Ford 6.7L Valvetrain Wear Precision Matrix Design Options

Southwest Research Institute®

FUELS & LUBRICANTS RESEARCH

©SOUTHWEST RESEARCH INSTITUTE

1

Precision Matrix Design Options

The design options have the following considerations:

- 2 Reference Oils (I HWO and I LWO)
- 2 Labs
- 2-3 Total Stands
- I2-I5 Tests
- Each stand will begin PM testing with a brand new engine.

FUELS & LUBRICANTS RESEARCH

2

Design Options

The 3 test matrix design options are shown below.

Matrix #1			
Stand A 1 Stand B			
HWO	LVVO		
LWO	HWO		
LWO	HWO		
HWO	LWO		
HWO	LWO		
LWO	HWO		

3

©SOUTHWEST RESEARCH INSTITUTE

Design Evaluation Metrics

Some design evaluation metrics are compared in the table below.

Rank	Repeatability Estimate	Reproducibility Estimate	Statistical Power for Oil Discrimination	Cost	
Best	Matrix #3 (11 df)	Matrix #3	Matrix #3	Matrix #1	
Middle	Matrix #1 (9 df)	Matrix #2	Matrix #1	Matrix #2	
Worst	Matrix #2 (8 df)	Matrix #1	Matrix #2	Matrix #3	

Some Comments:

- 1. The reproducibility estimate is very important for establishing accurate LTMS oil means and standard deviations (will affect calibration acceptance and severity adjustments). These can and should be updated as additional post-precision matrix data is obtained, but is often not done.
- Engine run number effect is another important consideration. The current procedure allows only 5 runs. This could be a pro or a con of design #1 (may change procedure to allow 6 if no differences are observed, or may invalidate some tests if questionable data is the outcome). Matrix #2 never observes 5th run data.

Matrix #1									
	Stan	d A-1	Stan	nd B-1					
	H	WO	O LWO						
	L١	NO	о нw						
	L١	NO	OWH C						
	Н	WO	O LWO						
	н	WO	O LWO						
	L١	NO	HWO						
	Matrix #2								
Stand A-1		Stand	Stand A-2		Stand B-1				
HW	HWO		LWO		LWO				
LWO		НW	HWO		HWO				
LWO		LW	LWO		HWO				
HWO		НW	HWO		LWO				
		Matri	<u>x #3</u>						
Sta	Stand A-1		Stand A-2		B-1				
L	LWO		HWO		HWO				
F	IWO	LW	LWO		LWO				
F	HWO		HWO		LWO				
L	LWO		LWO		HWO				
L	LWO		VO	HW	0				

FUELS & LUBRICANTS RESEARCH

