Cummins Surveillance Panel September 17, 2014 Teleconference Meeting Minutes 3:00 P.M. EDT

Attendance:

Afton - Bob Campbell ChevronOronite - Marnix Torreman, Mark Cooper, Jim Rutherford Cummins - Dan Nyman Infineum - Bob Salgueiro, Elisa Santos, Jim Gutzwiller Intertek - Mey Dewey, Jim Moritz Lubrizol - Michael Conrad, Nick Secue, Kevin O'Malley Southwest Research - Jim McCord, Martin Thompson TEI - Zack Bishop, Dan Lanctot TMC - Jeff Clark, Sean Moyer Volvo - Greg Shank

Cummins ISM Filter Plugging Mild Alarm

The current filter plugging mild trend has triggered a comprehensive review (all parameters, not just FPD), by Kevin O'Malley of Lubrizol. Kevin's analysis is shown in **Attachment 1**. Kevin found that there may be hardware based effects for severity and/or precision of the test parameters and the panel may need to consider revising existing correction factors (or implementing new ones where they don't exist). For all parameters, Kevin prepared several potential correction factors for the panel to consider.

Kevin's presentation spurred much discussion on the timing of past hardware changes, what the best data sets to use are, and what to do going forward. Eventually, the data set was agreed to (one test will be resubmitted as invalid, the non-chartable tests will not be used, and one test will have the filter batch corrected). Much more discussion and brainstorming followed. Based on these discussions, Kevin will revise his work and the panel will review at the next meeting.

ISB Replacement Engines

Labs are running low on ISB engines. Dan Nyman of Cummins stated that 20 blocks have been ordered, but the problem is a time issue (not parts availability). Dan noted that he can get long or short blocks built quicker than a full assembly.

He asked which of those is the best option to keep the labs running. Labs indicated that they could keep running with either a long or short block. If necessary, Dan will have short or long blocks sent to the labs rather that the full engine. The blocks have not yet been received. It was stated that long blocks are preferable to short blocks. Dan will look into the cost for the labs to order themselves or to pool the order through a large distributor. Dan was asked to try to get 6-8 long blocks as a triage supply to keep the industry going; timeline expected to be about two months. It was noted that at some point the panel will have to consider moving to the 6.7L engine.

ISM Scalloped Heads

Dan asked how the labs were situated on their head supply. He noted that the panel needs to start considering introducing the heads. It was commented that the panel should work on coordinating reference tests to accomplish this.

The next call is tentatively scheduled for Friday, Sept. 26 at 11:00 am EDT. The teleconference adjourned at 5:10 pm EDT.

ATTACHMENT 1

Cummins ISM Industry Severity

Sept 2014 Kevin O'Malley Statistician The Lubrizol Corporation

Summary

1. LTMS Control Charts (9/1/2004 through 9/5/2014) indicate:

Could be related to crosshead batch changes or wire mesh test filter batch changes

Could be related to injector push rod batch B use

- 2. The surveillance panel will need to come to an agreement on whether correction factors are warranted.
 - 1. If warranted, agreement will be needed on how they are calculated and what data is used in the calculations.

Surveillance Panel Decisions Needed:

- 1. Is a correction factor warranted for Crosshead Weight Loss, Filter Plugging Delta or Average Sludge Rating?
 - 1. If so:
 - 1. Correct based on crosshead batch? Wire mesh test filter batch? Injector Push Rod? other?
 - 2. Base correction on current vs. prior performance:
 - 1. Current test performance: Batches since mild trend? Just the latest batch?
 - 2. Prior test performance: Batches prior to mild trend? Original batch only? LTMS mean target?
 - 3. What data should be used in calculations? LTMS Chart=Y plus:
 - 1. 81547-ISM? Not for ASR
 - 2. 90720-ISM?
 - 3. 102544-ISM? FPD only
 - 4. Remove 86669-ISM? goofy test; LTMS chart=Y
 - 4. Utilize data transformation?
- Modify test precision estimates for Crosshead Weight Loss or Injector Screw Weight Loss if warranted/possible? What is past precedent?

Date

Surveillance Panel will need to decide if additional data should be included in the analysis.

Crosshead Weight Loss

LTMS Chart=Y Data:

Correction Factor Example: I arbitrarily assumed crosshead batch affects test severity and Response Log(ACWL)

Summary of Fit				
RSquare	0.257372			
RSquare Adj	0.223097			
Root Mean Square Error	0.665913			
Mean of Response	0.954757			
Observations (or Sum Wgts)	69			

3 4 5 6 7

ACWL Predicted

test precision is a function of the AWCL scale

Expanded Estimates				
Nominal factors expanded to all level	s			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.8704977	0.084363	10.32	<.0001*
Crosshead Batch[C]	0.2356841	0.127889	1.84	0.0699
Crosshead Batch[D]	-0.377197	0.144826	-2.60	0.0114*
Crosshead Batch[E]	-0.389323	0.171141	-2.27	0.0262*
Crosshead Batch[M-11 EGR Batch B	0.5308364	0.137064	3.87	0.0003*

Based on the model, we obtain a CF of ln(acwl) + 0.7665 Correction based on matching average of D & E to average of M-11 & C

-2.0 -2.5 -3.0 -3.5 0

Possible CFs for Cross Head Weight Loss Adjusted to 3.9% Soot

		Data Used	Transformation	Crosshead Weight Loss Adjusted to 3.9% Soot
	Current			acwl + 2.5
	No Change			Stay with current (acwl + 2.5)
	Adjust based on average of Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y	Ln	In(acwl) + 0.7665
	Adjust based on average of Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y	None	acwl + 1.964
20	Adjust based on average of Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	Ln	In(acwl) + 0.7661
Laci	Adjust based on average of Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	None	acwl + 1.979
	Adjust based on average of Xhead D & E versus M-11	830-2, LTMS Chart = Y	Ln	In(acwl) + 0.9141
	Adjust based on average of Xhead D & E versus M-11	830-2, LTMS Chart = Y	None	acwl + 2.477
) ac	Adjust based on average of Xhead D & E versus M-11	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	Ln	In(acwl) + 0.9137
	Adjust based on average of Xhead D & E versus M-11	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	None	acwl + 2.4911
L	Adjust based on average of Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y	Ln	ln(acwl) + 1.142
	Adjust based on average of Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y	None	acwl + 3.136
	Adjust based on average of Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	Ln	In(acwl) + 1.1416
	Adjust based on average of Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y, plus 81547-ISM & 90720-ISM	None	acwl + 3.1505

Other possible correction factors could be based on wire mesh test filter changes or only using crosshead batch E.

Test appears mild after April 2009.

LTMSLAB

10

Filter Plugging Delta LTMS Chart=Y Data

	Precision	Severity
Crosshead Weight Loss	Borderline lower	Clinkth Mild sizes 2010
Adjusted to 3.0% Cost	cince 2013	Slightly Mild Since 2010
Filter Plugging Delta	OK	Bouncing in and out mild since 2010
Average Sludge Rating	OK	Slightly severe since 2012 but probably okay
Injector Screw Weight Loss Adjusted to 3.9% Soot	Borderline higher since 2013	ОК

FPD appears mild when crosshead batches D & E or ISM ASTM filter utilized. Does it make sense that either of these hardware changes affect test severity?

Surveillance Panel will need to decide if additional data should be included in the analysis.

Filter Plugging Delta LTMS Chart=Y Data

Higher viscosity at 100°C is correlated with higher filter plugging delta

Filter Plugging Delta

LTMS Chart=Y Data

Correction Factor Example: I arbitrarily assumed crosshead batch affects test severity and LTMS chart=Y Response In(FPD+1)

0 259346 RSquare RSquare Adj 0.174353 Root Mean Square Erro 0.381886 Mean of Response 2.301456 Observations (or Sum Wgts) 69

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	7	3.115035	0.445005	3.0514
Error	61	8.896065	0.145837	Prob > F
C. Total	68	12.011100		0.0081*

Parameter Estimate	Pa	ar	a	m	e	te	r	Es	ti	im	a	te
--------------------	----	----	---	---	---	----	---	----	----	----	---	----

Tern	n	Estir	nate	Std Error	t Ratio	Pro	b> t	VIF
Intere	cept	2.305	3107	0.052375	44.02	<.(0001*	
LTMS	SLAB[A]	-0.2	2071	0.07842	-2.81	0.	0066*	1.5412712
LTMS	SLAB[B]	0.179	9816	0.104433	1.72	0.	0899	1.8598309
LTMS	SLAB[C]	0.00	5797	0.124059	0.05	0.	9629	2.1412648
LTMS	SLAB[D]	0.058	9054	0.096552	0.61	0.	5441	1.7249784
Cross	shead Batch[C] 0.030	8035	0.074372	0.41	0.	6802	1.6171099
Cross	shead Batch[D] 0.05	7965	0.084128	0.69	0.	4934	1.692232
Cross	shead Batch[E] -0.28	8934	0.098738	-2.93	0.	0048*	1.8601723
Effe	ect Tests							
				Sum o	f			
Sour	ce	Nparm	DF	Square	s FRa	atio	Prob	> F
LTMS	SLAB	4	4	1.450440	9 2.4	864	0.05	27
Cross	shead Batch	3	3	1.534290	B 3.5	069	0.02	205*
Res	idual by P	redicted	d Plo	ot				
	1.0						_	
					60.1014			
					09-1301			
10	0.5	•	•	•				
sidu		•	••	·				
Re	0.0						-	
Ŧ			•	• • •				
8	0.5			•••				
Ē	-0.5			•	•			
	1			•				
	-1.0			•				
		1 1						
	1	1.5	2	2.5	3		3.5	

⁻PD Possible Correction Natural Units

Expanded Estimates							
Nominal factors expanded to all levels							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	2.3053107	0.052375	44.02	<.0001*			
LTMSLAB[A]	-0.22071	0.07842	-2.81	0.0066*			
LTMSLAB[B]	0.1799816	0.104433	1.72	0.0899			
LTMSLAB[C]	0.005797	0.124059	0.05	0.9629			
LTMSLAB[D]	0.0589054	0.096552	0.61	0.5441			
LTMSLAB[G]	-0.023974	0.094402	-0.25	0.8004			
Crosshead Batch[C]	0.0308035	0.074372	0.41	0.6802			
Crosshead Batch[D]	0.057965	0.084128	0.69	0.4934			
Crosshead Batch[E]	-0.288934	0.098738	-2.93	0.0048*			
Crosshead Batch[M-11 EGR Batch B	0.200166	0.080386	2.49	0.0155*			

Based on the model, we obtain a CF $\ln(FPD+1) + 0.231$ Correction based on matching average of D & E to average of M-11 & C

Filter Plugging Delta

LTMS Chart=Y Data

Another Correction Factor Example: I arbitrarily assumed Wire Mesh Test Filters affect test severity and LTMS chart=Y

	-		
els			
Estimate	Std Error	t Ratio	Prob> t
2.2657263	0.064699	35.02	<.0001*
-0.210574	0.079509	-2.65	0.0102*
0.2150797	0.10581	2.03	0.0464*
-0.017339	0.124704	-0.14	0.8899
0.068126	0.097984	0.70	0.4895
-0.055292	0.096878	-0.57	0.5702
-0.154486	0.113315	-1.36	0.1777
-0.033998	0.079085	-0.43	0.6688
0.1884845	0.07256	2.60	0.0117*
	els Estimate 2.2657263 -0.210574 0.2150797 -0.017339 0.068126 -0.055292 -0.154486 -0.033998 0.1884845	els Estimate Std Error 2.2657263 0.064699 -0.210574 0.079509 0.2150797 0.10581 -0.017339 0.124704 0.068126 0.097984 -0.055292 0.096878 -0.154486 0.113315 -0.033998 0.079085 0.1884845 0.07256	rels Estimate Std Error t Ratio 2.2657263 0.064699 35.02 -0.210574 0.079509 -2.65 0.2150797 0.10581 2.03 -0.017339 0.124704 -0.14 0.068126 0.097984 0.70 -0.055292 0.096878 -0.57 -0.154486 0.113315 -1.36 -0.033998 0.079085 -0.43 0.1884845 0.07256 2.60

Based on the model, we obtain a CF ln(FPD+1) + 0.2827

Correction based on matching average of A and ASTM to average of M-11

Possible CFs for Filter Plugging Sludge

CFs based on Crosshead Batches

CFs based on Wire Mesh Test Filter Batches

		Filter Plugging
	Data Used	Delta
Current		None: In(FPD+1)
No Change		None: In(FPD+1)
Adjust based on average of		
Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y	In(FPD+1) + 0.231
Adjust based on average of		
Xhead D & E versus M-11 & C	830-2, LTMS Chart = Y minus 86669-ISM	In(FPD+1) + 0.2538
Adjust based on average of	830-2, LTMS Chart = Y,	
Xhead D & E versus M-11 & C	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.2498
Adjust based on average of	830-2, LTMS Chart = Y minus 86669-ISM	
Xhead D & E versus M-11 & C	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.2732
Adjust based on average of		
Xhead D & E versus M-11	830-2, LTMS Chart = Y	In(FPD+1) + 0.3157
Adjust based on average of		
Xhead D & E versus M-11	830-2, LTMS Chart = Y minus 86669-ISM	In(FPD+1) + 0.3383
Adjust based on average of	830-2, LTMS Chart = Y,	
Xhead D & E versus M-11	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3333
Adjust based on average of	830-2, LTMS Chart = Y minus 86669-ISM	
Xhead D & E versus M-11	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3565
Adjust based on average of		
Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y	In(FPD+1) + 0.3311
Adjust based on average of		
Xhead D & E versus LTMS mean	830-2, LTMS Chart = Y minus 86669-ISM	In(FPD+1) + 0.3564
Adjust based on average of	830-2, LTMS Chart = Y,	
Xhead D & E versus LTMS mean	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3521
Adjust based on average of	830-2, LTMS Chart = Y minus 86669-ISM	
Xhead D & E versus LTMS mean	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.378

		Filter Plugging
	Data Used	Delta
Current		None: In(FPD+1)
No Change		None: In(FPD+1)
Adjust based on average of Mesh Filter		
ISM A & ASTM versus M-11 EGR	830-2, LTMS Chart = Y	In(FPD+1) + 0.2827
Adjust based on average of Mesh Filter		
ISM A & ASTM versus M-11 EGR	830-2, LTMS Chart = Y minus 86669-ISM	In(FPD+1) + 0.2976
Adjust based on average of Mesh Filter	830-2, LTMS Chart = Y,	
ISM A & ASTM versus M-11 EGR	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3087
Adjust based on average of Mesh Filter	830-2, LTMS Chart = Y minus 86669-ISM	
ISM A & ASTM versus M-11 EGR	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3229
Adjust based on average of Mesh Filter		
ISM A & ASTM versus LTMS mean	830-2, LTMS Chart = Y	In(FPD+1) + 0.3494
Adjust based on average of Mesh Filter		
ISM A & ASTM versus LTMS mean	830-2, LTMS Chart = Y minus 86669-ISM	In(FPD+1) + 0.3672
Adjust based on average of Mesh Filter	830-2, LTMS Chart = Y,	
ISM A & ASTM versus LTMS mean	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3766
Adjust based on average of Mesh Filter	830-2, LTMS Chart = Y minus 86669-ISM	
ISM A & ASTM versus LTMS mean	plus 81547-ISM, 90720-ISM, & 102544-ISM	In(FPD+1) + 0.3937

Other possible correction factors could be based on latest batches of hardware.

Precision

Severity

Precision

Severity

Corrected SAIAS has more variability since Nov 2012.

	Precision	Severity
Crosshead Weight Loss	Borderline lower	Clighthy Mild since 2010
Adjusted to 3.9% Soot	since 2013	Slightly wind since 2010
	OK	Bouncing in and out
Filter Plugging Delta	ÜK	mild since 2010
	OK	Slightly severe since
Average olduge Nating		2012 but probably onay
Injector Screw Weight Loss Adjusted to 3.9% Soot	Borderline higher since 2013	ОК

Injector Screw Weight Loss LTMS Chart=Y Data

The increase in corrected SAIAS variability corresponds to the use of injector push rod B

Current 830-2 standard deviation = 5.7 (LTMS Appendix A) Estimated standard deviation prior to the use of injector push rod B = 5.14Estimated standard deviation when injector push rod B used = 11.87

Additional Topic:

1. Does the surveillance panel want to pursue an ISB CF analysis?

Appendix

Crosshead Weight Loss Adjusted to 3.9% Soot

Crosshead Weight Loss Adjusted to 3.9% Soot Original Units

Crosshead Weight Loss Adjusted to 3.9% Soot Corrected Units

Crosshead Weight Loss Adjusted to 3.9% Soot CWLyi Shewhart Chart for Monitoring Severity

Crosshead Weight Loss Adjusted to 3.9% Soot CWLRi Shewhart Chart for Monitoring Precision

Crosshead Weight Loss Adjusted to 3.9% Soot CWLRi 86669-ISM Excluded; CWLRi recalculated Shewhart Chart for Monitoring Precision

Crosshead Weight Loss Adjusted to 3.9% Soot CWLzi EWMA Chart for Monitoring Severity

Crosshead Weight Loss Adjusted to 3.9% Soot CWLzi 86669-ISM Excluded; CWLzi recalculated EWMA Chart for Monitoring Severity

Crosshead Weight Loss Adjusted to 3.9% Soot CWLQi EWMA Chart for Monitoring Precision

Crosshead Weight Loss Adjusted to 3.9% Soot CWLQi 86669-ISM Excluded; CWLQi recalculated EWMA Chart for Monitoring Precision

Crosshead Weight Loss Adjusted to 3.9% Soot CWLMSD MSD Chart for Monitoring Precision

Crosshead Weight Loss Adjusted to 3.9% Soot CWLMSD 86669-ISM Excluded; CWLMSD recalculated MSD Chart for Monitoring Precision

Filter Plugging Delta
Filter Plugging Delta Original Unit

Filter Plugging Delta FPDyi Shewhart Chart for Monitoring Severity

Filter Plugging Delta FPD Ri Shewhart Chart for Monitoring Precision

Filter Plugging Delta FPD Ri (86669-ISM; FPDRi recalculated) Shewhart Chart for Monitoring Precision

Filter Plugging Delta FPDzi EWMA Chart for Monitoring Severity

Filter Plugging Delta FPDzi (86669-ISM; FPDzi recalculated) EWMA Chart for Monitoring Severity

Filter Plugging Delta FPDQi EWMA Chart for Monitoring Precision

Filter Plugging Delta FPDQi (86669-ISM; FPDQi recalculated) EWMA Chart for Monitoring Precision

Filter Plugging Delta FPDMSD MSD Chart for Monitoring Precision

Filter Plugging Delta FPDMSD (86669-ISM; FPDMSD recalculated) MSD Chart for Monitoring Precision

Average Sludge Rating

Average Sludge Rating Original Units

Average Sludge Rating ASRyi Shewhart Chart for Monitoring Severity

Average Sludge Rating ASR Ri Shewhart Chart for Monitoring Precision

Average Sludge Rating ASR Ri (86669-ISM; ASRRi recalculated) Shewhart Chart for Monitoring Precision

Average Sludge Rating ASRzi EWMA Chart for Monitoring Severity

Average Sludge Rating ASRzi (86669-ISM; ASRzi recalculated) EWMA Chart for Monitoring Severity

Average Sludge Rating ASRQi EWMA Chart for Monitoring Precision

Average Sludge Rating ASRQi (86669-ISM; ASRQi recalculated) EWMA Chart for Monitoring Precision

Average Sludge Rating ASRMSD MSD Chart for Monitoring Precision

Average Sludge Rating ASRMSD (86669-ISM; ASRMSD recalculated) MSD Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot

Injector Screw Weight Loss Adjusted to 3.9% Soot Original Units

Injector Screw Weight Loss Adjusted to 3.9% Soot Corrected Units

Injector Screw Weight Loss Adjusted to 3.9% Soot IASyi Shewhart Chart for Monitoring Severity

Injector Screw Weight Loss Adjusted to 3.9% Soot IAS Ri

Shewhart Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot IAS Ri (86669-ISM; IASRi recalculated) Shewhart Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot IASzi EWMA Chart for Monitoring Severity

Injector Screw Weight Loss Adjusted to 3.9% Soot IASzi (86669-ISM; IASzi recalculated) EWMA Chart for Monitoring Severity

Injector Screw Weight Loss Adjusted to 3.9% Soot IASQi EWMA Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot IASQi (86669-ISM; IASQi recalculated) EWMA Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot IASMSD MSD Chart for Monitoring Precision

Injector Screw Weight Loss Adjusted to 3.9% Soot IASMSD (86669-ISM; IASMSD recalculated) MSD Chart for Monitoring Precision

LTMS Appendix B HISTORY OF INDUSTRY CORRECTION FACTORS

	June 28, 2007	***	All Tests	Add +1.7 to Crosshead Wear At 3.9% Soot
				Add +19.1 to Injector Adjusting Screw Wear At 3.9% Soot
ISM	March 4, 2010	* * *	All Tests	Add +1.3 to Crosshead Wear At 3.9% Soot
	April 30, 2011	* * *	All Tests	Add +2.5 to Crosshead Wear At 3.9% Soot
	November 19, 2013	* * *	All Tests	Add -0.200 to ln(SAIAS)

LTMS Appendix A

ISM Reference Oil Targets											
		Effectiv	ve Dates	X-Head Wear @ 3.9% Soot		OFDP ¹		Average Sludge		Injector Adj. Screw Wear @ 3.9% Soot	
Oil	n	From	To ²	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	s	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{x}}$	S
830-2	7	9-1-04	11-30-05	4.8	1.4	2.5430	0.3936	9.04	0.20	30.0	7.0
	10	12-1-05	8-6-07	5.3	1.4	2.4342	0.3813	8.99	0.15	24.5	10.7
	21	8-7-07	***	5.1	1.5	2.5209	0.3274	9.00	0.15	29.5	5.7

1 Transformation for OFDP is ln(OFDP+1)

2 *** = currently in effect

APPENDIX E APPLYING SEVERITY ADJUSTMENTS

In order to adjust non-reference oil test results for laboratory or stand severity, an exponentially weighted, moving average technique (EWMA) is applied to standardized calibration test results. See Section 1.A.3 of this document for an explanation.

When the EWMA laboratory or stand (for stand based test areas) chart action limit for severity is exceeded, a severity adjustment is calculated and applied to all subsequent non-reference oil tests. The following table lists the laboratory (or stand) EWMA severity alarm limit for all tests in the current LTMS. Alarm limits are calculated by the formula listed in Section 1.A.3.

Test Type	Alarm Level	Parameter(s)	Alarm Limit	
IIIF	Laboratory	All	±0.653	
IIIG	Laboratory	All	±0.550	
IIIGA	Laboratory	All	±0.550	
IIIGB	Laboratory	All	±0.550	
IVA	Laboratory	All	±0.600	
VG	Laboratory	All	±0.653	
VIB	Stand	All	±0.000 (Continuous)	
VID	Stand	All	±0.000 (Continuous)	
VIII	Laboratory	TBWL	±0.600	
1M-PC	Laboratory	All	±0.653	
1K	Laboratory	WTD,TGF,TLHC	±0	
1N	Laboratory	WTD,TGF,TLHC	±0.653	
1P	Laboratory	All	±0.653	
1R	Laboratory	All	±0.653	
C13	None	None	None	
ISB	None	None	None	
ISM	None	None	None	
T-8/T-8E	Laboratory	All	±0.653	
T-10A	Laboratory	All	±0.600	
T-11	Laboratory	All	±0.653	
T-12	Laboratory	All	±0.653	
RFWT	Laboratory	All	±0.600	
EOAT	Stand	All	±0.000 (Continuous)	
L-33-1	Laboratory	All	±0.823	
L-37	Stand	All	±0.653	
L-42	None	None	None	
L-60-1	Stand	All	±0.653	
HTCT	None	None	None	
OSCT	None	None	None	

Cummins	ISM	Critical	Parts	Batch	Changes
---------	-----	----------	-------	-------	---------

Part	Batch	Date	Starting Kit Number	Comments
Crossheads	С	Nov-06	201	Prior batch was M-11 EGR Batch B
"	D	Apr-10	425	
"	Е	May-13	673	
Injector Adjusting Screws	В	Jun-05	75	
"	С	Jul-07	235	
"	D	May-13	673	
Injector Push Rods	Α	?	?	No record of exact Date or first Kit use
"	В	Apr-12	571	
Intake/Exhaust Valves	В	Nov-05	111	
"	С	Aug-08	301	
"	D	Mar-12	562	
Wire Mesh Test Filters	M11 EGR-3	Dec-03	1	First batch of filters with wire mesh
"	ISM A	Aug-09	375	Second batch of filters with wire mesh
"	ISM ASTM	Apr-10	425	901 filter media with wire mesh
		· · ·		
	· · · · · · · · · · · · · · · · · · ·			

ZRB ISM Parts Batch Info 5/17/2013