Cummins Surveillance Panel Conference Call Meeting Minutes

Monday, February 2, 2015 10:00 - 11:00 a.m. EST

Attendance:

Jim Moritz, Mey Dewey - Intertek Zack Bishop, Dan Lanctot - TEI Jeff Clark, Sean Moyer - TMC Martin Thompson, Jim McCord, Perry Grosch, Jose Starling - SwRI Nick Secue, Michael Conrad, Kevin O'Malley - Lubrizol Elisa Santos, Jim Gutzwiller, Bob Salgueiro - Infineum Jim Rutherford, Mark Cooper, Marnix Torreman - ChevronOronite Dan Nyman - Cummins Bob Campbell - Afton

ISM Oil Filters:

Intertek has cut open and examined a new filter; the media is the same and the pleat count is correct. As agreed upon earlier, since all looks to be in good order, the filters can now be used for all tests (no need to bring in with a reference test).

ISB Hardware:

- Update on delivery of Batch D Tappets

Dan Nyman reported that Batch D tappets are currently being shipped to TEI.

ISB Data Review:

Kevin O'Malley review his analysis, which is attached, in detail. Following Kevin's presentation, there was open discussion. After several ideas were considered, it was decided that an effort should be made to run coordinated reference tests on the new cam and tappet batches. The discussion then focused on accomplishing this. Three test labs agreed to participate in the coordinated references as soon as hardware is available. The following motion (**Campbell, McCord**) was made: *allow the TMC to adjust calibration periods (with no net gain/loss) to assist in the coordinated reference runs, with large adjustments being split over two reference periods.* The motion passed without objection and two waives (TMC, TEI).

Kevin will continue analyzing the data based on some feedback he received during the discussion.

ISB Hardware:

- Introduction of Batch K cams

This topic was not directly discussed during the call, but was included as part of the discussion above.

The meeting adjourned at 11:30 a.m.

Cummins ISB Industry Severity

Feb 2014 Kevin O'Malley Statistician The Lubrizol Corporation

LTMS file contains test results from 20050629 to 20141229

Severity adjustments are not currently applicable

1. These would affect candidate results only

Values used to LTMS calculations for the ISB

	LUDRICANT TEST MONITORING STSTEM CONSTANTS											
			EWMA	Shewhart Chart								
		LAM	BDA	K	Σ.	K						
Chart Level	Limit Type	Precision	Severity	Precision	Severity	Precision	Severity					
Stand	Action	0.3	0.3	2.10	2.36	2.10	1.96					
Inductor	Warning	0.2	0.2	2.10	2.36							
Industry	Action	0.2	0.2	2.80	3.00							

LUBRICANT TEST MONITORING SYSTEM CONSTANTS

Correction factors are currently in place for: Average Tappet Weight Loss (ATWL) Average Camshaft Wear (ACSW)

		/		
ISB	April 21, 2011	***	<u> </u>	Multiply ATWL by 0.637; Add -9.5 to ACSW
ISB	December 11, 2011	November 12, 2012	<u> </u>	Multiply ATWL by 0.637; Add -9.5 to ACSW
ISB	November 13, 2012	***		Multiply ATWL by 0.711; Add -5.6 to ACSW

History of Reference Oil Targets (831-2 is new batch introduced Oct 2013)

	ISB Reference Oil Targets											
		Effectiv	ve Dates	Average Car	nshaft Wear	Average Tappet Weight Loss						
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	s	$\overline{\mathbf{X}}$	s					
821 (PC10E)	6	6-4-05	12-31-05	34.6	4.6	56.2	9.6					
830-2	6	6-4-05	12-31-05	39.8	9.0	85.9	16.0					
831 (PC10B)	6	6-4-05	1-24-07	41.9	5.6	88.7	15.9					
	10	1-25-07	8-6-07	42.8	5.4	94.9	15.3					
	14	8-7-07	***	42.5	5.0	97.2	14.8					
831-1 ²	-	8-7-07	***	42.5	5.0	97.2	14.8					
831-2 ²		8-6-13	***	42.5	5.0	97.2	14.8					

1 *** = currently in effect

Targets based on oil 831 831-1 and 831-2 currently based on 831 targets

Current State of LTMS for ISB

Camshaft, Tappet, and Crosshead batches were assigned according to the following table

ISB Camshaft Batch	Starting Kit #	Date				
Α	1	Jun-2004				
В	135	Feb-2006				
С	244	Aug-2007				
D	290	Jul-2008				
E	337	Apr-2009				
F	389	Mar-2010				
G	441	Mar-2011				
Н	486	Nov-2011				
J	569	Aug-2012				
К	821 need Tappets	Jan-2015				
ISB Tappet Batch	Starting Kit #	Date				
Α	1	Jun-2004				
В	279	Jan-2008				
С	475	Aug-2011				
D	?	Jan-2015 ?				
ISB Crosshead Batch	Starting Kit #	Date				
A	1	Jun-2004				
В	279	Jan-2008				
С	475	Aug-2011				
D	569	Aug-2012				

Pushrod Batches

New pushrods estimated to start with Kit# 556

- 5000 were obtained on June 22, 2012
- We cannot guarantee these 5000 came from the same batch

Prior to new pushrod "batch", pushrods came in small quantities from different batches

ISB ACSWyi calculation: Pre-2007 Valid Test Results

														A COMA di /Kaudala	(Kauiala Cala)
TESTKEY	LTMSI	IND	LTMSAPP	STRUN	VAL	LTMSDATE	СНАРТ	ACSWorig	ACSWCE	ACSW	ACSWVi	ACSWxbar	ACSWs	ACSWyi (Kevin's calc)	(ACSWyi)
55841-ISB		PC10B	2			20050604		44.1	0		0.2407	42.8	5.4		0.0000
55851-ISB		PC10B	2	5	AO			45.1		45.1	0.4259		5.4		0.0000
55839-ISB		830-2	2	_	AO	20050624		41.1		41.1	0.1444	39.8	9		0.0000
55853-ISB		PC10E	2		AO	20050627		26.5		26.5			4.6		0.0000
55840-ISB		830-2	1	12	AO	20050629		27.1	•	27.1	-1.4111	39.8	9	-1.411111111	0.0000
55843-ISB		PC10E	2		AO	20050711		35.3		35.3	0.1522	34.6	4.6		0.0000
55850-ISB		830-2	2		AO	20050713		32.8	•	32.8	-0.7778		9	-0.777777778	0.0000
56361-ISB		PC10E	1	8	AO	20050715		40.3		40.3	1.2391	34.6	4.6		0.0000
55842-ISB		PC10B	1	13	00	20050717		30.8		30.8		42.8	5.4	-2.2222222222	0.0000
55844-ISB		PC10E	2		AO	20050730		35.1		35.1	0.1087	34.6	4.6		0.0000
55852-ISB		PC10B	2		AO	20050801		42.2		42.2	-0.1111	42.8	5.4	-0.111111111	0.0000
55846-ISB		830-2	1	9	AO	20050804		45.7		45.7	0.6556		9		0.0000
55845-ISB		PC10E	1	14	AO	20050805		33.4		33.4	-0.2609		4.6		0.0000
55907-ISB		830-2	3	3	AC	20050806		52.5		52.5	1.4111	39.8	9		0.0000
55847-ISB		830-2	1	11	AO	20050829		39.4		39.4	-0.0444	39.8	9	-0.04444444	0.0000
56950-ISB		PC10B	2	7	AC	20050907		46.1		46.1	0.6111	42.8	5.4	0.611111111	0.0000
56972-ISB	В	PC10B	1	12	AO	20050915	Y	43.1		43.1	0.0556		5.4		0.0000
55909-ISB	Α	PC10E	4	12	AC	20051016	Y	36.9		36.9	0.5		4.6	0.5	0.0000
58241-ISB	Α	PC10B	2	21	AC	20060924	Y	52.4	0	52.4	1.7778		5.4	1.777777778	0.0000
57939-ISB	В	PC10B	1	23	AC	20061113	Y	43.1	0	43.1	0.0556		5.4	0.055555556	0.0000
58207-ISB	G	PC10B	2	21	AC	20061215	Y	40.9	0	40.9	-0.3519	42.8	5.4	-0.351851852	0.0000
58242-ISB	А	PC10B	3	20	AC	20061220	Y	40.7	0	40.7	-0.3889	42.8	5.4	-0.388888889	0.0000

When I change the mean and standard deviation to 42.8 & 5.4 for PC10B, respectively, my ACSWyi calculation matches the LTMS file (These values are for PC10B post 2006)

Corrected values used

	ISB Reference Oil Targets												
		Effectiv	ve Dates	Average Car	nshaft Wear	Average Tappet Weight Loss							
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	s	x	S						
821 (PC10E)	6	6-4-05	12-31-05	34.6	4.6	56.2	9.6						
820.2	6	6 4 05	12 21 05	20.8	0.0	85.9	16.0						
831 (PC10B)	6	6-4-05	1-24-07	41.9	5.6	88.7	15.9						
	10	1-25-07	8-6-07	42.8	5.4	94.9	15.3						
u						07.2	14.8						

ISB ATWLyi calculation: Pre-2007 Valid Test Results

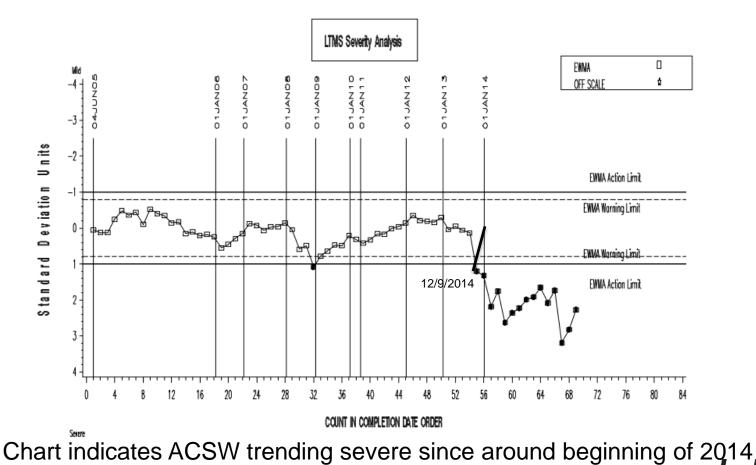
															ATM vi (Koviela	(Kaviala Cala)
TESTKEY	THE	ND	THEADD	CTDUN	1/41	THEDATE	CHADT		ATTAULOF	A TDA/I	A (2)A/I	A TIA/I:	ATIAN	A T) A (1 -	ATWLyi (Kevin's	· · · ·
	LTMS							ATWLorig		ATWL			ATWLxbar		Calc)	(ATWLyi)
55841-ISB		PC10B	2		AO	20050604		85.2					94.9			
55851-ISB	Α	PC10B	2	5	AO	20050606	Y	84.9		84.9	1.6	-0.6536	94.9	15.3	-0.653594771	0.0000
55839-ISB	G	830-2	2	10	AO	20050624	Y	89		89	2.6	0.2883	85.9	16	0.19375	-0.0946
55853-ISB	Α	PC10E	2	6	AO	20050627	Y	46.8		46.8	1.4	-0.7708	56.2	9.6	-0.979166667	-0.2084
55840-ISB	G	830-2	1	12	AO	20050629	Y	75.9		75.9	1.7	-0.5153	85.9	16	-0.625	-0.1097
55843-ISB	G	PC10E	2	11	AO	20050711	Y	62.8		62.8	1.8	0.8958	56.2	9.6	0.6875	-0.2083
55850-ISB	Α	830-2	2	7	AO	20050713	Y	61.4		61.4	1.3	-1.4049	85.9	16	-1.53125	-0.1264
56361-ISB	В	PC10E	1	8	AO	20050715	Y	68.1		68.1	2.7	1.4479	56.2	9.6	1.239583333	-0.2083
55842-ISB	G	PC10B	1	13	00	20050717	Y	79.7		79.7	2.2	-0.9935	94.9	15.3	-0.993464052	0.0000
55844-ISB	G	PC10E	2	12	AO	20050730	Y	46		46	2.1	-0.8542	56.2	9.6	-1.0625	-0.2083
55852-ISB	Α	PC10B	2	8	AO	20050801	Y	77.8		77.8	1.6	-1.1176	94.9	15.3	-1.117647059	0.0000
55846-ISB	В	830-2	1	9	AO	20050804	Y	101.8		101.8	2.2	1.0736	85.9	16	0.99375	-0.0799
55845-ISB	G	PC10E	1	14	AO	20050805	Y	55.4		55.4	2	0.125	56.2	9.6	-0.083333333	-0.2083
55907-ISB	Α	830-2	3	3	AC	20050806	Y	102.3		102.3	2.2	1.1043	85.9	16	1.025	-0.0793
55847-ISB	В	830-2	1	11	AO	20050829	Y	75.5		75.5	2.5	-0.5399	85.9	16	-0.65	-0.1101
56950-ISB	В	PC10B	2	7	AC	20050907	Y	110.4		110.4	2.6	1.0131	94.9	15.3	1.013071895	0.0000
56972-ISB	В	PC10B	1	12	AO	20050915	Y	90.4		90.4	1.9	-0.2941	94.9	15.3	-0.294117647	0.0000
55909-ISB	Α	PC10E	4	12	AC	20051016	Y	45.9		45.9	1.5	-0.8646	56.2	9.6	-1.072916667	-0.2083
58241-ISB	Α	PC10B	2	21	AC	20060924	Y	123.8	0	123.8	0.8	1.8889	94.9	15.3	1.888888889	0.0000
57939-ISB	В	PC10B	1	23	AC	20061113	Y	102.7	0	102.7	1.3	0.5098	94.9	15.3	0.509803922	0.0000
58207-ISB	G	PC10B	2	21	AC	20061215	Y	107.6	0	107.6	1.7	0.8301	94.9	15.3	0.830065359	0.0000
58242-ISB	Α	PC10B	3	20	AC	20061220	Y	86.1	0	86.1	1.4	-0.5752	94.9	15.3	-0.575163399	0.0000

When I change the mean and standard deviation of PC10B to 94.9 & 15.3, respectively, my ATWLyi calculation matches the LTMS file (These values are for PC10B post 2006)

However, I still cannot confirm the yi calculations for other tests in the table above

Corrected values used

	ISB Reference Oil Targets											
		Effectiv	ve Dates	Average Car	nshaft Wear	Average Tappet Weight Loss						
Oil	n	From	To ¹	$\overline{\mathbf{X}}$	s	x	S					
821 (PC10E)	6	6-4-05	12-31-05	34.6	4.6	56.2	9.6					
820.2	6	6 4 05	12 21 05	20.8	0.0	95.0	16.0					
831 (PC10B)	6	6-4-05	1-24-07	41.9	5.6	88.7	15.9					
	10	1-25-07	8-6-07	42.8	5.4	94.9	15.3					
1	14	0-/-0/		42.3	5.0	91.2	14.0					

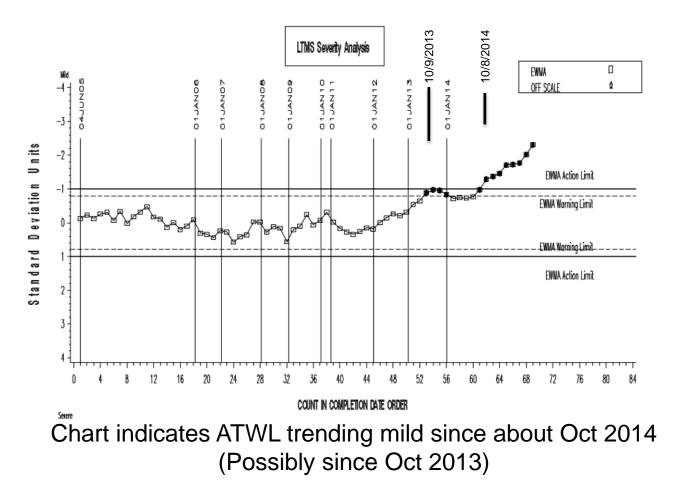

Average Camshaft Wear ACSWzi EWMA Control Chart

SUCCESS

ubrizol

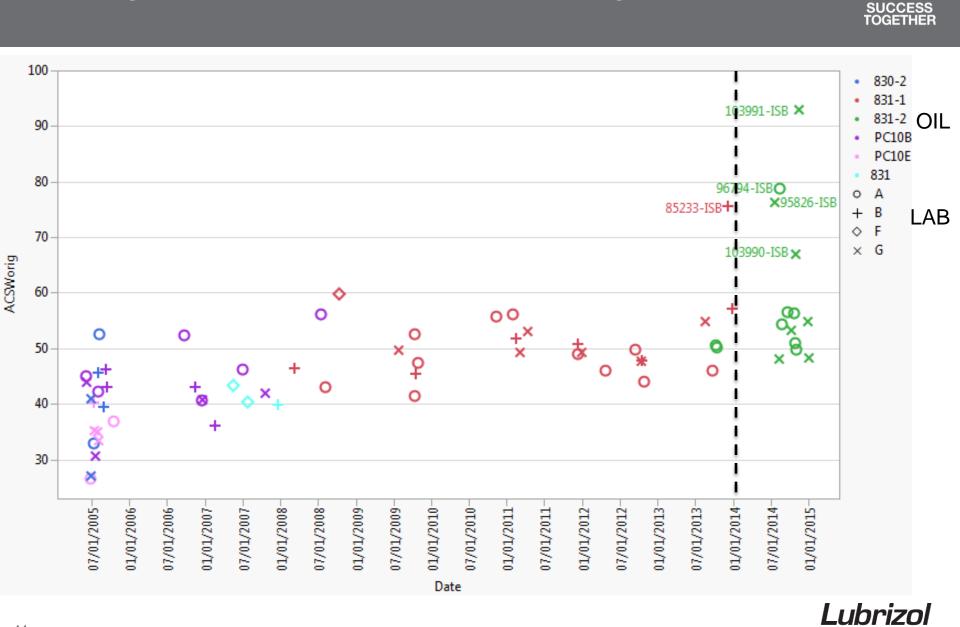
CUMMINS ISB INDUSTRY OPERATIONALLY VALID DATA

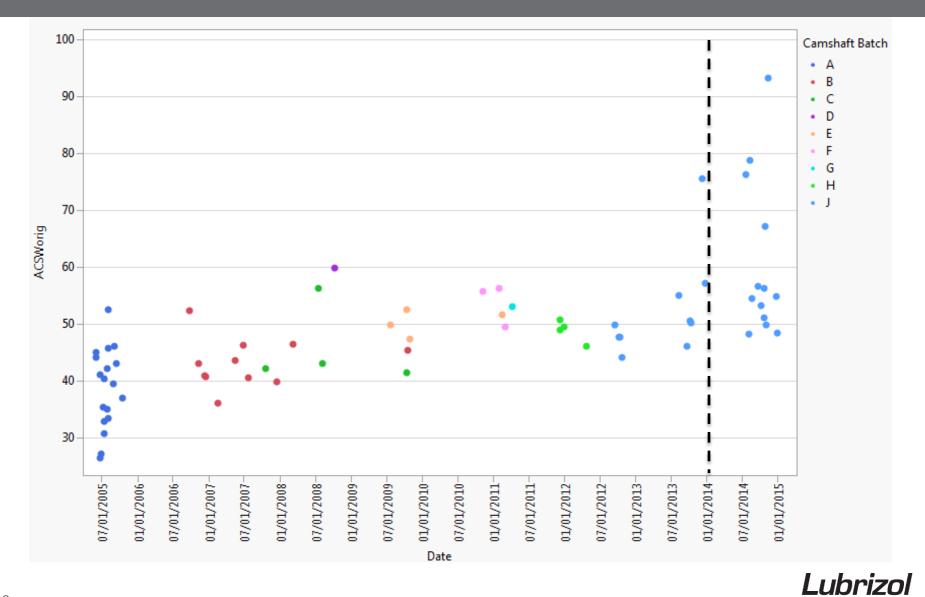
AVERAGE CAMSHAFT WEAR

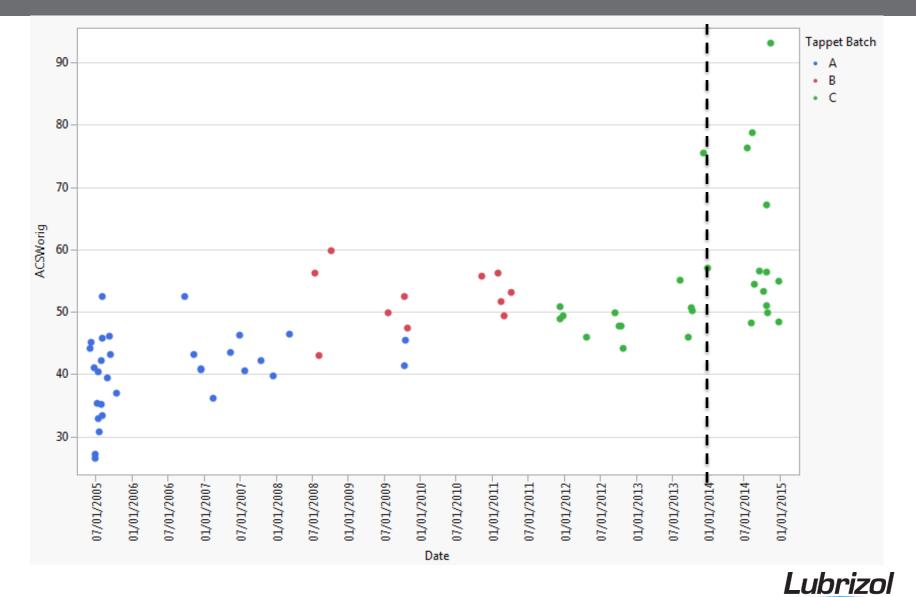

Average Tappet Weight Loss ATWLzi EWMA Control Chart

CUMMINS ISB INDUSTRY OPERATIONALLY VALID DATA

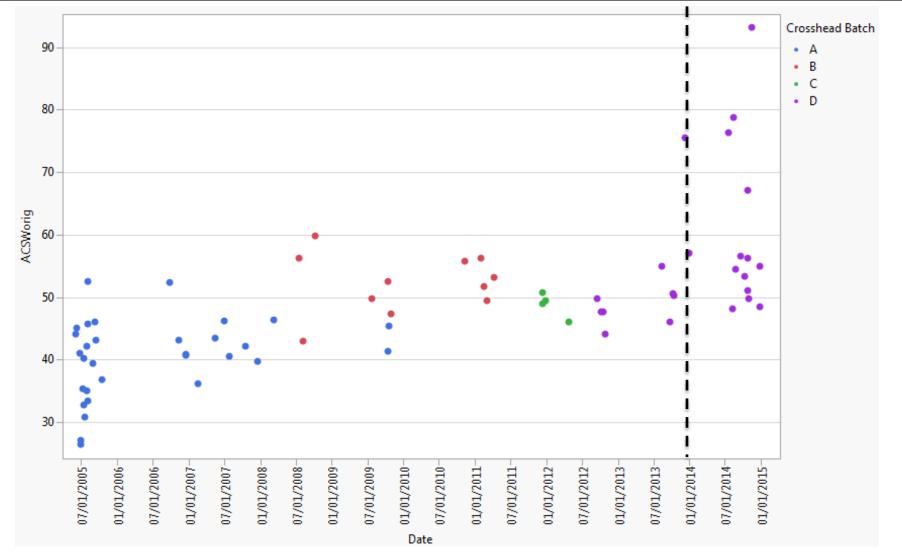
AVERAGE TAPPET WEIGHT LOSS

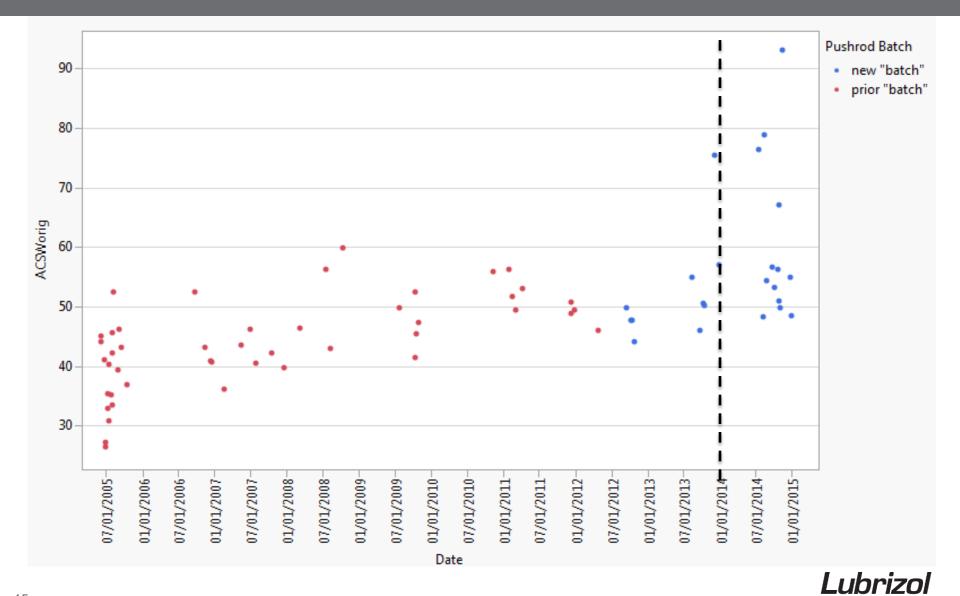



Average Camshaft Wear Uncorrected Original Results

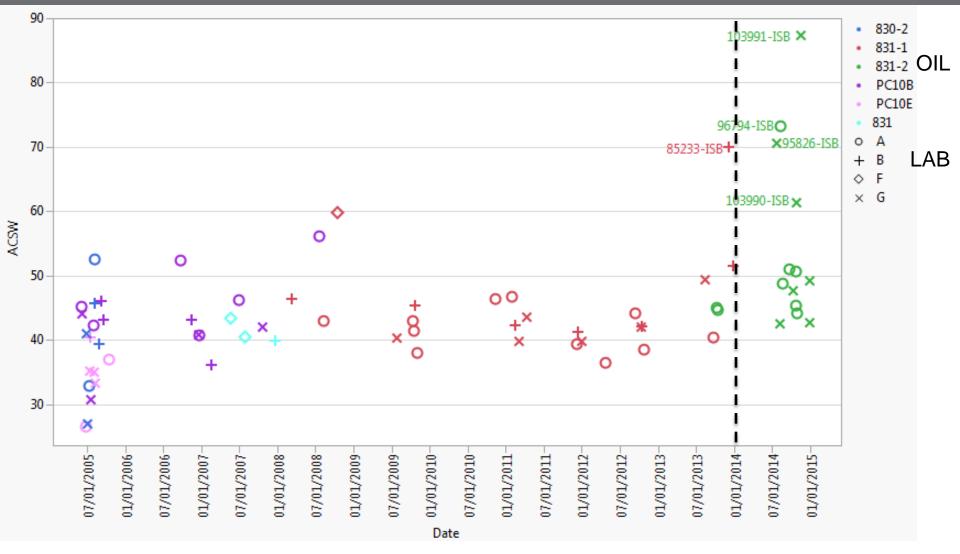


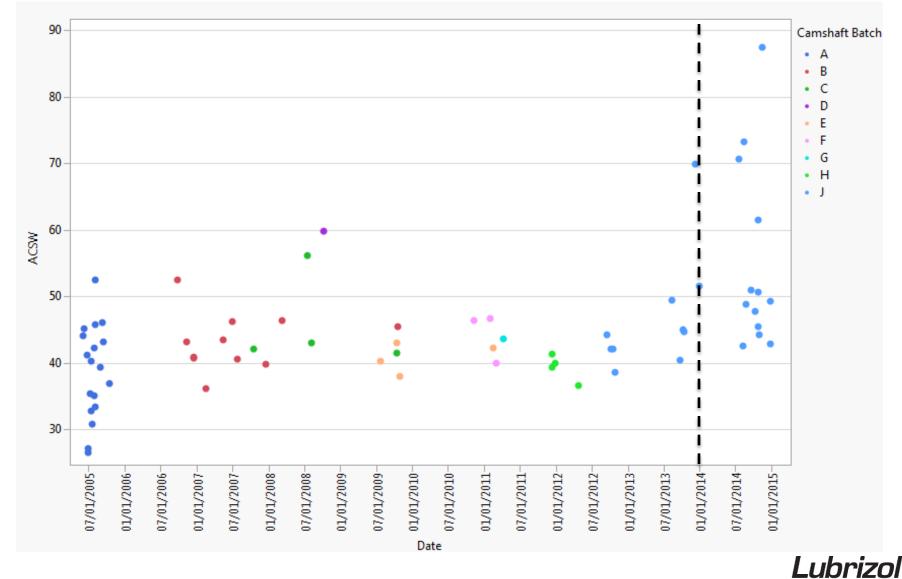
11 © 2015 The Lubrizol Corporation, all rights reserved.

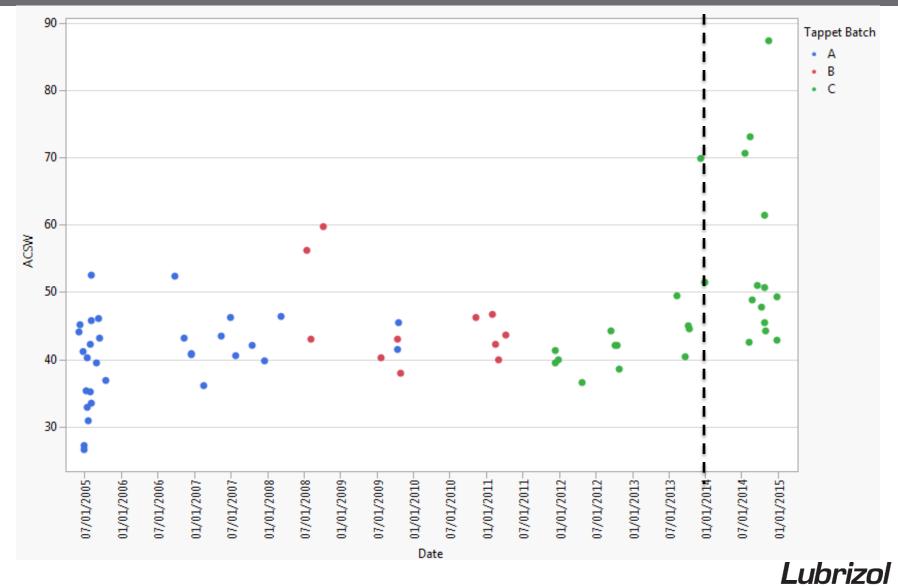


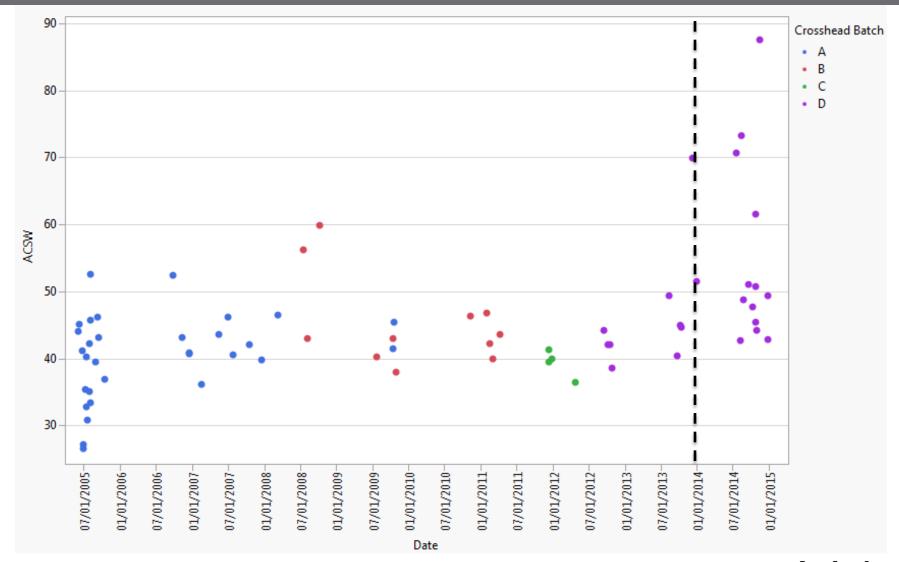


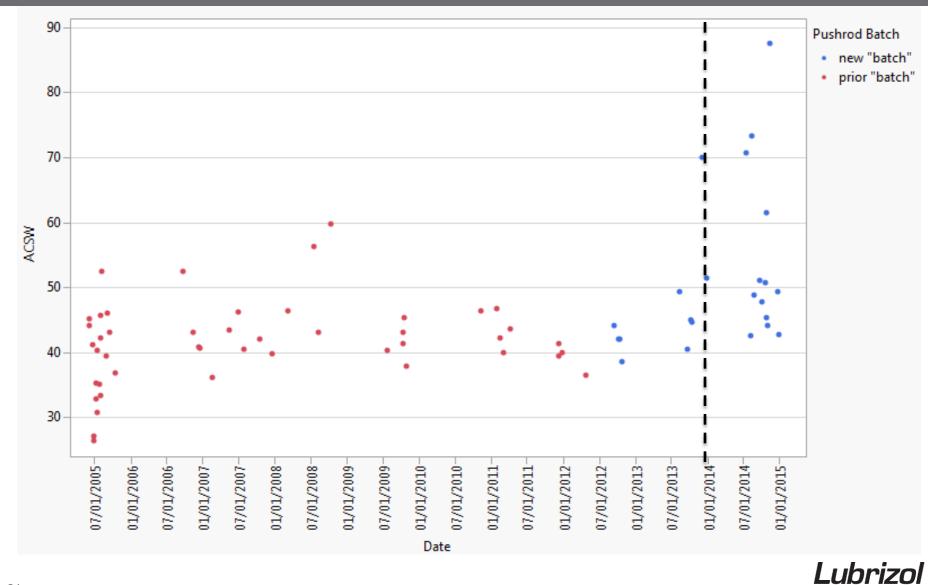
Lubrizol





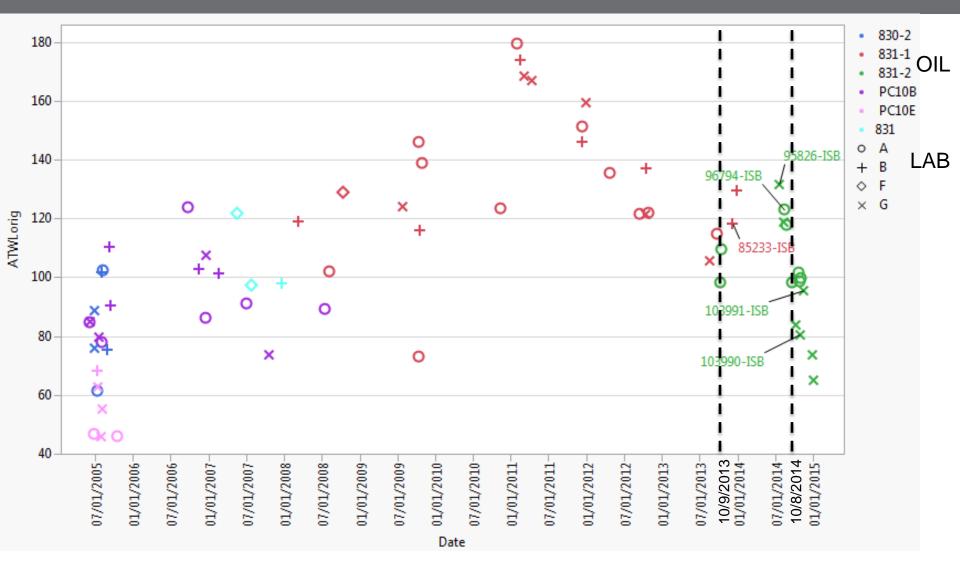




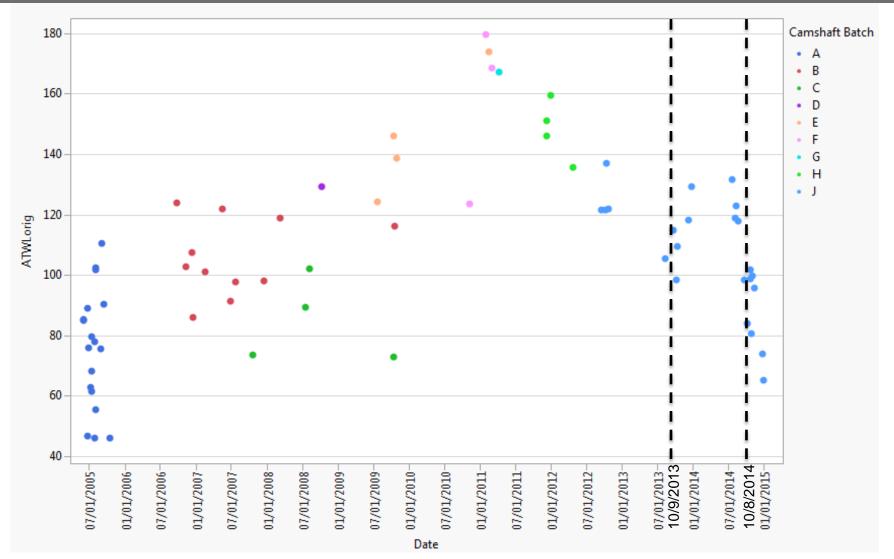


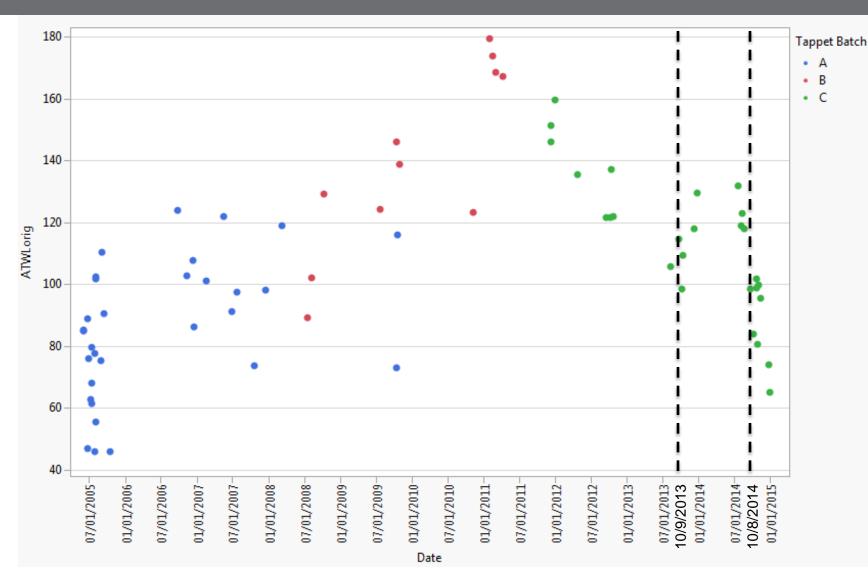
Lubrizol

20 © 2015 The Lubrizol Corporation, all rights reserved.

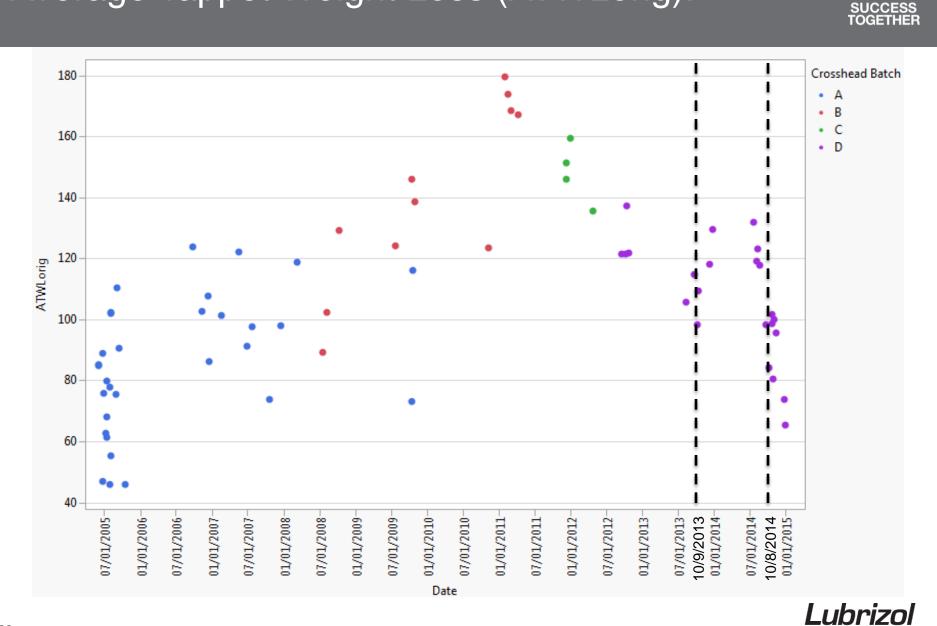


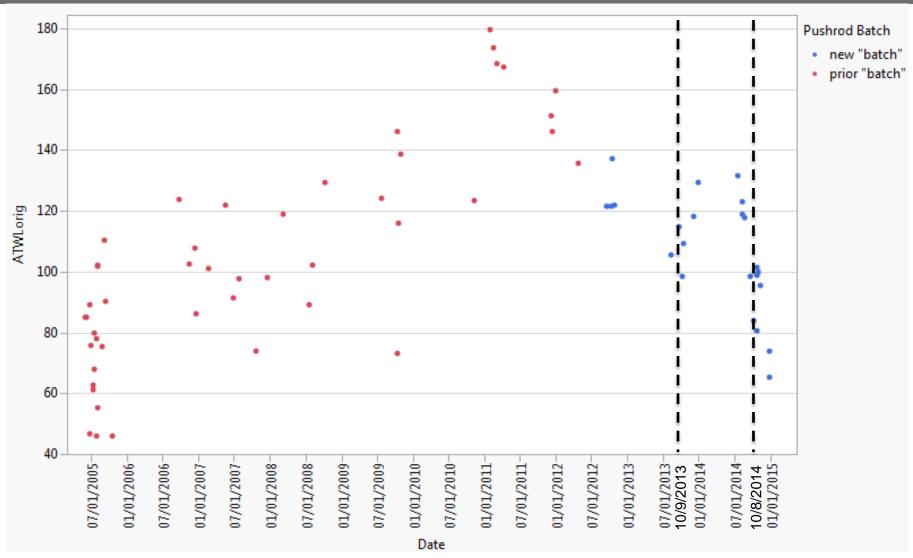
Average Tappet Weight Loss Uncorrected Original Results



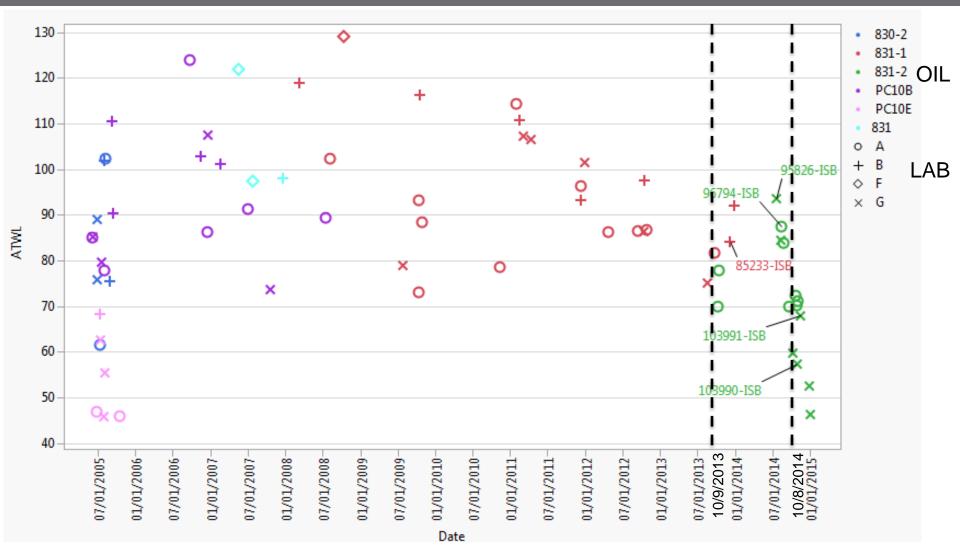


SUCCESS TOGETHER

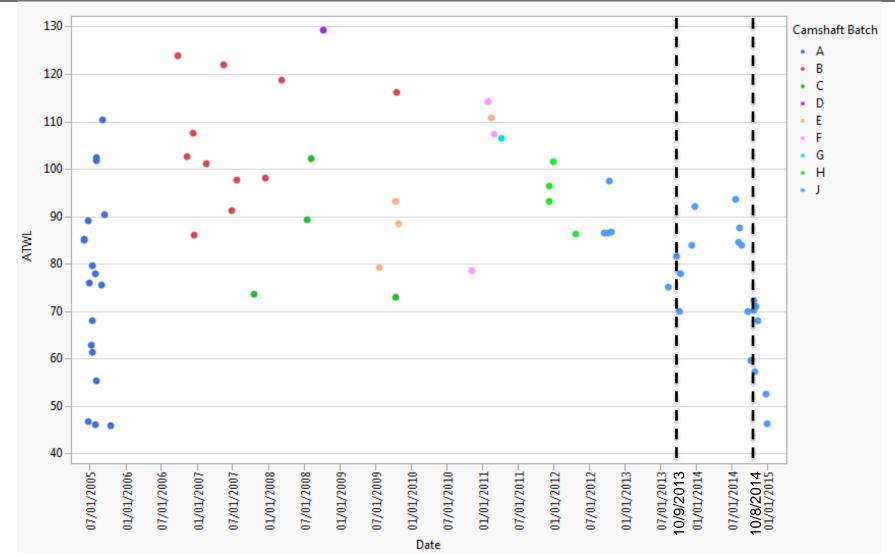


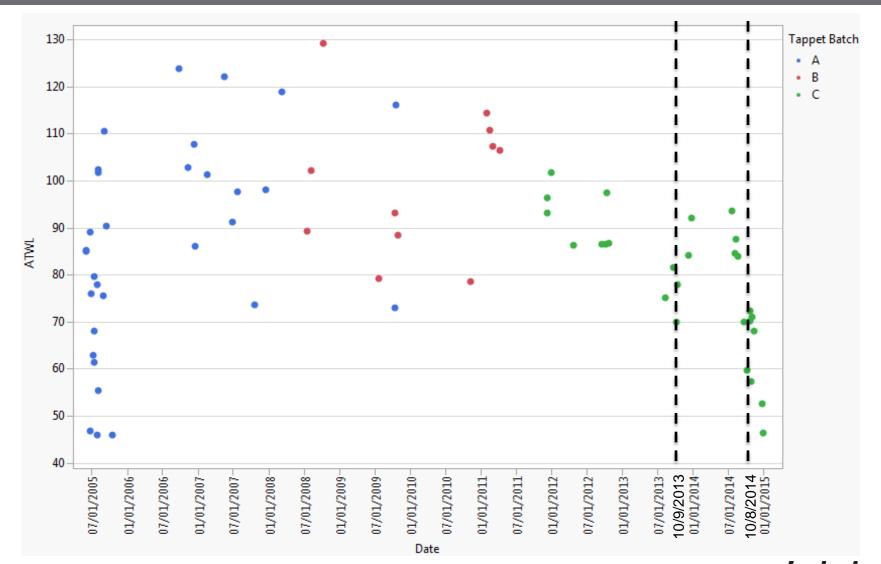


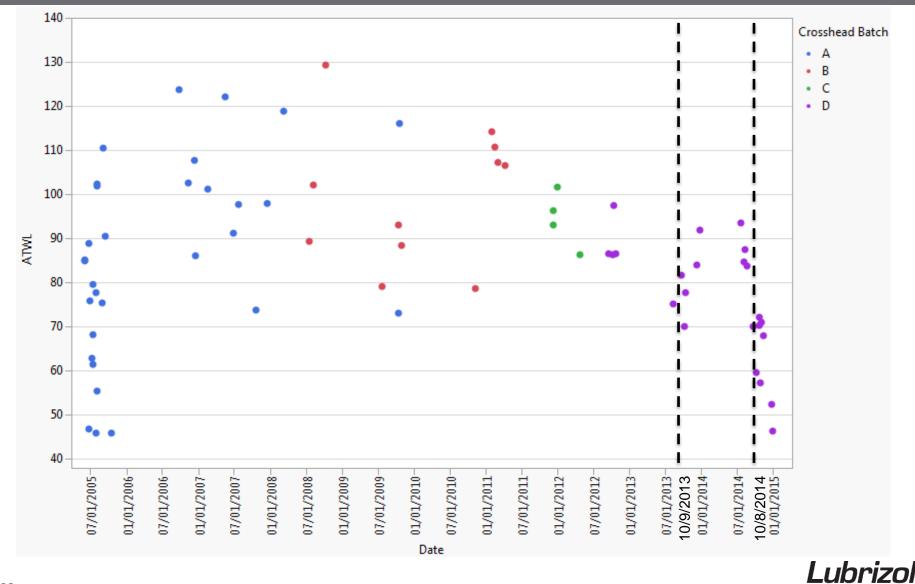
SUCCESS TOGETHER



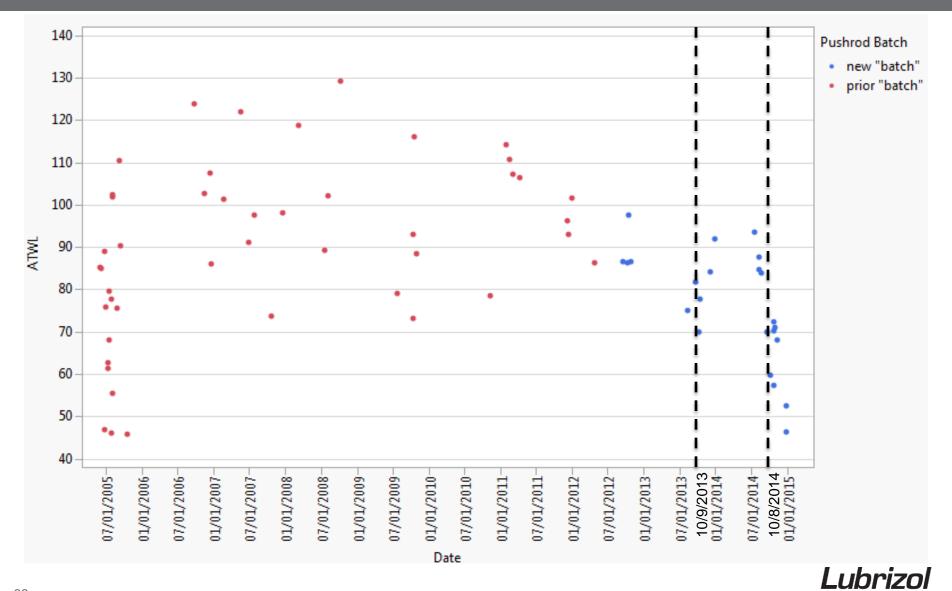
SUCCESS TOGETHER







Lubrizol



Options for Path Forward

Option 1: Update 831-2 Oil Targets Option 1A: Use raw corrected data Option 1B: Use model estimates from corrected Calculations done using corrected test results to maintain current test severity

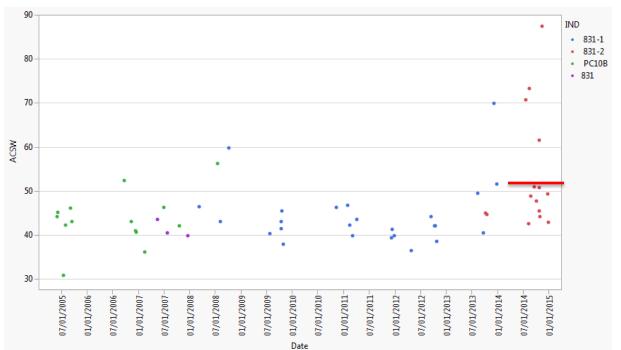
Option 2: Update Correction Factors

- Option 2A: Use raw uncorrected results and latest pushrod, crosshead, or camshaft batches
- Option 2B: Use raw uncorrected results and latest Tappet Batch
- Option 2C: Use model estimates and latest pushrod, crosshead, or camshaft batches
- Option 2D: Use model estimates and latest Tappet Batch

Correct back to 831-1 original targets Options 2C & 2D still need to be pursued

Chart="Y" test results Used for calculations

ACSW


Option 1: Update Targets

Option 1A (use raw corrected results):

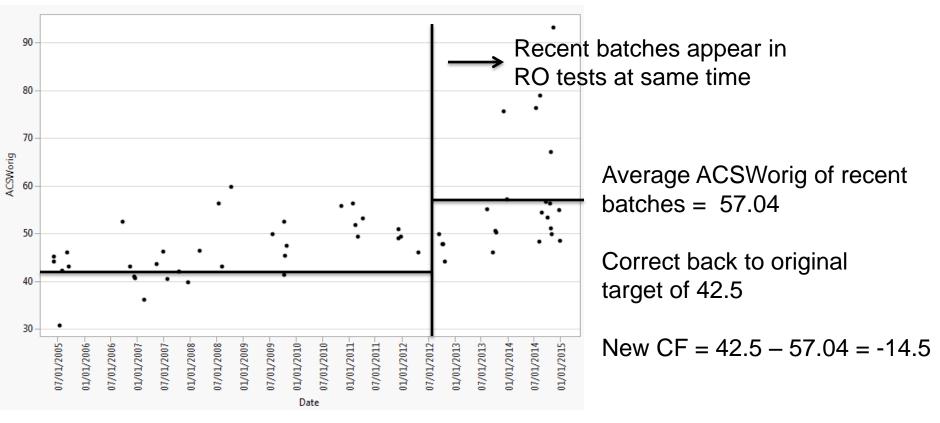
ACSW target calculations:

831-2 Average ACSW = 53.67

831-2 Standard Deviation of ACSW = 13.44

Option 1B (use model estimates):

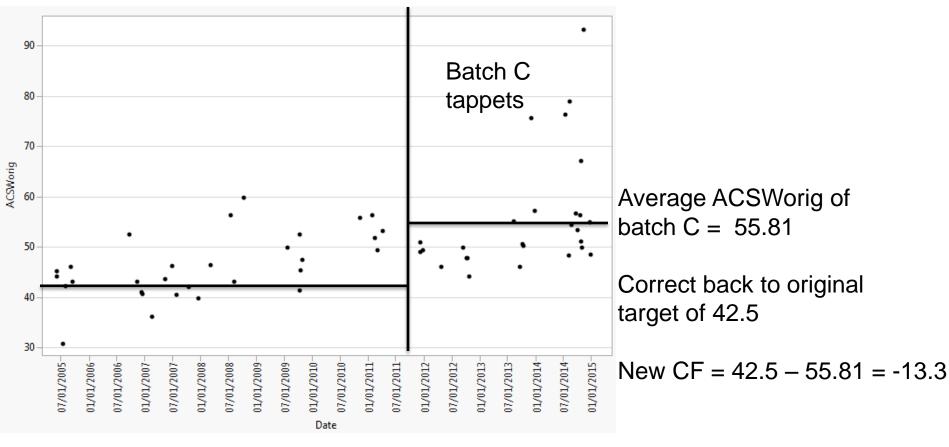
- Same estimates as Option 1A
- No strong evidence that operational data affect ACSW



ACSW Option 2: New Correction Factor SUCCESS TOGETHER

Option 2A (Use raw uncorrected data;

CF based on pushrod, crosshead, & camshaft batch changes):



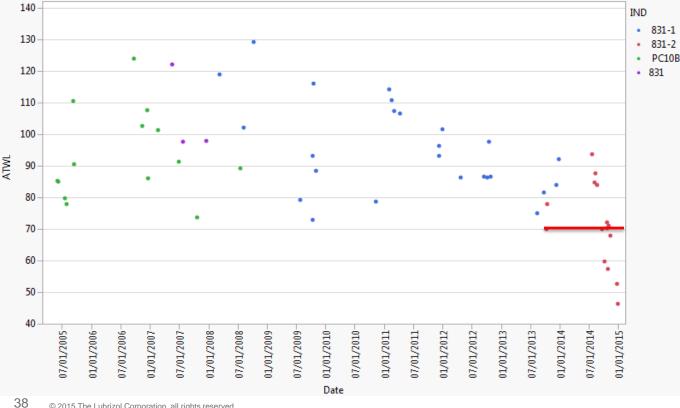
Concern: More variability in recent test results; consider transformation

ACSW Option 2: New Correction Factor

Option 2B (Use raw uncorrected data; CF based on tappet batch change):

Concern: More variability in recent test results; consider transformation

ATWL


Option 1: Update Targets

Option 1A (use raw corrected results):

Calculations done using corrected test results to maintain current test severity ATWL target calculations:

831-2 Average ATWL = 70.97

831-2 Standard Deviation ATWL = 13.24

ටට © 2015 The Lubrizol Corporation, all rights reserved

07/01/2006

01/01/2007

002/10/20

01/01/2006

ATWL

140

130

120

110

100

80

70

60

50

40

07/01/2005

14 90

Option 1: Update Targets

Option 1B (use model estimates; 831 data only for simplicity):

01/01/2011-

-1102/10/20

1/01/2012

01/01/2013-

07/01/2013

1/01/2014

07/01/2014

01/01/2015

7/01/2012

Calculations done using corrected test results to maintain current test severity ATWL target calculations:

831-2 Average ATWL = 79.75

01/01/2008-

7/01/2008

1/01/2009

07/01/2009

01/01/2010

Date

07/01/2010

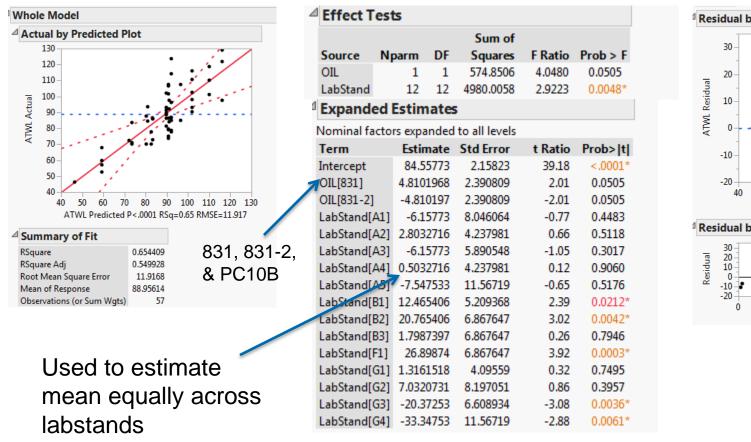
831-2 Standard Deviation ATWL = 11.917 (this is a pooled estimate from model)

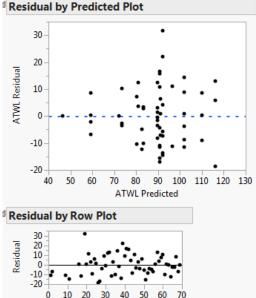
IND

831-1

831-2 PC10B

831


Analysis suggests natural log transformation Targets: 4.35 for the mean 0.128 for the SD

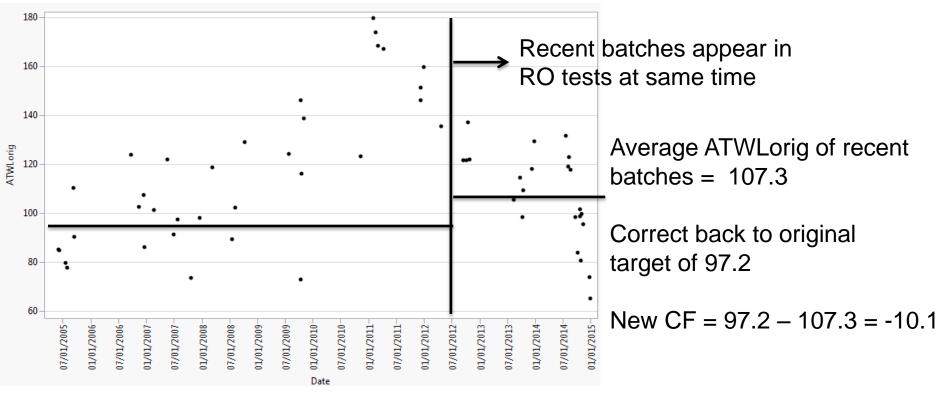


ATWL Option 1: Update Targets

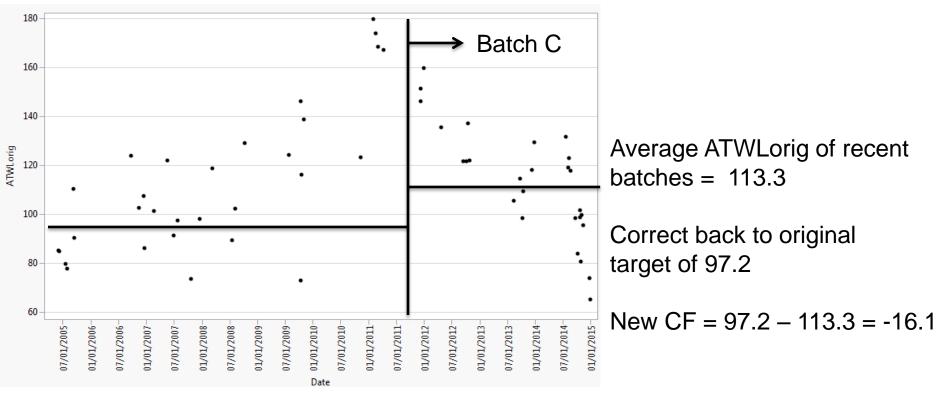
Option 1B (use model estimates; 831 data only for simplicity): Model Output

Used lab*stand in model instead of stand(lab) to get model table for estimates

Row Number


ATWL Option 2: New Correction Factor

uhrizo


Option 2A (Use raw uncorrected data;

CF based on pushrod, crosshead, & camshaft batch changes):

Another option would be to keep multiplicative correction: 97.2/107.3 = 0.90587 So, CF = ATWLorig*0.90587 ATWL Option 2: New Correction Factor

Option 2B (Use raw uncorrected data; CF based on tappet batch change):

Another option would be to keep multiplicative correction: 97.2/113.3 = 0.8579 So, CF = ATWLorig*0.8579

Summary of Options

Option 1: Update 831-2 T	Effective Dates		Average We		Average Tappet Weight Loss			
	Oil	n	From	То	Mean	S	mean	S
Use raw transformed results	831-2	15	TBD	***	53.67	13.44	70.97	13.24
Use Model estimates	831-2	15	TBD	***	53.67	13.44	79.75	11.92
Use model estimates(In transformation)	831-2	15	TBD	***			4.35	0.128

Option 2: Update Correction Factors

Batch Change	Data or Model	ACSWorig CF	ATWLorig CF	ATWLorig Multiplicative CF
new pushrod crosshead D camshaft J	raw data	ACSWorig - 14.5	ATWLorig - 10.1	ATWLorig*0.90587
tappet C	raw data	ACSWorig - 13.3	ATWLorig - 16.1	ATWLorig*0.8579

Model estimates: TBD

Working together, achieving great things

When your company and ours combine energies, great things can happen. You bring ideas, challenges and opportunities. We'll bring powerful additive and market expertise, unmatched testing capabilities, integrated global supply and an independent approach to help you differentiate and succeed.

