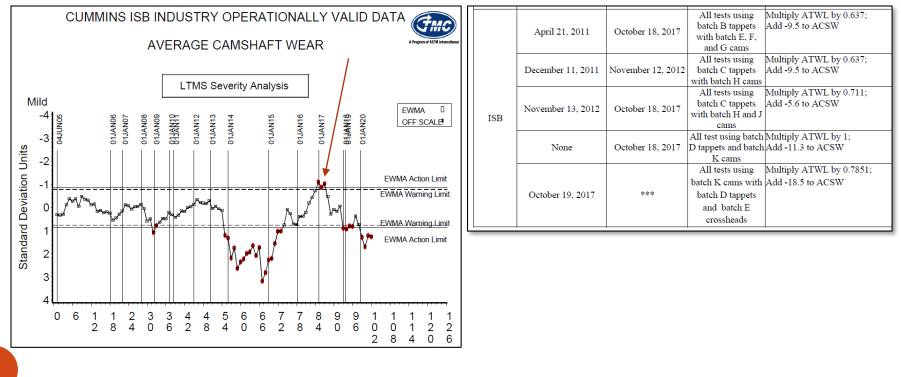
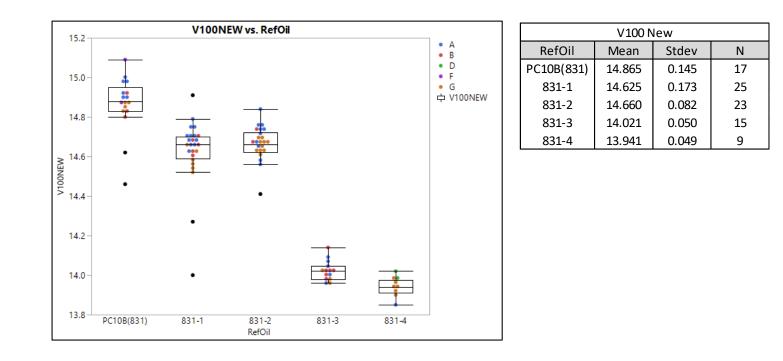
Statistics Group August 21, 2020

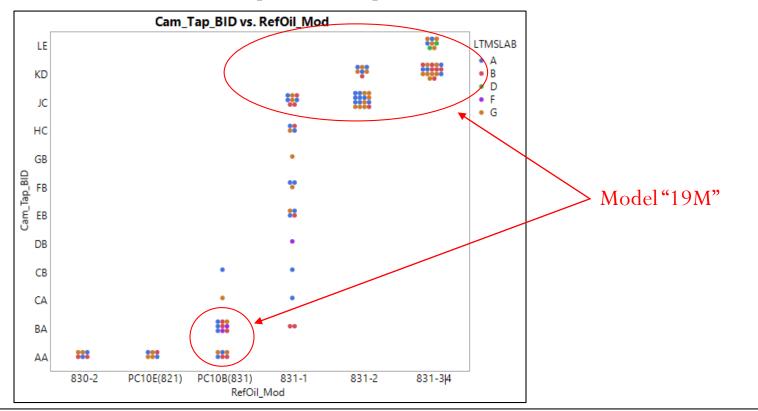
# **Statistics Group**


- Elisa Santos, Infineum
- Jo Martinez, Chevron Oronite
- Sean Moyer, TMC
- Abaigh Ritzenthaler, Afton
- Todd Dvorak, Afton
- Travis Kostan, SwRI

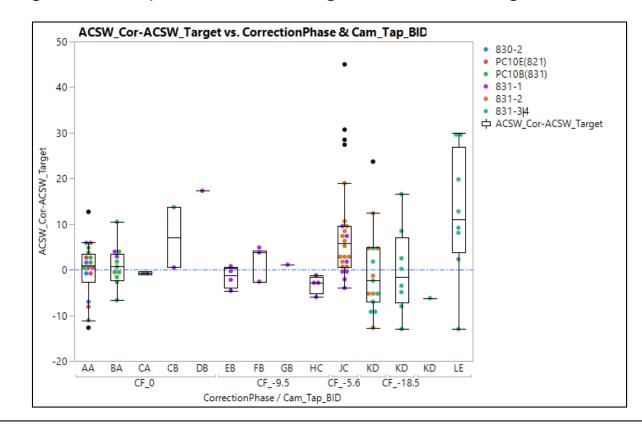
# Executive Summary


- Executive Summary:
  - Use reference oil test data that corresponds with all hardware Camshaft-Tappet batches to generate targets and CFs
  - Recommended Correction Factor is Multiplicative with a value of 0.77 for "LE" Camshaft-Tappet Hardware
  - Revised reference oil target for 831-3 | 4 is 52.4
  - Revised Standard Deviation Target for Reference Oil 831-3 | 4 is 9.2
    - Currently it is 8.7
  - Revised Severity Adjustment Standard deviation is 8.5
    - Currently it is 8.7

# **ISB** Analysis


- Current test is showing has been trending severe of target since January of 2017
- Severity trend continues following the Correct Factor update in October of 2017




- Issues related to reference oil 831X re-blends:
  - Data suggests a ~1.0 cSt difference between 831(PC10B) & 831-4
  - Feedback from Supplier/TMC indicates RO831-3 | 4 can be combined



- What are the tested hardware & reference oil blend combinations?
  - Plot of Camshaft and Tappet Hardware by Reference Oil batch is shown below
  - Initial Cam/Tap batch (PM phase) AA hardware tested with Reference oils 830-2, PC10B, and PC10E
  - Recent hardware batches JC, KD, and LE tested with RO 831-1, 831-2, & 831-3 4
  - Correction Factor Proposal corresponds to hardware & Ref Oil data for Model 19M



- Are current hardware Correction Factors (CFs) resulting in "on target performance?"
  - Corrected\_ACSW ACSW\_Target (w/o Lab D) data is plotted below.
  - Plot suggests that means of corrected data by hardware batch may not equal zero (*not* "on target performance")
  - Advantageous to analyze with ACSWOrig data in lieu of using the corrected ACSW data



- Correction Factor history:
  - Both Linear vs. Multiplicative CFs have been applied to the ISB

|     |                   |                                 | All tests using      | Multiply ATWL by 0.637;  |
|-----|-------------------|---------------------------------|----------------------|--------------------------|
|     | 1 1 21 2011       | 0 / 1 / 10 <b>0</b> 01 <b>7</b> | batch B tappets      | Add -9.5 to ACSW         |
|     | April 21, 2011    | October 18, 2017                | with batch E, F,     |                          |
|     |                   |                                 | and G cams           |                          |
|     |                   |                                 | All tests using      | Multiply ATWL by 0.637;  |
|     | December 11, 2011 | November 12, 2012               | batch C tappets      | Add -9.5 to ACSW         |
|     |                   |                                 | with batch H cams    |                          |
|     |                   |                                 | All tests using      | Multiply ATWL by 0.711;  |
|     | Name 12, 2012     | Ostahan 18, 2017                | batch C tappets      | Add -5.6 to ACSW         |
| ISB | November 13, 2012 | October 18, 2017                | with batch H and J   |                          |
| 15D |                   |                                 | cams                 |                          |
|     |                   |                                 | All test using batch | Multiply ATWL by 1;      |
|     | None              | October 18, 2017                | D tappets and batch  | Add -11.3 to ACSW        |
|     |                   |                                 | K cams               |                          |
|     |                   |                                 | All tests using      | Multiply ATWL by 0.7851; |
|     |                   |                                 | batch K cams with    | Add -18.5 to ACSW        |
|     | October 19, 2017  | ***                             | batch D tappets      |                          |
|     |                   |                                 | and batch E          |                          |
|     |                   |                                 | crossheads           |                          |
|     |                   | I                               | L                    | ·                        |

- Camshaft wear may be better represented as being proportional to the reference oil/candidate wear in lieu of a linear constant
- Analysis will include evaluations of multiplicative and additive approaches to help drive a decision on the best Correction Factor approach

- Outline of the Analysis Process Methodology:
  - Analyze the data to predict the severity by hardware batch as compared to original "targets" hardware (*CamTap batch AA & BA*) with RO PC10B(831) to quantify severity shift by hardware batch
  - Use ACSWOrig (vs. Corrected ACSW) as the key dependent variable for the analyses
    - Best estimates of correction factor options will be obtained using the original uncorrected data
  - Use fitted ACSWOrig model to predict hardware and reference oil blend combinations to estimate CFs
  - Apply CFs to the data & then re-analyze to generate new targets for RO 831-3 | 4

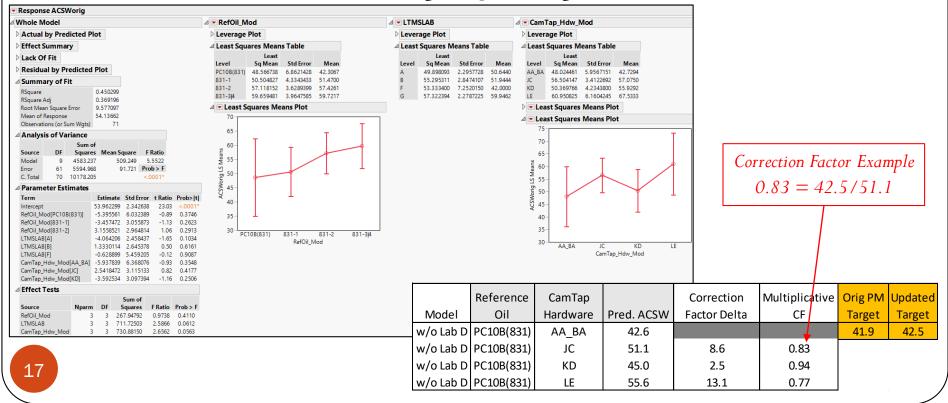
- How were original targets established?
  - Original Targets were generated with Cam-Tap Batch "AA" and reference oils PC10B, PC10E, and 830-2 (18 results) using raw means
    - ANOVA summary below shows LSMeans and Raw Data Means are similar in magnitude
  - Reference oil 831-X targets were updated and adjusted to 42.5
    - Target update based on additional Cam Tappet Hardware "AA" and "BA" test results (n=14)

| Response              | ACSV   | Vorig   |             |         |          |                |                      |                        |                 |           |                        |                        |                 |
|-----------------------|--------|---------|-------------|---------|----------|----------------|----------------------|------------------------|-----------------|-----------|------------------------|------------------------|-----------------|
| Whole Mo              | del    |         |             |         |          | ⊿ 💌 RefOil_N   | lod                  |                        |                 |           | VISLAB                 |                        |                 |
| Actual b              | y Prec | licted  | Plot        |         |          | D Leverage     | Plot                 |                        |                 | Leve      | erage Plot             |                        |                 |
| Effect Su             | mma    | y       |             |         |          | ⊿ Least Squ    | ares Mean            | s Table                |                 | ⊿ Leas    | st Squares N           | leans Table            | e               |
| Lack Of I             | Fit    |         |             |         |          |                | Least                |                        |                 |           | Least                  |                        |                 |
| Residual              | by Pr  | edicte  | d Plot      |         |          | Level<br>830-2 | Sq Mean<br>39.766667 | Std Error<br>2.6575703 | Mean<br>39.7667 | Leve<br>A | I Sq Mean<br>39,333333 | Std Error<br>2.6575703 | Mean<br>39.3333 |
| Summar                |        |         |             |         |          | PC10E(821)     | 35.661056            | 2.7353693              | 34,5833         | B         | 42.230363              | 2.9446584              | 42.9200         |
|                       | y 01 F |         | 0.345088    |         |          | PC10B(831)     |                      | 2.6575703              | 41.9000         | G         | 35.764026              | 2.4806496              | 35.2714         |
| RSquare<br>RSquare Ad | ;      |         | 0.345088    |         |          |                | <b>.</b>             |                        | $\overline{}$   |           |                        |                        |                 |
| Root Mean             |        | Error   | 6.509691    |         |          |                |                      |                        |                 | $\sim$    |                        |                        |                 |
| Mean of Re            |        |         | 38.75       |         |          |                | \<br>\               | <b>\</b>               |                 | $\sim$    |                        |                        |                 |
| Observation           |        | um Wgts | ) 18        |         |          |                |                      | $\backslash$           |                 |           | $\mathbf{i}$           |                        |                 |
| Analysis              | of Va  | riance  |             |         |          |                |                      | $\mathbf{A}$           |                 |           |                        |                        | 7               |
| -                     |        | Sum     |             |         |          |                |                      |                        |                 |           | ΝT                     | argets                 |                 |
| Source                | DF     | Squa    | res Mean Sq | uare F  | Ratio    |                |                      |                        |                 |           | -                      | ar Seeb                |                 |
| Model                 | 4      | 290.27  | 596 72.     |         | .7125    |                |                      | N N                    |                 |           |                        |                        | _               |
| Error                 | 13     | 550.88  |             |         | ob > F   |                |                      |                        |                 |           |                        |                        |                 |
| C. Total              | 17     | 841.16  | 500         | 0.      | 2071     |                |                      |                        |                 |           |                        |                        |                 |
| Paramet               | er Est | imates  |             |         |          |                |                      |                        |                 |           |                        |                        |                 |
| ⊿ Effect Te           | sts    |         |             |         |          |                |                      |                        |                 |           |                        |                        |                 |
|                       |        |         | Sum of      |         |          |                |                      |                        |                 |           |                        |                        |                 |
| Source                | Npar   | m DF    | Squares     | F Ratio | Prob > F |                |                      |                        |                 |           |                        |                        |                 |
| RefOil_Mod            |        | 2 2     | 116.58658   | 1.3756  | 0.2871   |                |                      |                        |                 |           |                        |                        |                 |
| LTMSLAB               |        | 2 2     | 120.37262   | 1.4203  | 0.2768   |                |                      |                        |                 |           |                        |                        |                 |

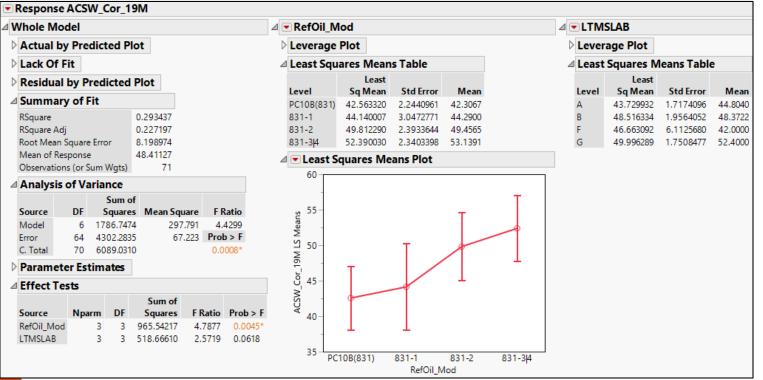
- The following slides explore correction factor options:
  - Numerous ANOVA models were evaluated with various data sets to generate correction factor options
  - Primary data sets evaluated to generate correction factor and target options included:
    - All Cam-Tappet batches and Reference Oil blends with/without Lab "D" data (n=100/102)
    - All 831X blend data with Cam-Tap Hardware batches "AA\_BA", "JC", "KD", and "LE" without Lab "D" data (*n* = 71)
  - Summary of all analyzed data sets & models are provided in the Appendix

- What factors should be included in the models and what data should be analyzed?
  - Table of different models by reference oil, hardware, hardware coding, and laboratory datasets are shown below
  - Analysis highlights:
    - The Stand[Lab] nested factor is not significant in any of the evaluated data sets recommend using Lab only factor in the models
    - The Camshaft and Tappet factors are confounded recommend using combined Cam-Tappet factors in models
    - Models with yellow highlights will be analyzed includes with & without Lab D data

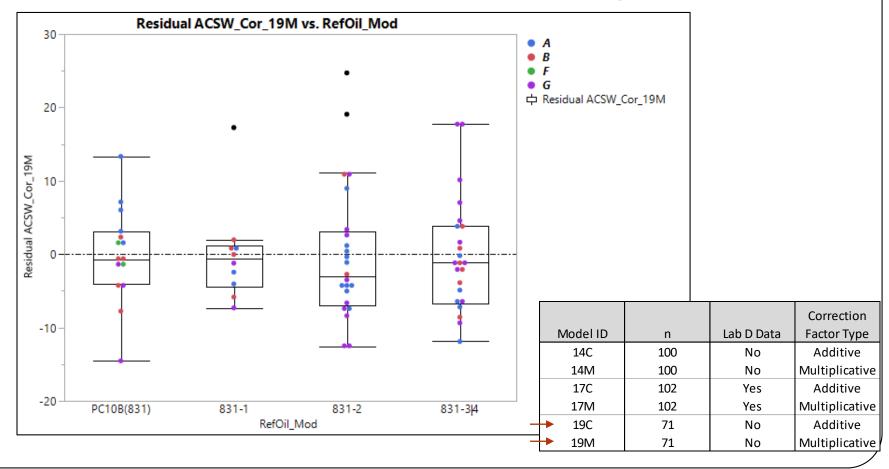
|                 | Data Induded in Madel                  | Data Included in Model |              |                |                       | Reference Oil |            |       |       |         | Hardware Effect Test $\rho$ values |                |        |            | Madal    | Cumanaan |           |               |        |           |
|-----------------|----------------------------------------|------------------------|--------------|----------------|-----------------------|---------------|------------|-------|-------|---------|------------------------------------|----------------|--------|------------|----------|----------|-----------|---------------|--------|-----------|
| _               | Data included in Model                 |                        |              | Lab            |                       |               | Reference  | JII   | 1     | 1       | на                                 | ruware         |        | Ellec      | i Test p | values   |           | Model Summary |        |           |
|                 |                                        |                        |              |                |                       |               |            |       |       |         |                                    |                |        |            |          |          |           |               |        | Model     |
| ID              | Data Notes                             | Lab D                  | Lab          | Stand[Lab]     | 830-2                 | PC10E(821)    | PC10B(831) | 831-1 | 831-2 | 831-3 4 | CamBID                             | CamTapBID      | Lab    | Stand[Lab] | RefOil   | CamBID   | CamTapBID | n             | RMSE   | Selection |
| 12              | All Cam Batches                        | X1                     | ~            | ~              | ✓                     | ~             | ✓          | ✓     | ~     | ~       | ~                                  | X1             | 0.2990 | 0.2452     | 0.3693   | 0.6327   |           | 100           | 8.8267 |           |
| 13              | All Cam-Tap Batches                    | X1                     | ~            | ✓              | ✓                     | ~             | ✓          | ~     | ✓     | ~       | X <sup>1</sup>                     | $\checkmark$   | 0.3072 | 0.3266     | 0.3808   |          | 0.7182    | 100           | 8.8888 |           |
| <mark>14</mark> | All Cam-Tap Batches                    | X1                     | ✓            | X <sup>1</sup> | <ul> <li>✓</li> </ul> | ✓             | ✓          | ~     | ✓     | ~       | X <sup>1</sup>                     | ✓              | 0.1100 |            | 0.3484   |          | 0.2432    | 100           | 8.9973 | Evaluate  |
| 15              | All Cam Batches                        | $\checkmark$           | ~            | $\checkmark$   | ✓                     | ✓             | ✓          | ~     | ~     | ~       | ~                                  | X <sup>1</sup> | 0.0031 | 0.2342     | 0.3608   | 0.6221   |           | 102           | 8.7637 |           |
| 16              | All Cam-Tap Batches                    | $\checkmark$           | ✓            | ✓              | ✓                     | ✓             | ✓          | ✓     | ~     | ~       | X1                                 | $\checkmark$   | 0.0035 | 0.3142     | 0.3722   |          | 0.7084    | 102           | 8.8245 |           |
| 17              | All Cam-Tap Batches                    | ✓                      | ~            | X <sup>1</sup> | ✓                     | ✓             | ✓          | ✓     | ~     | ~       | X1                                 | $\checkmark$   | 0.0047 |            | 0.3411   |          | 0.2340    | 102           | 8.9419 | Evaluate  |
| 18              | Cam-Tap Batches "AA_AB","JC","KD","LE" | X <sup>1</sup>         | ✓            | ✓              | X1                    | X1            | ✓          | ~     | ~     | ~       | X1                                 | $\checkmark$   | 0.4453 | 0.3890     | 0.4006   |          | 0.3110    | 71            | 9.4932 |           |
| 19              | Cam-Tap Batches "AA_AB","JC","KD","LE" | X1                     | $\checkmark$ | X <sup>1</sup> | X <sup>1</sup>        | X1            | ✓          | ✓     | ✓     | ✓       | X <sup>1</sup>                     | ✓              | 0.0612 |            | 0.4110   |          | 0.0563    | 71            | 9.5771 | Evaluate  |


Note 1 - "X" indicates that it is excluded from data set

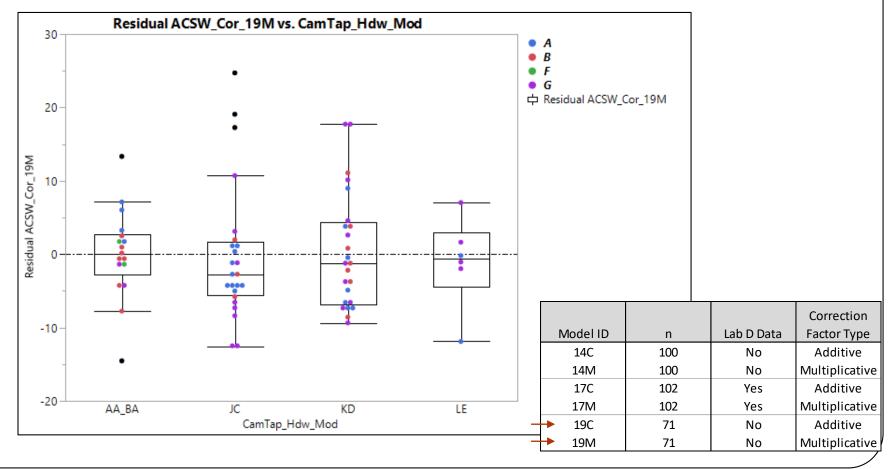
- Analysis highlights (Continued):
  - Highlighted yellow model ID's 14, 17, and 19 were all evaluated
  - Model ID 19 with Multiplicative CF, Lab only, and CamTapBID hardware coding, w/o Lab D data will be shown in the following slides
  - Recommend applying Multiplicative CFs to the data sets
    - A table summary of precision/standard deviations will be provided at the end of the modeling section that contrasts the Additive & Multiplicative CFs that supports their application
    - A complete summary of the analyses for model ID's 14, 17, and 19 are shown in the Appendix


- Data model to evaluate for CFs and revised Targets with Model ID 14M:
  - Includes Camshaft Tappet batches "AA\_BA", "JC", "KD", "LE"
  - Includes RO's PC10B(831), 831-1, 831-2, & 831-3 | 4
  - Applies multiplicative CFs to the data

|   |          |     |            | Correction     |
|---|----------|-----|------------|----------------|
|   | Model ID | n   | Lab D Data | Factor Type    |
|   | 14C      | 100 | No         | Additive       |
|   | 14M      | 100 | No         | Multiplicative |
|   | 17C      | 102 | Yes        | Additive       |
|   | 17M      | 102 | Yes        | Multiplicative |
|   | 19C      | 71  | No         | Additive       |
| - | 19M      | 71  | No         | Multiplicative |


- Predicted LSMeans for (PM) PC10B(831) and Camshaft-Tappet hardware combinations are summarized below:
  - Predictions estimate the multiplicative effect of hardware severity on ACSWOrig with using the "Target" ("AA\_BA") hardware and reference oil PC10B(831)
  - LSMeans are used to establish multiplicative CFs (by hardware batch)
    - Correction Factor calculated from original updated target of 42.5




- Analysis of ACSWOrig using (*multiplicative*) corrected data
- Overall model summary:
  - Reference oil is significant and lab is marginally significant
  - RMSE = 8.2, RO LSMeans Target for 831-3 | 4 = 52.4



- Plot of model fit residuals with all hardware (no Lab D) for the multiplicative (19M) Correction Factor
  - No apparent severity trend by Reference Oil using corrected data



- Plot of model fit residuals with all hardware (no Lab D) for the multiplicative (19M) Correction Factor
  - No apparent severity trend by Cam-Tappet Hardware with corrected data



- Why use multiplicative CFs in lieu of additive CFs?
  - Table below summarizes raw and (model fit) residual standard deviations by reference oil using the either additive or multiplicative corrected data
  - Results indicate that multiplicative correction factor models have smaller standard deviations (improved precision) as compared to their additive counterparts

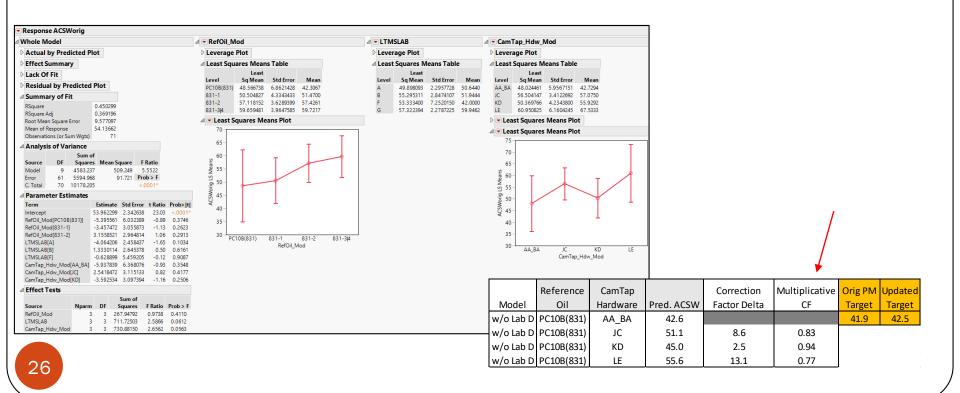
| Analysis Columns      | Statistics | 830-2 | PC10E(821) | PC10B(831) | 831-1 | 831-2 | 831-3 4 |               |
|-----------------------|------------|-------|------------|------------|-------|-------|---------|---------------|
| ACSW_Cor_14C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 10.2    |               |
| ACSW_Cor_14M          | Std Dev    | 9.0   | 4.6        | 4.5        | 4.8   | 9.1   | 8.5     |               |
| Residual ACSW_Cor_14C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 9.1     |               |
| Residual ACSW_Cor_14M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.3   | 8.7   | 7.7     |               |
| ACSW_Cor_17C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 11.6    |               |
| ACSW_Cor_17M          | Std Dev    | 9.0   | 4.6        | 4.6        | 4.8   | 9.3   | 9.4     |               |
| Residual ACSW_Cor_17C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 8.7     |               |
| Residual ACSW_Cor_17M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.4   | 8.9   | 7.4     | Add CF Model  |
| ACSW_Cor_19C          | Std Dev    |       |            | 4.9        | 9.0   | 11.6  | 10.2    | nud er model  |
| ACSW_Cor_19M          | Std Dev    |       |            | 4.9        | 7.5   | 9.8   | 9.2     |               |
| Residual ACSW_Cor_19C | Std Dev    |       |            | 6.9        | 8.2   | 11.2  | 8.5     | Mult CF Model |
| Residual ACSW_Cor_19M | Std Dev    |       |            | 6.5        | 6.8   | 9.4   | 7.8     |               |

|          |     |            | Correction     |
|----------|-----|------------|----------------|
| Model ID | n   | Lab D Data | Factor Type    |
| 14C      | 100 | No         | Additive       |
| 14M      | 100 | No         | Multiplicative |
| 17C      | 102 | Yes        | Additive       |
| 17M      | 102 | Yes        | Multiplicative |
| 19C      | 71  | No         | Additive       |
| 19M      | 71  | No         | Multiplicative |

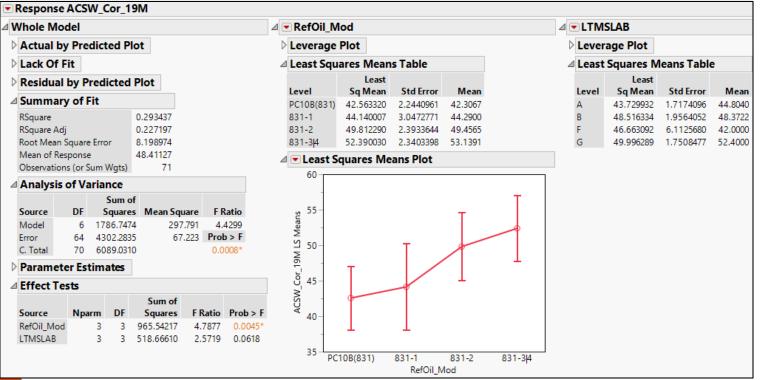
- Analysis of (14M) data for severity adjustment calculation
  - Based on reference oil model only (no laboratory factor)
  - RMSE for Severity Adjustment = 8.5

| Response   | ACSV                            | v_cor_1  |            |        |       |           |                  |           |        |      |           |        |
|------------|---------------------------------|----------|------------|--------|-------|-----------|------------------|-----------|--------|------|-----------|--------|
| Whole Mo   | del                             |          |            |        |       | ⊿         | •                | RefOil_M  | od     |      |           |        |
| Actual b   | y Prec                          | licted P | lot        |        |       |           | $\triangleright$ | Leverage  | Plot   |      |           |        |
| Residua    | l by Pr                         | edicted  | l Plot     |        |       |           | ⊿                | Least Squ | ares N | lean | s Table   |        |
| Summar     | y of F                          | t        |            | 1      |       |           |                  |           |        | east |           |        |
| RSquare    | •                               |          | 0.208257   |        |       |           |                  | Level     | Sq M   | ean  | Std Error | Mear   |
|            |                                 |          | PC10B(831) | 42.30  | 6667  | 2.1901974 | 42.306           |           |        |      |           |        |
|            | RSquare Adj 0.172805            |          |            |        |       |           |                  | 831-1     | 44.29  | 0000 | 2.6824331 | 44.290 |
|            | Root Mean Square Error 8.482598 |          |            |        |       |           |                  | 831-2     | 49.45  | 6522 | 1.7687440 | 49.456 |
|            | Alean of Response 48.41127      |          |            |        |       |           |                  | 831-3 4   | 53.13  | 9130 | 1.7687440 | 53.139 |
| Observatio | -                               |          | 71         |        |       |           |                  |           |        |      |           |        |
| Analysis   | of Va                           | riance   |            |        |       |           |                  |           |        |      |           |        |
|            |                                 | Sum      |            |        |       |           |                  |           |        |      |           |        |
| Source     | DF                              | Square   | es Mean S  | quare  | F R   | atio      |                  |           |        |      |           |        |
| Model      | 3                               | 1268.08  | 13 4       | 22.694 | 5.8   | 3745      |                  |           |        |      |           |        |
| Error      | 67                              | 4820.949 | 96         | 71.954 | Prob  | ) > F     |                  |           |        |      |           |        |
| C. Total   | 70                              | 6089.03  | 10         |        | 0.0   | 013*      |                  |           |        |      |           |        |
| Paramet    | er Est                          | mates    |            |        |       |           |                  |           |        |      |           |        |
| Effect Te  | ests                            |          |            |        |       |           |                  |           |        |      |           |        |
|            |                                 |          | Sum o      | f      |       |           |                  |           |        |      |           |        |
| Source     | Npar                            | m DF     | Square     | s FF   | Ratio | Prob > F  |                  |           |        |      |           |        |
| RefOil_Mod | d l                             | 3 3      | 1268.081   | 3 5.4  | 8745  | 0.0013*   |                  |           |        |      |           |        |

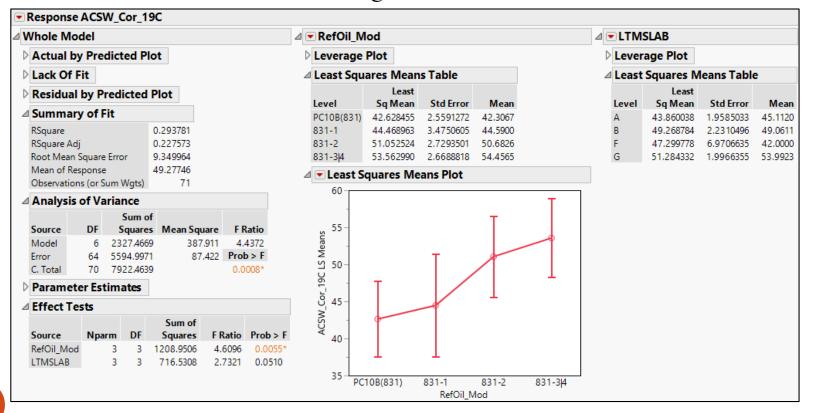
- Recommended Correction Factor & Target Updates:
  - Use model "19M" to generate Hardware CFs and Targets
    - Uses Camshaft-Tappet hardware batches "AA\_BA", "JC", "KD", "LE"
    - Select Multiplicative CFs which have a lower RMSE and Reference Oil Standard Deviations
  - Multiplicative Correction Factor for "LE" Cam-Tap Hardware (w/RO 831-3|4) = 0.77
    - If using "KD" Cam-Tap Hardware, multiplicative correction factor = 0.94
  - Reference Oil Target (831-3|4) with hardware corrected data = 52.4
  - Standard Deviation Update for Reference Oil Yi calculations:
    - Raw Standard Deviation for (831-3|4) = 9.2 (reference slide 19 in Table)
    - Currently it is 8.7
  - Severity Adjustment Pooled S = 8.5 (reference slide 20)
    - Currently it is 8.7


|          |     |            | Correction     |
|----------|-----|------------|----------------|
| Model ID | n   | Lab D Data | Factor Type    |
| 14C      | 100 | No         | Additive       |
| 14M      | 100 | No         | Multiplicative |
| 17C      | 102 | Yes        | Additive       |
| 17M      | 102 | Yes        | Multiplicative |
| 19C      | 71  | No         | Additive       |
| ► 19M    | 71  | No         | Multiplicative |

# Appendix – Summary of All Models


- Third Data Model to Evaluate:
  - Includes all Camshaft and Tappet batches
  - Includes all Reference Oil Data
  - Reference ID number 19 on slide 14 (*n* = 71 *without Lab "D"*)

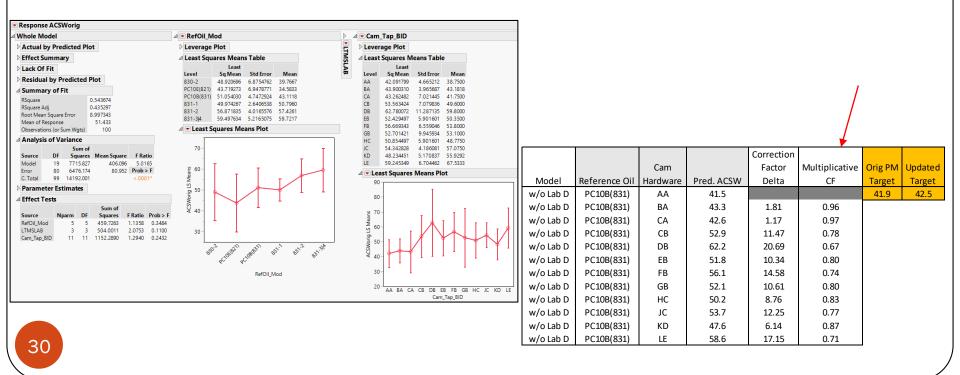
|   |          |     |            | Correction     |
|---|----------|-----|------------|----------------|
|   | Model ID | n   | Lab D Data | Factor Type    |
|   | 14C      | 100 | No         | Additive       |
|   | 14M      | 100 | No         | Multiplicative |
|   | 17C      | 102 | Yes        | Additive       |
|   | 17M      | 102 | Yes        | Multiplicative |
| - | 19C      | 71  | No         | Additive       |
| - | 19M      | 71  | No         | Multiplicative |
|   |          |     |            |                |


- Predicted LSMeans for (PM) PC10B(831) and Camshaft-Tappet hardware combinations are summarized below:
  - Predictions estimate the multiplicative effect of hardware severity on ACSW with using the Precision Matrix's reference oil PC10B(831)
  - Correction Factors calculated from original PM target of 42.5



- Analysis of ACSWOrig using (*multiplicative*) corrected data
- Overall model summary:
  - Reference oil is significant and lab is marginally significant
  - RMSE = 8.2, RO LSMeans Target for 831-3 | 4 = 52.4

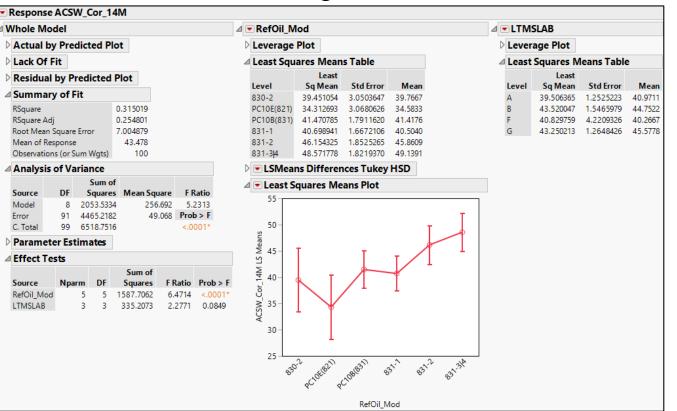



- Analysis of ACSWOrig using (*additive*) corrected data
- Overall model summary:
  - Reference oil is significant and lab is marginally significant
  - RMSE = 9.3, RO LSMeans Target for 831-3 | 4 = 53.6



- Third Data Model to Evaluate:
  - Includes all Camshaft and Tappet batches
  - Includes all Reference Oil Data
  - Reference ID number 14 on slide 14 (*n* = 100 without Lab "D")

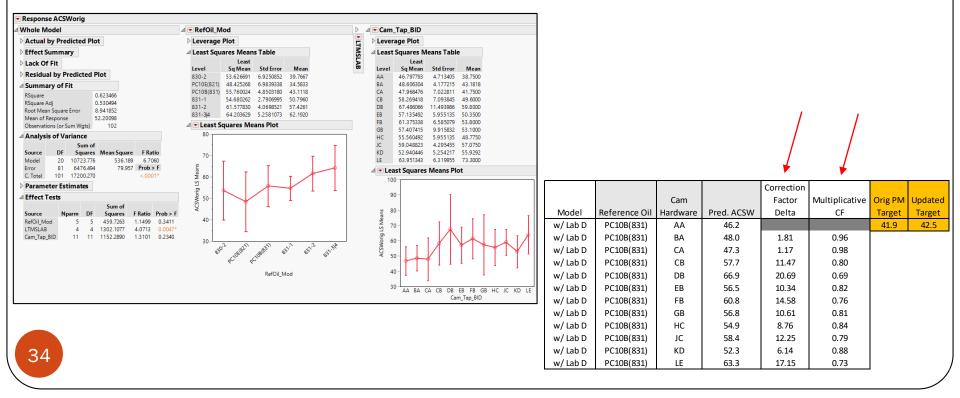
|   |          |     |            | Correction     |
|---|----------|-----|------------|----------------|
|   | Model ID | n   | Lab D Data | Factor Type    |
|   | 14C      | 100 | No         | Additive       |
| - | 14M      | 100 | No         | Multiplicative |
|   | 17C      | 102 | Yes        | Additive       |
|   | 17M      | 102 | Yes        | Multiplicative |
|   | 19C      | 71  | No         | Additive       |
|   | 19M      | 71  | No         | Multiplicative |
|   |          |     |            | /              |


- Predicted LSMeans for (PM) PC10B(831) and Camshaft-Tappet hardware combinations are summarized below:
  - LSMeans are used to establish multiplicative CFs (by hardware batch)
  - Predictions estimate the multiplicative effect of hardware severity on ACSW with using the Precision Matrix's reference oil PC10B(831)

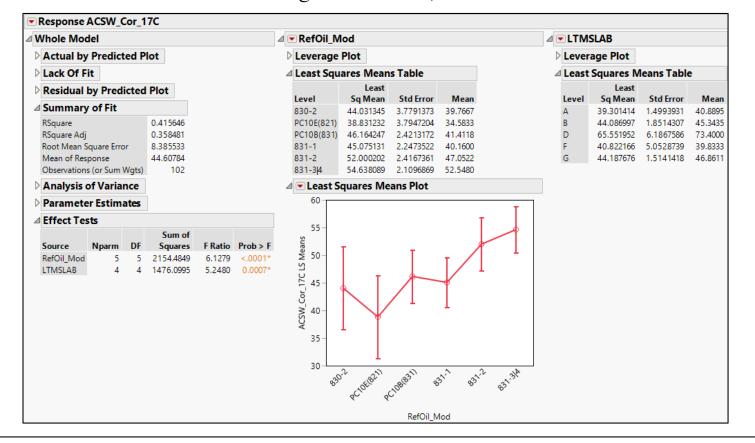


- Analysis of ACSWOrig data with *additive correction factors* applied
  - Corrected data for all Camshaft-Tappet Hardware Batches
- Overall model summary:
  - Reference Oil is significant and Lab is marginally significant (p=0.065)
  - RMSE = 8.4, RO LSMeans Target for 831-3 | 4 = 49.9

| Response                                                             | ACSW_C              | Cor_1 | 4C                                                |                  |                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                               |                                                     |          |     |             |                                     |                                     |                               |
|----------------------------------------------------------------------|---------------------|-------|---------------------------------------------------|------------------|---------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|-----------------------------------------------------|----------|-----|-------------|-------------------------------------|-------------------------------------|-------------------------------|
| ⊿ Whole Mod                                                          | lel                 |       |                                                   |                  |                           | 4                | RefOil_N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lod                  |                                                               |                                                     |          | ⊿ ( | LTM         | SLAB                                |                                     |                               |
| Actual by                                                            | Predict             | ed P  | lot                                               |                  |                           | $\triangleright$ | Leverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plot                 |                                                               |                                                     |          | D   | Lever       | age Plot                            |                                     |                               |
| Lack Of F                                                            | it                  |       |                                                   |                  |                           | ⊿                | Least Squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ares Mean            | s Table                                                       |                                                     |          | 4   | Least       | Squares N                           | leans Tabl                          | e                             |
| Residual I                                                           | by Pred             | icted | Plot                                              |                  |                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Least                | 61.1F                                                         |                                                     |          |     |             | Least                               | 6. I.F.                             |                               |
| ⊿ Summary                                                            | of Fit              |       |                                                   |                  |                           |                  | Level<br>830-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sq Mean<br>39.340868 | Std Error<br>3.6715063                                        | Mean<br>39.7667                                     |          |     | Level<br>A  | Sq Mean<br>39.301414                | Std Error<br>1.5075717              | Mean<br>40.8895               |
| RSquare<br>RSquare Adj<br>Root Mean S<br>Mean of Res<br>Observations | quare Erro<br>ponse |       | 0.310297<br>0.249664<br>8.431273<br>44.032<br>100 |                  |                           | 9<br>8<br>8      | PC10E(821)<br>PC10B(831)<br>831-1<br>831-2<br>831-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.140755            | 3.6928081<br>2.1558940<br>2.0067025<br>2.2297540<br>2.1929356 | 34.5833<br>41.4118<br>40.1600<br>47.0522<br>50.7348 |          |     | B<br>F<br>G | 44.086997<br>40.822166<br>44.187676 | 1.8615295<br>5.0804355<br>1.5224008 | 45.3435<br>39.8333<br>46.8611 |
| Analysis                                                             |                     |       | 100                                               |                  |                           |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Squares Me           |                                                               | 50.1540                                             |          |     |             |                                     |                                     |                               |
| Paramete                                                             |                     |       |                                                   |                  |                           |                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                    |                                                               |                                                     | 1        |     |             |                                     |                                     |                               |
| ⊿ Effect Tes                                                         |                     |       |                                                   |                  |                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                               |                                                     |          |     |             |                                     |                                     |                               |
| Source                                                               | Nparm               | DF    | Sum of<br>Squares                                 | F Ratio          | Prob > F                  |                  | - 55<br>- 55<br>- 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                               |                                                     |          |     |             |                                     |                                     |                               |
| RefOil_Mod<br>LTMSLAB                                                | 53                  | 5     | 2154.4849<br>530.8692                             | 6.0616<br>2.4893 | < <u>.0001*</u><br>0.0653 |                  | Support of the second s | Provention of        | 1.108 <sup>8311</sup> e                                       | 1<br>31 <sup>°°</sup> 63 <sup>°</sup>               | 2 831.34 |     |             |                                     |                                     |                               |
|                                                                      |                     |       |                                                   |                  |                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | RefOil_N                                                      | 1od                                                 |          |     |             |                                     |                                     |                               |


- Analysis of ACSWOrig data with *multiplicative correction factors* applied
  - Corrected data for all Camshaft-Tappet Hardware Batches
- Overall model summary:
  - Reference Oil is significant and Lab is marginally significant (p = 0.08)
  - RMSE = 7.0, RO LSM eans Target for 831-3 | 4 = 48.6




- Fourth Data Model to Evaluate:
  - Includes all Camshaft and Tappet batches
  - Includes all Reference Oils
  - Reference ID number 17 on slide 14 (*n* = 102 with Lab "D")

|   |          |     |            | Correction     |
|---|----------|-----|------------|----------------|
|   | Model ID | n   | Lab D Data | Factor Type    |
|   | 14C      | 100 | No         | Additive       |
|   | 14M      | 100 | No         | Multiplicative |
| - | 17C      | 102 | Yes        | Additive       |
| - | 17M      | 102 | Yes        | Multiplicative |
|   | 19C      | 71  | No         | Additive       |
|   | 19M      | 71  | No         | Multiplicative |

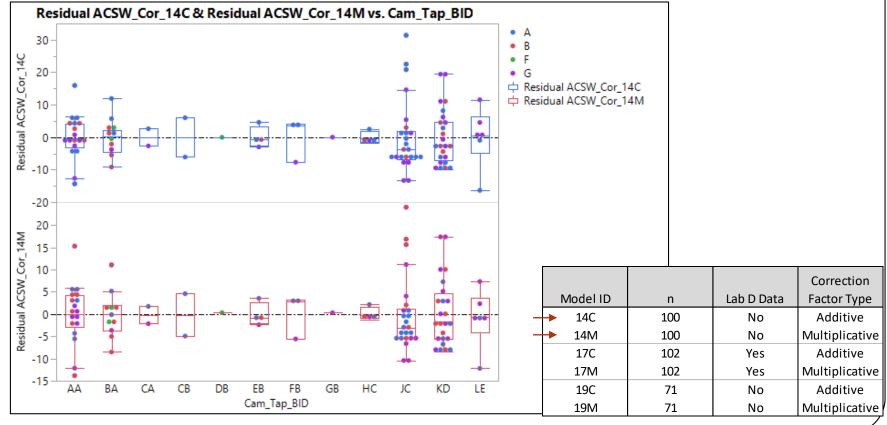
- Analysis of PM and current cams and reference oils (with Lab D):
  - Includes all Camshaft Tappet batches (*reference data ID* #17 on slide 14)
  - Includes RO's PC10B, PC10E, 830-2, PC10B, PC10E, 831-1, 831-2, & 831-3|4
- Predicted LSMeans for (PM) PC10B(831) and Camshaft-Tappet hardware combinations are shown below:
  - LSMeans used to establish additive and multiplicative CFs (by hardware batch)
  - Predictions estimate the effect of hardware severity on ACSW with (PM) PC10B(831)



- Analysis of ACSWOrig data with *additive correction factors* applied
  - Corrected data for all Camshaft-Tappet Hardware Batches
- Overall model summary:
  - Reference Oil and Lab are statistically significant
  - RMSE = 8.4, RO LSMeans Target for 831-3|4 = 54.6

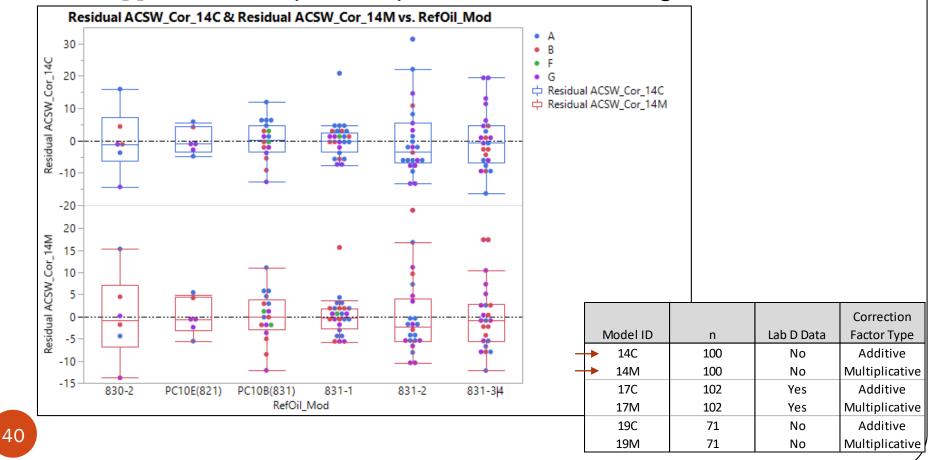


- Analysis of ACSWOrig data with *multiplicative correction factors* applied
  - Corrected data for all Camshaft-Tappet Hardware Batches
- Overall model summary:
  - Reference Oil and Lab are statistically significant
  - RMSE = 7.1, RO LSMeans Target for 831-3 | 4 = 52.7

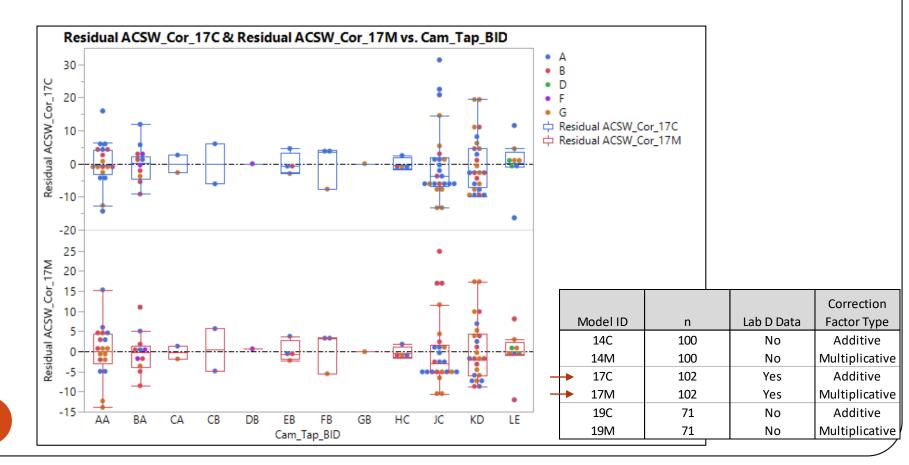



# Summary of all Models

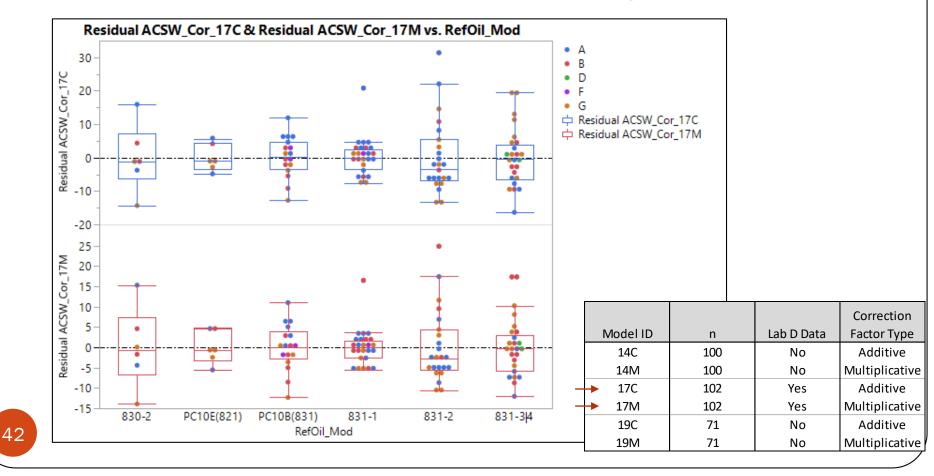
- Summary of all evaluated models with CFs are provided in below table
- Highlights of Analyses:
  - Overall Precision (RMSE) of ISB data is improved with *Multiplicative CFs* as compared to *Additive CFs*
  - Similar Correction Factor ranges for both multiplicative and additive methods regardless of the data set analyzed
  - Calculated LSMeans for PC10B(831) appear higher when Lab D is included in the data set


|          |     | LSMeans    | LSMeans |      |            | Correction     | CamTap "LE" |
|----------|-----|------------|---------|------|------------|----------------|-------------|
| Model ID | n   | PC10B(831) | 831-3 4 | RMSE | Lab D Data | Factor Type    | Cor-Factor  |
| 14C      | 100 | 41.5       | 49.9    | 8.4  | No         | Additive       | -17.2       |
| 14M      | 100 | 41.5       | 48.6    | 7.0  | No         | Multiplicative | 0.71        |
| 17C      | 102 | 46.2       | 54.6    | 8.4  | Yes        | Additive       | -17.2       |
| 17M      | 102 | 44.9       | 52.7    | 7.1  | Yes        | Multiplicative | 0.73        |
| 19C      | 71  | 42.6       | 53.6    | 9.3  | No         | Additive       | -13.1       |
| 19M      | 71  | 42.6       | 52.4    | 8.2  | No         | Multiplicative | 0.77        |

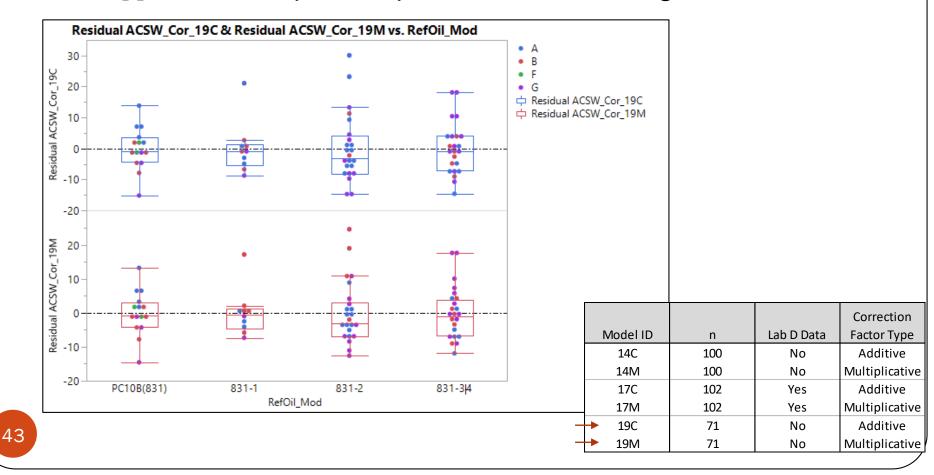
- Plot of model fit residuals with all hardware (no Lab D) for additive (14C) and multiplicative (14M) CFs
  - No apparent severity trend by Camshaft-Tappet batch using corrected data



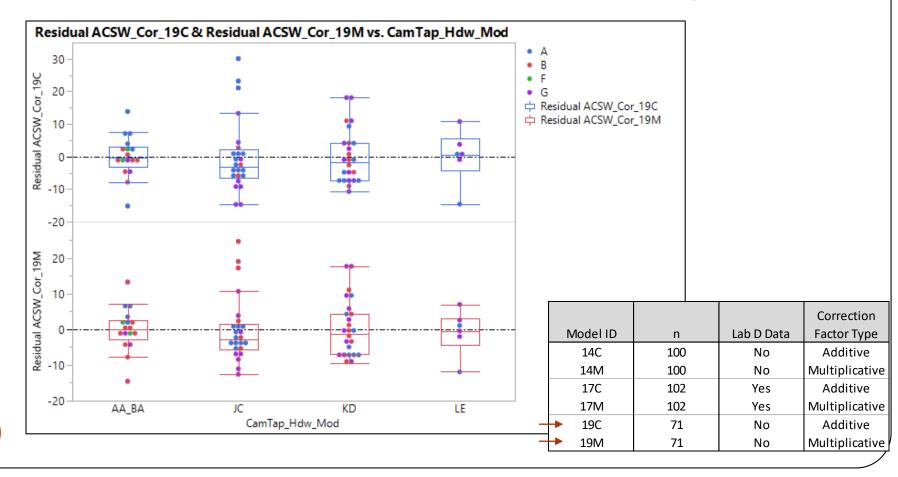

39


- Plot of model fit residuals with all hardware (no Lab D) *for additive* (14C) and multiplicative (14M) CFs
  - No apparent severity trend by Reference Oil using corrected data




- Plot of model fit residuals with all hardware (w/Lab D) for additive (17C) and multiplicative (17M) CFs
  - No apparent severity trend by Cam-Tap Hardware using corrected data




- Plot of model fit residuals with all hardware (w/ Lab D) for additive (17C) and multiplicative (17M) CFs
  - No apparent severity trend Reference Oil using corrected data



- Plot of model fit residuals with all hardware (no Lab D) for additive (19C) and multiplicative (19M) CFs
  - No apparent severity trend by Reference Oil using corrected data



- Plot of model fit residuals with all hardware (no Lab D) for additive (19C) and multiplicative (19M) CFs
  - No apparent severity trend by Cam-Tap Hardware using corrected data



- Table summarizes raw and (model fit) residual standard deviations by reference oil using corrected data
- Results indicate that multiplicative correction factor models have smaller standard deviations as compared to their additive counterparts

| Analysis Columns      | Statistics | 830-2 | PC10E(821) | PC10B(831) | 831-1 | 831-2 | 831-3 4 |               |
|-----------------------|------------|-------|------------|------------|-------|-------|---------|---------------|
| ACSW_Cor_14C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 10.2    |               |
| ACSW_Cor_14M          | Std Dev    | 9.0   | 4.6        | 4.5        | 4.8   | 9.1   | 8.5     |               |
| Residual ACSW_Cor_14C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 9.1     |               |
| Residual ACSW_Cor_14M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.3   | 8.7   | 7.7     |               |
| ACSW_Cor_17C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 11.6    |               |
| ACSW_Cor_17M          | Std Dev    | 9.0   | 4.6        | 4.6        | 4.8   | 9.3   | 9.4     |               |
| Residual ACSW_Cor_17C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 8.7     |               |
| Residual ACSW_Cor_17M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.4   | 8.9   | 7.4     | Add CF Model  |
| ACSW_Cor_19C          | Std Dev    |       |            | 4.9        | 9.0   | 11.6  | 10.2    | Hud er model  |
| ACSW_Cor_19M          | Std Dev    |       |            | 4.9        | 7.5   | 9.8   | 9.2 🦟   |               |
| Residual ACSW_Cor_19C | Std Dev    |       |            | 6.9        | 8.2   | 11.2  | 8.5     | Mult CF Model |
| Residual ACSW_Cor_19M | Std Dev    |       |            | 6.5        | 6.8   | 9.4   | 7.8     | <u> </u>      |

|          |     |            | Correction     |
|----------|-----|------------|----------------|
| Model ID | n   | Lab D Data | Factor Type    |
| 14C      | 100 | No         | Additive       |
| 14M      | 100 | No         | Multiplicative |
| 17C      | 102 | Yes        | Additive       |
| 17M      | 102 | Yes        | Multiplicative |
| 19C      | 71  | No         | Additive       |
| 19M      | 71  | No         | Multiplicative |

- Table summarizes raw and (model fit) residual standard deviations by reference oil using corrected data
- Results indicate that multiplicative correction factor models have smaller standard deviations as compared to their additive counterparts

| Analysis Columns      | Statistics | 830-2 | PC10E(821) | PC10B(831) | 831-1 | 831-2 | 831-3 4 | Add CF Model  |
|-----------------------|------------|-------|------------|------------|-------|-------|---------|---------------|
| ACSW_Cor_14C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 10.2    |               |
| ACSW_Cor_14M          | Std Dev    | 9.0   | 4.6        | 4.5        | 4.8   | 9.1   | 8.5     | Mult CF Model |
| Residual ACSW_Cor_14C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 9.1     | Mult CI Model |
| Residual ACSW_Cor_14M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.3   | 8.7   | 7.7     |               |
| ACSW_Cor_17C          | Std Dev    | 9.0   | 4.6        | 4.6        | 6.1   | 11.6  | 11.6    |               |
| ACSW_Cor_17M          | Std Dev    | 9.0   | 4.6        | 4.6        | 4.8   | 9.3   | 9.4     |               |
| Residual ACSW_Cor_17C | Std Dev    | 10.0  | 4.0        | 6.0        | 5.6   | 11.1  | 8.7     |               |
| Residual ACSW_Cor_17M | Std Dev    | 9.7   | 4.0        | 5.6        | 4.4   | 8.9   | 7.4     |               |

|          |     | Cam-Tap      | Lab D Data | Correction     |
|----------|-----|--------------|------------|----------------|
| Model ID | n   | Hardware     | Included?  | Factor Type    |
| 14C      | 100 | All Hardware | No         | Additive       |
| 14M      | 100 | All Hardware | No         | Multiplicative |
| 17C      | 102 | All Hardware | Yes        | Additive       |
| 17M      | 102 | All Hardware | Yes        | Multiplicative |