	А	Х	1	23	206	158	33	52
2	38810	А	2	20010313	А	Х	1	19	159	168	38	46
3	38942	А	2	20010408	А	Х	1	16	182	87	27	41
×	38815	B	4	20001231	A	X	4	11	165	349	24	32
4	41410	В	1	20010618	А	Х	1	34	229	140	35	42
5	38811	D	1	20001224	А	Х	1	12	195	139	38	52
6	38814	F	1	20001211	А	Х	1	33	257	139	36	79
7	41135	F	1	20010611	А	Х	1	28	248	128	26	60
8	38951	G	2	20010330	А	Х	1	37	218	125	33	53
9	40230	G	2	20010602	А	Х	1	25	197	108	34	48
10	40919	В	1	20010529	В	Х	2	34	234	121	24	54
11	38943	D	1	20010401	В	Х	2	17	182	125	31	44
12	38939	А	1	20010305	С	Х	3	33	243	116	25	63
13	38949	G	1	20010420	С	Х	3	77	336	133	35	66
14	38957	В	1	20010403	D	Y	1	25	183	204	46	54
15	38946	G	1	20010517	D	Y	1	206	344	108	33	71
16	38937	А	1	20010329	Е	Y	2	18	151	118	21	53
17	38940	А	2	20010528	Е	Y	2	22	184	67	20	45
18	38950	G	2	20010512	Е	Y	2	52	317	109	28	55
19	38945	D	1	20010215	F	Y	3	21	222	69	27	56
20	38952	F	1	20010419	F	Y	3	62	321	106	26	51
21	38941	А	1	20010422	G	Ζ	1	71	324	107	29	52
22	38944	D	1	20010504	G	Ζ	1	27	238	154	39	47
23	38953	F	1	20010217	Н	Ζ	2	73	364	150	33	61
24	38947	G	1	20010318	Н	Ζ	2	115	378	156	34	64
25	38938	Α	2	20010504	J	Ζ	3	44	278	153	31	58
26	38956	В	1	20010509	J	Ζ	3	50	314	127	30	35
27	38948	G	2	20010419	J	Ζ	3	90	343	119	35	47

Table 2. Mack T10 Precision Matrix Data

5

Transformations

- Box-Cox procedure was applied using all matrix data.
- Delta lead {DELETD "and top ring weight loss"} benefits from a natural logarithm transformation.
- No data transformations are indicated for other responses analyzed.

Precision Estimates

- Ln(delta lead): $s_{pp} = 0.35$; df = 14
- Upper bearing weight loss: $s_{pp} = 38$; df = 14
- Top ring weight loss: $s_{pp} = 29$; df = 14
- Cylinder liner wear: $s_{pp} = 4$; df = 14
- Oil consumption: $s_{pp} = 9$; df = 14

Where

- Spp = Pooled standard deviation (Root MSE from the fitted model) assuming that lab differences are minimized by an LTMS severity adjustment system.
- df = Degrees of freedom.

Ln(Delta Lead) Summary of Model Fit

- Model factors include Laboratory (A,B,D,F,G), Technology (X,Y,Z), Base Oil (1,2,3) and Technology by Base Oil interaction.
- Technology, Technology by Base Oil interaction, and Lab were significant.
 - Root MSE from the model was 0.36 (14 df).
 - The R^2 for the model was 0.85.
 - Figure 1 illustrates the least squares means by oil.
 - Figure 2 shows the least squares means for labs.
 - From residual analyses:
 - Log transformation was appropriate.
 - The two observations with Oil D had large Studentized residuals.

Figure 1 Least Squares Means for Oils

Figure 2 Least Squares Means for Labs

Upper Bearing Weight Loss Summary of Model Fit

- Model factors include Laboratory (A,B,D,F,G), Technology (X,Y,Z), Base Oil (1,2,3) and Technology by Base Oil interaction.
- Technology and Lab were significant.
 - Root MSE from the model was 38 (14 df).
 - The R^2 for the model was 0.83.
 - Figure 3 illustrates the least squares means by oil.
 - Figure 4 shows the least squares means for labs.
 - From residual analyses:
 - No observations had large Studentized residuals.

Figure 3 Least Squares Means for Oils

Upper Bearing Weight Loss 0 50 100 150 200 250 300 350 А В Laboratory D F G

Figure 4 Least Squares Means for Labs

Top Ring Weight Loss Summary of Model Fit

- Model factors include Laboratory (A,B,D,F,G), Technology (X,Y,Z), Base Oil (1,2,3) and Technology by Base Oil interaction.
- No effects were significant.
 - Root MSE from the model was 29 (14 df).
 - The R^2 for the model was 0.49.
 - Figure 5 illustrates the least squares means by oil.
 - From residual analyses:
 - There were no large Studentized residuals.

Figure 5 Least Squares Means for Oils

Cylinder Liner Wear Summary of Model Fit

- Model factors include Laboratory (A,B,D,F,G), Technology (X,Y,Z), Base Oil (1,2,3) and Technology by Base Oil interaction.
- The Base Oil effect was significant.
 - Root MSE from the model was 4 (14 df).
 - The R^2 for the model was 0.69.
 - Figure 6 illustrates the least squares means by oil.
 - From residual analyses:
 - There were no large Studentized residuals.

Figure 6 Least Squares Means for Oils

Oil Consumption Summary of Model Fit

- Model factors include Laboratory (A,B,D,F,G), Technology (X,Y,Z), Base Oil (1,2,3) and Technology by Base Oil interaction.
- No effects were significant.
 - Root MSE from the model was 9 (14 df).
 - The R^2 for the model was 0.58.
 - Figure 7 illustrates the least squares means by oil.
 - Figure 8 shows the least squares means by Lab.
 - From residual analyses:
 - The first test on Oil A at Lab F had a large Studentized residual.

Figure 7 Least Squares Means for Oils

Figure 8 Least Squares Means for Labs

