Committee D-z ON PETROLEUM PRODUCTS AND LUBRICANTS

Chairman: N. DAVID SMITH, North Carolina Depl. ot Agric., 2 West Edenton St, P.O. Box 27647. Raleigh. NC 27611 (919-733-3313) Chairman: N. DAVID SMITH, North Carolina Depl. of Agnc., 2 West Ecentori St, P.O. Box 27647. Raleigh. NC 27611 (919-733-3313) FAX: 9 19-715-0524
 First Vice-Chairman: SUSAN E. LITKA, UOP Research Center. SO East Algonquin Rd., P.O. Box 5016, Des Plaines, IL 60017-5016 (708-39 1-3390)
 Second Vice-Chairman: KURT H. STRAUSS. 69 Brookside Rd., Portland. ME 04103 (2074734380) FAX: 207-m-6214 Secretary: KENNETH 0. HENOERSON. CastrolNorth America. Automotive Div., 240 Centennial Ave.. Piscataway, NJ 08854 (908-980-3630) FAX: 908-980-9519
 Assistant Secretary: W. JAMES BOVER, Exxon Biomedical Sciences. Inc., Mettlers Rd.. CN2350, East Millstone. NJ 08875-2350 (908-873-6318) EAX: 908-973-6019

FAX: 908-873-6009 Staff Manager: EARL A. SULLIVAN (215-299-5514)

Reply to:

Michael S. Griggs The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe. OH 44092-2298

August 28, 2001

Members of the Single Cylinder Oil Test Engine (SCOTE) Surveillance To: Panel and guest attending the August 21, 2001 meeting.

Enclosed are the minutes of the SCOTE Surveillance panel meeting held in San Antonio, Texas. Please forward any corrections or additions to my attention.

Michael & Driggo

Michael S. Griggs Secretary, SCOTE Surveillance Panel

■ ASTM ■ 1916 Race Street. Philadelphia. PA 19103-1187 USA ■ Telephone: 215-299-5400 ■ FAX: 215-299-2630

MEETING MINUTES

SINGLE CYLINDER DIESEL SURVEILLANCE PANEL

HELD AUGUST 21, 2000 1 PERKINELMER SAN ANTONIO, TEXAS

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. *COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959. ALL RIGHTS RESERVED*

ACTION ITEMS

- 1. Include liner wear step data in future web postings- Scott Parke
- 2. Caterpillar to come up with an inclusive list of additional pass/fail parameters that may need to be looked at- Al Hahn
- 3. Ensure use of double valve spring arrangement in Cat **1Y3700** engine- Test labs
- 4. Use 9X2378 replacement bulk hose for coolant hoses in the Cat **1Y3700** engine- Test labs
- 5. Calibration of the **Barco** venturi (Cat **1Y3700** engine) is an alternative to replacement of the venturi- Test Labs
- 6. Investigate ways to address presence of copper in Cat 1R oil analyses and propose possible copper handling protocols- Jim McCord
- 7. Forward experiences and observations regarding use of Cat Dispersant Flush to Mike Griggs- Test Labs
- 8. Determine realistic 1R parameter ranges from reported data- Scott Parke
- 9. Provide 1R airflow meter alternate procedures and data- Mike Zaiontz
- 10. Provide Sierra mass aifflow meter calibration instructions to test labs- Jim McCord

1.0 CALL TO ORDER AND MEMBERSHIP CHANGES

Chairman Mike Zaiontz opened the meeting at 8:30 am. The agenda is attachment 1.

2.0 MEETING MINUTES

- 2.1 The meeting minutes for the September 19, 2000 meeting were previously approved in an earlier teleconference.
- **2.2** The attendance list is attachment 2. Mike Zaiontz issued attachment 3, which is a revised membership list. Subsequent to this meeting, Mark Sutherland replaced Mark Copper for Oronite.

3.0 MATRIX DESIGN REVIEW

- 3.1 Phil Scinto presented the Cat **1R** PC-9 matrix summary (attachment **4**), which includes statistical analyses for 17 of 18 tests. Bob Campbell commented that Ethyl's test was approximately half way through completion and would EOT around September 2nd.
- 3.2 The analysis is broken down by the three matrix oils (A, M and D) and includes averages, standard deviations and both ± 1.8 and ± 3.0 standard deviation bands for WD, TGC, TLC, OC and EOTOC.
- 3.3 Phil Scinto pointed out that PC-9M tests 1, 2 and 7 were run at the low coolant flow conditions and that all the oil M tests showed no outliers at ± 1.8 and ± 3.0 sigma. PC-9A tests showed only one outlier at ± 1.8 sigma. This was lab B's test on CMIR 41547 which was slightly outside the upper 1.8 sigma level for WD and TLC. The 2 tests on PC-9D were within the f3.0 sigma range and showed slightly better performance than oil A and M.

4.0 MATRIX DATA REVIEW AND DISCUSSION

4.1 Mike Zaiontz opened the discussion with a motion to declare that each matrix test is operationally valid and shall be included in the calculation of LTMS limits (attachment 5). Bob Campbell questioned how those tests that ran with low coolant flow should be handled with respect to validity. Mike Zaiontz replied that the panel had earlier declared the low coolant flow issue a non-event. Al Hahn reminded the panel that the validity assessment for these tests was deferred to a later date. Scott Parke added that the TMC issued a position statement on validity saying that low coolant flow would be grounds to declare the test invalid. Mike Zaiontz amended his motion to read: "Each of the Cat 1R matrix tests submitted shall be included in the calculation of LMTS limits". The motion was approved 7/0/1 (F/A/W).

4.2 Mike Zaiontz commented that the data review focused only on Cat 1P parameters. It was brought out that liner wear step needs to be looked. Scott Parke replied that this information is part of the TMC database and agreed to review the information to make a recommendation on liner wear step reporting. Bob Campbell expressed his concern over using liner wear step as a test parameter and that he needed more positive assurance that all labs are measuring wear step the same way.

5.0 PRELIMINARY STATISTICAL SUMMARY OF 1R PRECISION MATRIX

- 5.1 Phil Scinto presented his draft of the preliminary statistical summary of the Caterpillar 1R precision matrix (attachment 6).
- 5.2 The summary includes a draft analysis of 16 of the 18 matrix runs. The statistician work group has not reviewed the presentation.
- 5.3 Phil Scinto pointed out that there is evidence of discrimination in oil consumption for oils A, D and M. He commented that no transformations are necessary among the major parameters, however, TGF needs a transformation and possibly TLHC and UCWD.
- 5.4 Phil Scinto mentioned that high copper may affect UCWD, but does not seem to affect other parameters. He pointed out that AAIRFLO (average intake air flow) has some very strange results in the **dataset**. Several panel members surmised that some of the values reported were from labs that did not run with functional flow meters (either not installed or out of range on calibration).
- 5.5 Possible lab effects exist for OC, ETOC and UCWD. Also, there are possible outliers in TLHC and UCWD. There are positive correlations among the parameters, especially TGF/TGC and OC/ETOC.
- 5.6 Phil Scinto gave the following additional preliminary observations:
 - 5.6.1 Cat **1R** correlations at 0.85 and above represent high correlation.
 - 5.6.2 There is some evidence that oil D differs from A and M in weighted deposits (WD).
 - 5.6.3 There is no evidence of any effects for TGC, TLC, TGF and TLHC.
 - 5.6.4 For OC and EOTOC, there is evidence that oils differ and some evidence that labs differ.
 - 5.6.5 For UCWD, there is very weak evidence of a lab effect.

6.0 STAND/LAB CALIBRATION

- 6.1 Phil Scinto presented attachment 7, which proposes a new and improved LTMS system for **PC-9**. The proposal is intended to improve the power of LTMS in detecting shifts and trends. The key point in the proposal is that if a lab runs at least 4 scheduled reference tests per year, then the lab would have a good chance of catching a 1 standard deviation shift in the process within a year. Anything less than 4 scheduled tests per year would take longer.
- 6.2 Phil Scinto proceeded to review the 5 motions outlined in the proposal. Bob Campbell voiced objections that motions 1 and 2 do not create a level playing field for labs with only 1 or 2 stands. There was quite a lengthy discussion on the pros and cons of the proposal. It was generally agreed that the revised LMTS system would provide more robust data but that cost is prohibited. Bob Campbell provided an alternative motion where the calibration period would be 5 tests/5months for stands making the initial referencing, then referencing would be done every 9 months. Phil Scinto reiterated that anything less than 4 tests per year would not be of benefit. He did acknowledge that the proposal could work with labs that have many stands.
- 6.3 An amended motion proposed that matrix stands be calibrated for 12 months from the date of the acceptable calibration test and that the last candidate can start on or before the last day of the period. The following motion (attachment 8) was approved **8/0/0**:

The 1R calibration period is 365 days from the EOT date of the acceptable calibration test. The last candidate can start on or before the last day of the period.

6.4 The following motion was also approved 8/0/0:

The calibration period begins on the day registration is allowed

6.5 Mike Zaiontz motioned that the Cat **1R** matrix stands are considered acceptable and are calibrated for one calibration period. The following motion (attachment 9) was approved **8/0/0**:

All Cat 1R matrix stands are considered acceptable and are calibrated for one calibration period (EV=1*, LZ=l, PE=3, SwRI=3, XMOB=1). The labs are given "existing lab" and the stands are given "existing stand" status.

* when 2nd operationally valid test is received

6.6 Phil Scinto presented attachment 10, which describes the LTMS constants for the EWMA and Shewhart analyses for the one test parameter case. He explained that the K values expand in value as more parameters are added. Mike Zaiontz asked the panel for input for removing penalties to labs that trip precision alarms and requested to revisit motions 3 and 4 of attachment 7. Ben Weber added that the consequences for tripping precision alarms in the Mack T-10 have been eliminated. Phil Scinto commented that he wants to avoid situations where variability trips a precision alarm and that it doesn't make sense to trip an alarm as a result of getting back on target. Mike Zaiontz made the following 1R motions which were accepted 7/0/1:

Remove the EWMA, lab, warning, precision alarm and all Shewhart precision alarms.

The consequence of the EWMA lab and stand action, precision alarm is a letter to all test sponsors and OEM citing the alarm and its meaning. Also, all test reports during the alarm period must comment that the lab, or offending stand, is currently in precision alarm status.

6.7 Phil Scinto advised the panel that EWMA K values may have to be adjusted. Expanded K values keep the test from being in continuous industry alarm. He made the following motion which was accepted **8/0/0**:

Use the one test parameter LTMS constants template with the K values indicated except use 2.45 K vice 1.8 K for EWMA stand severity.

6.8 The panel discussed various protocols to implement reduced K for Shewhart severity and the requirements for existing lab status. Mike Zaiontz presented the following motion (attachment 11) which was accepted 8-O-O:

Existing lab- A lab that has conducted at least 3 operationally valid Cat **1R** calibration tests.

Existing stand- A test stand, within an existing lab, that has conducted at least 2 operationally valid Cat 1R calibration tests.

With the wording of "existing lab" established, the panel agreed 8/0/0 on the following motion:

An existing lab will be permitted to bring in a new stand using the reduced K protocol (as described for the 1P).

Scott Parke requested the addition of wording that further clarifies the meaning of "new stand". He made the following motion, which was accepted 8-0-0:

Any stand that has not completed a calibration test for 2 or more years is required to meet "new stand" requirements.

Scott Parke also noted that substantial changes to a test stand can result in stand renumbering and assignment of "new stand" status.

6.9 The panel noted that oil 1005-l is the only calibration oil currently available. Oil A will have to be reblended. The panel passed the following motion 8/0/0 approving the use of 1005-l and PC-9A oils for calibration:

The TMC is to assign 1005-l (PC-9M) as the initial calibration oil until such a time as oil A is available.

7.0 ACC TEMPLATE CHECHKLIST REVIEW

- 7.1 Phil **Scinto** presented attachment 13, which is the Cat **1R** Template Checklist. Modifications to the ratings (A through D scale) are shown on the attachment.
- 7.2 Al Hahn agreed that Caterpillar will work on the Research Report required by section D4.1 of the template.
- 7.3 The comment regarding rate and report parameters was deleted from part D5.4.

8.0 HARDWARE REPORT

- 8.1 Al Hahn presented attachment 14 which describes several hardware issues
- 8.2 The **1Y3700** engine now uses a double valve spring configuration with a new rotocoil assembly. A new **spec** sheet was provided for this change and should be added to the engine build manual.
- 8.3 Al Hahn revisited the coolant hose delamination problem identified earlier by another lab. Labs should use 9X2378 replacement bulk hose.
- 8.4 At least one lab has seen heavy wear on the rocker arm bronze pin, which has caused unusually high copper levels. Labs should only use replacement rocker arms for the valves and injector with part dates after 5/1/1999 or parts box date after 1/1/2000. Attachment 14, page 4, shows how to decode the part numbers.

9.0 FUEL REPORT

Al Hahn presented the PC-9 fuel report (attachment 15). He noted that there is currently 1 million gallons of fuel available and that a new 1 million gallon batch would be blended when inventory levels hit 150,000 gallons.

10.0 TASK FORCE RECOMMENDATION TO THE HDEOCP

Al Hahn moved that the panel declare the 1R test ready for the PC-9 category. The motion was seconded and approved 8/0/0.

11.0 OLD/NEW/OTHER SCOTE BUSINESS

With no additional SCOTE business to conduct, the panel was adjourned for the day to resume the next morning.

12.0 DATA COMMUNICATION TASK FORCE

- 12.1 Mike Zaiontz opened the discussion by expressing concern that the DCC may, on occasion, promulgate changes or procedures that are not approved by the Surveillance panel. He encouraged each lab engineer to make every effort to attend DCC meetings where items affecting their test were expected to be discussed. Scott Parke assured the panel that no report changes were made without Surveillance panel approval.
- 12.2 Scott Parke added that there may be instances where the DCC initiates changes to make improvements, but ultimately, the Surveillance panel still has to approve the changes. When changes are proposed or suggested by the Surveillance panel, beta testing occurs and then the panel is notified. DCC changes should be communicated to the engineer.

13.0 TEST PROCEDURE REVIEW

- 13.1 The **1R** procedure review was conducted as a page by page edit of the **1P** procedure. Subsequent to this meeting, a draft **1R** procedure was **emailed** to the panel members. Attachment 16 shows the prescribed piping configuration to the air barrel inlet. Attachment 17 shows the engine warm-up and operating conditions.
- 13.2 Changes to the **1Q** data dictionary were made to create a **1R** data dictionary.

14.0 NEXT MEETING

The next meeting will be held at the call of the chairman.

Cat 1R Task Force Meeting

Att 1, pg 1/1

- Date/Time: August 21, 2001 (0830 16:00) August 22, 2001 (0830 – 12:00)
- Location: **PerkinElmer** Automotive Research San Antonio, Texas

<u>AGENDA</u>

Day 1: August 21, 2001 (08:30 – 16:00)	
1. Membership	Mike Griggs
2. Matrix Design Review Base Oil and Technology	Phil Scinto
3. Matrix Data Review and Discussion Severity/Precision Overall Lab/Stand Validity Assessment	Phil Scinto / Mike Zaiontz
4. Stand/Lab Calibration Current Lab/Stand Calibration Status LTMS Severity and Precision Recommendation Calibration Oil Availability New Lab/New Stand Calibration Requirements Calibration Period	Phil Scinto / Mike Zaiontz
5. ACC Template Checklist Review	Phil Scinto
6. Hardware Report	Al Hahn
7. Fuel Report	Don Burnett
8. Task Force Recommendation to the HDEOCP	Al Hahn
9. Old/New/Other SCOTE Business	
Day2: <u>Auaust22, 2001 (</u> 08:30 <u>–12:00)</u>	
1. Test Procedure Review QI limits	Ben Weber / Task Force Scott Parke
2. Data Communication Task Force	Mike Zaiontz
3. Lab Visitation Group	Task Force

Att 2, pg 1/5

SCOTE SURVEILLANCE PANEL Attendance Roster

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name:	Albert, Floyd	NV		
Company:	Equilon Enterprises LLC			
4ddress:	Room #L 121B			
4001055.	3333 Highway 6 South			
)hana.	Houston, TX 77082			
Phone:	713-544-8055			
'ax:	7 13-544-7732			
:-mail:	fealbert@equilontech.com			
Name:	Bond, Stacy	NV		
Company:	PerkinElmer			
Address:	5404 Bandera Road			
	San Antonio, TX 78238			
'hone:	210-523-4604			
Fax:	210-523-4607			
:-mail:	stacy.bond@perkinelmer.com			
Name:	Buck, Ron	NV		
	, Test Engineering, Inc.,			
4ddress:	12718 Cimarron Path			
Huuress.	San Antonio, TX 78249-3417			
) h				
Phone:	210-690-1958			
Fax:	210-690-1959 • , • ,	•		
:-mail:	rbuck@testeng.com			
Name:	Burnett, Don	NV		
Zompany:	Chevron Phillips Chem. Co. LP			
4ddress:	1301 McKinney St. #23 10			
	Houston, TX 77010-3030			
Phone:	·			
Fax:				
:-mail:	deburne@ppco.com			
Name:	Campbell, Bob	V		
Zompany:	Ethyl Corporation	•		
	• •		Λ.	
4ddress:	500 Spring Street			
	P.O. Box 2158			
	Richmond, VA 232 19		PLC	
Phone:	804-788-5340		'	
Fax:	804-788-6358			
e-mail:	bob-campbell@ethyl.com		ļ	
Name:	Carlson, Jon	NV		
Company:	Lubrizol Corporation			
Address:	4801 N.W. Loop 410, Ste. 430			
	San Antonio, TX 78229			
Phone:	210-520-8013			
Fax:	210-520-1983			
e-mail:	jomc@lubrizol.com			
Name:	Cooper, Mark	V	+	
		, v		
Company:	Oronite Technology Croup			
Address:	Chevron Chemical Company			
	4502 Centerview Ste. 210			
	San Antonio, TX 78228			
Phone:	210-731-5606			
Fax:	210-731-5699			
e-mail:	mawc@chevron.com			

Ϊ

Att 2, pg 2/5

SCOTE SURVEILLANCE PANEL Attendance Roster

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name: Company: Address:	Fetterman, Pat Infineuum, USA L.P. PO Box 735	V	Ed Outlen representing GPF.	
DI	Linden, NJ 07036	{	- cope cope starting .	
Phone:	908-474-3099			
Fax:	908-474-3363		ad authorate in a	
e-mail:	pat.fetterman@infineum.com		ed outlen DI ofeneur Com	
Name:	Griggs, Mike	V	C C	
Company: Address:	The Lubrizol Corporation 29400 Lakeland Blvd.	:		
Audiess.	Wickliffe, OH 44092-2298		Maring	
Phone:	440-347-2905		1100	
Fax:	440347-4096			
e-mail:	msg@lubrizol.com	- 	\	
Name:	Gutzwiller, Jim	NV		
Company:	Infineum		1 1 1 1 1 1	
Address:	4335 Piedras Dr., W. Suite 101		fin Destarth	
	San Antonio, TX 78228			
Phone:	210-732-8123 ext. 13			
Fax:	210-732-8480			
e-mail:	james.gutzwiller@infineum.com	1		
Name:	Hahn, Al	V		
Company:	Caterpillar, Inc./Tech Center		Alphan	
Address:	Bldg. L/P.O. 1875	1	a protection	
	Peoria, IL 61656-1875			
Phone:	309-578-3617			
Fax:	309-578-4232	ļ		
e-mail:	hahn_al_c@cat.com			
Name:	Hitchner, Tom	V		
Company:	Exxon/Mobil R&E			
Address:	600 Billingsport Road		1. TAA	
	Paulsboro, NJ 08066		Mat	
Phone:	856-22-3012			
Fax:	856-224-3628		{	
e-mail:	w.thomas.hitchner@exxonmobil.com			
Name:	Kennedy, Steve	NV		
Company:	Exxon/Mobil R&E		Stan Kennely	
Address:	600 Billingsport Road	1	10 11 1	
Phone:	Paulsboro, NJ 08066 856-224-2432		/	
Fax:	856-224-2452 856-224-3678			
e-mail:	steven.kennedy@exxonmobil.com			
Name:	McCord, James	v		
Company:		1	James Moland	
Address:	6220 Culebra Rd.			
- 10010000	San Antonio, TX 78228-05 10		/	
Phone:	210-522-3439			
Fax:			Į l	
e-mail:	jmccord@swri.edu			

Att 2, pg 3/5

SCOTE SURVEILLANCE PANEL Attendance Roster

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
_				
Name:	Nycz, David S.	NV		
Company:	Caterpillar, Inc.			
Address:	Box 610			
(1	Mossville, IL 61552-0610			
'hone: Fax:	309-578-3003			
-ax: :-mail:	309-578-6457			
Name:	nycz_david_s@cat.com Parke, Scott	V		
	ASTM/TMC	v		
Jompany: 4ddress:	6555 Penn Avenue			
4001055.	Pittsburgh, PA 15206-4489			
Phone:	412-365-1036		STXW	
Fax:	412-365-1030			
:-mail:	sdp@tmc.astm.cmri.cmu.edu			
Name:	Passut, Charlie	NV	+ +	
Company:	Ethyl Corporation	14 4		
4ddress:	500 Spring Street			
	P.O. Box 2158			
	Richmond, VA 23219			
Phone:	804-788-6372			
Fax:	804-788-6388			
:-mail:	charles_passut@ethyl.com			
Name:	Ralph Perna	NV		
Jompany:	Equilon			
4ddress:	Room #MF 104			
	3333 Highway 6 South			
	Houston, TX 77082			
Phone:	7 13-544-7844			
Fax:	713-544-7162			
:-mail:	rperna@equilontech.com			
Name:	Rumford, Robert H.	NV		
Company:	Haltermann Products			
4ddress:	P.O. Box 429			
	Channelview, TX 77530-0429			
Phone:	832-376-2213			
Fax:	28 1-457-2768			
:-mail:	rhrumford@haltermann-usa.com			
Name:	Rutherford, Jim	NV		
Company:	Chevron Oronite			
Address:	100 Chevron Way			
Dharres	Richmond, CA 94802			
Phone:	5 10-242-3410			
Fax:	5 10-242-1930			
e-mail: Name:	jaru@chevron.com	NV		
	Scinto, Phil		$\int \partial \mathcal{D} \partial \mathcal{D}$	
Company: Address:	The Lubrizol Corporation 29400 Lakeland Blvd.		PRS	
Address:	29400 Lakeland Blvd. Wickliffe, OH 44092-2298			
Phone:	440-347-2161			
Phone: Fax:	440-547-2101			
1 a.	prs@lubrizol.com			

Att 2. P.9. 4/5

SCOTE SURVEILLANCE PANEL Attendance Roster

vlember		Status	rs Page) Indicate Presence with Signature	Alternate
Name:	Stevens, Carl	NV		
Company:	Ashland, Inc.			
4ddress:	22nd Front Street			
	Ashland, KY 41101			
Phone:	606-329-5 198			
Fax:	606-329-3009			
:-mail:	_cstephens@ashland.com			
Name:	Tharp, David	NV		
Company:	Catornillar Inc			
Address:	501 501 S efferson Peoria, 12 61630-2172		the hand	
	Peoria, 12 61630-2172		Magne marg	
Phone:	309-675-6122		U V	
Fax:	309-675-5198			
:-mail:	tharpde@cat.com			
Name:	van Dam, Wim	NV		
Company:	Oronite Additives Division			
Address:	Chevron Chemical Company			
	100 Chevron Way, 60-1214			
	Richmond, CA 94802	ļ	Į į	
Phone:	510-242-1404			
Fax:	5 10-242-3 172			
e-mail:	wvda@chevron.com			
Name:	Zaiontz, Mike	V	1	······································
Company:	PerkinElmer			
Address:	5404 Bandera Road			
1 1001035.	San Antonio, TX 78238		\\	
Phone:	210-647-9483			
Fax:	210-04/-7403			
e-mail:	mike.zaiontz@perkinelmer.com	ł		
Name:				
	DALE CARACI			
Company: Address:	LUBAL D.L			
Address:				
Phone:	440-347-1405			
Fax:	DCAR & Lubriz			
e-mail:				······
Name:	JON CARLSON			
Company:		1		
Address:	LUBRIZUL			
		NV		
Phone: z	10-391-883B			
Fax:				
e-mail:	JOMC Q LUBRIZUL. COM			
Name:	BETO ARAIZA			
Company:				
Address:	T. E. I.	1.1.1		
		N.V		
Dhome	210-877-0222	(' "		
Phone:	2/0/0/1.0333			
Phone: Fax:	BARAIZA CTESTENG. COM			

Att 2, 29 5/5 SCOTE SURVEILLANCE PANEL Attendance Roster (Visitors Page) Alternate Status Indicate Presence with Signature **M**[ember ame: CHRIS MAZUCA ompany: PERKIN ELMER ddress: 5404 BANDERA SAN ANTONIO TX 78238 647-9487 hone: 1x: mail CHRIS. MAZULAD PEEKINELMER. COM_ ame: JIM WELLS ompany: SWRI ddress: 6220 CU LEBRA ED. 5AN ANTONIO, TX 78228 210-522-5918 210-523-6919 210-523-6919 JUNELLS & SWRT, ORG hone: 'ax: -mail Jame: Ben WEBER Company: Swl1 Address: 6220 CALMERA AD G Phone: SAN ANTONIO, TX 7822B ax: 210-522-5411 Ben Wille ⁷ax: -mail. 210 - 674-7510 AW MER & SWAT. 500 Vame: Company: Address: 'hone: ⁷ax: -mail Name: Company: Address: 'hone: Fax: ·-mail Name: Zompany: Address: Phone: Fax: e-mail Name: Company: Address: Phone: Fax:

SCOTF Surveillance Panel Membership (Revised 08/20/01)

(M) = designated voting member

Att 3, pg 1/1

Ashland, Inc Carl Stephens	cstephens@ashland.com mailing list
<u>Caterpillar</u> Al Hahn (M) David Nycz Dwayne Tharp	hahn_al_c@cat.com nycz_david_s@cat.com tharpde@cat.com
<u>Chevron Additives (Oronite)</u> Mark Cooper (M) Wim van Dam Jim Rutherford	mawc@chevron.com wvda@chevron.com jaru@chevron.com
<u>Ethyl</u> Charlie Passut Bob Campbell (M)	charles_passut@ethyl.com bob_campbell@ethyl.com
Equilon Floyd Albert Ralph Perna	fealbert@equilontech.com mailing list rperna@equilontech.com mailing list
<u>ExxonMobil</u> Steve Kennedy Tom Hitchner (M)	steven.kennedy@exxonmobil.com w.thomas.hitchner@exxonmobil.com
<u>Haltermann</u> Bob Rumford	rhrumford@haltermann-usa.com
<u>Infineum</u> Pat Fetterman (M) Jim Gutzwiller	pat.fetterman@infineum.com james.gutzwiller@infineum.com
Inteven Redescal Gomez	gomezriv@pdvsa.com mailing list
<u>Lubrizol</u> Mike Griggs (M), Secretary Jon Carlson Phil Scinto	msg@lubrizol.com jomc@lubrizol.com prs@lubrizol.com
<u>PerkinElmer</u> Michael Zaiontz (M) , Chairman Stacy Bond	mike.zaiontz@perkinelmer.com stacy.bond@perkinelmer.com
Chevron Phillips Don Burnett	burnede@cpchem.com email/company name change
Southwest Research Institute Jim McCord (M)	jmccord@swri.edu
<u>Test Engineering Inc</u> Ron Buck	rbuck@testeng.com
<u>ASTM/TMC</u> Scott Parke (M)	sdp@tmc.astm.cmri.cmu.edu

Cat 1R PC-9 Matrix Summary

Test Total	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
LAB	A	Α	Α	F	G	G	В	G	Α	Α	Α	G	G	F	G	D	В
CMIR	41535	41536	41537	41545	41539	41541	41554	41540	41538	41760	41573	41542	41761	41546	41570	41968	41547
STAND	1	2	3	1	1	3	1	2	1	2	3	1	2	1	3	1	1
ENRUN	45	40	32	6	65	34	31	36	46	41	33	66	37	7	35	43	32
TESTLEN	504	504	504	504	504	504	504	504	504	504	504	504	504	504	504	504	504
IND	1005-1	1005-1	PC-9A	1005-1	1005-1	PC-9A	1005-1	1005-1	PC-9A	PC-9D	1005-1	PC-9A	PC-9D	PC-9A	1005-1	PC-9A	PC-9A
DTSTRT	20010612	20010613	20010615	20010619	20010618	20010619	20010618	20010619	20010707	20010707	20010711	20010712	20010713	20010713	20010712	20010731	20010723
DTCOMP	20010704	20010705	20010707	20010710	20010711	20010711	20010712	20010712	20010731	20010801	20010802	20010803	20010804	20010804	20010805	20010805	20010814
EOTTIME	0:57	11:55	3:53	21:26	1:13	5:33	8:00	20:57	16:22	0:22	5:31	18:35	14:55	16:45	2:38	16:57	
WD	364.6	315.5	331.5	356.7	323.2	310.6	331.3	356.1	327.8	290.5	301.5	371.6	281.3	311.7	304.9	317.9	407.5
TGC	51.25	30.25	43	46.25	47.25	24.5	46	29.5	33	26	25.25	40	30.25	25	29.25	23.75	49.5
TLC	22	16.5	24.25	26	27	15	21.25	22.75	25.5	7.5	11.5	16	20	13.75	23.5	21	44.25
OC	9.8	7.9	9.3	7.9	10.1	6.6	10.0	11.3	8.0	11.2	9.6	7.0	8.3	5.8	9.4	10.3	11.0

Cat 1R PC-9M ±3 Sigma Outlier Screener

Test Total	ſ	2	Ĵ	4	5	6	7	8				
LAB	Α	Α	F	G	В	G	Α	G				
CMIR	41535	41536	41545	41539	41554	41540	41573	41570				
STAND	1	2	1	1	1	2	3	3				
ENRUN	45	40	6	65	31	36	33	35				
TESTLEN	504	504	504	504	504	504	504	504				
IND	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1				
DTSTRT	20010612	20010613	20010619	20010618	20010618	20010619	20010711	20010712				
DTCOMP	20010704	20010705	20010710	20010711	20010712	20010712	20010802	20010805				
EOTTIME	0:57	11:55	21:26	1:13	8:00	20:57	5:31	2:38	Average	StDev	-3StDev	+3StDev
WD	364.6	315.5	356.7	323.2	331.3	356.1	301.5	304.9	331.73	24.69	257.65	405.80
TGC	51.25	30.25	46.25	47.25	46	29.5	25.25	29.25	38.13	10.45	6.77	69.48
TLC	22	16.5	26	27	21.25	22.75	11.5	23.5	21.31	5.09	6.05	36.57
OC	9.8	7.9	7.9	10.1	10	11.3	9.6	9.4	9.50	1.14	6.08	12.92
ETOC	8.5	6.8	8.5	8.1	9.3	9,4	8.5	7.5	8.33	0.87	5.73	10.92

Cat 1R PC-9M ±1.8 Sigma

Test Total												
LAB	A	Α	F	G	В	G	Α	G				
CMIR	41535	41536	41545	41539	41554	41540	41573	41570				
STAND	1	2	1	1	1	2	3	3				
ENRUN	45	40	6	65	31	36	33	35				
TESTLEN	504	504	504	504	504	504	504	504				
IND	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1	1005-1				
DTSTRT	20010612	20010613	20010619	20010618	20010618	20010619	20010711	20010712				
DTCOMP	20010704	20010705	20010710	20010711	20010712	20010712	20010802	20010805				
EOTTIME	0:57	11:55	21:26	1:13	8:00	20:57	5:31	2:38	Average	StDev	-1.8StDev	+1.8StDev
WD	364.6	315.5	356.7	323.2	331.3	356.1	301.5	304.9	331.73	24.69	287.28	376.17
ĨĨĠŎ	51.25	30.25	46.25	47.25	46	29.5	25.25	29.25	38 13	10.45	19.31	56 94
TLC	22	16.5	26	27	21.25	22.75	11.5	23.5	21.31	5.09	12.16	30.47
OC	9.8	7.9	7.9	10.1	10	11.3	9.6	9.4	9.50	1.14	7.45	11.55
ETOC	8.5	6.8	8.5	8.1	9.3	9.4	8.5	7.5	8.33	0.87	6.77	9.88

Cat 1R
PC-9A
±3 Sigma Outlier Screener

Test Total	1	2	3	4	5	6	7				
LAB	Α	G	Α	G	F	D	В				
CMIR	41537	41541	41538	41542	41546	41968	41547				
STAND	3	3	1	1	1	1	1				
ENRUN	32	34	46	66	7	43	32				
TESTLEN	504	504	504	504	504	504	504				
IND	PC-9A										
DTSTRT	20010615	20010619	20010707	20010712	20010713	20010731	20010723				
DTCOMP	20010707	20010711	20010731	20010803	20010804	20010805	20010814				
EOTTIME	3:53	5:33	16:22	18:35	16:45	16:57		Average	StDev	-3StDev	+3StDev
WD -	331.5	310.6	327.8	371.6	311.7	317.9	407.5	339.80	36.35	230.74	448.86
TGC	43	24.5	- 33	40	25	23.75	49.5	34,11	10.28	3.26	64.96
TLC	24.25	15	25.5	16	13.75	21	44.25	22.82	10.50	0.00	54.33
OC	9.3	6.6	8	7	5.8	10.3	1	8,29	1.97	2.39	14.19
ETOC	- 8.2	5.5	7.5	6.4	5.2	10.2	12.2	7.89	2.56	0.21	15.57

Cat 1R PC-9A ±1.8 Sigma

Test Total	1	2	3	4	5	6	7				
LAB	A	G	Α	G	F	D	В				
CMIR	41537	41541	41538	41542	41546	41968	41547				
STAND	3	3	1	1	1	1	1				
ENRUN	32	34	46	66	7	43	32				
TESTLEN	504	504	504	504	504	504	504				
IND	PC-9A	PC-9A	PC-9A	PC-9A	PC-9A	PC-9A	PC-9A				
DTSTRT	20010615	20010619	20010707	20010712	20010713	20010731	20010723				
DTCOMP	20010707	20010711	20010731	20010803	20010804	<u>2</u> 0010805	20010814				
EOTTIME	3:53	5:33	16:22	18:35	16:45	16:57		Average	StDev	-1.8StDev	+1.8StDev
WD	331.5	310.6	327.8	371.6	311.7	317.9	407.5	339.80	36.35	274.36	405.24
TGC	43	24.5	33	40	25	23,75	49.5	34.11	10,28	15.60	52.62
TLC	24.25	15	25.5	16	13.75	21	44.25	22.82	10.50	3.92	41.72
OC	9.3	6.6	8	7	5.8	10.3	11	8.29	1.97	4.75	11.83
ETOC	8.2	5.5	7.5	6.4	5.2	10.2	12.2	7.89	2,56	3.28	12.49

1

Cat 1R PC-SD . ±3 Sigma Outlier Screener

Test Total	1	Z				
LAB	Ā	G				
CMIR	41760	41761				
STAND	2	2				
ENRUN	41	37				
TESTLEN	504	504				
IND	PC-9D	PC-9D				
DTSTRT	20010707	20010713				
DTCOMP	20010801	20010804				
EOTTIME	0:22	14:55	Average	StDev	-3StDev	+3StDev
WD	290.5	281.3	285.90	6.51	266.38	305.42
TGC	26	30.25	28.13	3.01	19.11	37.14
TLC	7.5	20	13.75	8.84	0.00	40.27
OC	11.2	8.3	9.75	2.05	3.60	15.90
ETOC	9.4	9.4	9.40	0.00	9.40	9.40

Att S, pg 1/1

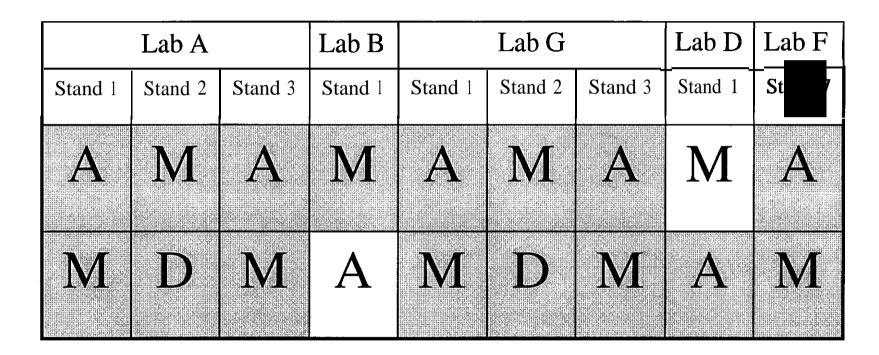
Motion:

Matrix Data Validity and Inclusion in LTMS – Each of the Cat 1R matrix tests submitted is operationally valid. and shall be included in the calculation of LTMS limits.

80/1 F/A/W

DRAFT of the Preliminary Statistical Summary of the Caterpillar 1R Precision Matrix

Preliminary Draft 08/17/2001 PRS


Caterpillar 1R Matrix Summary

- The 1R matrix is not yet complete. This is a draft analysis of 16 of the 18 matrix runs. The statistician work group has not reviewed the presentation.
- Only WD, TGC, TLC, OC, ETOC, TGF, TLHC, UCWD analyzed to date. Is there more?
- Three oils (A, D, M) are in the matrix. There is evidence of discrimination in Oil Consumption.
- No transformations necessary among the major parameters. TGF needs a transformation and possibly TLHC and UCWD

Caterpillar 1R Matrix Summary

- High Copper may affect UCWD, but does not seem to affect other parameters
- The variable AAIRFLO has some very strange results in the dataset
- There are possible Lab effects in OC, ETOC and UCWD.
- There are possible outliers in TLHC and UCWD
- There are positive correlations among the parameters especially TGF/TGC and OC/ETOC.

Caterpillar 1R Matrix Status

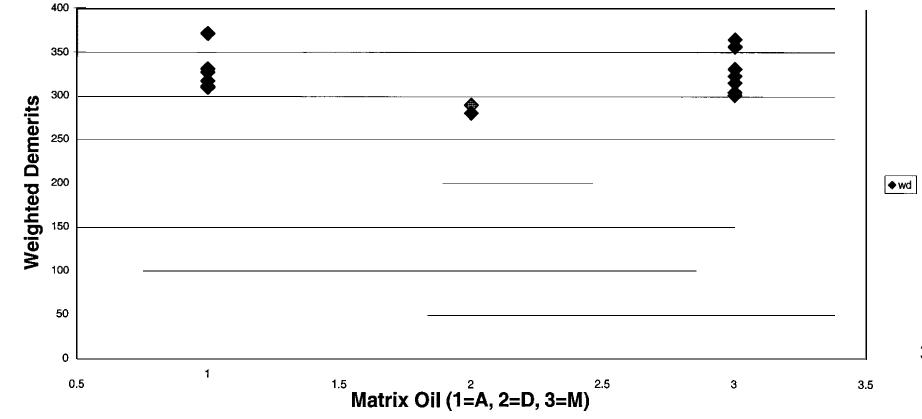
The 1R Task Force concluded that the 3 tests at a coolant flow of 63 L/m are no different from the ones run at 70 L/m.

WD	0.64	0.42	-0.06	-0.05	0.62	0.08	-0.07
0.66	TGC	0.59	0.15	0.15	0.93	0.51	-0.11
0.26	0.64	TLC	0.11	0.23	0.64	0.52	-0.24
0.33	0.30	0.29	OC	0.88	0.14	0.19	0.04
0.50	0.44	0.60	0.75	ETOC	0.19	-0.01	-0.06
0.68	0.94	0.65	0.06	0.31	T(TGF)	0.46	-0.01
-0.17	0.54	0.55	0.33	0.20	0.43	TLHC	0.05
-0.12	-0.32	-0.24	-0.50	-0.55	-0.06	-0.23	UCWD

Caterpillar 1 R Correlations

Ţ

Raw Data Correlations on Upper Triangle; Partial Correlations on Lower Triangle

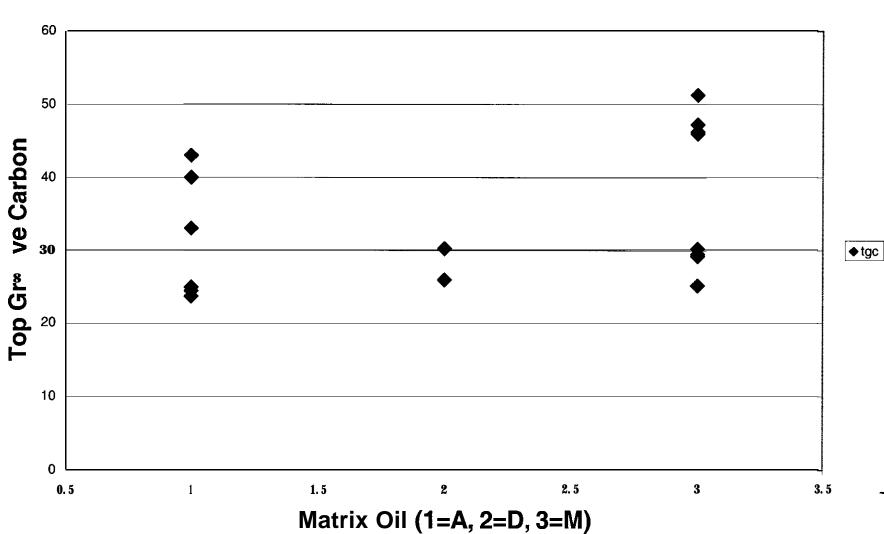

Weighted Deposits (WD)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- Some evidence that Oil D differs from A,M (0.05)Root MSE = 23.03 (13 df)

 $R^2 = 0.34$

No observations had large Studentized residuals

Final model included Oil term only


Caterpillar 1R Weighted Demerits by Oil

ntt 6 pg 7/25

Top Groove Carbon (TGC)

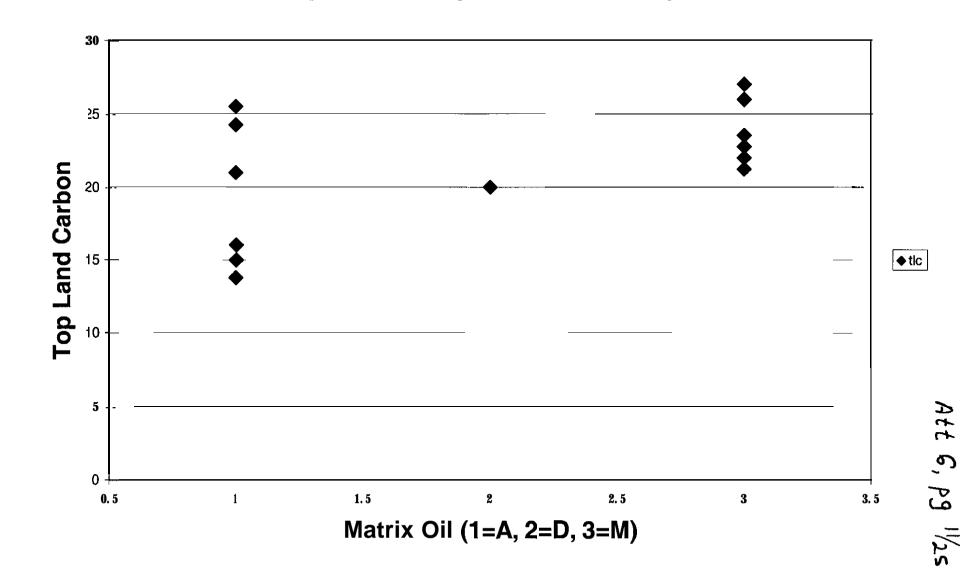
- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- No evidence of any effects

 Root MSE = 9.33 (13 df)
 R² = 0.17
 No observations had large Studentized residuals
 Final model included oil term only

Caterpillar 1 R Top Groove Carbon by Oil

Top Land Carbon (TLC)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- No evidence of any effects


Root MSE = 5.44 (13 df)

 $R^2 = 0.19$

٦

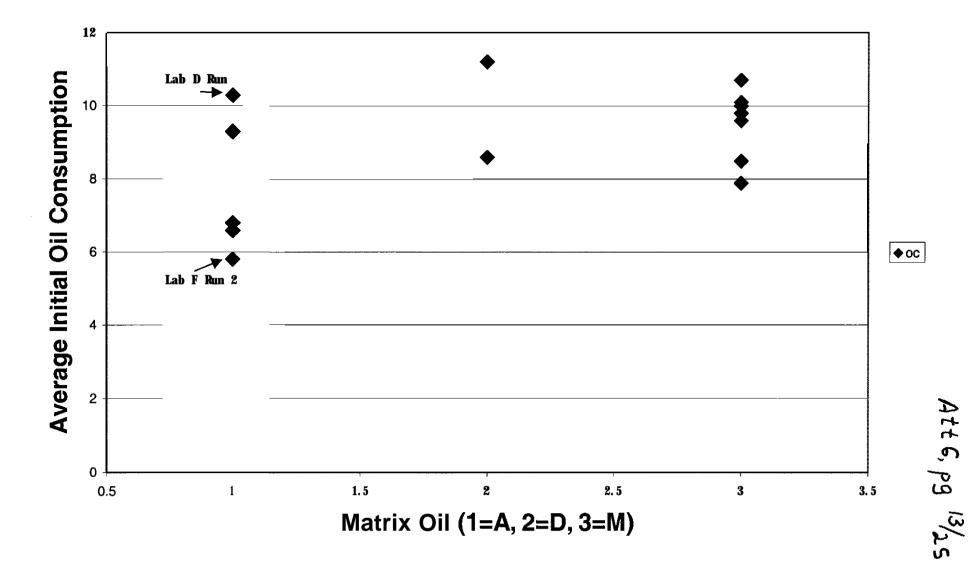
No observations had large Studentized residuals

Final model included oil term only

Average Initial Oil Consumption (OC)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- Evidence that Oils differ (p<0.05) and some evidence that Labs differ (0.05)

Root MSE = 1.15(9 df)

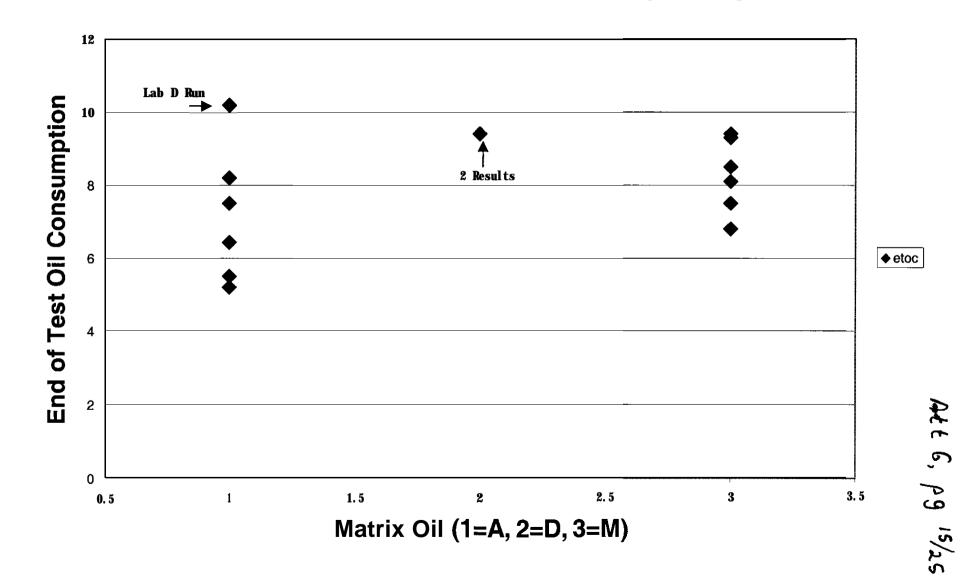

 $R^2 = 0.68$

No observations had large Studentized residuals

Final model included oil and lab term

The Lab evidence was driven by the difference between D (1 run in Lab) and F (2 runs in Lab)

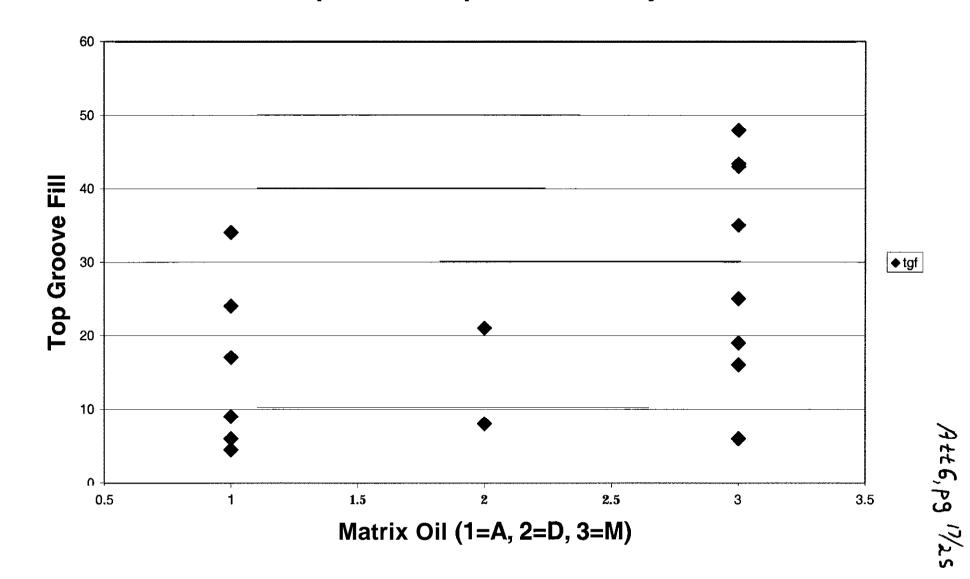
The Oil evidence was driven by Oil A



End of Test Oil Consumption (ETOC)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- Evidence that Oils differ (p<0.05) and some evidence that Labs differ (0.05<p<0.10)

Root MSE = 1.03 (9 df) $R^2 = 0.70$ No observations had large Studentized residuals Final model included oil and lab term The Lab evidence was driven by Lab D (1 run in Lab) The Oil evidence was driven by Oil A

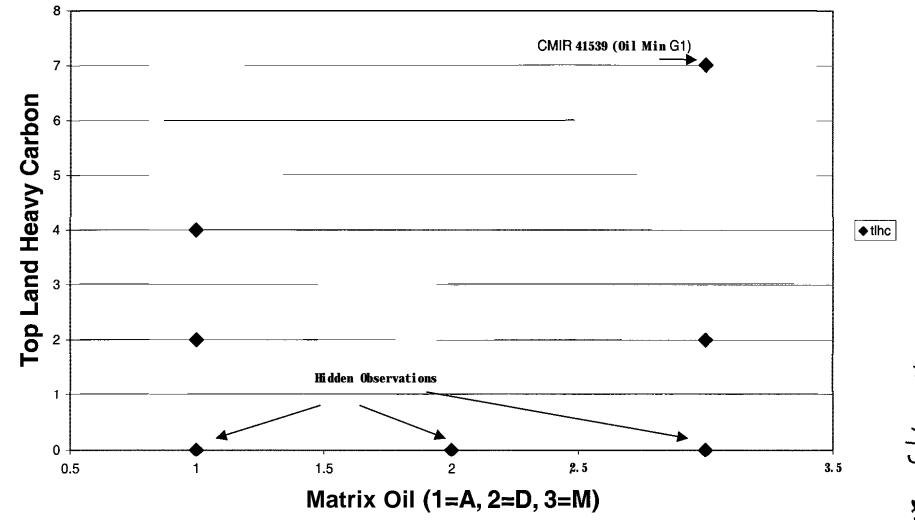


Top Groove Fill (TGF)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- Square Root Transformation was used
- No evidence of any effects

Root MSE = 1.50 (13 df) on Square Root Scale R² = 0.23No observations had large Studentized residuals

Final model included oil term only

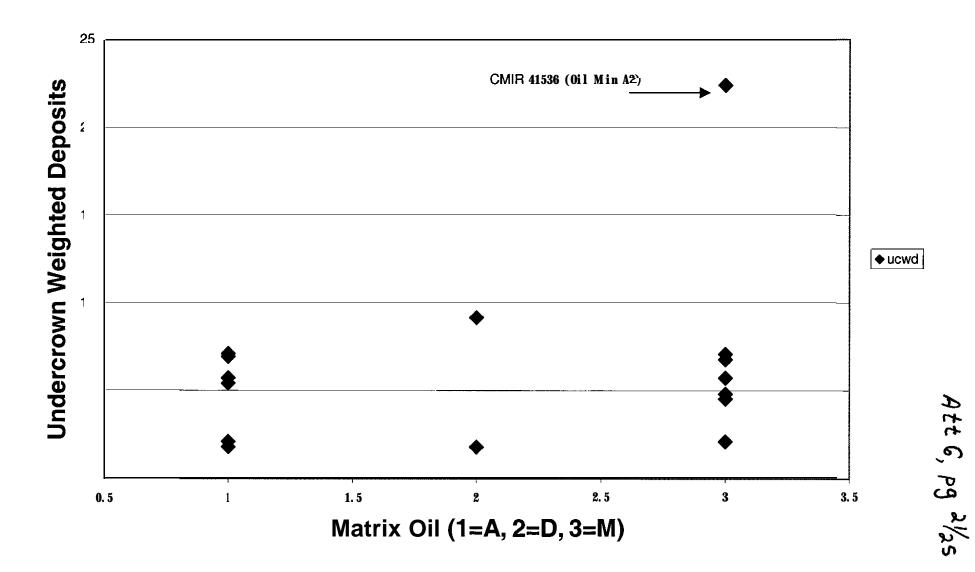


Top Land Heavy Carbon (TLHC)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- The data are skewed, but no satisfactory transformation was found
- No evidence of any effects

Root MSE = 1.90 (13 df)
R² = 0.16
CMIR 41539 (Oil M in G1) had large Studentized residuals. The predicted result was 2 and the actual result was 7
Final model included oil term only

Caterpillar 1R Top Land Heavy Carbon by Oil


Att &, pg 19/25

Under Crown Weighted Deposits (UCWD)

- Model factors include Lab (A,B,D,F,G), Stand within Lab (A1,A2,A3,G1,G2,G3) and Oil (A,D,M)
- CMIR 41536 (Oil M in A2) had a large studentized residual and may drive possible conclusions (not made here) for a transformation and stand effect. The drains indicate high Copper early in the test
- Very weak evidence of a Lab effect (0.1<p<0.2)

Root MSE = 4.45 (9 df) $R^2 = 0.51$ Final model included oil and lab term The Lab evidence was driven by the difference between Lab A and Lab G

Caterpillar 1 R Undercrown Weighted Deposits by Oil

UCWD ♦UCWD Λ Copper at 252 Hours

Att 6, pg 22/25

UCWD as a Function of Copper at 252 Hours in the Caterpillar 1 R Test

Summary of 1R Oil Means and Test Standard Deviation

2	MD	TGC	TGC TLC	OC	ETOC	OC ETOC SQRT (TGF)	TLHC UCWD	UCWD
Oil A 328.5	328.5	31.5 19.3	19.3	7.9	7.5	3.737	1.0	4.3
Oil D	285.9	28.1	13.8	10.2	10.2	3.706	0.0	4.9
Oil M	331.7	38.1	21.3	9.8	9.1	5.225	2.1	6.8
Std Dev	23.03	9.33	5.44	1.15	1.03	1.50 1.90	1.90	4.45

Att 6, pg 23/25

	TLHC UCWD	9.6	3.0	6.5	5.5	2.1
SUI	TLHC					
ab Mea	ETOC SQRT (TGF)					
vant Lá	ETOC	8.3	9.1	11.6	7.5	7.9
Rele	ос	9.4	9.5	11.7	7.3	8.6
immary of 1R Relevant Lab Means	TLC					
ummar	TGC					
Su	WD					
		Lab A	Lab B	Lab D	Lab F	Lab G

-

Att 6, pg 24/25

lab	cmir	stand	oil	date	wd	tgc	tic	0 C	etoc	tgf	tlhc
Α	41535		M	20010704	364.6	51.25	22	9.8	8.5	48	2
A	41536	2	2 M	20010705	315.5	30.25	16.5	7.9	6.8	25	2
A	41537	3	S A	20010707	331.5	43	24.25	9.3	8.2	24	4
F	41545	1	M	20010710	356.7	46.25	26	7.9	8.5	43.4	2
G	41539	1	M	20010711	323.2	47.25	27	10.1	8.1	43	7
G	41541	3	A	20010711	310.6	24.5	15	6.6	5.5	6	0
B	41554		M	20010712	331.3	46	21.25	10	9.3	35	0
G	41540	2	2 M	20010712	356.1	29.5	22.75	10.7	9.4	16	0
A	41538	2	A	20010731	327.8	33	25.5	8	7.5	17	2
A	41760	2	2 D	20010801	290.5	26	7.5	11.2	9.4	8	0
A	41573	3	BM	20010802	301.5	25.25	11.5	9.6	8.5	6	2
G	41542	1	A	20010803	371.6	40	16	6.8	6.4	34	0
G	41761	2	2 D	20010804	281.3	30.25	20	8.6	9.4	21	0
F	41546	1	A	20010804	311.7	25	13.75	5.8	5.2	4.5	0
G	41570		BM	20010805	304.9	29.25	23.5	8.5	7.5	19	2
D	41968	-	A	20010805	317.9	23.75	21	10.3	10.2	9	0

IDEA:

Improve the Power of LTMS in Detecting Shifts and Trends

Provide Better Incentives for "Good" Lab Behavior

Provide Less Opportunity to "Trick" the System

Use Data to Make Decisions and Engineering Judgment to Supplement them (Not the Other Way Around)

Version 1 – Phil Scinto - Summer 2001

MOTIONS:

Motion #1: To remain LTMS calibrated, a Test Stand/Engine must complete at least one valid reference test once every **Motion**

Motion #2: To remain LTMS calibrated, a Test Lab must complete at least one valid reference test once every 90 days Appropriate rote Tober of the state of the st

Motion #3: Remove the EWMA, Lab, Warning, Precision Alarm and all

Shewhart Precision Alarms

Motion #4: The Consequence of the EWMA Lab or Stand Action, Precision Alarm is a Letter to all Test Spensors citing the alarm and its meaning. Also, all Test Reports during the alarm period must comment that the Lab, or offending stand, is currently in Precision Alarm status.

-and OFM

Motion #5: Do NOT edjust Precision alarms for multiple parameters

and a state

A#, 7, pg

2000

Justification for Motions:

- I. Power of Control Chart Problem Detection
- II. Limited Data in Small Labs
- III. Large Lab Differences Before the Start of the Category
- IV. Better Incentives for "Good" Lab Behavior

The Reality Behind the LTMS

Probability of EW'MA chart detecting problem within a few tests is very, very small because EWMA places large weight on In-Control status before a bias is introduced. It takes some time before the weight of that assumption is minimized. Unless reference frequency is increased labs with only a few reference tests per year may go years before detecting problems.

After 1 test in the lab: $EWMA = 0.2 \times (1^{st} Reference Test) + 0.8 \times (On Target Number)$

Weight Given to On Weight Given to On Target Status **#** Reference Tests Target Status **#** Reference Tests 0.80 0.26 6 0.21 0.64 $\frac{0.17}{0.13}$ 0.51 0.41 5 0.33 10 0.11

After 2: EWMA = $0.2 \times (2^{nd} \text{ Ref Test}) + 0.8 \times 0.2 \times (1^{st} \text{ Ref Test}) + 0.8 \times 0.8 \times (OTN)$

Pu ', 2世

8/4

Average Run Lengths for Different Settings of λ Given a 0.0s Shift in the Process and the False Alarm Error Rate

	Average Run Lei	ngth for 0.0s Shift	
False Alarm	,		
Error Rate	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$
10.0%	35.41	22.39	16.96
9.00%	38.55	24.52	18.56
8.00%	40.86	26.60	20.60
7.00%	45.14	29.57	23.31
6.00%	51.71	33.66	26.56
5.00%	62.47	41.13	32.22
4.00%	73.64	49.07	38.36
3.00%	89.04	60.77	48.31
2.00%	112.3	80.66	67.97
1.00%	141.2	116.2	103.6

Note: **ARLs** are Based upon Random Simulations from the Normal Distribution Estimates are Biased in the Direction of Shorter Run Lengths

Att 7, pg 5/8

Average Run Lengths for Different Settings of λ Given a 0.5s Shift in the Process and the False Alarm Error Rate

	Average Run Lei	ngth for 0.5s Shift	
False Alarm			
Error Rate	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$
10.0%	11.70	9.740	8.740
9.00%	12.17	10.22	9.250
8.00%	12.60	10.65	9.640
7.00%	13.11	11.11	10.19
6.00%	13.76	11.86	10.98
5.00%	14.78	12.72	12.11
4.00%	16.09	13.77	13.05
3.00%	17.65	15.91	15.51
2.00%	20.37	18.89	18.57
1.00%	25.64	25.16	25.48

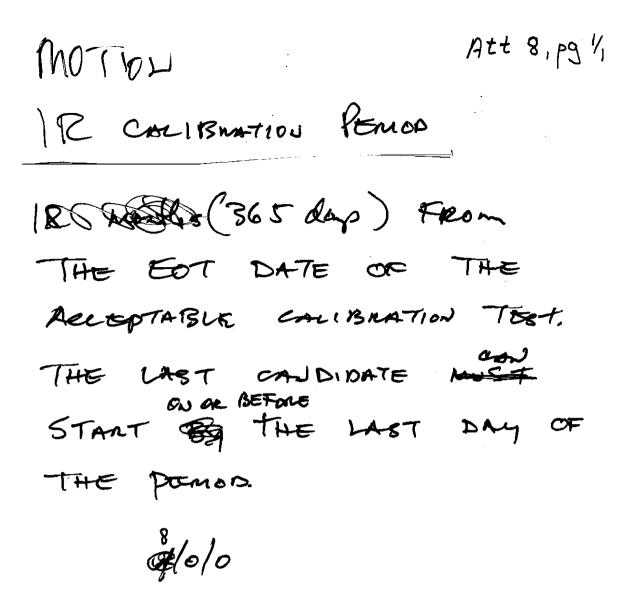
Note: **ARLs** are Based upon Random Simulations from the Normal Distribution Estimates are Biased in the Direction of Shorter **Run** Lengths

Average Run Lengths for Different Settings of λ Given a 1.0s Shift in the Process and the False Alarm Error Rate

	Average Run Lei	ngth for 1.0s Shift	
False Alarm	<u> </u>		
Error Rate	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$
10.0%	5.26	4.35	3.95
9.00%	5.48	4.54	4.07
8.00%	5.61	4.71	4.21
7.00%	5.86	4.86	4.40
6.00%	6.14	5.17	4.67
5.00%	6.48	5.46	4.98
4.00%	6.87	5.75	5.33
3.00%	7.31	6.14	5.80
2.00%	7.92	6.77	6.39
1.00%	9.06	7.88	7.82

.

Note: ARLs are Based upon Random Simulations from the Normal Distribution Estimates are Biased in the Direction of Shorter Run Lengths


Att 7, pg 3/2

Probability of EWMA Alarm in a Lab, with a Bias of 1 Standard Deviation, given Lambda=0.2 and k=1.96

	Probability of 1s		Probability of 1s
# Reference Tests	Detection	# Reference Tests	Detection
1	0.01	6	0.73
2	0.14	7	0.80
3	0.31	8	0.85
4	0.48	9	0.90
5	0.62	10	0.93

What is the Bottom Line of All These Figures???

The Bottom Line is that if you are running at least 4 scheduled reference tests per year, you can probably catch a 1 standard deviation shift in your process within a year. Anything less than 4 scheduled tests per year would take longer.

Att 9, pg 1/1

Motion:

All Cat 1R matrix stands are considered acceptable and are calibrated for one calibration period (EV=1*, LZ=1, PE=3, SwRI=3, XMOB=1). The labs are given "existing lab" and the stands are given "existing stand" status. * when 2nd operationally valid test is received

LTMS Constants

One Test Parameter

			EW	MA.		Shewha	rt Chart
		LAM	BDA	ł	Κ	F	X
Chart	Limit	Precision	Severity	Precision	Severity	Precision	Severity
Level	Туре						
Stand	Reduced K				رح		1.48
	Action	0.30	0.30	1.48	(1.80)	1.48	1.80
Lab	Warning Action	0.3 0.3	0.2	m 2.33	1.9	1.48 -	- 1.80
Industry	Warning	0.2	0.2	1.48	1.80		
	Action	0.2	0.2	2.33	2.58		

7% False Alarm Error Rate for Shewhart Charts and Stand Charts

7% False Alarm Error Rate for EWMA Warning Limits

1% False Alarm Error, Rate for EWMA Action Limits (Except for Lab Severity and Stand)5% False Alarm Error Rate for EWMA, Lab Severity Action

Adjustment&Made fsr Multiple Parameters Except in the Case of Shewhart Severity and EWMA, Lab Severity Action

Att 11, pg 1/

Motion:

Existing Lab --A lab that has conducted at least 3, operationally valid Cat 1R bibles calibration tests. **Box concrete soc Definition tests**. **A test stand**, within an existing lab, that has conducted at least 2 operationally valid Cat 1R calibration tests. New Stand --A test stand that does not meet existing stand status. Reduced K - TBD

8/0/0

Att 12, pg 1/1

Motion:

TMC to assign 1005-1 (PC-9M) as the primary calibration oil, UNTIL SUCH A TIME AS

OIL A IS AVAILABLE, 8/0/0

Att 13, pg 1/11

ADDENDUM K1

TEMPLATE CHECKLIST

Purpose

The Checklist for Comparing Tests to the Template is used to assess progress in new engine test development against the Code Acceptance Criteria and Action Plans. The checklist is updated periodically during the course of test development and is provided to, and discussed with, the appropriate ASTM test development task force.

The rating scale for comparing test development to the Template is as follows:

A -- Completed

B -- In Progress

C -- Planned

D -- No Action

Test Name Caterpillar 1 R Assessment Date August 3, 2001

American Chemistry Council Code of Practice Appendix K -Template for Acceptance of New Tests Checklist for Comparing Tests to the Template

January 2000 REVISED

ACC Code Of Practice -- Page K1

A. Precision. Discrimination and Parameter Independence

$E_p =$	$d_p/Spp, E_p \ge 1$	1.0 for all	pass/fail	parameters
1	a' 11 . 1.00	C	1	

 d_p = Smallest difference of practical importance

Spp = Pooled standard deviation at target level of performance

Parameter	Dp	Spp	Ер	≥1.0?
Top Groove Carbon, Demerits (TGC)				-
Top Land Carbon, Demerits (TLC)				
Weighted Deposits, Demerits (WDR)				
Avg Oil Cnsmptn, g/k Wh (OC)				
End of Test Oil Consumption, g/k Wh (ETOC)				
Undercrown Deposits, Demerits (UC)				
Cylinder Liner Wear Step, um (CLWS)				
Loss of Side Clearance, millimeters (LSC)				
% Top Land Heavy Carbon (TLHC)				
% Top Groove Fill (TGF)				

Comments:

A.1 Precision

A.2 Discrimination

For each test parameter in A.1, at least one of the oils used in proof-ofconcept testing, matrix testing, or calibration testing must be statistically significantly different from at least one of the remaining oils. This difference must be in the correct direction, i.e., a poor oil should not test out as significantly better than a good oil. Significant difference may be declared with a p-value of 10% or less. Multiple comparison techniques (Tukey, Scheffe, Bonferroni, etc.) for the least-square means of the oils are preferred comparison techniques and should be stated in the analysis. Note that these least-squares means are not necessarily proposed LTMS targets.

RATING SCALE: A - Completed; B - In Progress; C - Planned; D-No Action

January 2000 revised

			p-v	alue for t-test of (Tuke)	
TGC	Least-Square	95% Confidence	VS	I vs	vs
	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
Oil 3					
			p-v	alue for t-test of/ (Tuke)	
TLC	Least-Square	95% Confidence	Vs	VS	VS
	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
Oil 3					
				value for t-test of (Tuke	y)
WDR	Least-Square	95% Confidence	Vs	VS	vs
0.11 /	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
Oil 3					
			p-v	value for t-test of (Tuke	
OC	Least-Square	95% Confidence	Vs	Vs	vs
	M e a n	Interval for Mean	1	2	3
A11 ·	I		1		
Oil 2	I				
Oil 3					
			D-V	value for t-test of	f equal means
			P	(Tuke	
ETOC	Least-Square	95% Confidence	Vs	VS	VS

				(Tukey)	
ETOC	Least-Square	95% Confidence	Vs	VS	vs
	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
oil3					

BATING SCALE: A - Completed; B -In Progress; C-Planned; D - No Action

Janua y 2000 revised

Att 13, pg 4/11

			u-v	alue for t-test of (Tukey	
UC	Loost Causero	050/ Carfidance	Va		
UC	Least-Square	95% Confidence	Vs	VS	vs
	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
oil3					
			p-v	alue for t-test of (Tukey	
CLWS	Least-Square	95% Confidence	Vs	VS	vs
	Mean	Interval for Mean	1	2	3
Oil 1					
Oil 2					
Oil 3					
0110					
				1 0 0	
			p-v	alue for t-test of Tukey(
LSC	Least-Square	95% Confidence		(Tukey	/)
LSC	Least-Square Mean	95% Confidence Interval for Mean	p-v Vs 1	(Tukey vs	/) v s
	Least-Square Mean	95% Confidence Interval for Mean		(Tukey	/)
Oil 1				(Tukey vs	/) v s
Oil 1 Oil 2				(Tukey vs	/) v s
Oil 1				(Tukey vs	/) v s
Oil 1 Oil 2			Vs 1	(Tukey vs	7) vs 3 equal means
Oil 1 Oil 2	Mean	Interval for Mean	Vs 1 p-v	(Tukey VS 2 alue for t-test of	7) vs 3 equal means
Oil 1 Oil 2 Oil 3		Interval for Mean 95% Confidence	Vs 1	(Tukey VS 2 alue for t-test of (Tukey	7) VS 3 equal means 7)
Oil 1 Oil 2 Oil 3	Mean Least-Square	Interval for Mean	Vs 1 p-v	(Tukey VS 2 alue for t-test of (Tukey VS	7) VS 3 equal means 7) VS
Oil 1 Oil 2 Oil 3	Mean Least-Square	Interval for Mean 95% Confidence	Vs 1 p-v	(Tukey VS 2 alue for t-test of (Tukey VS	7) VS 3 equal means 7) VS

			p-value for t-test of equal means (Tukey)			
TGF		95% Confidence	Vs	VS	vs	
	Mean	Interval for Mean	1	2	3	
1						

Comments:

The Precision/BOI Matrix did not contain known discrimination oils.

RATING SCALE: A - Completed; B - In Progress; C - Planned; D - No Action

Janua y 2000 revised

A.3. Parameter Independence

Each pass/fail parameter has a unique and significant purpose in terms of the engine oil performance standard. Parameter redundancy is investigated if a correlation coefficient is 0.85 or greater.

	TGC	TLC	WDR	OC	ETOC	UC	CLWS	LSC	TLHC	TGF
TGC										
TLC										
WDR					Î					
OC										
ETOC										
UC										
CLWS										
LSC										
TLHC										
TGF										

Correlation Coefficients for Parameters

Correlation Coefficients for Parameters Adjusting for Stands and Oils

	TGC	TLC	WDR	OC	ETOC	UC	CLWS	LSC	TLHC	TGF
TGC					l		1			
TLC										
WDR										
OC										
ETOC										
UC										
CLWS									1	
LSC										
TLHC										
TGF				·					1	1

Comments:

RATING SCALE: A = Completed; B - In Progress; C - Planned; D-No Action

January 2000 revised

f B

B. Severitv and Precision Control Charting

<u>Reauirements</u>

B.1 Is an LTMS for reference oil tests in place which is consistent with CMA Code Appendix A?

8.2 Are appropriate data transforms applied to test results?

Comments: The **1P** has transforms **for** OC and ETOC. Transforms are expected in the 1 R based on 1 P experience.

C. Interpretation of Multiple Tests

<u>Reauirements</u> C.1 Is a suitable system in place to hand	dle repeat tests on a	_
candidate oil? Type: MTAC Tiered Limits	Other	- C -
C.2 Has a method for the determination results been defined?	n and handling of outlier	- C -

Comments:

D. Action Plan

D.1 Reference Oils

Do the majority of reference oils represent current technology?	_¢
Are the majority of reference oils of passing or borderline pass/fail performance?	_C_
<u>Recommended Aaaroaches</u> D.l.l Is reference oil supply and distribution handled through an independent organization?	- A -
D.1.2 Is a quality control plan defined and in place?	- A -
D.1.3 Is a turnover plan defined/in place to ensure uninterrupted supply of reference oil and an orderly transition to reblends?	A

RATING SCALE: A - Completed; B - In Progress; C - Planned; D - No Action

Janua y 2000 revised

D.1.4 Is a process for introducing replacement reference oils defined and in place?	- B -
D.1.5 Are oils blended in a homogeneous quantity to last 5 years?	_¢
Comments: Specific reference oils not yet selected, BUT use of a Category oil would be helpful.	reference
D.2 Test Parts	
Are all critical parts identified?	A
Critical parts include Piston Cooling Nozzle, Piston, Rings, Liner, EPROM. (1LSpecification is used for critical parts without ASTM input. Parts are issue used in a range of serial numbers.	
Is a system defined/in place to maintain uniform hardware?	- A -
IY part numbers are used for critical parts.	
Is there a system for engineering support and test parts supply?	A
<u>Recommended Approaches</u> D.2.1 Are critical parts distributed through a Central Parts Distributor (CPD)?	A
Morton Parts is-functionally the CPD. Physically, dealerships distribute the part	rts.
D.2.2 Are critical parts serialized, and their use documented in test report?	_A_
D.2.3 Are all parts used on a first in/first out basis?	- D -
D.2.4 Are all rejected critical parts accounted for and returned to the CPD?	A
Parts are returned to Caterpillar.	
D.2.5 Does the CPD make status reports to the test surveillance body at least semi-annually?	- A -

RATING SCALE: A-Completed; B -In Progress; C-Planned; D - No Action

Janua y 2000 revised

D.2.6	Is there a QC and turnover plan in place for critical test parts, including identification and measurement of key part attributes, a system for parts quality accountability, a turnover plan in place for simultaneous industry-wide use of new parts or supply sources?	A
D.2.7	Is the CPD active in industry surveillance panel/group, and in industry sponsored test matrices?	_A_
Comm	nents:	
D.3 Test	Fuel	
	<u>mended Anaroaches</u> Is the fuel specified and the supplier(s) identified?	_A_
Phillips P	C9.	
	Is a process in place to monitor fuel stability over time?	- A -
The fuel is	considered stablegiven the turnover time for batches.	
	Are approval guidelines in place for fuel certification?	- A -
Every bate	ch to be analyzed and certified.	
D.3.2	If the test fuel is treated as a critical part of the test procedure: Is an approval plan and severity monitoring plan for each fuel batch in place?	- D -
Not deem	ed necessa y.	
	Is a quality control plan defined and in place to assure long term quality of the fuel?	_A_

TMC is on the distribution list for fuel batch certifications and must give their approval.

RATING SCALE: A - Completed; B - In Progress; C - Planned; D-No Action

January 2000 revised

Is a turnover plan defined, in place and demonstrated to ensure uninterrupted supply of fuel? $\hfill A$ -

This is based on Phillips letter of commitment.

Comments: Fuel is not considered critical for this test. Note that Fuel batches that meet acceptance may be mixed.

D.4 Test Procedure

<u>Recon</u>	<u>nmended Awroaches</u>	
D.4.1	Is a technical report published documenting, per ASTM Flow Test precision for reference oils?	Plan: C
	Field correlation?	- D -
	Test development history?	- C -
D.4.2	Are test preparation and operation clearly documented in a standard format, e.g., ASTM, CEC	B
D.4.3	Are test stand configuration requirements documented and Standardized?	_ <u>k</u> _A
D.4.4	Are milestones for precision improvements established	D
D.4.5	Are routine engine builder workshops planned/conducted?	A
Target one	e <i>per</i> calendar year.	

Comments:

RATING SCALE: A - Completed; B - In Progress; C - Planned; D-No Action

January 2000 revised

D.5 Rating and Reporting of Results

	<u>mended Approaches</u> Are the reported ratings from single raters (i.e. not averages from various raters)?	- A	\ -
Ratings ar	e not averaged, but a consensus rating among raters may be used within	ı a la	ab.
D.5.2	Is a suitable severity adjustment system in place?	_¢	. A
D.5.3	Is each pass/fail parameter unique and have a significant purpose for judging engine oil performance?	_¢	B
Theoretical	lly, this is not true at this time.		
D.5.4	Do all rate and report parameters judge operational validity, help in test interpretation or judge engine oil performance?	р - С	, _
ESC and E	Bore Polish are examples of rate and report parameters in this test.		
D.5.5	Are routine rater workshops conducted/planned?	A	<u>ـ</u>
Raters mu	st attend CRC HD rating workshop at least once per 12 months.		

Comments:

RATING SCALE: A - Completed; B - In Progress; C - Planned; D - No Action

Janua y 2000 revised

D.6 Calibration, Monitoring and Surveillance

<u>Recommended</u> Approaches

- D.6.1 Is a process in place for independent monitoring of severity and precision with an action plan for maintaining calibration of all laboratories?
- D.6.2 Are stand, lab, and industry reference oil control charts of all pass/fail criteria parameters used to judge calibration status?
- D.6.3 Does the specified calibration test interval allow no more than 15 non-reference oil test between successful calibration tests?

D.6.4 Is an industry surveillance panel in place?

Comments:

D.7 Guidelines for Read Across

Recommended Approaches

D.7.1 Is a plan defined to establish data for development of BOI and VGRA?

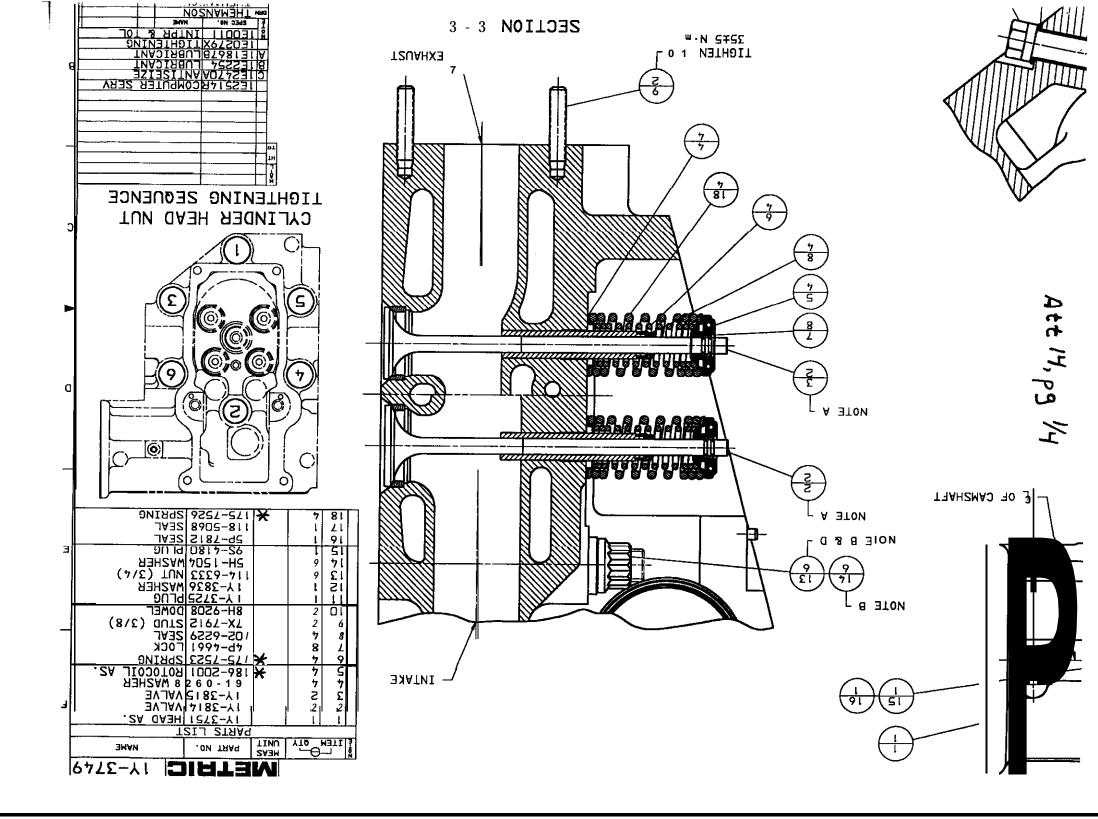
In **running** the revised 1R Matrix without Base Oil information, there was general agreement in the Industry that BOI from the 1P would carry over to the 1R.

D.7.2 Has VGRA and BOI data been summarized and included in the technical report in D.4.1?

Comments:

RATING SCALE: A-Completed; B - In Progress; C-Planned; D - No Action

Janua y 2000 revised


1R-07/17/2001-- PageK11

.

_¢ ∀

κ A

Att 14, pg 2/4

VALVES (SHEET 2 of 2)

<1> VALVE SPRING-OUTER (1757526) (INTAKE AND EXHAUST) SPECIFICATION: VALVE SPRING-INNER (175-7523) ASSEMBLED LENGTH

ASSEMBLED LENGTH 67.12 mm (2.643 in)

LOAD AT ASSEMBLED LENGTH 248 ±25 N (56±5.5 ib.)

OPERATING LENGTH 51.00 mm (2.008 in) LOAD AT OPERATING LENGTH 736±35 N (156±8 lb.)

> FREE LENGTH AFTER TEST 77.88 mm (**3.066** in)

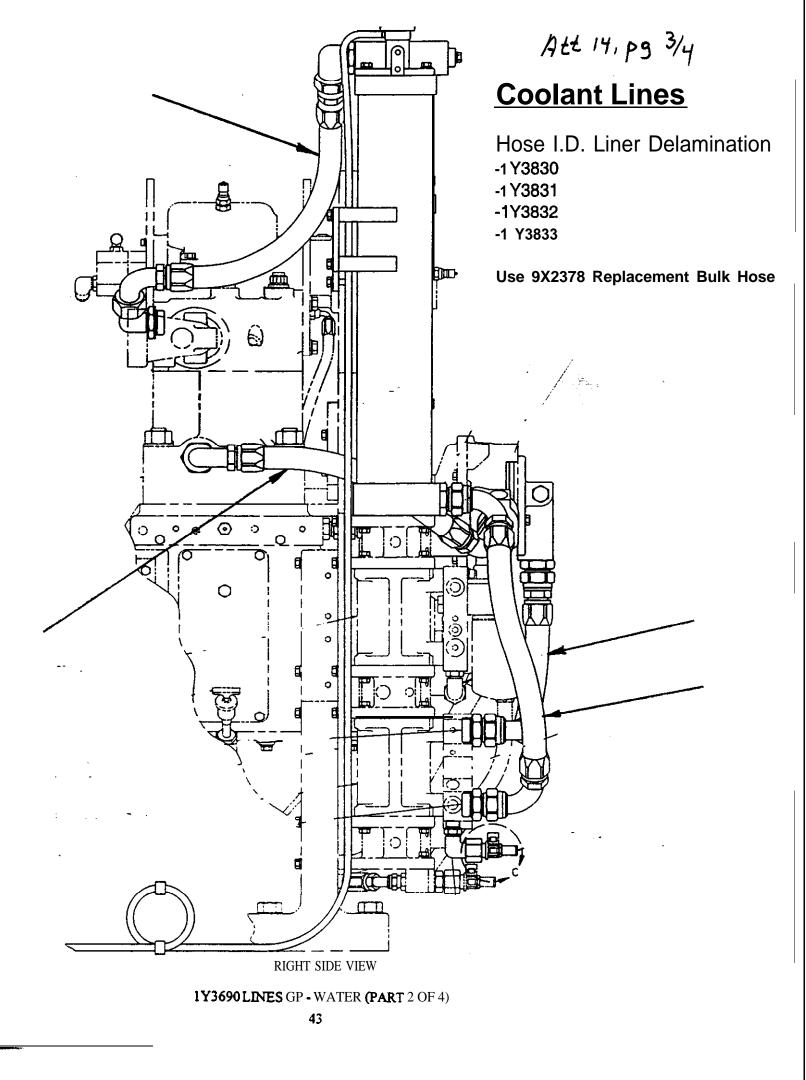
OUTSIDE DIAMETER 36.29 mm (1.429 in)

- <2> VALVE STEM DIAMETER (INTAKE AND EXHAUST) 9.441± 0.008 mm (0.3717±0.0003 in)
- <3> EXHAUST VALVE RECESS BELOW BOTTOM DECK OF CYLINDER HEAD 1.5 mm ± 0.3 (0.059 ±0.012 in)
- <4> INTAKE VALVE RECESS BELOW BOTTOM DECK OF CYLINDER HEAD 2.5 mm ± 0.3 (0.098 ±0.012 in)
- <5> EXHAUST VALVE HEAD OUTSIDE DIAMETER 41.51M.13 mm (1.646± 0.005 in)
- <6> INTAKE VALVE HEAD OUTSIDE DIAMETER 47.00±0.13 mm (1.850± 0.005 in)
- <7> EXHAUST VALVE FACE ANGLE 4425fo.25 DEGREES FACE ANGLE OF EXHAUST VALVE SEAT INSERT 45.25M.5 DEGREES
- <8> INTAKE VALVE FACE ANGLE 29.25M.25 DEGREES FACE ANGLE OF INTAKE VALVE SEAT INSERT 30.25±0.5 DEGREES

ASSEMBLED LENGTH 60.14 mm (2.368 in)

LOAD AT ASSEMBLED LENGTH 18±12 N (26.5± 2.7 lb.)

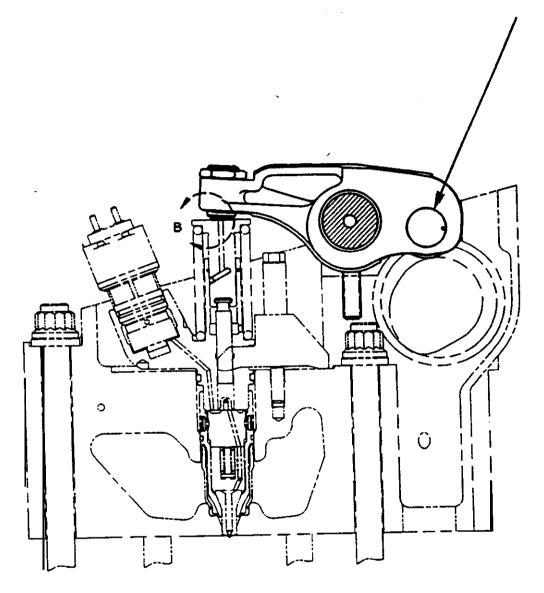
OPERATING LENGTH 44.02 mm (1.733 in) LOAD AT OPERATING LENGTH 356±18 N (80±4 lb.)


> FREE LENGTH AFTER TEST 71.03 mm (2.80 in)

OUTSIDE DIAMETER 25.17 mm (.99 in)

_

• •



Att 14, pg 4/4

Rocker Arm Bronze Pin Wear

Use replacement rocker arms for the valves and injector with:

- a date on parts box after 1/1/2000
 a date on rocker arm after 5/1/1999.
 (The date is coded on the rocker arm casting surface: N=0; U=1; example: AUDDDD = 5/1/1999)

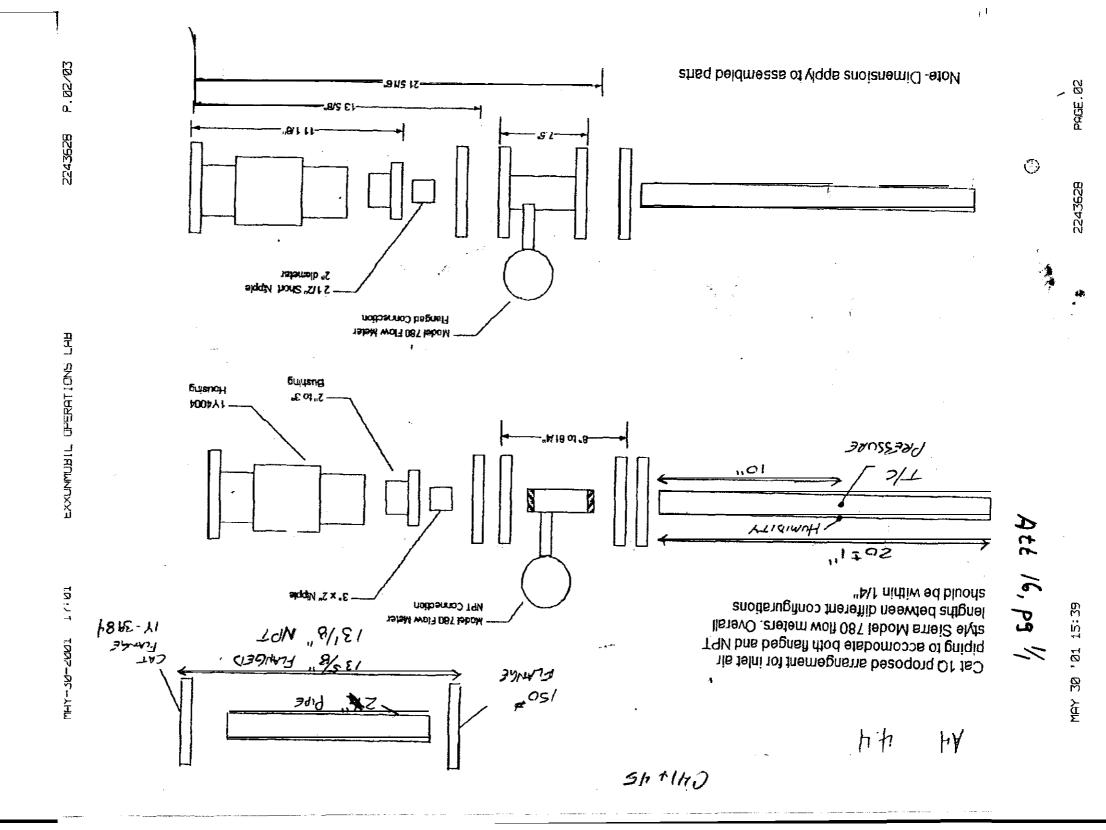
FRONT VIEW VIEW OF UNIT INJECTOR MECHANISM

Att 15, pg 1/1

PC-9 Fuel Report

Current PC-9 fuel inventory --1 Million gallons

Inventory level when a new batch is blended -- 150,000 gallons


Volume of fuel blended in a new batch --1 Million gallons

Fuel storage precautions -1) Stored in fixed roof tank
2) Fuel analyzed monthly
3) Dedicated (exclusive) lines from storage tank to the loading facility
4) Each shipment is checked for API gravity

Contact --Don Burnett Chevron Phillips Chemical Company LP Specialty Chemicals Group 1301 McKinney, Suite 2130 Houston, Tx 77010-3030

TEL: 888-766-7223 TEL: 713-289-4859 FAX: 713-289-4865

CELL: 713-305-8702 burnede@cpchem.com

				.		<u>AH /</u>	7. Pg 1/1
1R SCOTE	WARM		nd OPER	ATING C	ONDITION	NS	5/31/2001
PARAMETER	UNITS	TOL	1	EST SPEC			
			STEP 1	STEP 2	STEP 3	STEP 4	STEP 5
			5 Min	5 Min	5 Min	10 Min	60 Min
Speed	RPM	+/- 3	1000	1000	1400	1800	1800
Power	KW	1	IDLE	10	28	43	~68
BMEP	KPa		-	400	900	1140	~1875
Torque	NM	(a) +/- 5	_	100	175	220	~355
Fuel Rate	Gr/ Min	(b) +/- 1	-	~48	~ 95	~148	240
B.S.F.C.	Gr/Kw-Hr	1	-	-	219	209	
Fuel Timing	BTC		6	6	6	6	6
Fuel Rack Pos.	mm	1	2.6	3.8	6.0	7.4	
Humidity	Gr/ Kg	+/- 1.7		-	-		17.8
TEMPERATURES	DEG C						
Fuel Into Head		+/- 3	~31	~32	~33	~36	42
Coolant Into Jug		1	~41	~51	~82	~86	101
Coolant From Head		+/- 3	42	52	83	90	105
Oil To Cooler			-	-	-	-	100
Oil Manifold		+/- 3	-	-	-		120
Inlet Air Manifold		+/- 3	-	-	60	60	60
Exhaust Manifold			~120	~275	~340	~370	~605
PRESSURES	КРА						
Fuel From Head		+/- 20	275	275	275	275	275
Coolant Into Jug		(c)	~44	~44	~70	~81	~81
Oil Manifold		+/- 20	415	415	415	415	415
Inlet Air Barrel (abs)		+/- 1	120	120	157	225	292
Exhaust Barrel (abs)		+/- 1	-	104	146	217	252
Crankcase				-		~.05	~.10
FLOWS							
Coolant	LPM	+/- 2	~34	~34	~55	~75	75
Blowby	LPM					~35	~35
Air	Kg/ Hr	├─── ┤	-	-			~390

NOTE:

Torque

(a) Engine controlled to Torque Spec for Steps #2, #3, #4, and 5 minutes of Step #5
(b) Engine controlled to Fuel Rate for last 55 minutes of Step #5

(c)Air Pressure at coolant tower controlled to 35 kPa

Ramp UP Conditions Between Warm-Up Steps

Speed Inlet Air Press (kPa) Exhaust Press (kPa) Inlet Air Temp (deg C)

(1) At 5 minutes (beginning at step #2)
(2) At 25 minutes (beginning at step #5)
At 10 minutes (beginning at step #3)
At 10 minutes (beginning at step #3)
At 10 minutes (beginning at step #3)
At 0 minutes (at start of test)

20 Nm/min 14 Nm/ min 100 rpm/min 12 kPa/min 12 kPa/min 5 Oeg C/min

1 R Hardware

Tap Ring	1Y4014
Inter Ring	1Y4013
Oil Ring	1Y4012
Liner	1Y3805
	Inter Ring Oil Ring

Test Parameters

504 hrs Every 36 hrs; Refill Oil Reservoir To Full Level (no force oil additions) 5800 g 169-5028

Test Duration Oil Additions Total Oil Capacity ECM Chip

Piston Crown Piston Skirt Oil Cooling Jet Bolt-Oil Cooling Jet