1N Part 1 - TGF

Evaluating the impact of different industry corrections varying reference oil targets and standard deviations

Elisa Santos and Doyle Boese October 21st, 2014

Performance you can rely on.

Outline

- Describe the problem
- Describe the five scenarios for TGF
- Evaluate the results by scenario
 - Show the data before and after the proposed corrections
 - Show number of failed calibrations by lab
 - Provide the equivalent Pass limit after the adoption of a particular CF and/or SA
 - Comment on obtained results
- Conclusions
- Appendix

Please, note that these calculations are not official and because of rounding they may change slightly

- New liners seem to have turned the 1N into a mild test
- Several correction factors are being considered
- My interpretation from the discussions had at the Surveillance Panel (SP) in May 2014 is that SP believes that the effect of the new liner is confounded with a reduction in variability. The SP wants to establish new standard deviations for the test moving forward and correct the mean to original values.
- My own interpretation based on my experience analyzing data is that there may be a relationship between the mean and standard deviation – after the liner change, the mean changed to a lower area of possible values taken by, for instance, the TGF parameter and because the lower mean, the variability has also decreased. If this is true, it makes sense to log transform the data.
- Plots of the TGF data are provided next

TGF rated by oil and liner type: original data

Mean and standard deviation by oil/liner

combination ---

TGF							
Oil	Liner	# of tests	Mean(TGF)	Std Dev(TGF)			
809-1	1Y355	30	35.3	20.5			
811-1	1Y355	29	26.655	20.036	26.2	19.8	Blue is published TMC value
811-2*	1Y355	20	24.700	21.617			
809/811	1Y355	59	31.05084746	20.27348183			
809-1	1Y3998	32	17.844	12.8116			
811-1	1Y3998	3	11.66666667	4.041451884			
811-2	1Y3998	22	14.54545455	6.045283661	MEAN DIFFERENCE	old -new	14.80523
809/811	1Y3998	57	16.24561404	10.44238156	MEAN RATIO	old/New	1.911337
WDN							

LN(TGFrated)							
Oil	Liner	# of tests	Mean(TGF)	Std Dev(TGF)			
809-1	1Y355	30	3.3688081	0.6702206			
811-1	1Y355	29	3.0182802	0.7416768			
811-2*	1Y355	20	2.8940084	0.7819953			
809/811	1Y355	59	3.196514725	0.706225937			
809-1	1Y3998	32	2.695332089	0.604926448			
811-1	1Y3998	3	2.4080083	0.4001887		Model RMSE	0.60014
811-2	1Y3998	22	2.603554304	0.389327474			
809/811	1Y3998	57	2.644786779	0.524358722	pooled Standa	ard dev.	

- 1A:
 - 1. Add 15 (after rounding 14.8) to all new liner test results
 - 14.8 is obtained by subtracting the weighted mean of all reference oils before (31.05) and after (16.25) liner change
 - Change standard deviation std dev of each oil when calculating the TGF yi according to table 1. These are the current std dev for the new liner by oil.
 - 3. Calculate the severity adjustment (–Zi*14.6), i.e. keeping the current std dev as indicated in the LTMS

- 1B:
 - 1. Maintain step 1 from bullet 1A above
 - 2. Maintain step 2 from bullet 2A above

Table 1: Target Mean and Std deviation for new liner by oil

		Standard
Oil	Mean	Dev.
809-1	35.3	12.8116
811-1	26.655	4.041452
811-2	24.700	6.045284
1004-3	23.9	9.9

 Calculate the severity adjustment (–Zi*10.4), i.e. changing the current std dev as indicated in the LTMS by the pooled std dev for the new liner

Scenarios (2)

- 2A:
 - 1. Use the log transformation to generate the correction factor, i.e. add 0.5814693 to all new liner test transformed TGF results
 - 2. Adopt the RMSE from the model used in bullet 1 above as the std dev for each oil when calculation the TGF yi. This common std deviation will represent the current std dev for the new liner by oil. Note that the model is based on old and new liners.
 - 3. Calculate the severity adjustment by (-Zi*RMSE from the model)
- 2B:
 - 1. Use the log transformation to generate the correction factor, i.e. add 0.5814693 to all new liner test transformed TGF results
 - 2. Instead of using the RMSE of the model, adopt the pooled std dev of the new liner transformed test results as the std dev for each oil when calculating the TGF yi. This common std deviation will represent the current std dev for the new liner by oil.
 - 3. Calculate the severity adjustment by (–Zi*pooled std based on new liner transformed test results)

- 3:
 - 1. Multiply TGF by 1.911 the ratio between the means before and after the new liner
 - 1.911 is the ratio between the weighted mean of all reference oils before (31.05) and after (16.25) liner change
 - 2. Change standard deviation new liner std dev of each oil (table 1) when calculating the TGF yi is also multiplied by 1.911. These are adopted as the std dev for the new liner by oil.
 - 3. Calculate the severity adjustment (–Zi*14.6), i.e. keeping the current std dev as indicated in the LTMS

Evaluating scenarios 1A and 1B

 Scenarios 1A and 1B are highlighted below in Table 1a: Lab A and Lab B1 fail calibration in, respectively, 2 and 3 tests.

Table 1a:

Lab	N new liner		TGF								
		Current state		Scenario 1A		Scenario 1B	Scenario 2A		Scenario 2B		
			Actual		Actual			Actual		Actual	
			Pass/Fail		Pass/Fail	Actual		Pass/Fail		Pass/Fail	
		Fail Cal	limit	Fail Cal	limit	Pass/Fail limit	Fail Cal	limit	Fail Cal	limit	
Α	22	0	20	3	20	16	2	18	3	18	
B1	22	0	7	2	5	5	2	11	4	11	
D	8	0	20	0	5	5	0	11	0	11	
G	14	0	9	0	5	5	0	11	0	11	

- Note how the planned TGF Pass/Fail limit of 20% compares with the actual Pass/ Fail limit after the proposed Correction Factor (CF) and the most recent calculated Severity Adjustment (SA) per lab are applied to a future test result.
- If Test result + CF + SA<Pass/Fail% => Test result <Pass/Fail% CF- SA
- Note that only Lab A has an SA (SA for 1A= -14.76; SA for 1B= -10.51). The other Labs are only affected by the correction factor
- The Pass/Fail for Lab A seems reasonable, but a CF=15 can also result in actual TGF Pass/Fail of 5 for the other labs, which seems unreasonable in practice
- The details about these calibration failures are presented in Table 2

809: before and after liner change; after scenario 1 CF is applied to new liner tests --- OLD SLIDE

Quantiles					
100.0%	maximum	71			
99.5%		71			
97.5%		71			
90.0%		32.4			
75.0%	quartile	24			
50.0%	median	14			
25.0%	quartile	9			
10.0%		6.2			
2.5%		4			
0.5%		4			
0.0%	minimum	4			

Quantiles						
100.0%	maximum	85.897				
99.5%		85.897				
97.5%		85.897				
90.0%		47.297				
75.0%	quartile	38.897				
50.0%	median	28.897				
25.0%	quartile	23.897				
10.0%		21.097				
2.5%		18.897				
0.5%		18.897				
0.0%	minimum	18.897				

811: before and after liner change; after scenario 1 CF is applied to new liner tests ---- OLD SLIDE

1004-3: before and after liner change; after scenario 1 CF is applied to new liner tests --- OLD SLIDE

Quant	Quantiles					
100.0%	maximum	68				
99.5%		68				
97.5%		61.8				
90.0%		50				
75.0%	quartile	38				
50.0%	median	22				
25.0%	quartile	14				
10.0%		10				
2.5%		9				
0.5%		8				
0.0%	minimum	8				

Quant	Quantiles					
100.0%	maximum	42				
99.5%		42				
97.5%		42				
90.0%		42				
75.0%	quartile	20				
50.0%	median	16				
25.0%	quartile	11.5				
10.0%		8				
2.5%		8				
0.5%		8				
0.0%	minimum	8				

Quant	Quantiles							
100.0%	maximum	56.897						
99.5%		56.897						
97.5%		56.897						
90.0%		56.897						
75.0%	quartile	34.897						
50.0%	median	30.897						
25.0%	quartile	26.397						
10.0%		22.897						
2.5%		22.897						
0.5%		22.897						
0.0%	minimum	22.897						

Are options 1A and 1B doing a sensible job in flagging tests that will result in failing stand calibration?

- The first three tests were flagged by all scenarios examined here: 1A, 1B, 2A, 2B and 3.
- For scenario 1, TGF rated results of 32%, 71% and 42% become 47%, 86% and 57% after the CF is applied and should be flagged. Look at Table 2 for more details for each flagged test. Refer to slides 9, 10 and 11 for plots of the new liner data before and after CF is applied
- Tests 99441 and 77659 were also flagged by option 1. TGF= 26% (41% after CF is applied) or 22% (37% after CF is applied) for oil 811-1 targeted at 24.7 is flagged because of the small std deviation for 811-1 (equal to 6 for the new liner), making yi large. These tests may not be the tests we are trying to flag.
- Scenario 1 did well flagging the first three tests, but adding 14.9 to TGF rated and adopting the new liner standard deviation by oil may flag tests that one would not expect to flag. The SP needs to confirm that this is the case.

To	h	$\dot{\mathbf{n}}$
Ia		۷.

1A and	d 1B scena	arios	n=116									
				TGF Industry corrected	TGF	Current TGF Standard	Correction	TGF Standard Deviation for new	Current TGF Standard Deviation	Original	Scenario1A	Scenario1B
Lab	Testkey	Oil	TGFrated	adding 15	target	Deviation	factor	liner	for SA	TGFyi	TGFyi	TGFyi
А	86123	811-2	32	47	24.7	21.617	15	6.045	14.6	0.338	3.72	3.72
А	96565	809-1	71	86	35.3	20.5	15	13.2	14.6	1.7415	3.96	3.96
B1	51111	1004-3	42	57	23.9	14.6	15	9.9	14.6	1.7192	3.343	3.343
B1	99441	811-2	26	41	24.7	21.617	15	6.045	14.6	-0.0602	2.720	2.720
B1	77659	811-2	22	37	24.7	21.617	15	6.045	14.6	-0.125	2.050	2.050

Evaluating scenarios 2A and 2B

- Scenarios 2A and 2B are highlighted below in Table 3. Lab A fails calibration in, respectively, 2 and 3 tests; Lab B fails calibration in, respectively, 2 and 4 tests. The details about these failures are presented in Table 4
- Compare TGF Pass/Fail limit of 20% with the actual Pass/ Fail after the proposed CF and the most recent calculated Severity Adjustment - SA per lab are applied to a future test result.
- If Test result + CF + SA < Pass/Fail% => Test result < Pass/Fail% CF SA
- Scenarios 2A and 2B result in a Pass/Fail =18 (with SA)for Lab A and Pass/Fail =11 for the other labs (no SA).

Table 3:	
----------	--

Lab	N new liner			TGF										
		Curre	ent state	Scen	ario 1A	Scenario 1B	Scen	ario 2A	Scena	ario 2B				
		Actual			Actual			Actual		Actual				
			Pass/Fail		Pass/Fail	Actual		Pass/Fail		Pass/Fail				
		Fail Cal	limit	Fail Cal	limit	Pass/Fail limit	Fail Cal	limit	Fail Cal	limit				
Α	22	0	20	3	20	16	2	18	3	18				
B1	22	0	7.4	2	5	5	2	11	4	11				
D	8	0	20	0	5	5	0	11	0	11				
G	14	0	9.4	0	5	5	0	11	0	11				

Are options 2A and 2B doing a sensible job in flagging tests?

- For scenario 2, TGF test results of 32%, 71% and 42% become 57%, 127% and 75% and should be flagged. Look at Table 4 for more details for each flagged test.
- Note that corrected TGF may reach values greater than 100%
- Tests 62205, 66788 and 95830 are also flagged by scenario 2B. TGF= 4% and 6% for oil 809-1 targeted at 35.3 should be flagged. Scenario 2A detects TGF= 4% (7 % after CF applied) but not 6% (11% after CF applied).
- If TGF = 7 the test won't be flagged by scenario 2B.

Та

 Scenarios 2A and 2B flagged high and low values of TGF rated. Scenario 2B flagged more tests than Scenario 2A. Both options indicate a Pass/Fail =11 if no SA is applied.

	2A and	d 2B scena	arios	n=116									
ble 4:	Lab	Testkey	Oil	TGFrated	TGF Industry corrected adding 0.5814693 to transf TGF	TGF target	Current TGF Standard Deviation	Multiplicative Correction factor: add 0.5814693 on the LN scale	TGF Standard Deviation for new liner	Current TGF Standard Deviation for SA	Original TGFyi	Scenario2A TGFyi	Scenario2E TGFyi
	Α	86123	811-2	32	57.2	24.7	21.6	1.789	6.0453	14.6	0.34	1.922	2.19
	A	96565	809-1	71	127.0	35.3	20.5	1.789	12.8116	14.6	1.74	2.458	2.81
	B1	51111	1004-3	42	75.1	23.9	14.6	1.789	9.9	14.6	1.72	2.193	2.51
	B1	62205	809-1	4	7.2	35.3	20.5	1.789	12.8116	14.6	-1.53	-2.335	-2.67
	B1	66788	809-1	6	10.7	35.3	20.5	1.789	12.8116	14.6	-1.43	-1.659	-1.89
	B1	95830	809-1	6	10.7	35.3	20.5	1.789	12.8116	14.6	-1.43	-1.659	-1.89
	А	99441	811-2	26	46.5	24.7	21.6	1.789	6.0453	14.6	0.06	1.576	1.80
												red cells TGF	⁻ yi>1.75
												additional cal	ibration test

Performance you can rely on.

Evaluating scenario 3

- Scenario 3 is highlighted below in Table 5: Lab A and Lab B1 fail calibration in, respectively, 2 tests and 1 test. The details about these failures are presented in Table 6
- Also here, compare TGF Pass/Fail limit of 20% with the actual Pass/ Fail after CF and SA per lab are applied to a future test result. Refer to Table 5 for "actual Pass/ Fail" under Scenario 3.
- If

Test result * CF +SA < Pass/Fail% => Test result < (Pass/Fail% - SA)/CF

• Note that Lab A has an SA = -11.9

Table 5:

Lab	N new liner					TGF								
		Curre	ent state	Scen	ario 1A	Scenario 1B	Scen	ario 2A	Scena	ario 2B	Sce	enario 3		
			Actual		Actual			Actual		Actual		Actual		
			Pass/Fail		Pass/Fail	Actual		Pass/Fail		Pass/Fail		Pass/Fail		
		Fail Cal	limit	Fail Cal	limit	Pass/Fail limit	Fail Cal	limit	Fail Cal	limit	Fail Cal	limit		
Α	22	0	20	3	20	16	2	18	3	18	2	17		
B1	22	0	7.4	2	5	5	2	11	4	11	1	10		
D	8	0	20	0	5	5	0	11	0	11	0	10		
G	14	0	9.4	0	5	5	0	11	0	11	0	10		

Is option 3 doing a sensible job in flagging tests that will result in failing stand calibration?

- Note that corrected TGF may reach values greater than 100%
- Scenario 3 fails to flag low values of TGF identified by scenarios 2A and 2B. The larger standard deviation (equal to 14.6) contributes to it.

Tal	ole 6:			Scenario 3 CF also increases the standard deviation of the new liner, which is now given by TGF std dev for new liner * 1.911								
3	n=116											
_ab	Testkey	Oil	TGFrated	TGF Industry corrected multiplying TGFCurrent TGFTGF Multiplicative CorrectionCurrent TGF Standard For newCurrent TGF Standard DeviationCurrent TGF Standard DeviationTGF TGF byTGFStandard Standard CorrectionCurrent TGF Standard for newCurrent TGF Standard DeviationCurrent TGF Standard Deviation								
4	86123	811-2	32	61.2	24.7	21.6	1.911	11.55	14.6	0.34	3.142	
٩	96565	809-1	71	135.7	35.3	20.5	1.911	24.48	14.6	1.74	4.097	
31	51111	1004-3	42	80.3 23.9 14.6 1.911 18.92 14.6 1.72 2.982								

Conclusions

- The CF=15 for scenarios 1A and 1B seem excessive, producing unreasonable Pass/Fail limits after CF and SA are applied. Scenarios 1A and 1B did well flagging the first three tests. Scenarios 1A and 1B also flagged tests with TGF= 26% (plus 15 = 41%) or 22% (plus 15 = 37%) for oils 811-2, but misses the low TGF values for oil 809.
- Scenario 3 only flags the first three tests missing the low TGF values for oil 809. Pass/Fail =10 if no SA is applied.
- Scenarios 2A and 2B flagged high and low values of TGF rated. Scenario 2B flagged more tests than Scenario 2A. Both options indicate a Pass/Fail =11 if no SA is applied.
- Scenarios 2 A and 2B indicate
 - Pass/Fail =18 for lab A with an SA
 - Pass/Fail = 11 for the other three labs

From the options investigated so far these seem capable of detecting low TGF values and have a higher Pass/Fail limit.

- 1. Mean and standard deviation by oil/liner combination
- 2. Plot of TGF rated and all proposed corrections by oil and liner type with comments about the variability in each scenario
- 3. Additional plots of TGF by oil and liner type before and after CF for scenarios 2 and 3 are applied to new liner tests

APPENDIX

1. Mean and standard deviation by oil/liner combination ---

TGF							
Oil	Liner	# of tests	Mean(TGF)	Std Dev(TGF)			
809-1	1Y355	30	35.3	20.5			
811-1	1Y355	29	26.655	20.036	26.2	19.8	Blue is published TMC value
811-2*	1Y355	20	24.700	21.617			
809/811	1Y355	59	31.05084746	20.27348183			
809-1	1Y3998	32	17.844	12.8116			
811-1	1Y3998	3	11.66666667	4.041451884			
811-2	1Y3998	22	14.54545455	6.045283661	MEAN DIFFERENCE	old -new	14.80523
809/811	1Y3998	57	16.24561404	10.44238156	MEAN RATIO	old/New	1.911337
WDN							

LN(TGFrated)							
Oil	Liner	# of tests	Mean(TGF)	Std Dev(TGF)			
809-1	1Y355	30	3.3688081	0.6702206			
811-1	1Y355	29	3.0182802	0.7416768			
811-2*	1Y355	20	2.8940084	0.7819953			
809/811	1Y355	59	3.196514725	0.706225937			
809-1	1Y3998	32	2.695332089	0.604926448			
811-1	1Y3998	3	2.4080083	0.4001887		Model RMSE	0.60014
811-2	1Y3998	22	2.603554304	0.389327474			
809/811	1Y3998	57	2.644786779	0.524358722	pooled Standa	ard dev.	

 TGF rated and all proposed corrections by oil and liner type with comments about the variability in each scenario --- OLD SLIDE

LN TGF Model details

TGF rated	transformed	LN TGFrat	ed	
n=116	111+ 5 extra tests			
RMSE				
Oil				
Level	Least Sq Mean	Std Error	Mean	
809-1	3.034142	0.130545	3.02121	
811-1	2.7721206	0.16823	2.96107	
811-2	2.9729888	0.182064	2.60355	
Liner2				
Least Squares Means Table				
Level	Least Sq Mean	Std Error	Mean	
1Y355	3.2171518	0.133902	3.19651	
1Y3998	2.6356825	0.165282	2.64479	
difference	0.5814693			
1.788664586	multiplicative corre	ection facto	r	
Summary of Fit	LAB, IND, Liner2			
RSquare	0.322201			
RSquare Adj	0.235815			
Root Mean Square Error	0.60014			
Mean of Response	2.925407			
Observations (or Sum Wgts)	116			

3. Additional plots of TGF by oil and liner type before and after CF for scenarios 2 and 3 are applied to new liner tests

809: before and after liner change; after CF for scenarios 2 and 3 are applied to new liner tests OLD SLIDE

Infineum

811: before and after liner change; after CF for scenarios 2 and 3 are applied to new liner tests OLD SLIDE

Infineum

1004-3: before and after liner change; after CF for scenarios 2 and 3 are applied to new liner tests OLD SLIDE

Infineum

1N: Part 2 TLHC, WDN, BSOC

Infineum Confidential Information

Performance you can rely on.

Top Land Heavy Carbon

Observe how the number of zeroes has increased after the adoption of the new liner

*k	based on 811	-1								
	LN(TLHC ra	ited plus o	ne)							
					Std					
				Mean(LN(TLHC	Dev(LN(TLHC					
	Oil	Liner	# of tests	rated plus one))	rated plus one))					
	809-1	1Y355	30	1.243135454	1.192089561	1.197	1.213	Blue is pub	lished TMC	value
	811-1	1Y355	29	0.461710833	0.669355	0.454	0.659	Blue is pub	lished TMC	value
	811-2*	1Y355	20	0.3660594	0.6125739					
	809/811	1Y355	59	0.859045386	0.984214998					
	809-1	1Y3998	32	0.46956	0.81576		Model RMSE	0.84437		
	811-1	1Y3998	3	0.23105	0.4002					
	811-2	1Y3998	22	0.194393915	0.551996508	MEAN DIFFERENCE	old -new	0.508244		
	809/811	1Y3998	57	0.350801115	0.711656977	MEAN RATIO	old/New	2.44881		

						Scenarios fo	r TLHC				
				14	1A Std= 0.9	1B CF=0.50824			24	2A Std=	2B CF=0.79222 std= 0 7116
		Curre	ont state	CF=0 50824	current std	nooled std	04		CF=0 79222	RMSE	nooled std
		Ourre	Actual	01 = 0.00024	Actual			Actual	01 =0.7 5222	Actual	Actual
			Pass/Fail		Pass/Fail	Actual Pass/Fail		Pass/Fail		Pass/Fail	Pass/Fail
Lab	N new liner	Fail Cal	limit	Fail Cal	limit %	limit %	Fail Cal	limit %	Fail Cal	limit %	limit %
Α	22	1	5	3	1	1	1	3	3	1	1
B1	22	2	2	4	1	1	2	3	3	1	1
D	8	1	2	2	1	1	0	3	2	1	1
G	14	0	1	0	1	1	0	1	0	0	0

TLHC Detailed Summary

					LN(TLHC					LN(TLHC				
				LN(TLHC	rated+1) plus	1A	1A	1A TLHC	1A TLHC	rated+1) plus			1B TLH	1B TLH
TESTKEY	LTMSLAB	IND	TLHCrated	rated+1)	1A CF	TLHCyi	TLHCZi	SA	Sev	1B CF	1B TLHCyi	1B TLH Zi	SA	Sev
50759-1N	А	1004-3	4	1.609438	2.117677912	2.105047	-0.18866		Fail	2.117677912	2.10504698	-0.1886559		Fail
50760-1N	А	809-1	12	2.564949	3.073189357	2.243362	0.31974		Fail	3.073189357	2.24336181	0.3197443		Fail
99441-1N	А	811-2	8	2.197225	2.705464577	4.23808	0.83746	-0.7537	Fail	2.705464577	4.23807967	0.83746169	-0.59599	Fail
99439-1N	А	809-1	0	0	0.50824	-0.90087	0.4898		Pass	0.50824	-0.9008677	0.48979582		Pass
51111-1N	B1	1004-3	5	1.791759	2.299999469	2.303183	0.38879		Fail	2.299999469	2.30318305	0.38879194		Fail
24232-1N	B1	809-1	7	2.079442	2.587681542	1.648205	0.64067		Pass	2.587681542	1.64820465	0.64067448		Pass
24229-1N	B1	811-1	1	0.693147	1.201387181	1.848319	0.8822	-0.794	Fail	1.201387181	1.84831887	0.88220336	-0.62783	Fail
65648-1N	B1	811-2	3	1.386294	1.894534361	2.768994	0.87623	-0.7886	Fail	1.894534361	2.7689939	0.87623039	-0.62358	Fail
51112-1N	B1	1004-3	9	2.302585	2.810825093	2.858318	1.17366	-1.0563	Fail	2.810825093	2.85831751	1.17366298	-0.83525	Fail
66788-1N	B1	809-1	6	1.94591	2.454150149	1.484516	1.23583	-1.1123	Pass	2.454150149	1.4845159	1.23583356	-0.87949	Pass
95830-1N	B1	809-1	7	2.079442	2.587681542	1.648205	0.44823		Pass	2.587681542	1.64820465	0.44822571		Pass
100712-1N	B1	811-2	0	0	0.50824	0.257575	0.19424		Pass	0.50824	0.25757518	0.19424066		Pass
51070-1N	D	1004-3	3	1.386294	1.894534361	1.862548	0.0015		Fail	1.894534361	1.86254804	0.00150467		Fail
59544-1N	D	809-1	8	2.197225	2.705464577	1.792588	0.41644		Fail	2.705464577	1.79258835	0.41644178		Fail
97769-1N	D	809-1	1	0.693147	1.201387181	-0.05118	-0.07189		Pass	1.201387181	-0.0511769	-0.0718886		Pass
102357-1N	G	811-2	0	0	0.50824	0.257575	-0.20724		Pass	0.50824	0.25757518	-0.2072352		Pass

					LN(TLHC				LN(TLHC						
				LN(TLHC	rated+1) plus	0A	0A TLH	0A TLH	rated+1) plus			2A TLH	2A TLH		
TESTKEY	LTMSLAB	IND	TLHCrated	rated+1)	0 CF	TLHCyi	0A TLH Zi SA	Sev	2A CF	2A TLHCyi	2A TLH Zi	SA	Sev	2BTLH SA	Liner2
50759-1N	Α	1004-3	4	1.609438	1.609437912	1.552722	-0.29912	Pass	2.401657912	2.63037497	-0.0835903		Fail		1Y3998
50760-1N	Α	809-1	12	2.564949	2.564949357	1.620339	0.02476	Pass	3.357169357	2.50368192	0.49313919		Fail		1Y3998
99441-1N	Α	811-2	8	2.197225	2.197224577	3.317349	0.04156	Fail	2.989444577	3.10691424	0.78389127		Fail		1Y3998
99439-1N	А	809-1	0	0	0	-1.52389	-0.27153	Pass	0.79222	-0.5340259	0.52030784		Pass		1Y3998
51111-1N	B1	1004-3	5	1.791759	1.791759469	-0.6095	-0.34823	Pass	2.583979469	2.84630111	0.55634142		Fail		1Y3998
24232-1N	B1	809-1	7	2.079442	2.079441542	-0.6095	-0.40048	Pass	2.871661542	1.92868776	0.83081068		Fail		1Y3998
24229-1N	B1	811-1	1	0.693147	0.693147181	-1.5655	-0.63348	Pass	1.485367181	1.2123315	0.90711485		Pass		1Y3998
65648-1N	B1	811-2	3	1.386294	1.386294361	1.848263	-0.04518	Fail	2.178514361	2.14651748	0.8584048		Fail		1Y3998
51112-1N	B1	1004-3	9	2.302585	2.302585093	2.305993	0.32618	Fail	3.094805093	3.45127953	1.32038832		Fail		1Y3998
66788-1N	B1	809-1	6	1.94591	1.945910149	0.861493	0.43324	Pass	2.738130149	1.77054454	1.41041956		Fail		1Y3998
95830-1N	B1	809-1	7	2.079442	2.079441542	1.025181	-0.32218	Pass	2.871661542	1.92868776	0.72186839)	Fail		1Y3998
100712-1N	B1	811-2	0	0	0	-0.66316	-0.58265	Pass	0.79222	0.50470836	0.47749329)	Pass		1Y3998
51070-1N	D	1004-3	3	1.386294	1.386294361	1.310223	-0.10896	Pass	2.178514361	2.36610273	0.10221561		Fail		1Y3998
59544-1N	D	809-1	8	2.197225	2.197224577	1.169565	0.13277	Pass	2.989444577	2.06817997	0.59494096	;	Fail		1Y3998
97769-1N	D	809-1	1	0.693147	0.693147181	-0.6742	-0.6142	Pass	1.485367181	0.28687865	0.21153704		Pass		1Y3998
102357-1N	G	811-2	0	0	0	-0.66316	-0.96533 0.8688	Pass	0.79222	0.50470836	0.07858807	0.81509	Pass	0.6869859	1Y3998

Performance you can rely on.

TLHC rated and TLHC rated corrected Using LN(TLHC rated +1) and CF = 0.50824

LN(TLHC rated +1): Model details

Summary of Fit					
RSquare	0.262681				
RSquare Adj	0.168709				
Root Mean Square Error	0.84437				
Mean of Response	0.609305				
Observations (or Sum Wgts)	116				
Analysis of Variance					
		Sum of	Mean		
Source	DF	Squares	Square	F Ratio	
Model	13	25.90831	1.99295	2.7953	
Error	102	72.72202	0.71296		Prob > F
C. Total	115	98.63033		0.0019	

Least Squares Means Table									
Level	Mean	Std Error	Mean						
1Y355	1.080761	0.188394	0.859045						
1Y3998	0.288541	0.232544	0.350801						
difference									

Weighted demerits: WDN

WDN									
Oil	Liner	# of tests	Mean(WDN)	Std Dev(WDN)					
809-1	1Y355	30	205	34.6					
811-1	1Y355	29	274.2448276	35.65532004	273.2	35.5	Blue is put	olished TMC	value
811-2*	1Y355	20	281.52	37.419128					
809/811	1Y355	59	239.0355932	35.12236548					
809-1	1Y3998	32	179.065625	28.08544118					
811-1	1Y3998	3	276.9	32.40108023					
811-2	1Y3998	22	272.3863636	37.66442423	MEAN DIFFERENCE	old -new	18.80226		
809/811	1Y3998	57	220.2333333	32.30153021	MEAN RATIO	old/New	1.085374		

				WDN	
					1A Std=
					27.1 is the
		Curre	ent state	CF=22.31815	current std
			Actual		Actual
			Pass/Fail		Pass/Fail
Lab	N new liner	Fail Cal	limit	Fail Cal	limit %
Α	22	1	286.2	1	263.9
B1	22	1	286.2	4	263.9
D	8	0	260.1	0	263.9
G	14	0	261.3	0	263.9

					WDN plus					
TESTKEY	LTMSLAB	IND	WDNrated	WDN	22.31815	WDNyi	WDN Zi	WDN SA	WDN Sev	Liner2
50760-1N	А	809-1	289.3	289.3	311.6182	3.796207	0.535589		Fail	1Y3998
99439-1N	А	809-1	181.6	181.6	203.9182	-0.03852	0.118724		Pass	1Y3998
51110-1N	B1	1004-3	201.1	201.1	223.4182	1.913055	0.750141	-20.3288	Fail	1Y3998
51111-1N	B1	1004-3	218.5	218.5	240.8182	2.929669	1.186047	-32.1419	Fail	1Y3998
65648-1N	B1	811-2	367.2	367.2	389.5182	2.867378	1.033509	-28.0081	Fail	1Y3998
77658-1N	B1	811-2	331.4	331.4	353.7182	1.916879	0.542255		Fail	1Y3998
100712-1N	B1	811-2	308.5	308.5	330.8182	1.308878	0.376169		Pass	1Y3998
97769-1N	D	809-1	160.9	160.9	183.2182	-0.77556	-0.53616		Pass	1Y3998
102357-1N	G	811-2	232	232	254.3182	-0.72222	-0.35785		Pass	1Y3998

WDN rated and WDN rated corrected

Added a few lines to guide the eye

Summary of Fit			Least Squ	iares Mear	ns Table	
RSquare	0.64633					
				Least Sq		
RSquare Adj	0.60512		Level	Mean	Std Error	Mean
Root Mean Square Error	33.735		1Y355	240.4233	6.758453	239.029
Mean of Response	229.793		1Y3998	218.1052	8.89433	220.233
Observations (or Sum Wgts)	116		differenca	22.31815		
Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Ratio		
Model	12	214215.5	17851.3	15.6859		
Error	103	117218.8	1138		Prob > F	
C. Total	115	331434.3		<.0001		
Effect Tests						
			Sum of			
Source	Nparm	DF	Squares	F Ratio	Prob > F	
LTMSLAB	10	10	13471.79	1.1931	0.3044	
IND2*	2	2	181007.8	80.1521	<.0001	
Liner 2	1	1	10607.69	9.3944	0.0028	
* combining 3 obs from 811-	1 with 811	-2				
811-1	1Y3998	3				
811-2	1Y3998	22				

Oil Consumption (BSOC g/k W-h)

Added a few lines to guide the eye

Infineum Confidential Information

BSOC g/k W-h: Mean and Standard Deviation

Average Oil	Consump	tion							
Oil	Liner	# of tests	Mean(BSOC)	Std Dev(BSOC)					
809-1	1Y355	30	0.308	0.175					
811-1	1Y355	29	0.219655172	0.052541328	0.218	0.053	Blue is pub	lished TMC	value
811-2*	1Y355	20	0.2225	0.051695					
809/811	1Y355	59	0.264576271	0.130143076					
809-1	1Y3998	32	0.21188	0.06621					
811-1	1Y3998	3	0.17	0.01					
811-2	1Y3998	22	0.18500	0.0374	MEAN DIFFERENCE	old -new	0.065278		
809/811	1Y3998	57	0.199298246	0.055350315	MEAN RATIO	old/New	1.327539		

1A BSOC scenario: add 0.065278 to the new liner test results

1A		BSOC						
		Curre	ent state	CF=0.06528	NO SA			
			Actual		Actual			
			Pass/Fail		Pass/Fail			
Lab	N new liner	Fail Cal	limit	Fail Cal	limit %			
Α	22	0	0.5	1	0.43			
B1	22	2	0.5	5	0.43			
D	8	2	0.5	2	0.43			
G	14	1	0.5	1	0.43			

TESTKEY	LTMSLAB	IND	BSOCrated	BSOC	1A BSOC	BSOCyi	BSOC Zi	BSOC Sev	Liner2
50759-1N	А	1004-3	0.26	0.2	0.26528	1.949509	-0.06379	Fail	1Y3998
51110-1N	B1	1004-3	0.32	0.26	0.32528	2.942637	0.780589	Fail	1Y3998
24234-1N	B1	811-1	0.18	0.18	0.24528	2.562483	0.939949	Fail	1Y3998
65648-1N	B1	811-2	0.31	0.31	0.37528	4.086694	1.194836	Fail	1Y3998
51112-1N	B1	1004-3	0.21	0.21	0.27528	2.115031	1.370792	Fail	1Y3998
95830-1N	B1	809-1	0.46	0.46	0.52528	3.28179	0.595028	Fail	1Y3998
51070-1N	D	1004-3	0.23	0.23	0.29528	2.446073	0.535782	Fail	1Y3998
59544-1N	D	809-1	0.38	0.38	0.44528	2.073473	0.698749	Fail	1Y3998
90771-1N	G	811-2	0.23	0.23	0.29528	1.946783	0.007464	Fail	1Y3998

1A BSOC before and after the correction is applied (n=116)

2A BSOC before and after the correction is applied (n=115) – removing the high value allows for better visualization of the CF applied to medium size BSOC

2A BSOC before and after the correction is applied (n=116)

2B BSOC before and after the correction is applied (n = 115)

2B BSOC before and after the correction is applied (n = 116)

2A BSOC: LN(BSOC rated) + 0.386656 (n=116) 2B BSOC: LN(BSOC rated) + 0.320098 (n=115)

- Evaluation of the 2A & 2B BSOC

		LN BSOC						
2A		Curre	nt state	CF=0.386656	NO SA			
			Actual		Actual			
			Pass/Fail		Pass/Fail	# of BSOC		
Lab	N new liner	Fail Cal	limit	Fail Cal	limit %	corrected >0.5		
Α	22	0	0.5	3	0.34	0		
B1	22	2	0.5	6	0.34	1		
D	8	2	0.5	3	0.34	1		
G	14	1	0.5	2	0.34	0		
				* the model for	LN(BSOC) is	based on 116 tes	ts (all data a	available)
2B		Curre	nt state	CF*=0.320098	NO SA			
2B		Curre	<mark>nt state</mark> Actual	CF*=0.320098	NO SA Actual			
2B		Curre	<mark>nt state</mark> Actual Pass/Fail	CF*=0.320098	NO SA Actual Pass/Fail	# of BSOC		
2B Lab	N new liner	Curre Fail Cal	<mark>nt state</mark> Actual Pass/Fail limit	CF*=0.320098 Fail Cal	NO SA Actual Pass/Fail limit %	# of BSOC corrected >0.5		
2B Lab A	N new liner 22	Curre Fail Cal 0	nt state Actual Pass/Fail limit 0.5	CF*=0.320098 Fail Cal	NO SA Actual Pass/Fail limit % 0.36	# of BSOC corrected >0.5 0		
2B Lab A B1	N new liner 22 22	Curre Fail Cal 0 2	nt state Actual Pass/Fail limit 0.5 0.5	CF*=0.320098 Fail Cal 2 6	NO SA Actual Pass/Fail limit % 0.36 0.36	# of BSOC corrected >0.5 0 1		
2B Lab A B1 D	N new liner 22 22 8	Curre Fail Cal 0 2 2 2	nt state Actual Pass/Fail limit 0.5 0.5 0.5	CF*=0.320098 Fail Cal 2 6 2	NO SA Actual Pass/Fail limit % 0.36 0.36 0.36	# of BSOC corrected >0.5 0 1 1		
2B Lab A B1 D G	N new liner 22 22 8 14	Curre Fail Cal 0 2 2 1	nt state Actual Pass/Fail limit 0.5 0.5 0.5 0.5 0.5	CF*=0.320098 Fail Cal 2 6 2 1	NO SA Actual Pass/Fail limit % 0.36 0.36 0.36 0.36	# of BSOC corrected >0.5 0 1 1 1 0		
2B Lab A B1 D G	N new liner 22 22 8 14	Curre Fail Cal 0 2 2 1	nt state Actual Pass/Fail limit 0.5 0.5 0.5 0.5	CF*=0.320098 Fail Cal 2 6 2 1 * the model for	NO SA Actual Pass/Fail limit % 0.36 0.36 0.36 0.36 UN(BSOC) is	# of BSOC corrected >0.5 0 1 1 0 based on 115 tes	ts	

Infineum Confidential Information

Performance you can rely on.

2A BSOC: LN(BSOC rated) + 0.386656 (n=116)

- 0.386656 is the estimated difference between the two liners, obtained from the model to LN(BSOC rated) with Lab, Oil and Liner
- This transformation is not perfect, but I was trying to use the log that I think it has been used for OC in other tests... (this transform may make more sense to you than the best Box Cox transformation)
- BSOC is a non critical parameter. There is no SA for BSOC. Is this ok? This is my interpretation of the LTMS

Details about 2A BSOC and 2B BSOC

						LN BSOC					BSOC
						rated +					corrected
TESTKEY	LTMSLAB	IND	BSOCrated	BSOC	LN BSOCrated	CF	2A BSOCyi	BSOC Zi	BSOC Sev	Liner2	>0.5
50759-1N	А	1004-3	0.26	0.2	-1.347073648	-0.96042	3.338046401	0.21392183	Fail	1Y3998	Pass
51072-1N	А	1004-3	0.18	0.18	-1.714798428	-1.32814	2.087020148	0.91162617	Fail	1Y3998	Pass
31595-1N	А	811-1	0.17	0.17	-1.771956842	-1.3853	2.701496741	1.26960029	Fail	1Y3998	Pass
51110-1N	B1	1004-3	0.32	0.26	-1.139434283	-0.75278	4.044450512	1.00095134	Fail	1Y3998	Pass
51111-1N	B1	1004-3	0.19	0.13	-1.660731207	-1.27408	2.270960739	1.25495322	Fail	1Y3998	Pass
24234-1N	B1	811-1	0.18	0.18	-1.714798428	-1.32814	3.671928216	1.68892476	Fail	1Y3998	Pass
65648-1N	B1	811-2	0.31	0.31	-1.171182982	-0.78453	3.922176381	1.71368788	Fail	1Y3998	Pass
51112-1N	B1	1004-3	0.21	0.21	-1.560647748	-1.17399	2.611451891	1.87752745	Fail	1Y3998	Pass
95830-1N	B1	809-1	0.46	0.46	-0.776528789	-0.38987	3.365426216	0.97109655	Fail	1Y3998	Fail
51070-1N	D	1004-3	0.23	0.23	-1.46967597	-1.08302	2.920944449	0.63075585	Fail	1Y3998	Pass
59544-1N	D	809-1	0.38	0.38	-0.967584026	-0.58093	2.630030575	1.04290563	Fail	1Y3998	Fail
65631-1N	D	811-2	0.21	0.21	-1.560647748	-1.17399	1.872280689	1.06742842	Fail	1Y3998	Pass
42645-1N	G	1004-3	0.17	0.11	-1.771956842	-1.3853	1.892563098	-0.1100814	Fail	1Y3998	Pass
90771-1N	G	811-2	0.23	0.23	-1.46967597	-1.08302	2.351098472	0.53389643	Fail	1Y3998	Pass

Infineum Confidential Information

© Copyright INFINEUM INTERNATIONAL LIMITED 2013

Performance you can rely on.

BSOC: Model details

Scenario BSOC 2A takes into account all 116 tests results to generate a correction factor based on the model for LN(BSOC rated) with Lab, Oil and Liner

Scenario BSOC 2B, eliminates the "goofy test result" before generating a correction factor based on the model for LN(BSOC rated) with Lab, Oil and Liner

2A			n=116			
			Least Squ	iares Mear	ns Table	
Summary of Fit						
RSquare	0.366336		Level	Least Sq Mean	Std Error	Mean
RSquare Adj	0.285575		1Y355	-1.36586	0.060262	-1.4019
Root Mean Square Error	0.270091		1Y3998	-1.75251	0.074385	-1.6431
Mean of Response	-1.52044		difference	0.386656		
Observations (or Sum Wgts)	116					
			Exp of the CF 0.386656	1.47205		
Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Ratio		
Model	13	4.301721	0.330902	4.536		
Error	102	7.440829	0.072949		Prob > F	
C. Total	115	11.74255		<.0001		

2B							
Summary of Fit	t			n=115			
				Least Squ			
RSquare	0.374424						
RSquare Adj	0.293904			Level	LeastSq Mean	Std Error	Mean
Root Mean Square Error	0.237531			1Y355	-1.38645	0.053127	-1.4278
Mean of Response	-1.53449			1Y3998	-1.70655	0.065938	-1.6431
Observations (or Sum Wgts)	115			difference	0.320098		
				exp(diff)	1.377263		
Analysis of Var	iance						
		Sum of	Me				
Source	DF	Squares	an	F Ratio			
Model	13	3.410696	0.3	4.6501			
Error	101	5.698497	0.1		Prob > F		
C. Total	114	9.109192		<.0001			