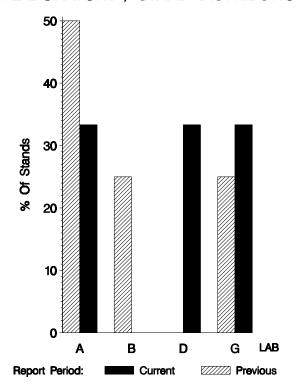
MEMORANDUM: 01-071

DATE: June 15, 2000

TO: Mike Zaiontz,

Chairman, Single Cylinder Diesel Surveillance Panel

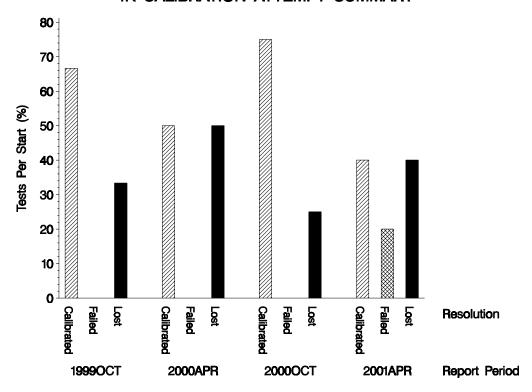
FROM: Scott Parke


SUBJECT: 1K Testing from October 1, 2000 through March 31, 2001

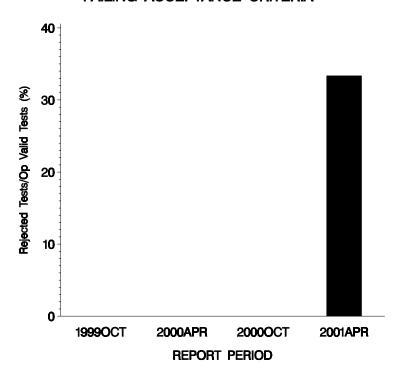
Five calibration tests were reported to the Test Monitoring Center during the period from October 1, 2000 through March 31, 2001. The data from the operationally valid tests is shown on page 8. Following is a summary of testing activity this period.

	Reporting Data	Calibrated on 3-31-01
Number of Labs	3	3
Number of Stands	3	5

Stands reporting data this period were distributed as shown below:


1K LABORATORY / STAND DISTRIBUTION

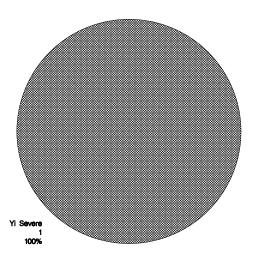
Test Distribution by Oil and Validity


					Tot	tals
		809-1	810-2	811-1	Last Period	This Period
Accepted for Calibration	AC	1	0	1	3	2
Rejected Mild	OC	0	0	0	0	0
Rejected Severe	OC	0	0	1	0	1
Rejected for EWMA Precision	OC	0	0	0	0	0
Rejected for Shewhart Precision	OC	0	0	0	0	0
Operationally Invalid (lab)	LC	1	0	0	0	1
Operationally Invalid (lab/TMC)	RC	0	0	0	0	0
Aborted Calibration	XC	1	0	0	1	1
Total		3	0	2	4	5

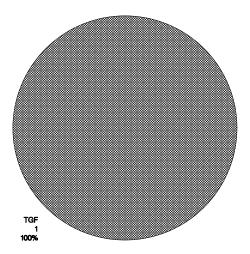
1K CALIBRATION ATTEMPT SUMMARY

Testing volume this period was too low to draw meaningful conclusions from this chart but it is provided for historical context.

OPERATIONALLY VALID 1K TESTS FAILING ACCEPTANCE CRITERIA

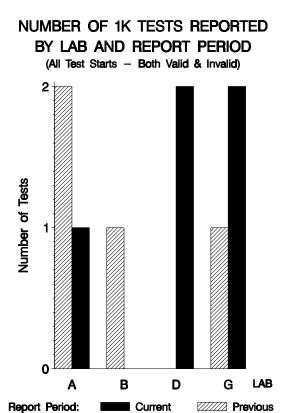


The above chart shows the percentage of failed but operationally valid tests. One test on oil 811-1 failed for severe TGF this period.

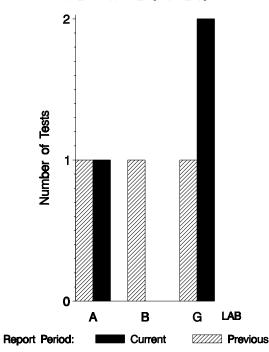

No LTMS deviations were written this period (none have ever been written for this test).

Shown below is the distribution by type and parameter of the alarms causing the failures for this period.

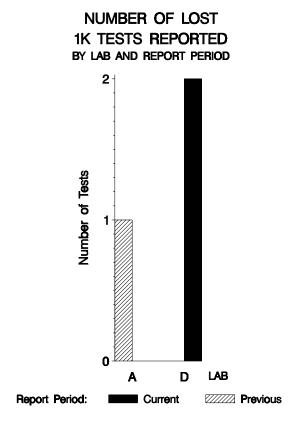
DISTRIBUTION OF 1K LTMS STAND ALARMS (By Alarm Type)



DISTRIBUTION OF 1K LTMS STAND ALARMS (By Test Parameter)


One test failed. It was severe on TGF.

By lab, the tests run this report period were distributed as shown below:



With all operationally invalid tests removed, the distribution looks like this:

NUMBER OF OPERATIONALLY VALID 1K TESTS REPORTED BY LAB AND REPORT PERIOD

And the by-lab distribution of lost tests:

Lost Tests per Start by Oil and Lab

		809-1			810-2			811-1			Total	
Lab	Lost	Starts	%	Lost	Starts	%	Lost	Starts	%	Lost	Starts	%
A	0	1	0							0	1	0
D	2	2	100							2	2	100
G							0	2	0	0	2	0
Total	2	3	67				0	2	0	2	5	40

Lost tests are those that were either aborted, rejected by lab, or operationally invalid.

Causes for Lost Tests

				Oil			Vali	Validity		Ι	Loss Rate	
Lab	Lab Cause		809-1	810-1	811-1	ТС	RC	XC	LC RC XC MC	Lost	Lost Starts	%
D	D Speed control problems.		•			•				2	2	100%
	Scuff @ 7h due to poor p-tube aiming	p-tube aiming	•					•				
		Lost	2	0	0	1	0	1	0			
		Starts	3	0	0	5	5	5	5			

%0

20%

%0

20%

%0

%0

%29

%

Average ∆/s by Lab								
Lab	n	TGF	WDK	TTLHC*	BSOC	EOTOC		
A	1	-0.350	-1.177	-0.550	-0.538	-0.373		
G	2	0.675	-1.415	0.761	-0.381	0.136		
Industry	3	0.333	-1.336	0.324	-0.434	-0.034		
809/809-1	1	-0.350	-1.177	-0.550	-0.538	-0.373		

^{*} Transformed TLHC

DATA FROM ALL OPERATIONALLY VALID TESTS REPORTED THIS PERIOD:

LTMS DATE	LAB	STAND	OIL	TG	WD	TL	ос	ETOC	TGYI	WDYI	TLYI	OCYI	ETOCYI
20001202	Α	24	809-1	12	174.5	0	0.19	0.16	-0.350	-1.177	-0.550	-0.538	-0.373
20010207	G	6	811-1	59	253.1	1	0.19	0.22	1.910	-1.335	-0.175	-0.794	-0.119
20010220	G	6	811-1	18	244.1	12	0.27	0.34	-0.560	-1.496	1.697	0.031	0.390

DISCUSSION OF INDUSTRY PERFORMANCE OVER THIS PERIOD

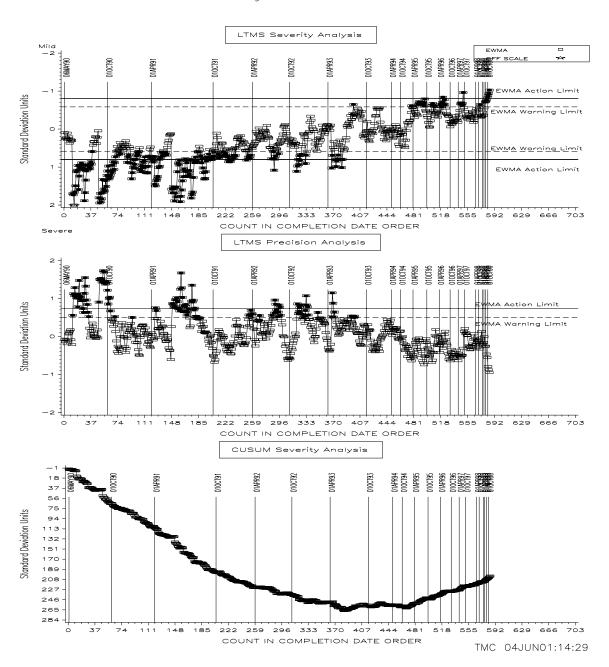
TGF:

During this report period the industry average TGF Yi (shown in the table on the previous page) was at 0.333. Using 809-1's test target standard deviation of 15.7 to compute an average ∆ yields 5% TGF severe.

CATERPILLAR 1K INDUSTRY OPERATIONALLY VALID DATA

Top Groove Fill LTMS Severity Analysis EWMA Standard Deviation Units <u>EWMA Warning Limi</u>t EWMA Action Limit 296 333 370 407 444 518 481 COUNT IN COMPLETION DATE ORDER LTMS Precision Analysis Standard Deviation Units 592 COUNT IN COMPLETION DATE ORDER CUSUM Severity Analysis -52 Standard Deviation Units -33 24 43 62 81 100 COUNT IN COMPLETION DATE ORDER TMC 04JUN01:14:29

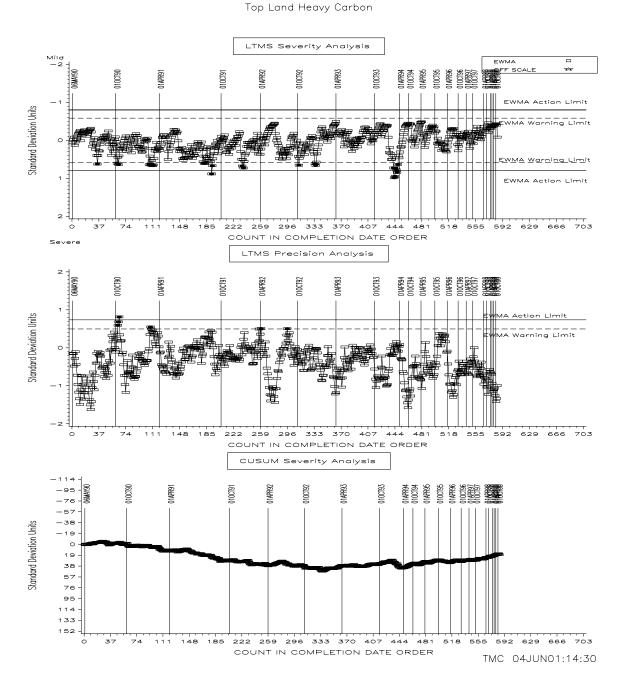
Shown above is the LTMS/Cusum plot for TGF. Over this report period, TGF remained within both severity and precision LTMS limits.


The CUSUM plot for TGF is also unremarkable and has been virtually flat since January of 1994.

WDK:

WDK continues to trend slightly mild overall. Industry average Yi for this period was –1.336 (see table on page 8). Using the target standard deviation for 809-1 (35.6) converts this to 47.6 demerits mild. The LTMS/Cusum plot is shown below. Industry WDK is currently exceeding the EWMA severity action limit. Precision remains within limits.

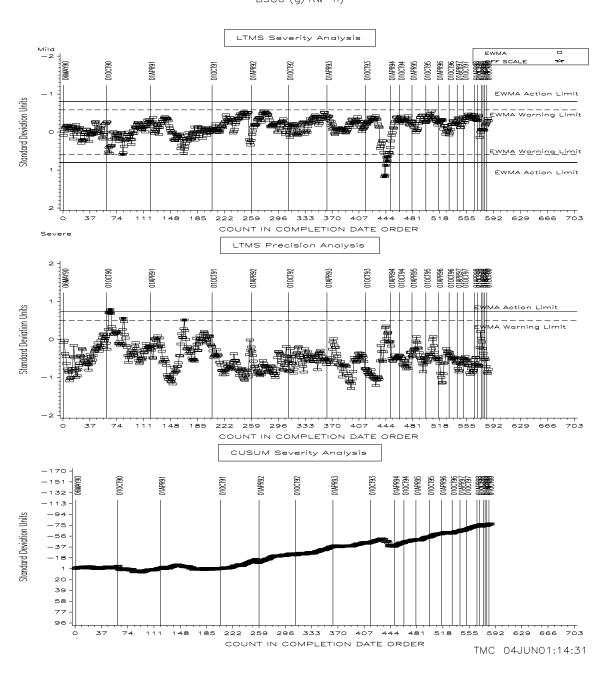
CATERPILLAR 1K INDUSTRY OPERATIONALLY VALID DATA


Weighted Total Demerits

TLHC:

The average transformed TLHC Yi for this report period was 0.324 severe (see table on page 8). Using the test target standard deviation of 1.1 from oil 809-1 to compute an average transformed delta yields 0.356. Back-transforming this value gives 0.4% TLHC severe. Overall, this parameter has exhibited on-target performance for the life of this test.

CATERPILLAR 1K INDUSTRY OPERATIONALLY VALID DATA

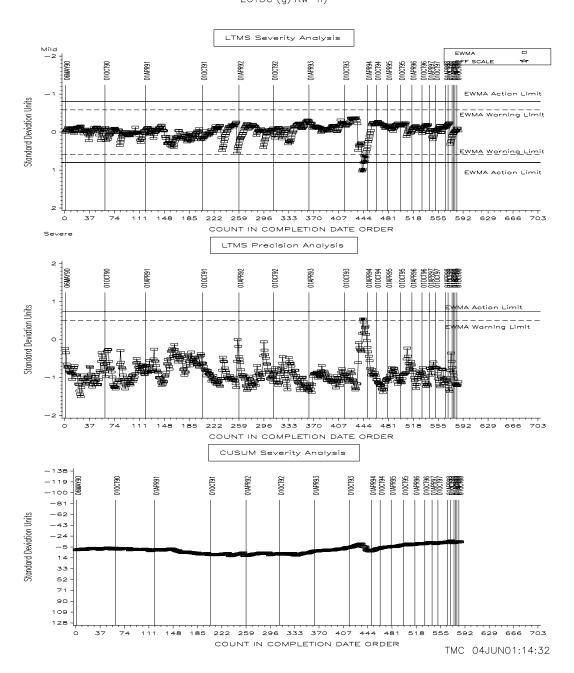

The LTMS/Cusum plot for transformed TLHC is shown above. Precision and severity were both within limits throughout this report period.

BSOC:

Over the current report period, average BSOC Yi was -0.434. Computing an average delta using the test target standard deviation of 0.145 for oil 809-1 gives 0.06 g/kWh. The LTMS/Cusum plot for BSOC is shown below. The Cusum plot indicates a slight but continuous mild trend throughout the life of the test.

CATERPILLAR 1K INDUSTRY OPERATIONALLY VALID DATA

BSOC (g/Kw-h)

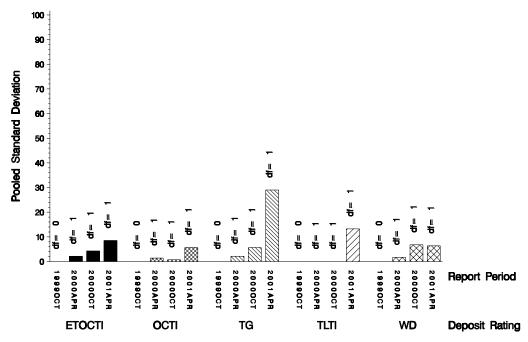


EOTOC:

As usual, EOTOC closely mirrors BSOC. Over the current report period, EOTOC had an average Yi of -0.034. Multiplying by the target standard deviation for 809-1 (0.332 g/kWh) gives an equivalent EOTOC of 0.01 g/kWh. The LTMS/Cusum plot for EOTOC is shown below.

CATERPILLAR 1K INDUSTRY OPERATIONALLY VALID DATA

EOTOC (g/kw-h)



POOLED S:

Shown below is a bar chart comparing the pooled s values for the 1K test parameters over the last four report periods. Please note that the values for TLHC have been multiplied by 10 and the values for BSOC and EOTOC have been multiplied by 100 to allow these parameters to be shown on the same plot as the other parameters. The small n-size of recent periods prohibits the drawing of meaningful conclusions.

1K REFERENCE TEST PRECISION

POOLED STANDARD DEVIATION BY SIX-MONTH ASTM REPORT PERIOD

Transformed TLHC (TLTI) is scaled by 10 for display on the common y-axis BSOC (OCTI) and ETOC (ETOCTI) are scaled by 100 for display on the common y-axis

STATUS OF REFERENCE OIL SUPPLY:

At the end of this report period, the testing oil supply stood as outlined in the following table:

		@ TN	MC
Oil	Cans @ Labs	Cans	Gallons
809	5	0	0
809-1	20	306	3068
810-2	15	360	3606
811-1	20	2	22
811-2	0	173	1732
Total	60	841	8428

^{*} Future reblends of oils marked with an asterisk are *not* obtainable by TMC.

Be aware that this table presumes that *all* of each of these oils is dedicated to the 1K test area. All of these oils are also used in the 1N test area and 809-1 is used in several other test areas.

TIMELINE OF SIGNIFICANT EVENTS IN THE LIFE OF THE 1K TEST:

Effective Date	Info Letter	
19891002		START OF 1K TESTING
19900506		FIRST TEST FOR 1K CALIBRATION
19901215		FIRST USE OF 811-1
19910220		FIRST USE OF 810-1
19910407	0	LAST USE OF 811
19910710	2	INDUSTRY CORRECTION FACTORS FOR CANDIDATE TESTING LAST USE OF 810
19910723 19910816		FIRST USE OF 809-1
19910927	1	INFORMATION LETTER 1 - REWRITTEN PROCEDURE
19911015	3	COOLING SYSTEM MODIFICATION
19911015	3	COOLANT BYPASS VALVE
19911015	3	CYLINDER LINER WEAR MEASUREMENT DEVICE
19911015	3	TEST FUEL NAME CHANGE
19911015 19920601	3 4	REPORT FORMS CLOSED COOLING SYSTEM
19920601	4	PISTON PACKAGING FOR REFEREE RATING
19920601	4	MINERAL FREE WATER - DEFINITION
19920601	5	FLUSHING CART FLOW DIAGRAM
19920731	6	TEMPERATURE; PRESSURE AND SPEED STANDARD CALIBRATION TRACEABILITY
19920731	6 7	HUMIDITY MONITORING SYSTEM
19921015 19921015	7	FUEL INJECTION PUMP TIMING USING THE BUBBLE METHOD PISTON RATER CALIBRATION
19921015	7	OIL SAMPLING FREQUENCY FOR USED OIL ANALYSIS
19930324	8	INTERNAL ENGINE PAINT AND SUPPLIER
19930702	9	CATERPILLAR BRAND COOLANT
19930708	10	PROCEDURE DISCLAIMER
19930708	10	CYLINDER HEAD COOLANT PASSAGE CLEANING
19930708 19930708	10 10	CRANKCASE PRESSURE INCREASE DURING BLOWBY MEASUREMENT ACCEPTABLE CYLINDER HEAD/JUG ASSEMBLIES
19930708	10	RING GAP MEASUREMENT - FEELER GAUGES/TAPER GAUGE
19930708	10	PISTON POSITION DURING DOWNTIME
19930708	10	OIL CONSUMPTION CALCULATIONS
19930708	10	OIL CONSUMPTION CALCULATION AFTER SHUTDOWN
19930708	10	MISSING OR BAD TEST DATA
19930708 19940101	10 11	TYPOGRAPHICAL ERROR IN TABLE A12 TEST RUN NUMBERING
19940101	11	PISTON PHOTOGRAPHS
19940101	11	USE OF AN ALIGNMENT FIXTURE IN P-TUBE AIMING
19940101	11	LOCATION OF LINER SURFACE FINISH MEASUREMENTS
19940101	11	LOCATION OF LINER BORE DIAMETER MEASUREMENTS
19940101	11	ENGINE ROTATION SPEED DURING FLUSHING
19940101 19940101	11 11	ACCEPTABLE CYLINDER LINER PART NUMBERS CALIBRATION FREQUENCY
19940102		CATERPILLAR COOLANT DEADLINE
19940301	12	OUTLIERS AS A TEST VALIDITY CRITERIA
19940301	12	INSTRUMENTATION CALIBRATION TOLERANCES AND TIME CONSTANTS
19940316	13	FUEL DILUTION AS AN OPERATIONAL VALIDITY CRITERION
19950403 19950531		LAST USE OF 809 LAST NON-DISCRIMINATION RUN ON 810-X
19950907		FIRST LTMS TEST
19960510	96-1	1K/IN DATA DICTIONARY AND REPORT FORMS (VERSION=19960304)
19960913	96-2	BETA TESTED 1K/1N DATA DICTIONARY AND REPORT FORMS (VERSION=19960913)
19961217	07 1	FIRST 810-X DISCRIMINATION RUN
19970320 19970320	97-1 97-1	USE OF LOW SULFUR FUEL FOR THE 1N TEST ADDITION OF END OF TEST OIL CONSUMPTION (EOTOC) AS A REPORTED PARAMETER
19970320	97-1	ENGINE PARTS WARRANTY CLAIM PROCEDURE CHANGE
19970320	97-1	LTMS REQUIREMENTS FOR CALIBRATION
19970320	97-1	CLARIFICATION OF SPECIFICATION FOR HUMIDITY CALIBRATION
19970320	97-1	CLARIFICATION OF WHEN REFEREE RATINGS ARE REQUIRED
19970320 19970320	97-1 97-1	ADDITION OF DATA DICTIONARY AND REPORT FORMS TO THE PROCEDURE TEST REPORTING DEADLINES
19970320	97-1	EXAMPLES FOR SEVERAL OF THE REPORT FORMS
19980101	98-1	FUEL SUPPLIER NAME CHANGE
19980101	98-1	FUEL SAMPLING REQUIREMENTS
19980101	98-1	REVISED ENGINE PARTS WARRANTY PROCEDURE & FORM
19980101	98-1	810-2 DISCRIMINATION RUNS RETURNED TO LTMS/CAL RUNS CAL PD = 1YR RATING WORKSHEET ADDED TO TEST REPORT AS FORM 4A
19980828 19981111	98-2 98-3	ADDED AREAS FOR CLEAN TO RATING SHEETS 5 & 5A
19990419	99-1	TEST STAND INSTRUMENTATION CALIBRATION REQUIREMENTS
19990419	99-1	COOLANT SYSTEM FLUSHING REQUIREMENTS
19990419	99-1	UPDATED INTAKE AIR FILTER REQUIREMENTS
19990419	99-1	VISUAL INSPECTION OF INTAKE AIR BARRELS
19990419 19990419	99-1 99-1	RE-CALIBRATION REQUIREMENTS WHEN CRANK IS REMOVED USE OF MOBIL EF-411 AS BUILD-UP/FLUSHING OIL
19990419	99-1	TIME ZONE FOR USE IN EOT REPORTING
19990419	99-1	EDITORIAL
20000101	00-1	810-X RUNS WILL OCCUR VOLUNTARILY ONCE PER YEAR

RATING:

During this report period, no second referee ratings were requested. The table below summarizes the re-rates for this report period:

Rating Re-rate Summary

Total number of re-rates requested	0
Number of tests where lab rating was changed	0
Number of tests where referee rating was changed	0
Number of tests where no changes were made	0

LAB VISITS:

No lab visits were completed this report period.

INFORMATION LETTERS:

No information letters were issued this report period.

FUEL BATCH APPROVAL:

During this period, the following fuel batches were approved for testing: 0010713, 0011812, 0012859, 0012878, 0101071, 0102127, and 0103204.

SUMMARY

- The small n-size seen again this report period limits the value of any conclusions that might be drawn but TGF, TLHC, BSOC, and EOTOC severity all remained within acceptable limits. Industry WDK is currently exceeding the EWMA severity action limit.
- Precision for all parameters remained within acceptable limits throughout this report period.

SDP/sdp/astm0401.doc/m01-071.sdp.doc

c: J. L. Zalar

F. M. Farber

A. C. Hahn

Single Cylinder Diesel Surveillance Panel