Committee D-2 on PETROLEUM PRODUCTS AND LUBRICANTS
 Chairman: N. DAVID SMITH, North Carolina Dept. of Agric., 2 West Edenton St., P.O. Box 27647, Raleigh, NC 27611 (919-733-3313) FAX: 919-715-0524
 First Vice-Chairman: SUSAN E, LITKA, UOP Research Center, 50 East Algonquin Rd., P.O. Box 5016, Des Plaines, IL 60017-5016 (708-391-3390)
 Second Vice-Chairman: KURT H, STRAUSS, 69 Brookside Rd., Portland, ME 04103 (207-773-4380) FAX: 207-775-6214 Secretary: KENNETH O, HENDERSON, Castrol North America, Automotive Div., 240 Centennial Ave., Piscataway, NJ 08854 (908-980-3630) FAX: 908-980-9519
 Assistant Secretary: W, JAMES BOVER, Exxon Biomedical Sciences, Inc., Mettlers Rd., CN2350, East Millstone, NJ 08875-2350 (908-873-6318) FAX: 908-873-6009

Staff Manager: EARL R. SULLIVAN (215-299-5514)

Reply to: Michael S. Griggs The Lubrizol Corporation 29400 Lakeland Boulevard Wickliffe, OH 44092-2298

January 29, 2002

To: Members of the Single Cylinder Oil Test Engine (SCOTE) Surveillance Panel and guest attending the January 23, 2002 meeting.

Enclosed are the minutes of the SCOTE Surveillance panel meeting held in San Antonio, Texas. Please forward any corrections or additions to my attention.

Michael & Drigop

Michael S. Griggs Secretary, SCOTE Surveillance Panel

MEETING MINUTES

SINGLE CYLINDER DIESEL SURVEILLANCE PANEL

HELD JANUARY 23-24, 2002 PERKINELMER SAN ANTONIO, TEXAS

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. *COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428-2959. ALL RIGHTS RESERVED*

ACTION ITEMS AND SIGNIFICANT PROCEDURE CHANGES

- 1. Retain "over range" and under range" terminology as applied to QI calculations. Scott Parke
- 2. Continue with 1P alpha and beta values for QI calculations and simultaneously calculate QI's using the TMC proposed alpha and beta values (attachment 5) for candidate tests until about May 1st. TMC will issue the spread sheet format. Cat 1R test labs, Scott Parke
- 3. Modify the Cat 1R TGA analyses schedule to 360, 432, and 504 hours. Cat 1R test labs
- 4. Take a 30 ml sample using published purge procedures (Secretary's note- the original 30 ml purge has been revised to 60 ml) at off sample hours. ICP analysis of sample is at lab's discretion. Cat 1R test labs
- 5. Remove the oil pressure delta parameter from the 1R data dictionary. Labs may continue to take measurement at their discretion. Scott Parke
- 6. Eliminate the use of dispersant engine cleaner for all Cat tests. Test labs
- 7. Investigate requirements of D235 Part I for Stoddard solvent- Mike Griggs
- 8. Perform major engine inspections prior to the first calibration test scheduled after 15,000 hours of test time. Cat 1R test labs

- 9. In the event of a cylinder head or jug failure during the calibration period, a previously calibrated cylinder head/jug assembly that has been used on a successful 1R calibration test within the past 2 years may be used without recalibration. Cat 1R test labs
- 10. Provide Sierra mass airflow meter calibration instructions and vendor information to 1R test labs. Jim McCord
- 11. Ensure that oil weigh scale time constants are between 20-30 seconds. Test labs
- 12. E-mail the HDEOCP chairman with the 1M-PC correction factor proposals. Conduct an e-mail ballot and teleconference for Feb 7th. Mike Zaiontz, Jim McCord

1.0 CALL TO ORDER AND MEMBERSHIP CHANGES

- 1.1 Chairman Mike Zaiontz opened the meeting at 8:30 am. The attendance list is attachment 1.
- 1.2 Riccardo Conti replaced Tom Hitchner for Exxon/Mobil. Jennifer Van Mullekom replaced Phil Scinto for Lubrizol.
- 1.3 Chairman Mike Zaiontz announced that Jim McCord would officially assume chairmanship of the SCOTE Surveillance Panel beginning with the next meeting/teleconference. Chris Mazuca of PerkinElmer has assumed engineering responsibilities for all Cat SCOTE tests.

2.0 MEETING MINUTES

- 2.1 The meeting minutes for the August 21, 2001 meeting were previously approved in an earlier teleconference.
- 2.2 Secretary's note- Meeting meetings are published on the ASTM TMC website in Adobe pdf format. Individuals desiring hardcopy minutes by mail should contact the secretary.

3.0 CAT 1R QI LIMIT EVALUATION

- 3.1 Mike Zaiontz presented the proposed Cat 1R QI limits (attachment 3), which came from a study of 18 tests conducted by PerkinElmer and SWRI.
- 3.2 The goals of the study were to assess the control capability of each parameter, reduce QI false alarms, and to base QI control limits on a process capability of a minimum of 3 sigma.

- 3.3 Mike Zaiontz explained that table 1 (attachment 3, page 2/3) lists the 18 test lumped standard deviations of each controlled parameter. Table 2 compares the standard deviations with the test procedure specification to define a process capability (spec/std dev). The table defines those parameters with a spec/std dev ratio > 6.0 as being 6 sigma capable.
- 3.4 Table 3 is analogous to table 2 in that it computes a process capability for each controlled parameter using the ratio of the current QI control limit to the parameter standard deviation. Mike Zaiontz's desire was to set a 3.0 process capability limit from which his proposed QI control limits would be calculated as shown in table 4. Table 4 proposes an increase in QI control limits for 8 of the 12 parameters.
- 3.5 Following Mike Zaiontz's presentation, Scott Parke provided an historical perspective on QI experiences with the 1P test. He reminded the panel that only 8 negative QI's have occurred for all 1P tests. His position was that labs were not unduly placed at risk with negative QI's. On the other hand, Mike Zaiontz and other panel members felt that a great deal of money and effort has gone into managing strict QI's and that negative QI's should be meaningful. Generally, two viewpoints evolved from the ensuing discussions. First, the methodology by which QI's are generated (best test=1.0 and worst acceptable test=0.0) provides excellent discrimination for process control capabilities amongst labs. Second, negative a QI is associated with an invalid test when actual control of the questionable parameter may be deemed perfectly acceptable.
- 3.6 Phil Scinto commented that the more positive the QI, the better the test and recommended against changing QI's. He added that if labs are losing lots of test, then adjustments would have to be made. Phil Scinto and Bob Campbell suggested that the entire TMC data set be looked at for setting QI limits.
- 3.7 Scott Parke led into a discussion of the matrix data and briefly described the traditional way of generating QI constants. He used the example of coolant flow (see attachment 4). Scott laid out the coolant flow plots for each of the 18 matrix tests in order of highest to lowest QI. The tests with the worst coolant flow control was set to QI=0.0. Attachment 4 shows the QI's assigned to each lab for each controlled parameter but only includes plots of the best and worst tests. Scott Parke pointed out that in his analysis for intake air pressure, speed, and fuel flow control; he deemed some tests to have unacceptable control and were cut off below the minimum acceptable "worst" tests. These unacceptable tests have negative QI's.

- 3.8 Scott Parke presented attachment 5, which summarizes the 1R quality index calculation constants. He explained that fuel flow had tighter limits for the 1R than the 1P and that the 14th test set the 0.0 QI threshold. Bob Campbell expressed concern that fuel flow was an indirect measurement and that he would like to see fuel flow compared to torque to understand whether it was an actual fuel flow control problem or a measurement issue. Scott Parke agreed to reevaluate fuel flow.
- 3.9 Mike Zaiontz commented that if the panel chooses to do nothing about revising QI's, then 1P QI limits would be used. Alternatively, the panel could accept the TMC proposed QI limits with adjustments to fuel flow and inlet air pressure. Jim McCord made a motion to retain 1P limits for the time being. Scott Parke reiterated the importance of revising the QI limits to provide discrimination in process control capabilities. Mike Griggs suggested that a two tier system to evaluate process control capability could strike a compromise between the differing viewpoints. He explained that one tier would maintain tight QI limits to provide discrimination but a second tier would use a more relaxed limit representative of acceptable control. Labs that experience negative QI's in tier one would be compelled by procedure to investigate possible causes for degraded process control but would require the labs to make a validity assessment.
- 3.10 Jim McCord modified his motion as follows so that more information could be gathered concerning QI's;

Continue with the 1P alpha and beta constants for QI calculations and simultaneously calculate QI's using the TMC proposed alpha and beta constants for all reference and candidate tests until about May 1, 2002.

The motion carried 7/0/0.

4.0 CAT 1R CYLINDER LINER WEAR STEP

- 4.1 Mike Zaiontz reported that the Mack T-10 Liner Wear Step task force agreed that wear step measurements would be done using the Precision Devices Incorporated (PDI) instrument. He reminded the panel that the 1R test adopted the T-10 method but uses only 4 of the 12 points measured and that 1R wear step is to be reported in millimeters.
- 4.2 Several panel members felt that liner wear in the 1R test was low and questioned the value of the measurement. The panel consensus was to continue with the measurement.

- 4.3 Mike Griggs asked the panel if TGA soot and IR oxidation were still of value since those analyses were adopted specifically for the 1Q-EGR test. Al Hahn commented that they were still important as a troubleshooting tool. The panel generally agreed with Al but thought 6 TGA measurements, particularly early in the test, were of little value. The panel agreed to take TGA's at 360, 432, and 504 test hours. The IR oxidation analyses remain unchanged.
- 4.4 Jim McCord asked the panel for clarification on the requirement to take additional 30 ml oil samples for ICP analysis. The panel agreed that labs are to take a 30 ml oil sample at off sample hours using the published purge procedures. The ICP analysis of the sample is optional.

5.0 CAT 1R PROCEDURE/TEST REPORT FORMAT/DATA DICTIONARY

- 5.1 Ben Weber gave the panel a brief overview of progress towards the 1R procedure. He commented that an electronic version of the procedure had been e-mailed to the panel members. Ben also stressed that timely inputs from panel members, prior to the procedure review with Lyle Bowman, was optimal for a successful ballot.
- 5.2 The panel proceeded with a page by page review of the procedure version issued January 2002. Changes are as follows:
- 5.3 *Section 6. Apparatus and Installation* Delete the name "Edward Lupie" in footnote 19
- 5.4 *Section 6.2.2.1 1Y3976 Exhaust Barrel* Change text to allow the use of ASME coded exhaust barrels without specifying modification details. The panel noted that only one of the Caterpillar approved barrel manufactures has made the barrel modification.
- 5.5 *Section 6.2.5 Engine Oil System* Delete requirement to measure oil pressure delta and remove the parameter from the data dictionary/test report. Labs may continue to measure oil pressure delta if desired.
- 5.6 *Section 7.4 Dispersant Engine Cleaner* The panel agreed to eliminate the use of dispersant engine cleaner based a consensus that Stoddard solvent alone is effective. Delete footnote 27 (dispersant engine cleaner supplier) and change Table A9.1 Flushing Instruction Sheet.
- 5.7 Section 7.14 Stoddard Solvent Ben Weber questioned the panel as to whether there were different versions of Stoddard Solvent in use. Mike Griggs agreed to look at specification D235 Part I to determine the Stoddard solvent requirements.

- 5.8 Section 8.1 Oil Samples and Additions Add text to reflect requirement to take 30 ml samples at each off sample interval (72, 108, 180, 216, 288, 324, 396, 468 hours). A purge is required (60 ml purge was accepted during the 2-7-02 SCOTE teleconference). Analysis of the sample is at the lab's discretion. Secretary's note- Subsequent to this meeting, Jim McCord advised that the intent of this procedure included replacing the 30 ml sample with an equivalent weight of new oil.
- 5.9 Section 9.2 Complete Engine Inspection Labs are required to perform a major engine inspection prior to the first calibration test scheduled after 15,000 test hours. This requirement precludes interruption of a reference cycle. Also, test hours are easier to track than total engine time.
- 5.10 *Section 7.12 REO 217* Delete requirement to use REO 217 oil when any copper components are changed. Jim McCord advised the panel the Mike Zaiontz had a rocker pin failure with a part identified with the new specified date code on the box.
- 5.11 Section 9.7 Cylinder Head Several panel members expressed concern about the requirement to recalibrate a stand anytime the head or jug is replaced. Al Hahn stressed the importance of keeping the head and jug together as an assembly. The panel compromised on the following: In the event of a cylinder head or jug failure during the calibration period, a previously calibrated cylinder head/jug assembly that has been used on a successful 1R calibration test within the past 2 years may be used without recalibration.
- 5.12 *Section 9.13 Engine Timing* The ECM EPROM part number (Personality Module Part Number) is 169-5028. The EPROM release date is October 1998.
- 5.13 Section 10.3 Coolant Flow Add text allowing calibration of the Barco venturi to ensure that it still conforms to the published calibration. This is an alternative to replacing the venturi.
- 5.14 Section 10.5 Air Flow The Sierra Model 780 air flow meter was specified for the 1P procedure and, without modification, has insufficient air flow measuring capacity at 1R conditions. Jim McCord mentioned that the air flow meter can be upgrade to measure higher air flows. He suggested that the upper span range be set around 425 kg/hr. Jim agreed to supply labs with details of the upgrade as well as his local vendor information.
- 5.15 *Section 10.9 Test Stand Calibration* Change the calibration period from 365 days to 1 year. Secretary's note- Section 13.3.3 should reflect a 1 year calibration period rather than nine months.
- 5.16 Section 10.9.1 Re-calibration Requirements Change paragraph 4 to specify "cylinder head or jug not meeting the requirements specified in Section 9.7".

- 5.17 *Section 11.1 Engine Break-in Procedure* Record the oil weight in the oil scale as the full mark at the end of the <u>fourth</u> hour.
- 5.18 *Section 11.6.1 Engine Coolant* Delete the last sentence regarding removal of the coolant tower cap.
- 5.19 *Section 12.1 Test Validity* Mike Griggs questioned if there was a limit to the copper level in the oil. Scott Parke replied that limits don't exist for any of the Cat tests but labs have the discretion to invalidate tests with high copper.
- 5.20 Section 12.2.2 Oil Consumption Include text to reflect the requirement to calculate the difference between end of test oil consumption (average of 468 and 594 hour data points) and the initial average oil consumption (0-252 hour interval).
- 5.21 Section 12.2.3.4 Weighted Average Change "128" to "12" in the weighted average equation (eq. 2).
- 5.22 *Table A2.1 Instrument Locations* Designate oil filter pressure delta instrument locations as optional.
- 5.23 *Table A2.4 Maximum Allowable System Time Constants* Ben Weber requested the labs to verify that the oil weigh scale time is between 20 –30 seconds.
- 5.24 *Table A2.5 Measurement and Reporting Resolutions* The usefulness of the "tolerance" (tol.) column was questioned in view of QI requirements. Mike Griggs commented that tolerances are useful to define design requirements.
- 5.25 *Table A2.6 Quality Index Calculation Values* Replace quality index L and U values with α (alpha) and β (beta), respectively. Secretary's note- Scott Parke no longer requires labs to send exhaust back pressure data from the matrix tests.
- 5.26 *Table A6.3 Oil Sampling Procedure* The sampling procedure needs to include the requirement to take 30 ml samples at oil add intervals where the 120 ml samples are not required. The 30 ml sample should be replaced with an equivalent weight of new oil.
- 5.27 A7.2 Example of Fax Copy Change "P" to "R" in "1P" and "WDP" (4 places).
- 5.28 *Figure A9.4 Modifications of Engine Side Covers I* Add actual dimensions in place of "TBD"

- 5.29 Table A10.1 Warm-up, Cool-down & Testing Conditions In the fuel rack position number, move the decimal point one place to the right for each test step (e.g. 10.6 becomes 106). Delete the "mm" for the units. Coolant flow tolerance is changed from ± 3 to ± 2 L/min. Add a ± 1 kPa tolerance to exhaust back pressure.
- 5.30 *A11. Piston and Liner Rating Modifications* Change "1P" to "1R" in the first sentence. Substitute a drawing of the 1R piston for the 1P piston shown.

6.0 CAT 1R HIGH COPPER

- 6.1 Jim McCord reported that PerkinElmer had recently experienced a rocker pin failure that resulted in high copper.
- 6.2 The pin failure occurred on a rocker assemble that came from a box with a package date after January 2000. Rocker arms with a package date earlier than January 2000 are not allowed to be used. Following a brief discussion on package date codes, there was speculation as to whether the package date code on the problematic rocker arm was accurate (i.e. wrong box).

7.0 CAT 1R CALIBRATION OIL 1005-1 TARGETS

Scott Parke advised the panel the he had emailed information regarding the test targets that were set for the first 20 test. There were no questions or issues on this.

8.0 CAT 1R PC-9 CALIBRATION OIL (OIL A) AVAILABILITY

Scott Parke reported that PC-9 oil A is now available.

9.0 CAT 1R RESEARCH REPORT STATUS

Al Hahn advised the panel that Dave Tharp will take care of the research report.

10.0 CAT 1M-PC SEVERITY / CORRECTION FACTOR EVALUATION

- 10.1 Chairman Zaiontz reconvened the panel Thursday, January 24th at 08:30 to open discussions on 1M-PC severity and the evaluation of an industry correction factor.
- 10.2 Scott Parke presented attachment 6 which is a 1M-PC Statistical Analysis Summary that examines the various interactions between lab, hardware and chronology on deposits. His analysis (based on a 0.05 P value) concluded the following:

Demerits have changed at era 2-1-98 cutoff. Back in 1998, the panel elected to let lab severity adjustments take care of severity.

The data shows TGF and WTD to be liner dependent. Scott Parke cautioned the panel against drawing conclusions regarding liner dependency because there actually may be a time dependency. When the pre-1998 data is disregarded, then the WTD liner dependency disappears but TGF dependency remains.

TGF and WTD dependency on labs disappears when the pre-1998 data is disregarded.

TGF is dependent on era 10-1-95 cut off.

Scott Parke concluded that while a TGF correction factor based on liner is warranted, the TMC could not advocate a WTD industry correction factor from a purist standpoint because no link to a cause could be found. He commented that, in hindsight, it was probably a mistake for the panel to be content with not finding the cause for the 1998 WTD severity shift.

- 10.3 Ed Outten presented RSI candidate data (EWMA plots) for WTD and TGF (attachment 9, pages 15-16) to show the effect of severity adjustments.
- 10.4 Scott Parke asked the panel what do we do to fix the problem. Bob Campbell responded by presenting attachment 10 which is his 1M-PC industry correction factor proposal. He pointed out that labs were passing 7% fewer references with the new liners and that the percentage of "OC" tests failing has increased for TGF and WTD. Bob proceeded to show the difference between the current TGF and WTD targets and the current statistics on the new liner runs (n=28). His data showed that the new liner runs were 43.2 demerits and 18 TGF percent more severe than current targets. Bob proposed that the panel institute immediately an industry correction factor of -43.2 and a TGF correction factor of -18.
- 10.5 Following Bob Campbell's presentation, there was lengthy discussion on the relative severity between labs. Ed Outten presented attachment 9, pages 5 and 6, to show that lab B exhibited the largest shift in TGF. Mike Zaiontz presented attachment 11 (current lab severity adjustments) and pointed out that lab B was most severe on TGF. Bob Campbell suggested to the panel that the lab severity adjustments currently in place are the clues to the need for WTD and TGF correction factors. Scott Parke added that all labs have TGF severity adjustments in the same direction.

- 10.6 Scott Parke presented attachment 7 which is the industry operationally valid data. He described two options for applying correction factors. The first option is to apply a minimum correction factor of -10.5 for TGF and -32.99 to correct to the EWMA action limit. Mike Zaiontz expressed a concern that this would penalize labs near target. The second option suggested by Scott was to correct back to target using correction factors of -17.9 for TGF and -40.9 for WTD.
- 10.7 Scott Parke proceed to show the panel the specific lab affects of applying the maximum correction factors (attachment 8). He explained that by applying the correction factors, labs are returned to target with the exception of lab B. Lab B would still have a TGF lab severity adjustment of -12 due to being the most severe. Ben Weber commented that he feels that Lab B may be showing a lab affect. Scott Parke pointed out that the relative positions of the labs did not change with the correction factors. Ben Weber reiterated his severity adjustments with and without the correction factors. Ben Weber reiterated his concern that Lab B, which has a -12 TGF severity adjustment after the correction factor is applied, is showing a lab affect.
- 10.8 Ed Outten offered an additional proposal to the 1M-PC severity issue by suggesting that the test should be declared out of control. Al Hahn questioned where this would lead to. He asked the panel what approach can be used to fix the problem and added that nothing more could be done to improve the new liners. There followed lengthy discussions regarding the implications of declaring a test out of control. It was brought out that one implication was that ACC registered testing stops under an out of control status. Also, several members voiced skepticism towards bringing the test back into control.
- 10.9 Scott Parke summarized the situation saying that we see every lab, without exception, being severe and that we need to find a tangible cause for the severity or arbitrarily assign correction factors. A third option would be to continue to let lab severity adjustments do the job as decided in 1998. He commented that he would like to see a tangible cause assigned (i.e. "what happened in 1998"). His second choice would be to arbitrarily assign correction factors.
- 10.10 Scott Parke advised the panel that new reference oil (873-2) is coming on line and that he does not expect any oil component changes. There is about a years supply (approximately 30 tests) of the 873-1 batch. When the new oil is in place, new test targets will be calculated. This effectively makes the current severity problem go away. Mike Zaiontz and Ben Weber suggested that this is a good opportunity to transition to a more modern oil such as a mutigrade. Bob Campbell added that this suggestion should be forwarded to the HDEOCP. Ed Outten suggested that TMC oil 811 (10W40), which is a borderline pass oil in the 1G2 test, might be one step closer to a more acceptable oil. He acknowledged that it is not ideal but should be acceptable in the 1M-PC. Ben

Weber suggested that Mike Zaiontz contact potential oil suppliers for alternative oils.

- 10.11 Following a brief recess, Mike Zaiontz advised the panel the several representatives from other stakeholders were missing from the discussions. He recommended that an e-mail ballot be sent out and that a conference call be held. A conference call was scheduled for 2-7-02 at 13:00 CST. Mike Zaiontz agreed to proceed with the request for a new oil. Ed Outten mentioned that the HDEOCP would choose the oil.
- 10.12 Mike Zaiontz summarized the following proposals that would be communicated in his e-mail:
 - 1) Apply the correction factors (i.e. 17.9 and 40.9) as shown in attachment 11
 - 2) Apply the minimum correction factor (i.e. 10.5 and 32.99)
 - 3) Declare the test out of control
 - 4) Do not use correction factors but retain individual lab severity adjustments
- 10.13 Ben Weber suggested that a panel action should be to review labs as well as go through rebuilds. He suggested the formation of a lab visitation group. Scott Parke commented that this was done in 1998. Ben recommended that this be done on a recurring basis.

11.0 OLD/NEW/OTHER SCOTE BUSINESS

Scott Parke announced that Cat 1R oil A (TMC 820-2) targets exist based on the 7 matrix tests and that they are in the LTMS manual.

Secretary's note: TMC 820-2 statistics are: WD- 341.2 mean, 36.2 sd TGC- 34.11 mean, 10.28 sd TLC- 22.82 mean, 10.50 sd Initial OC- 8.3 mean, 1.7 sd EOT OC- 7.9 mean, 2.6 sd

12.0 NEXT MEETING

The next meeting will be via teleconference on February 7, 2002 at 13:00 CST.

Atti 1/5

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		status	Indicate Presence with Signature	Alternate
Name:	Albert, Floyd	NV		
Company:	Equilon Enterprises LLC	1		
Address:	Room #L 121B			
1041.000	3333 Highway 6 South			
	Houston, TX 77082			
Phone:	713-544-8055			
Fax:	713-544-7732			
:-mail:	fealbert@equilontech.com			
Name:	Bond, Stacy	NV		
Company:	PerkinElmer	14.4		
Address:	5404 Bandera Road			
nuui 033.	San Antonio, TX 78238			
hone:	210-523-4604			
Fax:	210-523-4604			
:-mail:	stacy.bond@perkinelmer.com	NTX 7	+ +	
Name:	Buck, Ron	NV		
Company:	Test Engineering, Inc.			
Address:	127 18 Cimarron Path			
~1	San Antonio, TX 78249-3417			
Phone:	210-690-1958			
Fax:	210-690-1959			
c-mail:	_rbuck@testeng.com			
Name:	Burnett, Don	NV		
Company:	Chevron Phillips Chem. Co. LP			
Address:	1301 McKinney St. #2310			
	Houston, TX 77010-3030			
Phone:				
Fax:				
e-mail:	deburne@ppco.com			
Name:	Campbell, Bob	V	• 1	
Company:	Ethyl Corporation		Balall	
Address:	500 Spring Street			
	P.O. Box 2158		(\mathcal{V})	
	Richmond, VA 23219		FZWV	
Phone:	804-788-5340		// ·	
Fax:	804-788-6358			
e-mail:	bob_campbell@ethyl.com			
Name:	Carlson, Jon	NV		
	Lubrizol Corporation			
Address:	4801 N.W. Loop 410, Ste. 430			
. 1001000.	San Antonio, TX 78229			
Phone:	210-520-8013			
Fax:	210-520-1983			
e-mail:	_jomc@lubrizol.com			
Name:	Sutherland, Mark	V		
Company:	Oronite Technology Group			
	Chevron Chemical Company			
Address:	4502 Centerview Ste. 210			
DL -	San Antonio, TX 78228			
Phone:	210-731-5606			
Fax:	210-731-5699			
e-mail:	@chevron.com			

Att 1 2/5

*** Please indicate any corrections that should he made to members name, address, etc ***

Member		Status	Indicate Presence with Signature	Alternate
Name: Company: Address:	Fetterman. Pat Infineuum, USA L.P. PO Box 735	v	E.F. Outlen for Pat Fetterman	
Phone: Fax:	Linden, NJ 07036 908-474-3099 908-474-3363		for the the company	
e-mail:	pat.fetterman@infineum.com			
Name:	Griggs, Mike		<u>†────</u> ─ <u>─</u>	
Company: Address:	The Lubrizol Corporation 29400 Lakeland Blvd. Wickliffe, OH 44092.2298		Mb Ingen	
Phone:	440-347-2905			
Fax:	440347-4096			
e-mail:	msg@lubrizol.com			
Name:	Gutzwiller, Jim	NV	┟╴─────────────────────────────────────	• <u> </u>
Company:	-		1	
Address:	4335 Piedras Dr., W. Suite 101			
	San Antonio, TX 78228			
Phone:	210-732-8123 ext. 13			
Fax:	210-732-8480			
e-mail:	james.gutzwiller@infineum.com			
Name:	Hahn, Al	V		
Company:	Caterpillar, Inc./Tech Center			
Address:	Bldg. L/P.O. 1875			
	Peoria, IL 61656-1875			
Phone:	309-578-3617			
Fax:	309-578-4232			
e-mail:	hahn_al_c@cat.com			
Name:	Riccardo Conti	V		
Company:	Exxon/Mobil R&E			
	Products Research & Technology			
Address:	600 Billingsport Road			
	Paulsboro, NJ 08066-0480		Vi Com	
Phone:	856-224-2681			
Fax:	856-224-3904			
e-mail:	riccardo.conti@exxonmobil.com	NTX /	<u></u>	
Name:	Kennedy, Steve	NV		
	Exxon/Mobil R&E			
Address:	600 Billingsport Road Paulsboro, NJ 08066		l – – – – – – – – – – – – – – – – – – –	
Phone:	Paulsboro, NJ 08066 856-224-2432			
Fax:	856-224-3678			
e-mail:	steven.kennedy@exxonmobil.com			
Name:	McCord, James	v		·····
Company:		1	Janus M'Cord	
Address:	6220 Culebra Rd.		jurnes	
11001000.	San Antonio, TX 78228-0510		· · · · · · · · · · · · · · · · · · ·	
Phone:	210-522-3439			
Fax:				
e-mail:	jmccord@swri.edu			

Att 1 3/5

*** Please indicate any corrections that should be made to members name, address, etc ***

Member		status	Indicate Presence with Signature	Alternate
Name:	Nycz, David S.	NV		
	Caterpillar, Inc.			
Address:	Box 610			
11001000.	Mossville, IL 61552-0610			
Phone:	309-578-3003			
Fax:	309-578-6457			
e-mail:	nycz_david_s@cat.com			
Name:	Parke, Scott	V		
	ASTM/TMC	· ·		
Address:	6555 Penn Avenue			
ruaress.	Pittsburgh, PA 15206-4489) la nu	
Phone:	412-365-1036		al	
Fax:	412-365-1047		2	
e-mail:	sdp@tmc.astm.cmri.cmu.edu			
Name:	Passut, Charlie	NV		
	Ethyl Corporation	111		
Address:	500 Spring Street			
1441055.	P.O. Box 2158			
	Richmond, VA 23219			
Phone:	804-788-6372			
Fax:	804-788-6388			
e-mail:	charles_passut@ethyl.com			
Name:	Ralph Perna	NV		
Company:		14 4		
Address:	Room #MF 104			
Address:	3333 Highway 6 South			
	Houston, TX 77082			
Phone:	713-544-7844			
Filone. Fax:	713-544-7844			
e-mail:	_rperna@equilontech.com			
	Rumford, Robert H.	NV		
Name:	· · · · · · · · · · · · · · · · · · ·	IN V		
Address:	Haltermann Products P.O. Box 429			
Auuress:	P.O. Box 429 Channelview, TX 77530-0429			
Dhores				
Phone:	832-376-2213			
Fax:	281-457-2768			
:-mail:	rhrumford@haltermann-usa.com	NV	+ +	
Name:	Rutherford, Jim	IN V		
	Chevron Oronite			
Address:	100 Chevron Way Bishmond, CA 04802			
Dhoras	Richmond, CA 94802			
Phone:	510-242-3410			
Fax:	510-242-1930			
:-mail:	jaru@chevron.com	NT17		
Name:	Scinto, Phil	NV	$ \omega \kappa $	
Company:	The Lubrizol Corporation		Ohr, A	
Address:	29400 Lakeland Blvd.			
DI	Wickliffe, OH 44092-2298			
Phone:	440-347-2161		Dente	
Fax:	440-347-2014			
e-mail:	prs@lubrizol.com			

Att 1 4/5

		(Visit	ors Page)	
Member		Status	Indicate Presence with Signature	Alternate
Name: Company: Address:	Stevens, Carl Ashland, Inc. 22nd Front Street	NV		
Phone:	Ashland, KY 41101 606-329-5 198			
Fax:	606-329-3009			
e-mail:	cstephens@ashland.com		· · · · · · · · · · · · · · · · · · ·	
Name: Company: Address:	Tharp, David Caterpillar, Inc.	NV		
Phone: Fax:	309-675-6122			
e-mail:	tharpde@cat.com			
Name: Company: Address:	van Dam, Wim Oronite Additives Division Chevron Chemical Company 100 Chevron Way, 60-1214 Richmond, CA 94802	NV		
Phone:	510-242-1404			
Fax:	510-242-3172			
e-mail: Name:	wvda@chevron.com Zaiontz, Mike	v		
Company: Address:	PerkinElmer 5404 Bandera Road San Antonio, TX 78238			
Phone: Fax:	210-647-9483			
e-mail:	mike.zaiontz@perkinelmer.com			
Name:	en van Multekom			
Company: " Address:	29400 Lakeland Blud			
Phone: (Fax: (Wichliffe OH 44092 440) 347-2603 440) 347-2014 Juht @ Jubritol.con			
e-mail: Name:	Ben Weber			
Company: Address:	surt			
Phone: Fax: e-mail:	Weber = SwRI.edu	NV	Ben Wille	
Name: (Company: Address:	HRIS MAZUCA DERKIN ELMER			
Phone: Fax: <u>e-mail:<i>C</i>hr</u>	s. mazuca Operkinelmer. com		Chris Manuca	
	•			

Att ! 5/5

SCOT	E SURVEI	LLANCE PANEL	
		ce Roster	
	(Visitor	rs Page)	
Member	status	Indicate Presence with Signature	Alternate
Name: BEro ARAizA			
Company Test		\bigcirc	
Company: TEST ENGINE TING INC Address: 1271 & CIMPSFON PATH			
S. A- TX 78249	NV	Bt liz	
-1	,		
Phone: 210-877-0222 Fax: 210 690-1959		\bigcirc	
e-mail: BARAIZA CTEI-Net, Com			
News AL COCKE MANITER			
Name: AL FIZEDO MONTE2			
COMPANY: CHEVICON OVONITE			
Address:		λ $\Lambda \Lambda \Lambda$	
ות	/	A-VVC .	
Phone:		•	
Fax:	¥ I		
e-mail: ammAGChevontexacoum			
\$00M_=			
Company:			
Address:			
Phone:			
Fax:			
e-mail:			
Name:			
Company:			
Address:			
D			
Phone:			
Fax:			
e-mail:			
Name:			
Company:			
Address:			
Phone:			
Fax:			
e-mail:			
Name:			
Company:			
Address:			
Phone:			
Fax:			
_e-mail			
Name:			
Company:			
Address:			
Phone:			
Fax:			
e-mail [.]			

Τ

Att a 1

- Date/Time: January 232002 (08:30 17:00) January 24, 2002 (08:30 – 12:00)
- Location: PerkinElmer Automotive Research 5404 Bandera Road San Antonio, Texas 78238

<u>AGENDA</u>

Day 1: Wednesday. January 23 (08:30 – 17:00)

- 1. Membership
- 2. Cat 1 R QI Limit Evaluation
- 3. Cat 1 R Cylinder Liner Wear Step Mack T10 Task Force Results
- 4. Cat 1 R Procedure/Test Report Format/Data Dictionary
- 5. Cat 1R High Copper Lab experience with 2000 year date rocker arms
- 6. Cat 1R Calibration Oil 1005-I Severity and Precision Review for N=20
- 7. Cat 1R, Availability of PC-9 Category Calibration Oil (Oil A)
- 8. Cat 1 R Research Report Status

Day 2: Thursday. Januarv 24.2002 (08:30 – 12:00)

- 1. Cat 1 MPC Severity Evaluation of Industry Correction
- 2. Other SCOTE Business

Att 3 3

Proposed Cat 1R QI Limits

Background

Quality Index (QI) is a mathematical technique of assessing control precision. Like its predecessors, % Off and % Out, QI is a test validity criteria. QI can range from a maximum of 1.0 (perfect control) to negative infinity (poor control). The validity threshold is 0.0. Every controlled parameter has an associated QI. A test with any controlled parameter with a QI < 0.0, at EOT, is subject to be invalid.

<u>Goals</u>

- 1. Assess control capability of each parameter
- 2. Reduce -QI false alarms
- 3. Base QI control limits on a process capability of \geq 3 sigma

Cat 1R -- PC-9 Matrix Controlled Parameter Study

1

	Engine Speed (RPM)	Fuel Flow (g/h)	Humidity (g/Kg)	Coolant Flow (L/m)	Coolant (°C)	Oil (°C)	Inlet Air (°C)	Fuel (°C)	Oil (kPa)	lnlet Air (kPaA)	Fuei (k <u>Pa)</u>	Exhaust (kPaA)	
18 Tests (2 Labs)	0.901	0.408	0.475	1.021	0.183	0.297	0.242	0.353	1.552	0.565	1.225	0.372	

Table 1 Process Control Standard Deviation

				P	rocess Cor	ntrol Capa	ability					
	Engine Speed (RPM)	Fuel Flow (g/h)	Humidity (g/Kg)	Coolant Flow (L/m)	Coolant (°C)	Oil (°C)	inlet Air (°C)	Fuel (°C)	Oil (kPa)	Inlet Air (kPaA)	Fuel (kPa)	Exhaust (kPaA)
Test Procedure Specification (±)	3.0	1.0	1.7	2.0	3.0	3.0	3.0	3.0	20.0	1.0	20.0	1.0
Parameter Standard Deviation (Table 1)	0.901	0.408	0.475	1.021	0.183	0.297	0.242	0.353	1.552	0.565	1.225	0.372
Process Capability (Spec/Stdev)	3.3	2.5	3.6	2.0	16.4	10.1	12.4	8.5	12.9	1.8	16.3	2.7
6-Sigma Capable?	N	N	N	N	Y	Y	Y	Y	Y	N	Y	N

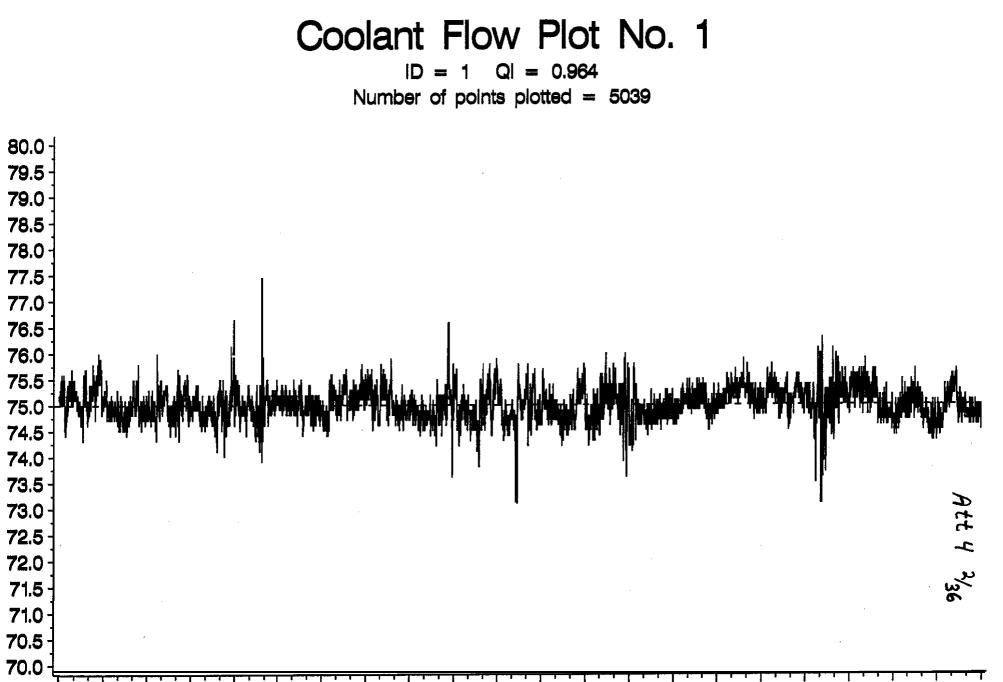
Table 2 Process Control Capabilit

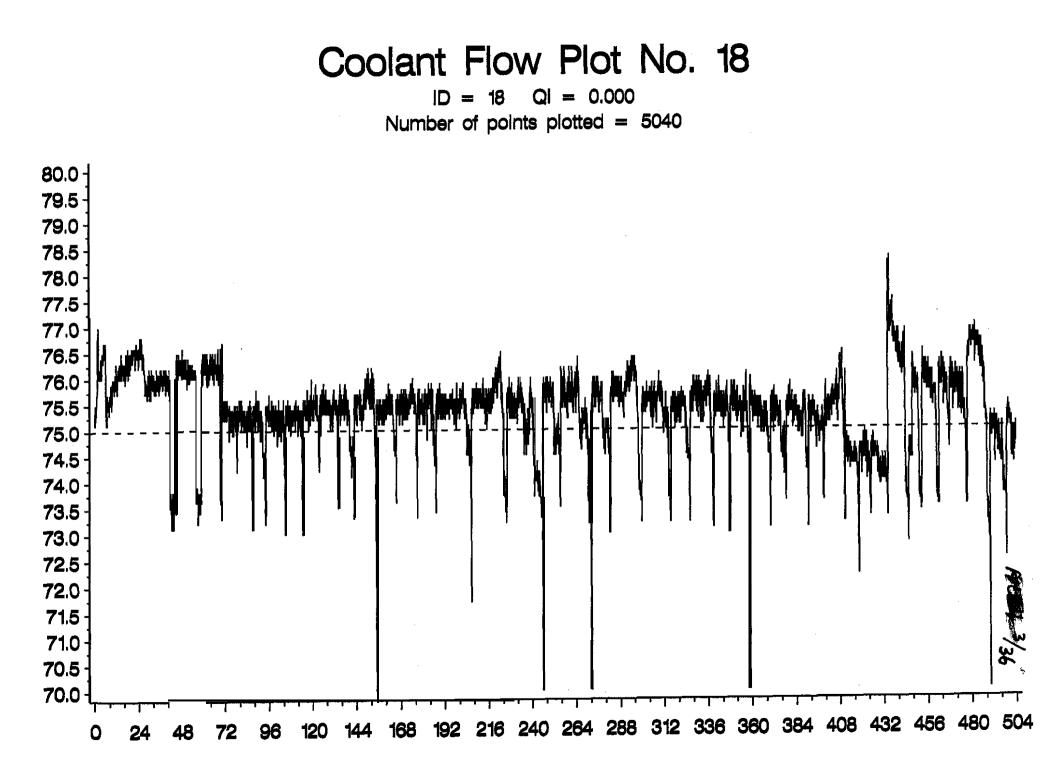
Att 3

s w

Cat 1R -- PC-9 Matrix Controlled Parameter Study

	Engine Speed (RPM)	Fuel Flow (g/h)	Humidity (g/Kg)	Coolant Flow (L/m)	Coolant (°C)	Oil (°C)	Inlet Air (°C)	Fuel (°C)	Oil (kPa)	Inlet Air (kPaA)	Fuel (kPa)	Exhaust (kPaA)
Current QI Control Limit (±)	1.470	1.030	1.020	1.940	0.622	1.202	0.640	1.116	10.616	0.551	3.529	0.850
Process Capability (Limit/Stdev)	1.63	2.52	2.15	1.90	3.40	4.05	2.64	3.16	6.84	0.98	2.88	2.28
				Propos	and the second	ble 4 y Index (Qi) Limits		and a second			
Proposed QI Control Limit (±)	2.703	1.224	1.424	3.061	ок	ок	0.725	ок	ок	1.694	3.675	1.117
Process Capability (Limit/Stdev)	3.000	3.000	2.998	2.998	ок	ок	2.996	ок	ок	2.998	3.000	3.003


Table 3 Quality Index (QI) Capability


Coolant Flow

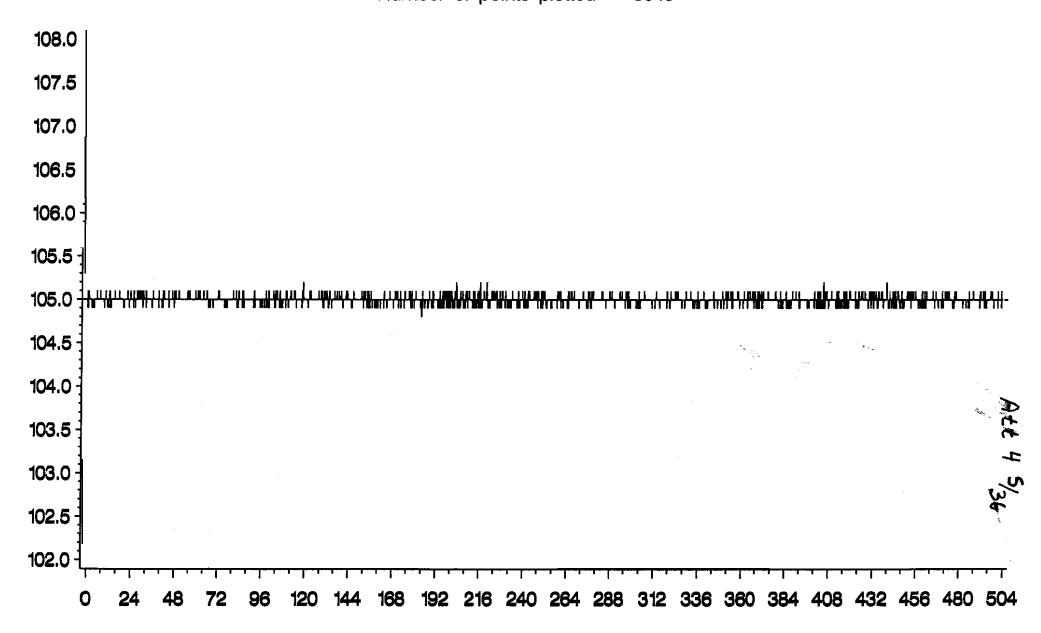
Lab	CMIR	Plot #	Zero test	# of 6 minute data points	QI (using 1P- derived α and β)	$\Delta (\beta-\alpha)$ if this test were zero test	QI (using calculated α and β)
В	41554	1		5039	0.973	0.6397	0.964
В	41547	2		5039	0.963	0.7455	0.951
G	41539	3		5041	0.912	1.1481	0.883
F	41546	4		5040	0.898	1.2389	0.864
A	41573	5		5038	0.881	1.3378	0.842
Â	41538	6		5040	0.837	1.5668	0.783
D	41968	7		5040	0.833	1.5865	0.777
G	41542	8		5039	0.832	1.5900	0.776
A	41537	9		5040	0.832	1.5919	0.776
D	41543	10		5040	0.810	1.6913	0.747
A	41760	11		5040	0.795	1.7563	0.727
A	41535	12		5040	0.788	1.7856	0.718
A	41536	13		5040	0.783	1.8078	0.711
G	41761	14		5040	0.735	1.9980	0.647
G	41540	15		5039	0.480	2.7983	0.307
G	41541	16		5039	0.331	3.1727	0.109
G	41570	17		5039	0.253	3.3527	0.005
F	41545	18	*	5040	0.249	3.3618	0.000

	Target	to	ວpec Min	Spec Max	α	β	μ (β-α)
1P-Derived Values	75	0.1	70	80	73.06	76.94	3.88
Calculated 1R	75	0.1	70	80	73.32	76.68	3.36

Att 4 36

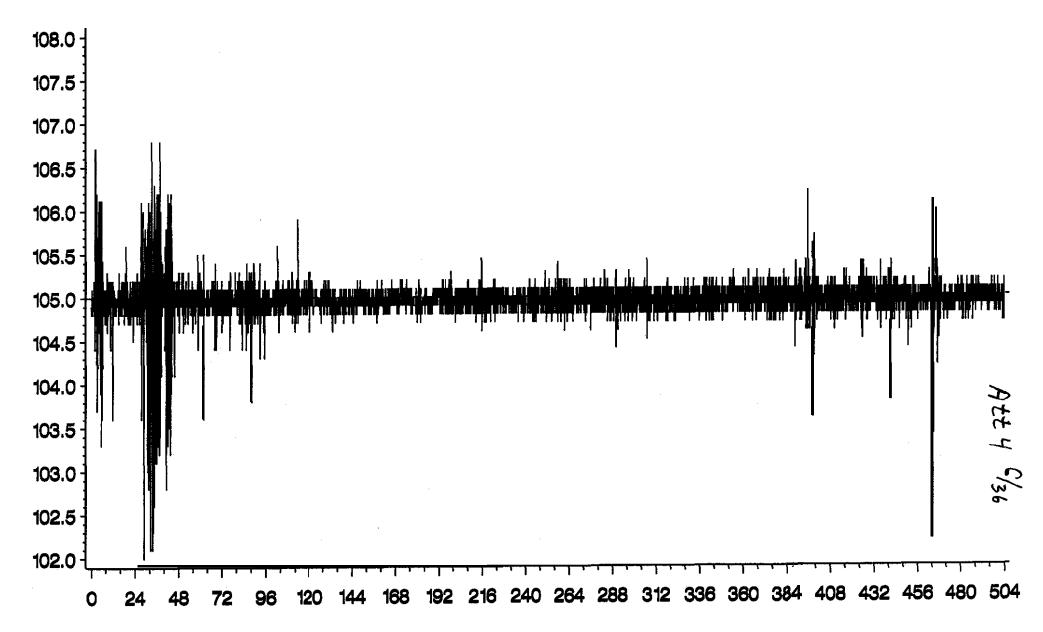
Coolant Out Temp

4


.

Lab	CMIR	Plot #	Zero test	# or o minute data points_	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
A	41538	1		5040	0.997	0.0731	0.977
Α	41536	2		5040	0.989	0.1284	0.928
A	41573	3		5038	0.982	0.1658	0.879
В	41547	4		5039	0.981	0.1701	0.873
B	41554	5		5039	0.980	0.1733	0.868
A	41760	6		5040	0.979	0.1810	0.856
A	41535	7		5040	0.975	0.1942	0.834
A	41537	8		5040	0.962	0.2426	0.741
D	41968	9		5040	0.961	0.2447	0.737
F	41545	10		5040	0.948	0.2835	0.647
F	41546	11	1	5040	0.943	0.2967	0.613
G	41761	· 12	Į	5040	0.930	0.3285	0.526
G	41540	13		5039	0.930	0.3287	0.525
G	41541	14		5039	0.921	0.3496	0.463
G	41542	15		5039	0.919	0.3535	0.451
G	41570	16		5039	0.908	0.3751	0.382
G	41539	17	<u> </u>	5041	0.858	0.4680	0.038
D	41543	18	*	5040	0.852	0.4771	0.000

	Target	to	Min	Max	α	þ	(β-α)
1D Darived Values	105	<u> </u>	102	108	104.38	105.62	1.24
	105	0.1	102	108	104.77	105.24	0.47

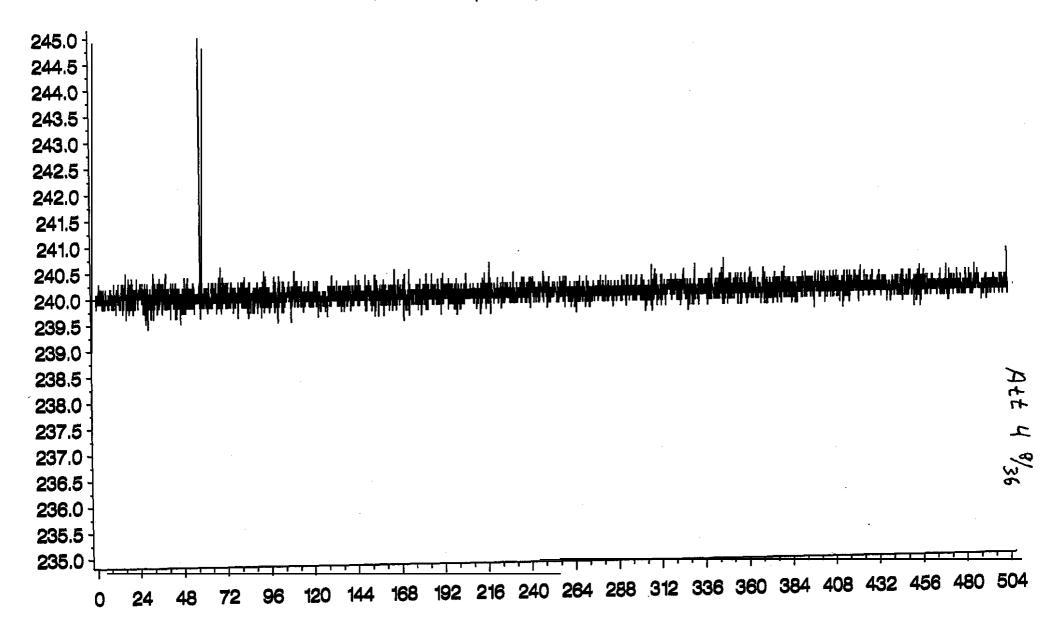

Att 4 436

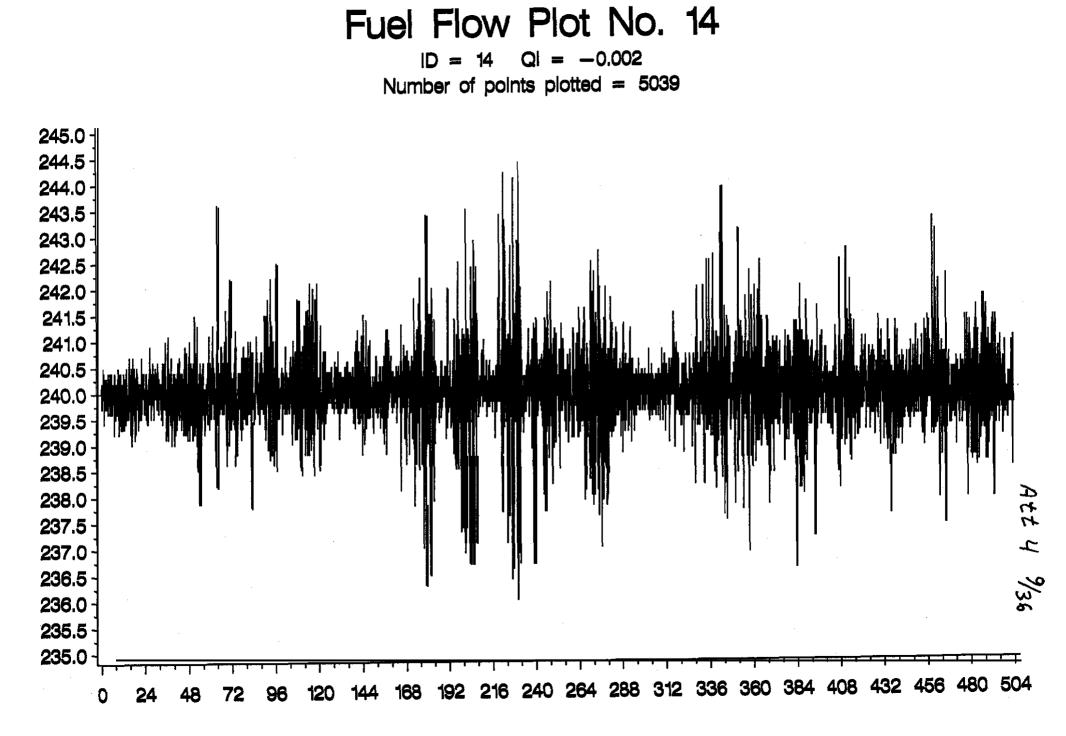
Coolant Out Temp Plot No. 1 D = 1 Ql = 0.977 Number of points plotted = 5040

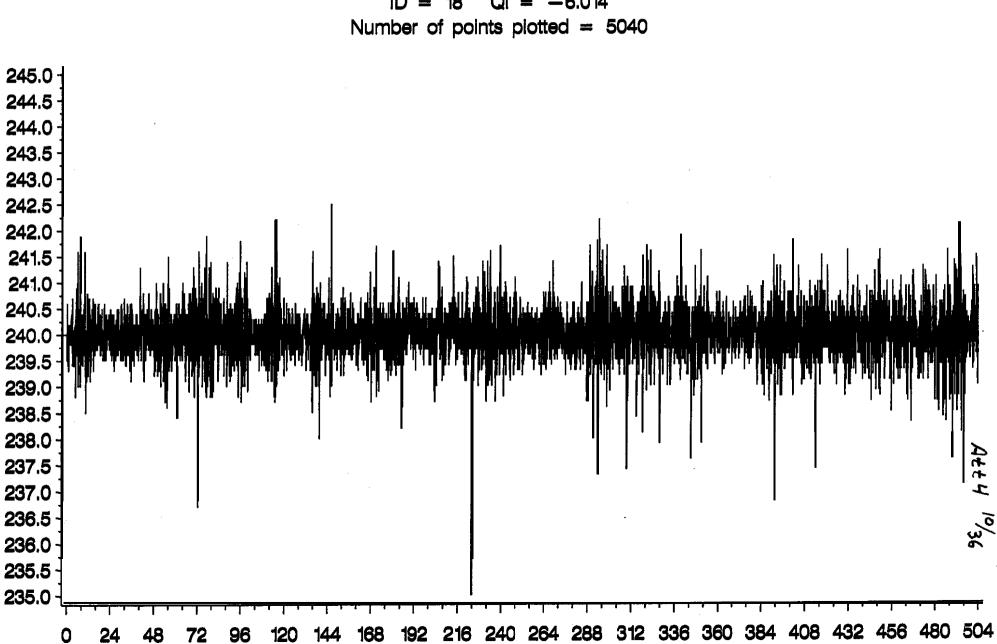
Coolant Out Temp Plot No. 18

|D = 18 QI = 0.000 Number of points plotted = 5040

Fuel Flow


Lab	CMIR	Plot #	Zero test	# 01 0 minute data points	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
G	41542	1		5039	0.973	0.3397	0.938
B	41554	2		5039	0.967	0.3761	0.924
G	41570	3		5039	0.942	0.4967	0.868
В	41547	4		5039	0.942	0.4971	0.868
A	41573	5		5038	0.925	0.5649	0.829
G	41541	6		5039	0.912	0.6114	0.800
A	41535	7		5040	0.902	0.6445	0.778
A	41536	8		5040	0.876	0.7257	0.718
F	41545	9		5040	0.871	0.7393	0.708
A	41538	10		5040	0.852	0.7913	0.665
A	41760	11		5040	0.846	0.8072	0.652
F	41546	12		5040	0.828	0.8535	0.610
A	41537	13		5040	0.772	0.9843	0.482
G	41540	14	*	5039	0.559	1.3676	0.000
G	41539	15		5041	0.374	1.6294	-0.419
D	41968	16		5040	0.248	1.7862	-0.706
D	41543	17		5040	0.144	1.9054	-0.941
G	41761	18		5040	-2.084	3.6178	-5.998


	Target	Round to	Spec Min	Spec Max	α	β	Δ (β-α)
1P-Derived Values	240	0.1	239	241	238.97	241.03	2.06
Calculated 1R Values	240	0.1	239	241	239.32	240.69	1.37


Att 4 736

Fuel Flow Plot No. 1

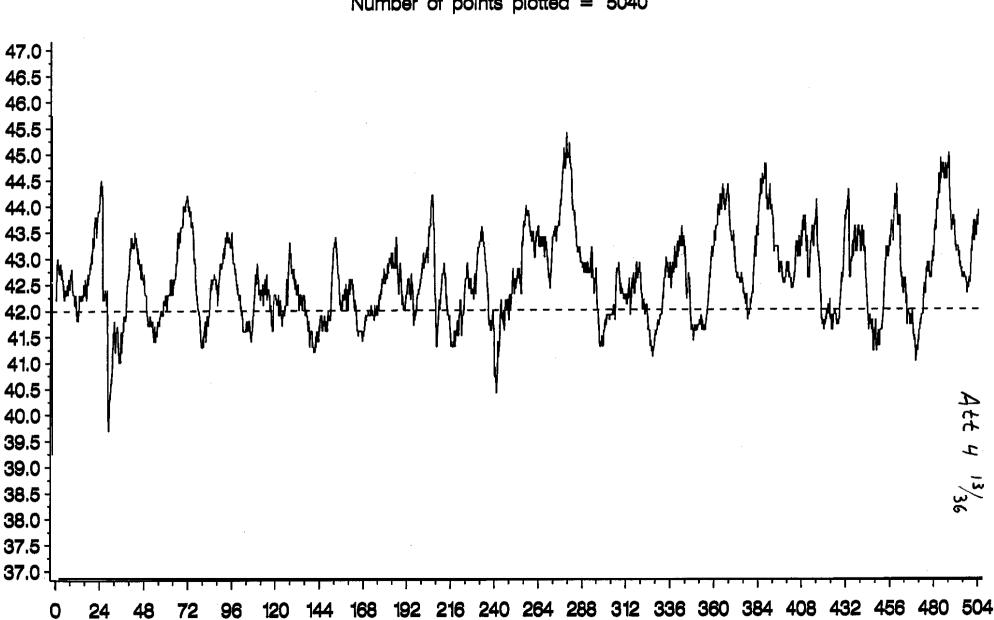
ID = 1 QI = 0.938Number of points plotted = 5039

Fuel Flow Plot No. 18

-6.014 18 ID Q =

Fuel Temp


Lab	CMIR	Plot #	Zero test	minute data points	QI (using 1P- derived α and β)	$\Delta (\beta - \alpha)$ if this test were zero test	QI (using calculated α and β)
В	41547	1		5039	0.997	0.1272	0.996
G	41542	2		5039	0.991	0.2100	0.989
G	41539	3		5041	0.990	0.2282	0.988
D	41968	4		5040	0.985	0.2698	0.983
G	41541	5	-	5039	0.985	0.2729	0.982
В	41554	6		5039	0.983	0.2903	0.980
G	41570	7		5039	0.982	0.2966	0.979
D	41543	8		5040	0.977	0.3385	0.973
A	41538	9		5040	0.959	0.4536	0.951
F	41545	10		5040	0.951	0.4933	0.942
A	41535	11		5040	0.945	0.5224	0.935
F	41546	12		5040	0.942	0.5383	0.931
A	41537	13		5040	0.886	0.7541	0.864
A	41573	14		5038	0.869	0.8064	0.844
G	41540	15		5039	0.682	1.2575	0.622
Α	41760	16		5040	0.541	1.5109	0.454
G	41761	17		5040	0.323	1.8350	0.194
A	41536	18	*	5040	0.160	2.0443	0.000


	Target	Round to	Spec Min	Spec Max	α	β	Δ (β-α)
P-Derived Values	42	0.1	39	45	40.89	43.12	2.23
Values	42	0.1	39	45	40.98	43.02	2.04

Att 4 "1/36

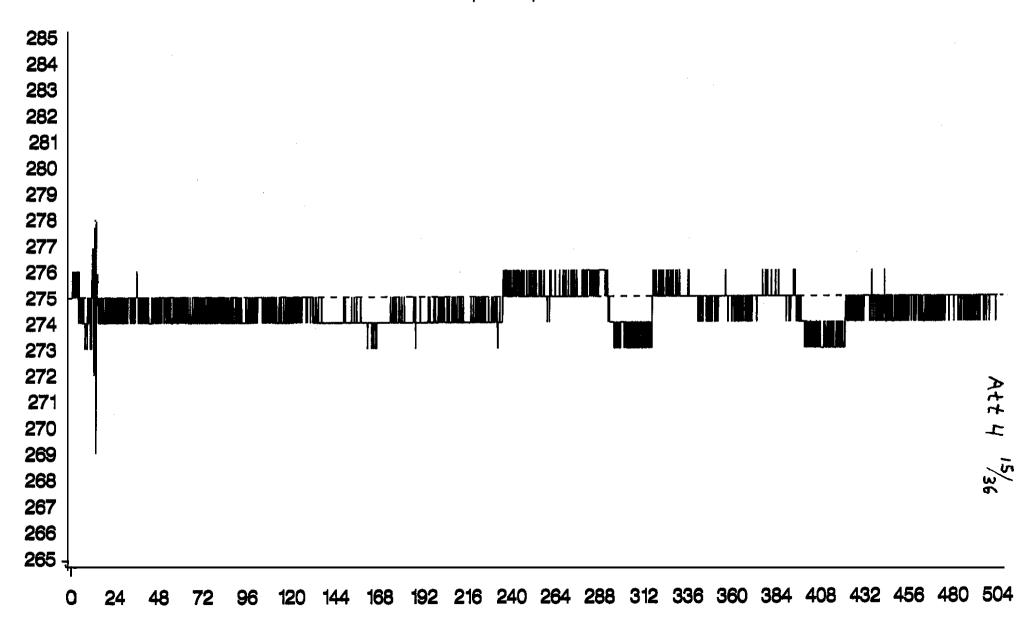
Fuel Temperature Plot No. 1

ID = 1 QI = 0.996Number of points plotted = 5039

Fuel Temperature Plot No. 18

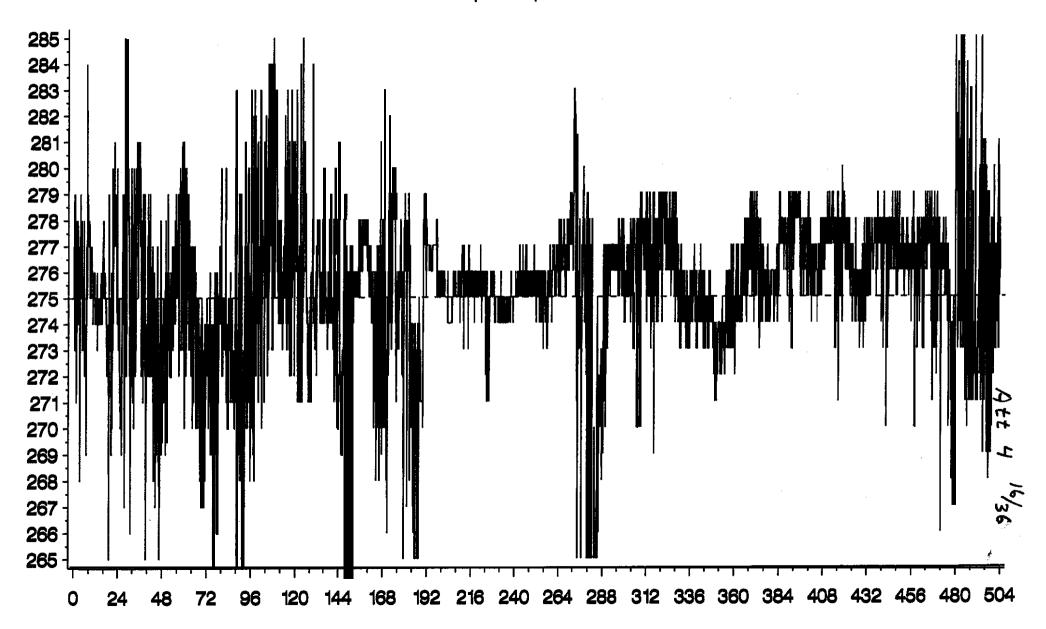
|D = 18 Q| = -0.000Number of points plotted = 5040

Fuel Pressure


Lab	CMIR	Plot #	Zero test	minute data points	QI (using 1P- derived α and β)	Δ (β-α) if this test were zero test	QI (using calculated α and β)
В	41554	1		5039	0.945	1.6590	0.914
В	41547	2		5039	0.943	1.6844	0.911
D	41543	3		5040	0.937	1.7766	0.901
A	41535	4		5040	0.905	2.1738	0.852
A	41573	5		5038	0.885	2.3976	0.820
A	41537	6		5040	0.882	2.4244	0.816
D	41968	1		5040	0.873	2.5114	0.803
A	41536	ao		5040	0.853	2.7036	0.771
A	41538	9		5040	0.827	2.9333	0.731
G	41ວ39	10		5041	0.810	3.0797	0.703
G	41542	11		5039	0.804	3.1226	0.695
G	41761	12		5040	0.797	3.1818	0.684
G	41540	3		5039	0.759	3. <u>4</u> 657,	0.625
G	41570	14		5039	0.745	3.0631	0.603
G	41541	15		5039	0.742	3.5855	0.598
A	41760	16		5040	0.706	3.8257	0.542
F	41546	17		5040	0.650	4.1760	0.455
F _I	41545	01	*	5040	0.358	5.6558	0.000

	Target	Round to	Spec Min	Spec Max	α	β	Δ (β-α)
1P-Derived Values	275	1	255	295	271.47	278.53	7.06
Calculated 1R Values	275	1	255	295	272.12	277.81	5.61

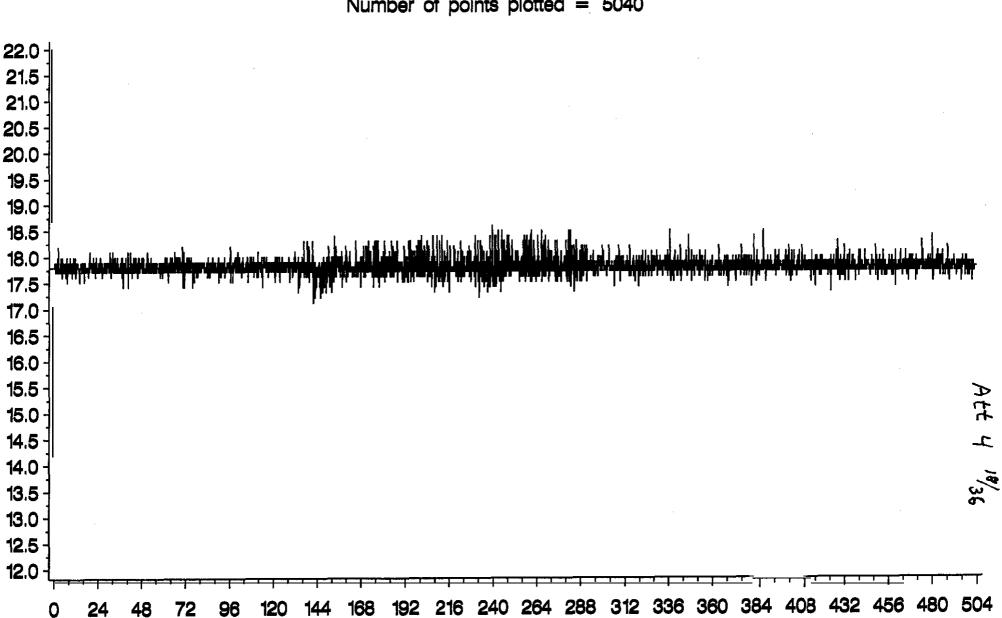
Att 4 1436


Fuel Pressure Plot No. 1

ID = 1 Qi = 0.913 Number of points plotted = 5039

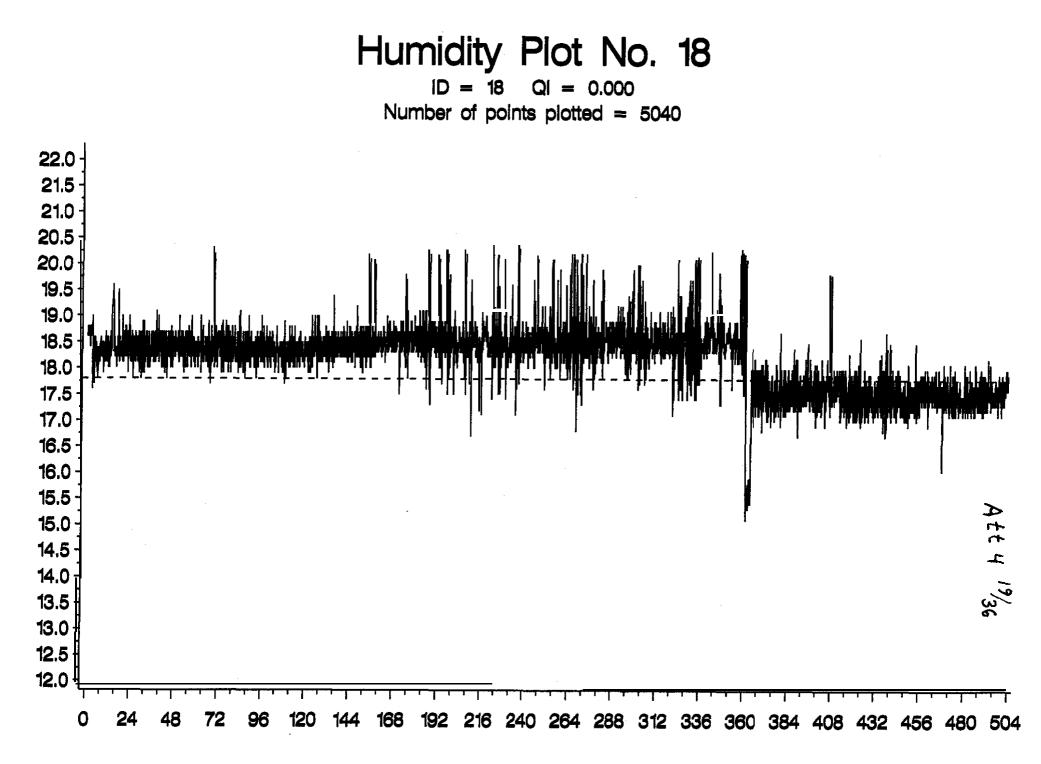
Fuel Pressure Plot No. 18

ID = 18 QI = -0.016Number of points plotted = 5040



Humidity

Lab	CMIR	Plot #	Zero test	# or o minute data points	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
F	41546	1		5040	0.983	0.2681	0.961
F	41545	2		5040	0.972	0.3390	0.938
В	41547	3		5039	0.966	0.3746	0.925
В	41554	4		5039	0.924	0.5632	0.830
G	41541	5		5039	0.917	0.5889	0.814
G	41540	6		5039	0.916	0.5913	0.813
G	41539	7		5041	0.916	0.5929	0.812
A	41538	8	· · ·	5040	0.807	0.8972	0.569
A	41573	9	•	5038	0.806	0.8976	0.568
A	41760	10		- 5040	0.804	0.9040	0.562
G	41761	11		- 5040	0.770	0.9793	0.486
G	41542	12		- 5039	0.769	0.9802	0.485
G	41570	13		5039	0.767	0.9849	0.480
D	41968	14		5040	0.584	1.3165	0.072
A	41537	15		5040	0.566	1.3434	0.033
A	41536	16		5040	0.566	1.3446	0.032
A	41535	17		5040	0.557	1.3581	0.012
	11512	18	*	5040	0 551	1.3663	0.000

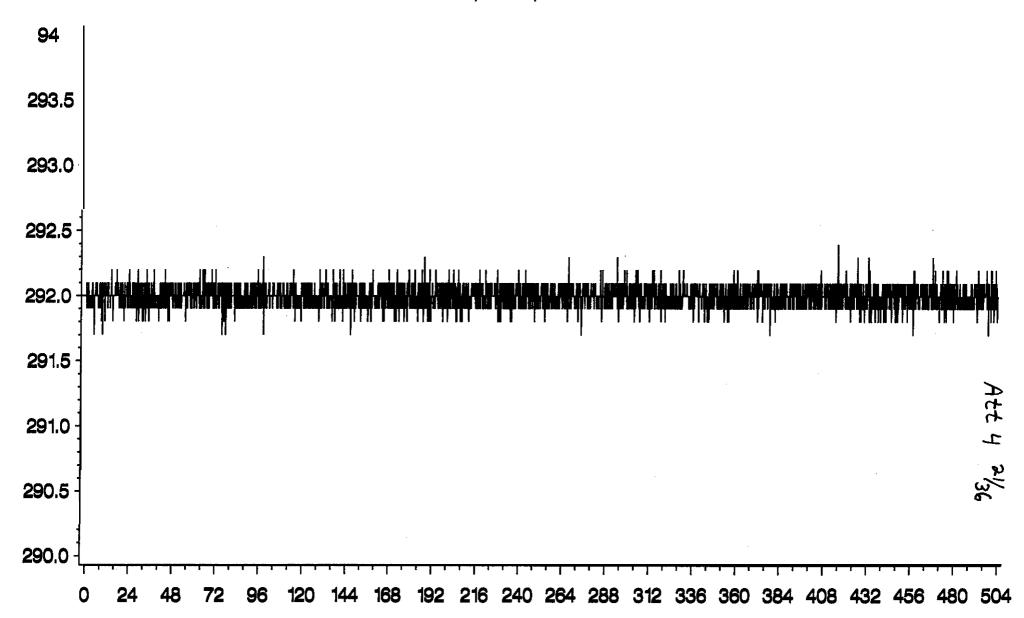

	Target	to	Min	Max_	α	β	(β-α)
1P-Derived Values	17.8	0.1	16.1	19.5	16.78	18.82	2.04
Calculated 1R Values	17.8	0.1	16.1	19.5	17.12	18.48	1.36

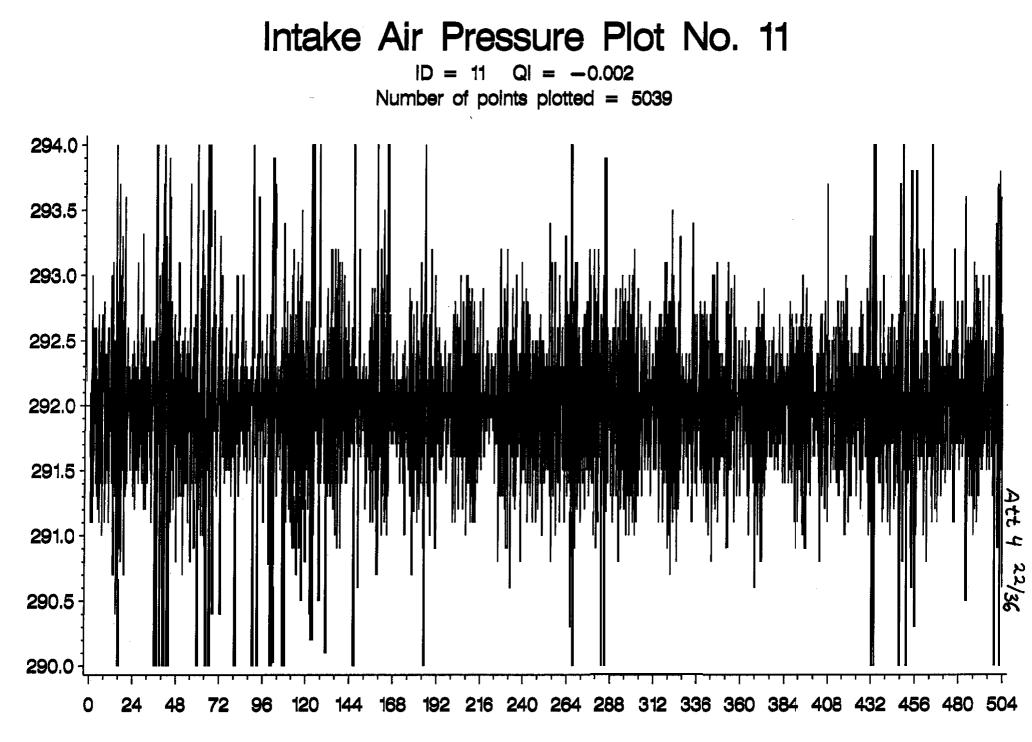
Att 4 17/36

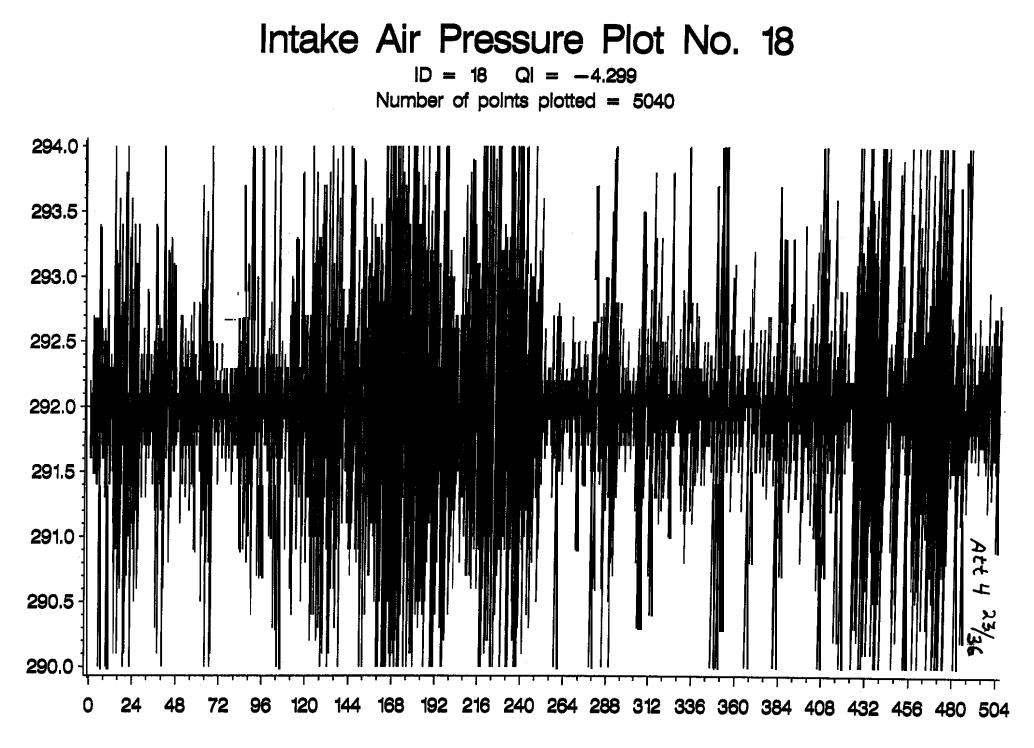
Humidity Plot No. 1 ID Q = 0.962

Number of points plotted = 5040

Intake Air Pressure


Lab	CMIR	Plot #	Zero test	# of 6 minute data points	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
F	41545	1		5040	0.982	0.1468	0.983
F	41546	2		5040	0.973	0.1791	0.975
B	41554	3	·	5039	0.955	0.2335	0.957
A	41537	4		5040	0.889	0.3668	0.895
A	41573	5		5038	0.887	0.3695	0.893
B	41547	6		5039	0.720	0.5821	0.735
D	41543	7		5040	0.635	0.6645	0.655
D	41968	8		5040	0.493	0.7831	0.521
A	41538	9		5040	0.346	0.8893	0.382
A	41535	10		5040	0.198	0.9853	0.241
G	41540	11	*	5039	-0.058	1.1313	0.000
Α	41536	12 -		5040	-0.207	1.2084	-0.141
G	41539	13 -		5041	-0.251	1.2302	-0.183
A	41760	14		5040	-0.647	1.4117	-0.557
G	41542	15		5039	-0.837	1.4911	-0.737
G	41 <u>54</u> 1	16		5039	-1.211	1.6355	-1.090
<u> </u>	41570	-17		5039	-2.921	2.1781	-2.707
G	41761	18		5040	-4.594	2.6017	-4.289

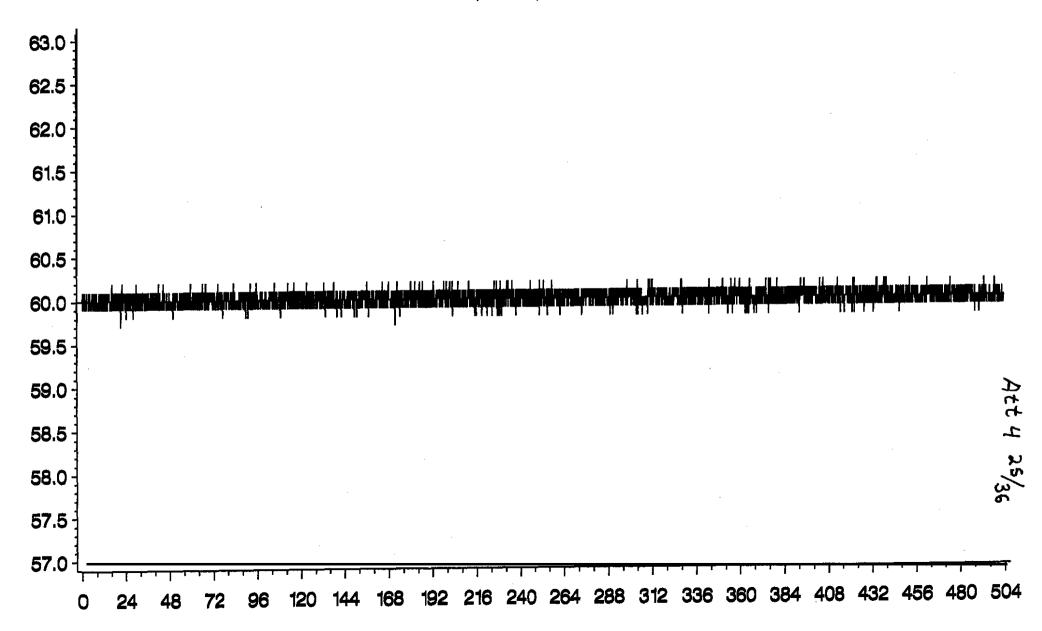

	I arget	to	Min	Max	α	β	Δ (β-α)
1P-Derived Values	292	0.1	291	293	291.45	292.55	1.1
Calculated 1R Values	292	0.1	291	293	291.44	292.57	1.13

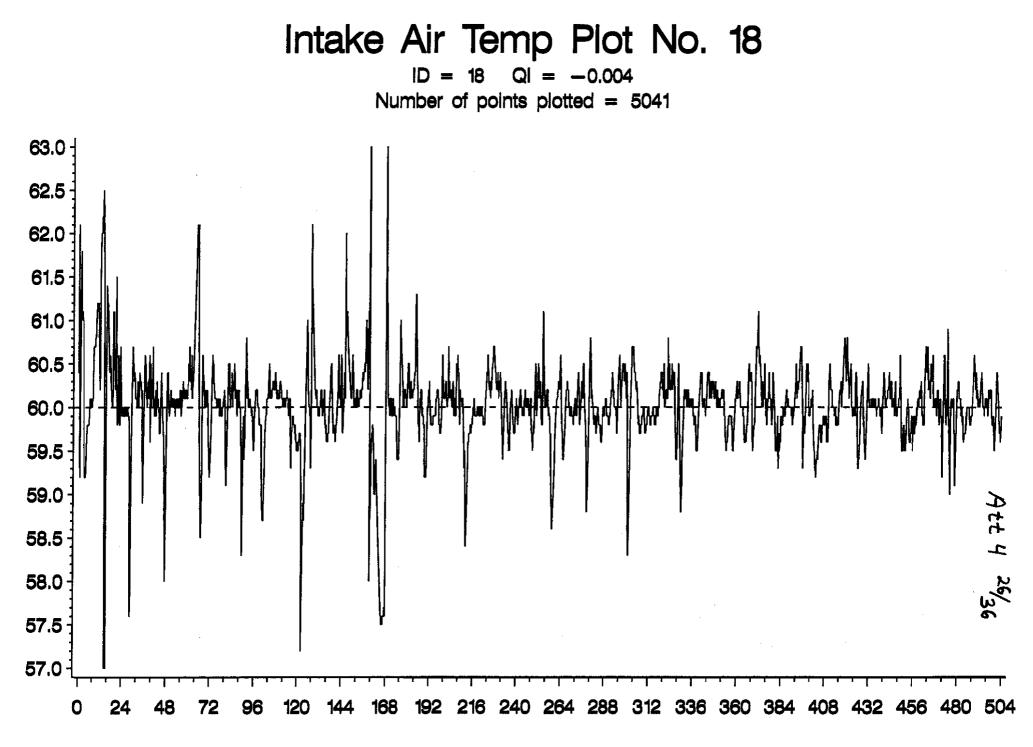

Att 4 2%

Intake Air Pressure Plot No. 1

ID = 1 QI = 0.983Number of points plotted = 5040

Intake Air Temp

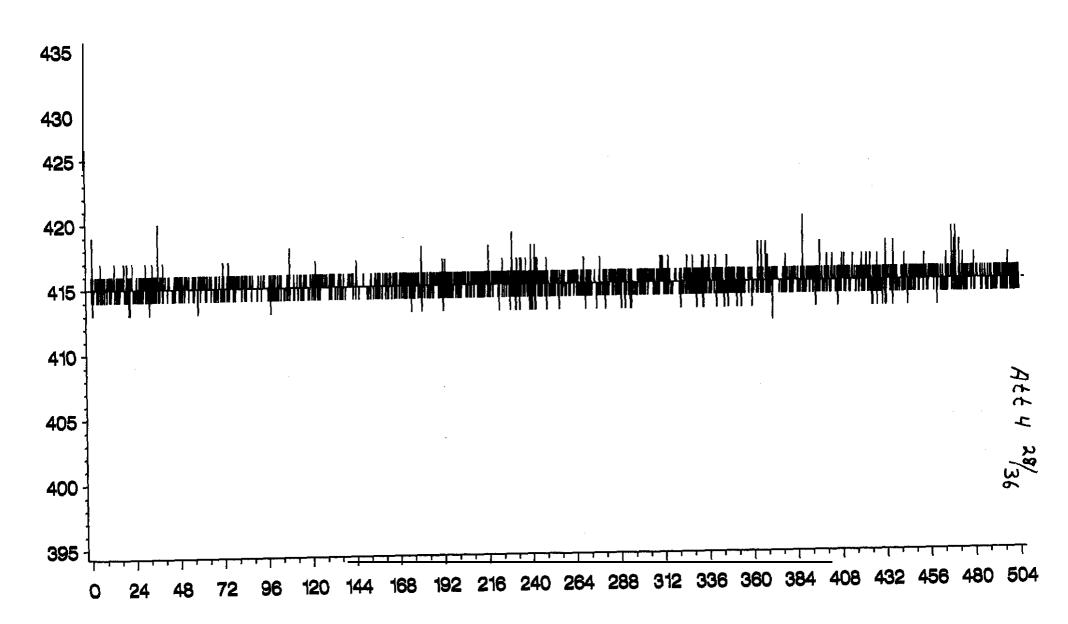

Lab	CMIR	Plot #	Zero test	minute data points	QI (using 1P- derived α and β)	Δ (β-α) if this test were zero test	QI (using calculated α and β)
B	41554	1		5039	0.986	0.1504	0.981
В	41547	2		5039	0.986	0.1527	0.980
F	41545	3		5040	0.981	0.1750	0.974
D	41543	4		5040	0.976	0.1966	0.968
D	41968	5		5040	0.975	0.2006	0.966
F	41546	6		5040	0.959	0.2577	0.944
G	41761	7		5040	0.933	0.3316	0.908
G	41570	8		5039	0.931	0.3354	0.905
A	41760	9		5040	0.909	0.3859	0.875
G	41540	10		5039	0.905	0.3950	0.869
A	41573	11		5038	0.897	0.4102	0.859
Á	41537	12		5040	0.887	0.4301	0.845
Α	41538	13		5040	0.886	0.4323	0.843
A	41536	14		5040	0.878	0.4470	0.832
Α	41535	15		5040	0.867	0.4662	0.817
G	41541	16		5039	0.760	0.6266	0.670
G	41542	17		5039	0.757	0.6305	0.666
G	41539	18	*	5041	0.274	1 0908	0.000

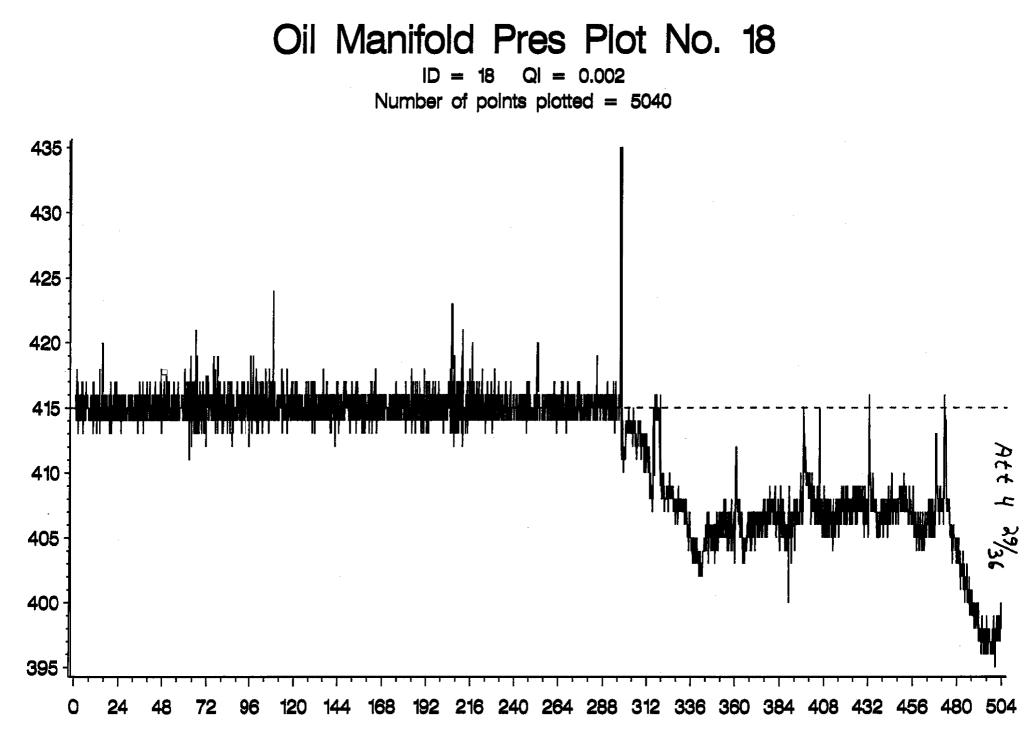

	Target	to	Opec Min	Max	α	β	μ (β-α)
1P-Derived Values	60	0.1	57	63	59.36	60.64	1.28
Values	60	0.1	57	63	59.46	60.55	1.09

Att 4 24/36

Intake Air Temp Plot No. 1 D = 1 QI = 0.981

Number of points plotted = 5039

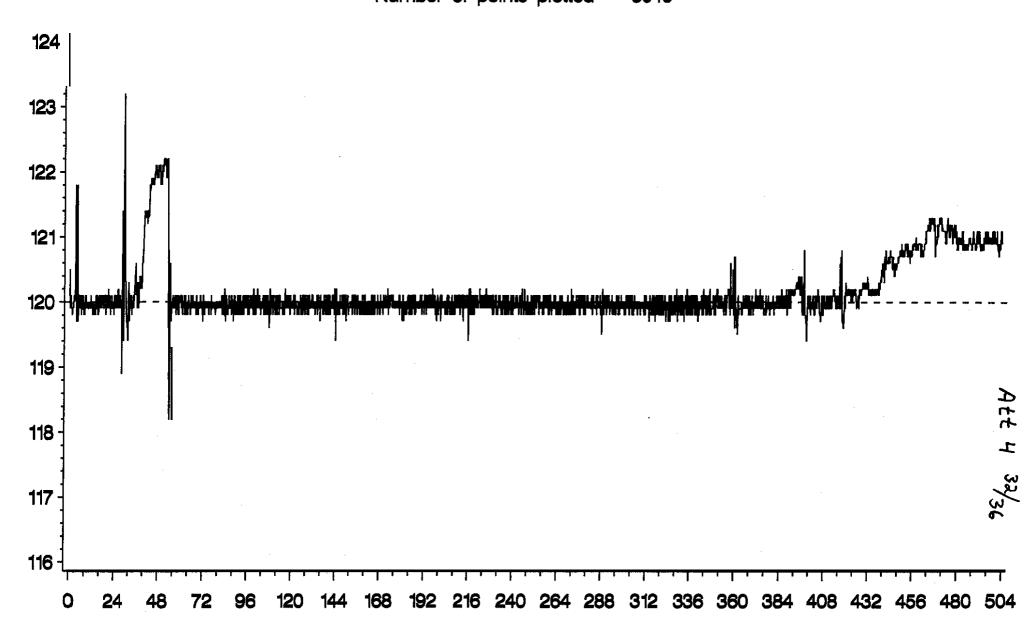

Oil Manifold Pressure


Lab	CMIR	Plot #	Zero test	# of 6 minute data points	QI (using 1P- derived α and β)	$\Delta (\beta-\alpha)$ if this test were zero test	QI (using calculated α and β)
A	41535	1		5040	0.996	1.3132	0.991
G	41540	2		5039	0.995	1.4441	0.990
A	41538	3_		5040	0.995	1.4712	0.989
A	41536	4		5040	0.994	1.6420	0.986
A	41537	5_		5040	0.991	1.9644	0.981
G	41761	6		5040	0.986	2.5029	0.969
	41570	7		5009	0.971	3.6304	0.934
F	41545	8		5040	0.953	4.6281	0.892
G	41570	9		5039	0.952	4.6434	0.892
G	41541	10		5039	0.948	4.8497	0.882
G	41542	11		5039	0.923	5.9036	0.825
F	41546	12		5040	D D21	5 9836	0.820
G	41539	13		504 ¹	<u> </u>	6 .0080	0.813
D	41543	14		5040	0.904	6.5933 I	0.781
 ע	41547	15		5039	0 .861	7.9161	0.685
D	41968	16		5040	0.850	8.2184	0.660
B	41554	17		5039	0.782	9.9102	0.506
	ן געאזו י ו	1୦.	× I	্র মেন্ডই	0.559	14.1040 ı	<u>୰.୬</u> ୬୬

	Target	Round to	Spec Min	Spec Max	α	β	Δ (β-α)
1P-Derived Values	415	1	395	435	404.38	425.62	21.24
Calculated 1R	415	1	395	435	407.94	422.06	14.12

Att 4 27/36

Oil Manifold Pres Plot No. 1 D = 1 QI = 0.991 Number of points plotted = 5040


Oil Manifold Temp

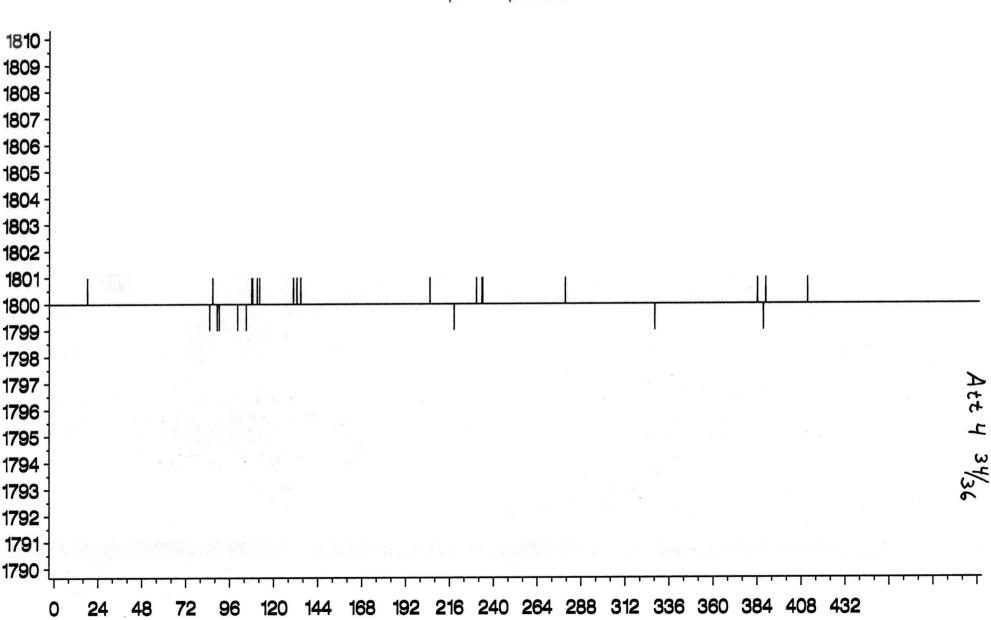
Lab	CMIR	Plot #	Zero test	# of 6 minute data points	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
G	41761	1		5040	0.998	0.1011	0.989
G	41542	2		5039	0.998	0.1043	0.988
G	41541	3		5039	0.998	0.1091	0.987
G	41570	4		5039	0.997	0.1419	0.978
A	41535	5		5040	0.983	0.3139	0.891
F	41545	6		5040	0.978	0.3535	0.861
F	41546	7		5040	0.977	0.3634	0.853
A	41538	8		5040	0.974	0.3835	0.837
D	41968	9		5040	0.966	0.4451	0.780
Α	41537	10		5040	0.952	0.5233	0.696
G	41540	11		5039	0.939	0.5935	0.609
В	41554	12		5039	0.909	0.7223	0.421
В	41547	13		5039	0.907	0.7303	0.408
G	41539	14		5041	0.899	0.7638	0.352
Α	41536	15		5040	0.894	0.7805	0.324
Α	41760	16		5040	0.884	0.8170	0.259
Α	41573	17		5038	0.844	0.9468	0.005
D	41543	18	*	5040	0.844	0.9492	0.000

	Target	to	ວpec Min	ວpec Max	α	β	Δ (β-α)
1P-Derived Values	120	0.1	117	123	118.8	121.2	2.4
Calculated 1R Values	120	0.1	117	123	119.53	120.48	0.95

Att 4 30/36

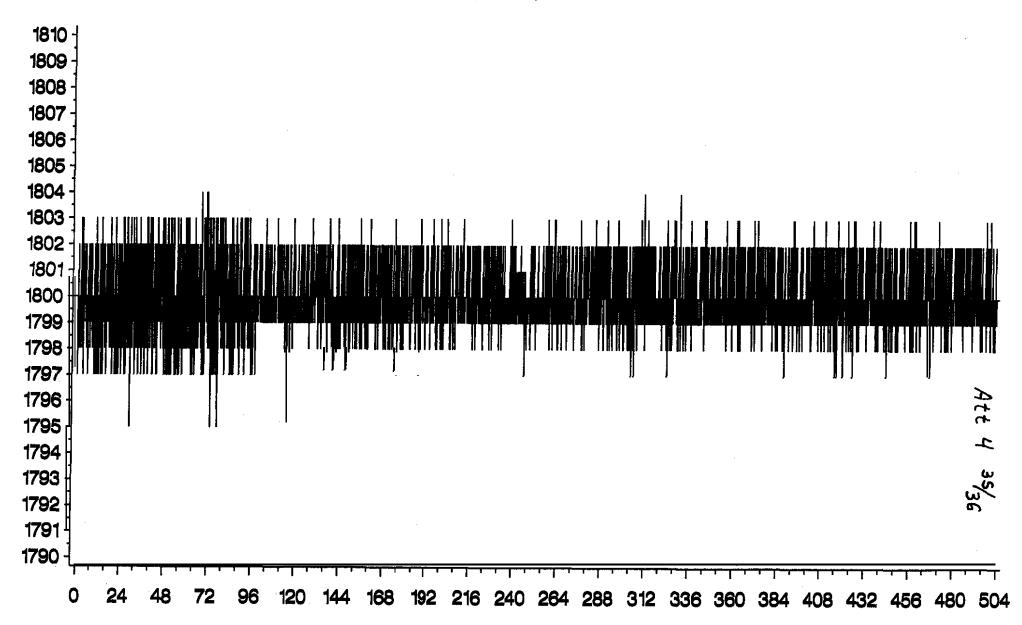
Oll Manifold Temp Plot No. 1 $|D = 1 \quad Q| = 0.988$ м Number of points plotted = 5039 Att 4 31/36 288 312 336 360 Ω 216 240 264 Oll Manifold Temp Plot No. 18 ID = 18 QI = 0.000 Number of points plotted = 5040

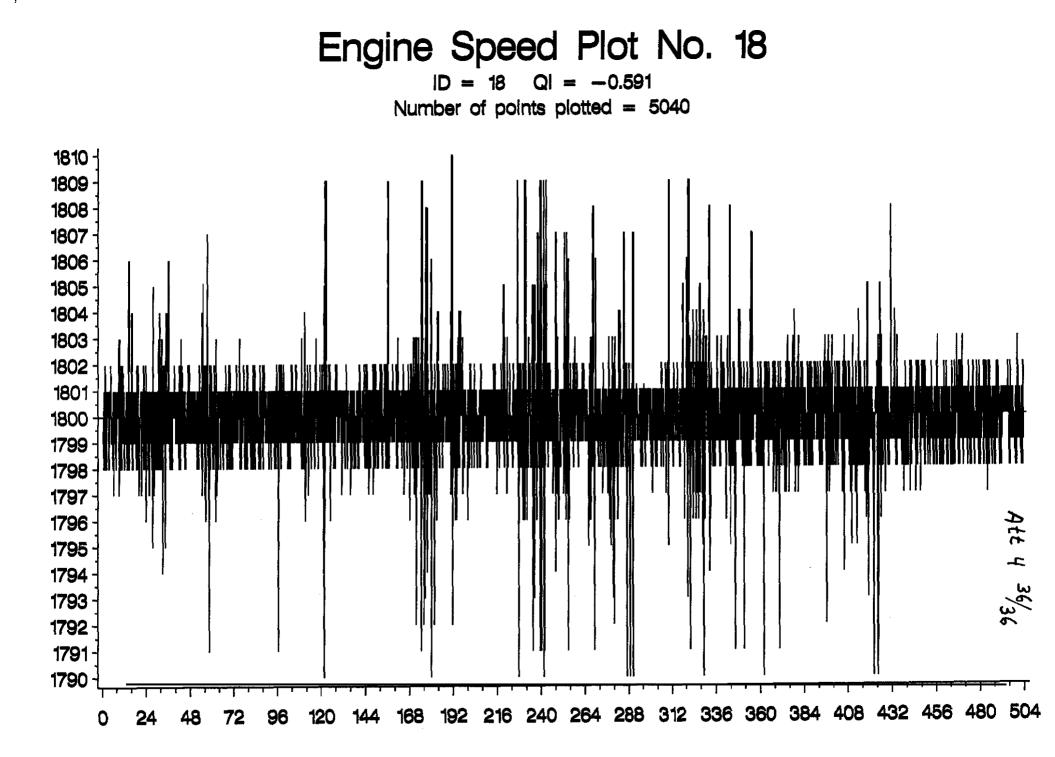
Speed


Lab	CMIR	Plot #	Zero test	# 01 0 minute data points	QI (using 1P- derived α and β)	Δ (β - α) if this test were zero test	QI (using calculated α and β)
D	41968	1		5040	0.998	0.1409	0.997
D	41543	2		5040	0.984	0.3769	0.979
B	41554	3	/ /	5039	0.901	0.9268	0.871
В	41547	4		5039	0.892	0.9654	0.860
Ģ	*1541	5	[5039	0.827	1.2223	0.776
Ā.	41537	6	1	<u>5040</u>	0.821	1.2450	0.767
F	41545	7		5040	0.800	1.3163	0.740
G	41539	8_		5041	0.780	1.3791	0.714
G	41570	9		5039	0.777	1.3880	0.711
G	41542	10		5039	0.771	1.4070	0.703
A	41573	11		5038	0.602	1.8544	0.484
G	41761	12	{	5040	0.599	1.8610	0.480
F	41546	13		5040	0.540	1.9944	0.403
G	41540	14		5039	0.506	2.0654	0.359
A	<u>-1769</u>	15	}	5040	0.402	2.2727	0.224
- A-	41 <u>-</u> 8-	16		5040	0.310	2.4430	0.104
A	41536	17	*	5040	0.230	2.5806	0.000
A	41535	18		5040	-0.226	3.2547	-0.591

	Target	to	ορου Min	Max	α	β	 (β-α)
1P-Derived Values	1800	1	1797	1803	1798.53	1801.47	2.94
Calculated 1R	1800	1	1797	1803	1798.71	1801.29	2.58

Att 4 33/36


Engne Speed Pot No 1


D QI 0997 Numb of points plotted 5040

Engine Speed Plot No. 17

|D = 17 Q| = -0.000Number of points plotted = 5040

Summary of 1R Quality Index Calculation Constants

Parameter	Target	to	Min	ор е с Max	α	ß	Δ	Floor	Ceilina
Coolant Flow	75	0.1	70	80	73.32	76.68	3.36	-44.33	194.33
Out Temp	105	0.1	102		04.77	105.24	0.47	88.06	121.94
Fuel Flow	240	0.	239	241	239.32	240.69	1.37	191.52	288.48
Fuel Temp	42	0.1	39	45	40.98	43.02	2.04	-30.56	114.56
Pressure	275	1	255	295	272.12	277.8 [,]	5.61	75.81	474.19
Humidity	17	0.1	16.1	19.5	17.12	18.48	1.36	-30.71	66.31
Pressure	292	0.1	29 [.]	293	291.44	292.57	1.13	251.89	332.11
Intake Air Temp	60	0.	57	63	59.46	60.55	1.09	21.36	98.64
Oil Man Pressure	415	1		435	407.94	422.06	14.12	-86.20	916.20
Temp	20	0.1	17	123	119.53	120.48	0.95	86.31	153.69
	1800	1	1797	803	798.7 [.]	1801.29	2.58	1708.40	1891.60

Att

ர

~

1M-PC Statistical Analysis Summary

Inquiry	Labs	Data	Conclusion
Does WTD depend on Era (2-1-98 cutoff)?	A, B, D, G	all	Yes
Does TGF depend on Era (2-1-98 cutoff)?	A, B, D, G	all	No
Does WTD depend on Liner?	A, B, D, G	all	Yes
Does TGF depend on Liner?	A, B, D, G	all	Yes
Does WTD depend on Lab?	A, B, D, G	all	Yes
Does TGF depend on Lab?	A, B, D, G	all	Yes
Does WTD depend on Liner?	A, B, D, G	>19980201	No
Does TGF depend on Liner?	A, B, D, G	>19980201	Yes
Does WTD depend on Lab?	A, B, D, G	>19980201	No
TGF depend on Lab?	A, B, D, G	>19980201	No
WTD depend on Lab?	A, B, D, G	1Y3995	No
Does TGF depend on Lab?	A, B, D, G	1Y3995	No
1Y3995 WTD depend on Spring/Fall?	A, B, D, G	1Y3995	No
Does 1Y3995 TGF depend on Spring/Fall?	A, B, D, G	1Y3995	No
Does TGF depend on Era (10-1-95 cutoff)?	A, B, D, G	all	Yes

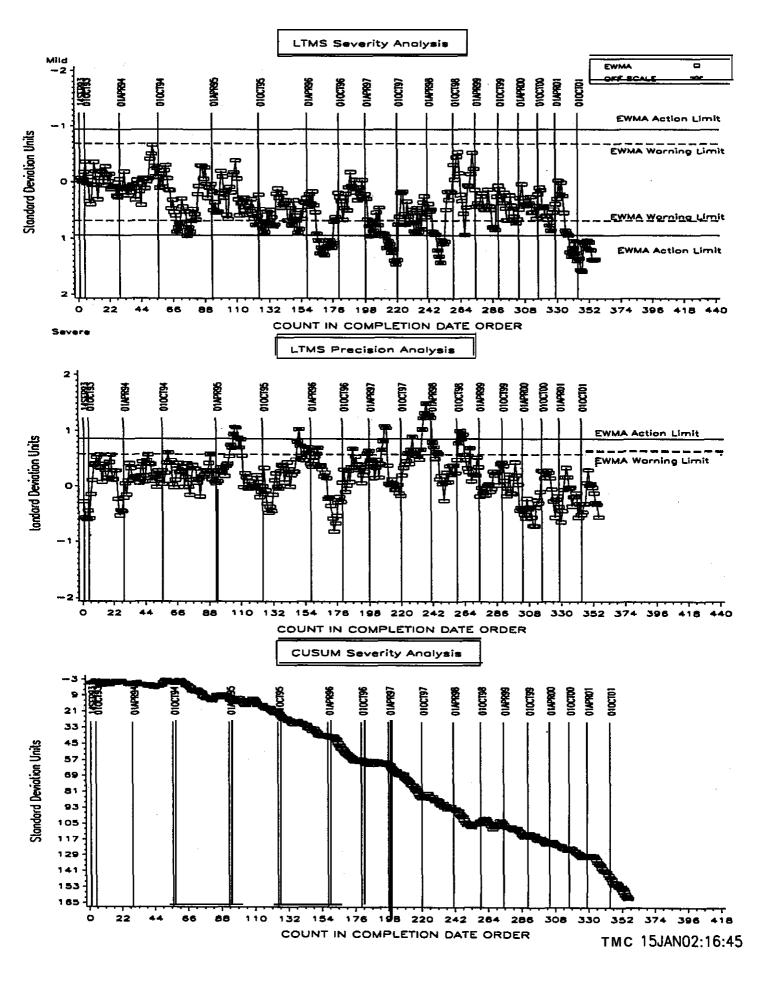
1M-PC Severity Worksheet Ptt 6 私4

Current Targets WTD TGF			n 30 30	x 232.5 41.0	Std 50.5 16.1		
Inquiry	Labs	Data		Stats		Levene	
WTD vs Era	A. B,D,G	all		p ≕ 0.0001		p=0.8338	
			n A mini	x	Std		
<19980201			165	235.2	45.2		-2.7
>19980201		all	119	274.9	44.5	0 5000	-42.4
TGF vs Era	A, B, D, G	all		p=0.4281	Std	p=0.5396	
<19980201			n 165	× `49.6	17.3		-8.6
>19980201			119	49.0 51.3	18.1		-0.0 -10.3
WTD vs Liner	A, B, D, G	all	115	p=0.0156	10.1	p=0.3208	-10.5
	7, 0, 0, 0, 0	Cin	n	р=0.0150 х	Std	p=0.5200	
New			27	273.4	42.5		-40.9
Oid			257	249.6	49.1		-17.1
TGF vs Liner	A. B, D, G	all		p=0.0081		p=0.4349	
			n	· x	Std	•	
New			27	58.9	16.0		-17.9
Old			257	49.4	17.6		-8.4
WTD vs Lab	A, B, D, G	all		p=0.0045		p=0.3557	
			n	×	Std		
А			73	253.8	43.5		-21.3
В			46	266.0	47.5		-33.5
D			28	224.2	55.6		8.3
G			137	251.7	48.9		-19.2
TGF vs Lab	A, B, D, G	all		p = 0.0005		p=0.1703	
•			n To	×	Std		
A			73	47.3	16.3		-6.3
B D			46 28	55.6	15.8		-14.6
G			28 137	40.1 52.2	20.8		0.9
WTD vs Liner	ABDG	>19980201	157	52.3	17.2	n-0 6222	-11.3
	Α, Β, Β, Β, Θ	219900201	n	p=0.8494	Std	p=0.6323	
New			n 27	× 273.4	42.5		-40.9
Old			92	275.3	42.5 45.2		-40.9 -42.8
TGF vs Liner	A, B, D, G	>19980201	JL	p=0.0133	4J.Z	p=0.3809	-42.0
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 10000201	n	р=0.0133 х	Std	h-0.9909	
New			27	58.9	16.0		-17.9
Old			92	49.1	18.2		-8.1
			~-				v. 1

1M-PC Severity Worksheet Att 6 3/4

Inquiry WTD vs Lab	Labs	Data		Stats		Levene p=0.6773	
	A, B, D, G	>19980201	n	p≃0.3400 x	Std	p=0.0773	
۸			36	271.9	45. 9		- 39. 4
A B				286.9	46.8		- 55. 4 - 54.4
D			12	257.4	40.8 34.5		-24.9
G			54	257.4	44.5		-24.9
TGF vs Lab		×10090001	54	p=0.0514	44.0	p=0.0188	-44.0
IGF VS LaD	А, Б, Д, Ө	>19980201	n	μ=0.0514 x	Std	p=0.0100	
А			36	47.9	17.1		- 6. 9
B			17	61.0	13.0		-20.0
D			12	45.1	25.0		-20.0
G			54	4 5.1 52.0	17.6		-11.0
G			04	52.0	17.0		-11.0
TGF vs Lab	A, B, G	>19980201		p=0.0327		p=0.2693	
			n	x	Std		
Α			36	47.9	17.1		- 6. 9
В			17	61.0	13.0		-20.0
G			54	52.0	17.6		-11.0
WTD vs Lab	A, B, D, G	1Y3995		p ≈0 .6196		p=0.4269	
			n	x	Std		
А			10	284.0	36.5		-51.5
В			5	275.8	38.2		-43.3
D			3	246.8	30.7		-14.3
G			9	269.2	54.7		-36.7
TGF vs Lab	A, B, D, G	1Y3995		p=0.0935		p=0.1429	
			n	x	Std		
Α			10	57.9	13.3		- 16. 9
В			5	70.4	8.0		- <i>2</i> 9. 4
D			3	68.3	6.0		-27.3
G			9	50.3	19.9		-9.3
WTD vs Lab	A, D, G	>19980201		p=0.3758		p=0.4557	
			n	x	Std		
Α			36	271.9	45. 9		- 39. 4
D			12	257.4	34.5		- 24. 9
G			54	277.0	44.5		-44.5
TGF vs Lab	<i>a,</i> D, <i>G</i>	; >19980201		p=0.3838		p=0.0527	
			n	x	Std		
А			36	47.9	17 _. 1		- 6. 9
D			12	45.1	25.0		- 4. 1
G			54	52.0	17.6		-11 .0

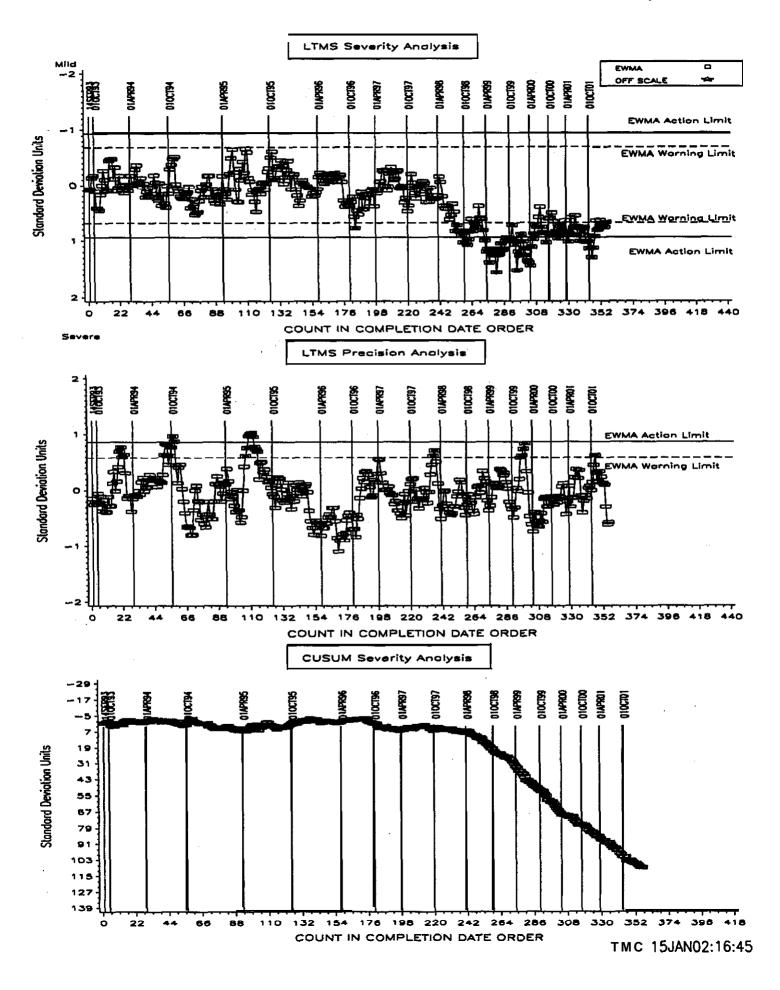
1M-PC Severity Worksheet Att 6 4/4

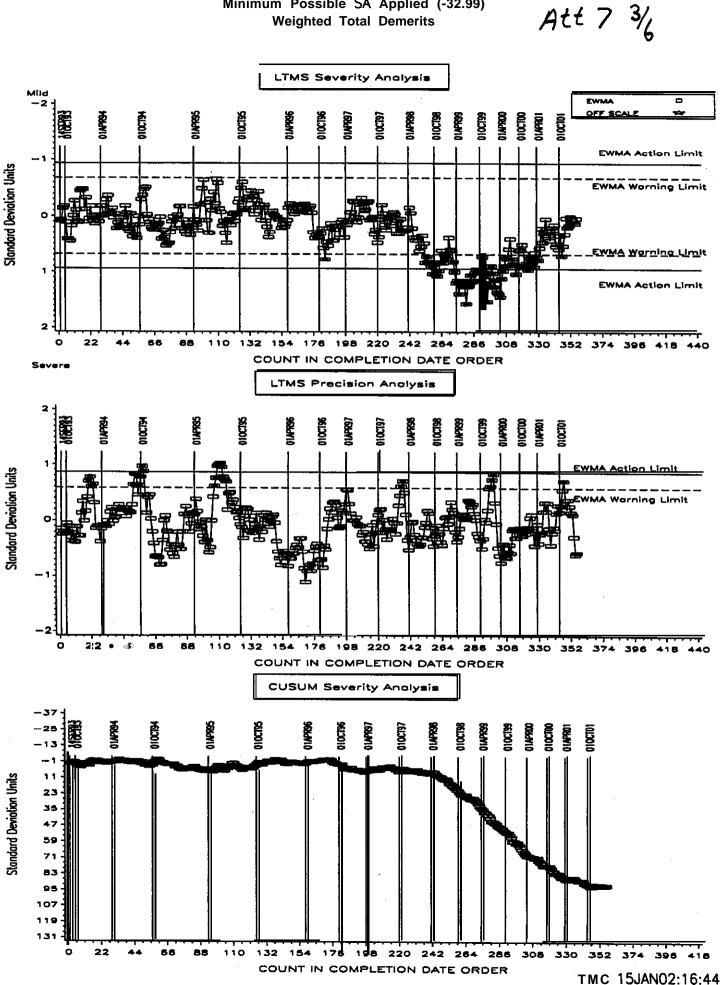

Inquiry	Labs	Data		Stats		Levene	
WTD vs Liner	A, D, G	>19980201		p=0.9985		p=0.9241	
			n	x	Std		
New			22	272.9	44.3		-40.4
Old			80	272.9	44.2		-40.4
TGF vs Liner	A, D, G	>19980201		p=0.0599		p=0.3688	
			n	x	Std		
New			22	56.2	16.4		-15.2
Old			80	47.9	18.6		-6.9
WTD vs Season	A, B, D, G	1Y3995		p=0.7928		p=0.7907	
			n	x	Std	•	
Fall			14	271.3	41.8		-38.8
Spring			13	275.7	44.9		-43.2
TGF vs Season	A. B. D. G	1Y3995		p=0.1677		p=0.3790	
	,, .		n	X	Std	P	
Fall			14	63.0	13.5		-22.0
Spring			13	54.4	17.9		-13.4
WTD vs TGF Era	ABDG	all		p=0.0084		p=0.4538	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	un	n	μ~0.000+ x	Std	p 0.4000	
<19951001			72	238.8	50.9		-6.3
>19951001			212	256.3	47.5		-23.8
TGF vs TGF Era	A, B, D, G	all		p=0.0381		p=0.4531	
			n	x	Std		
<19951001			72	46.6	16.7		-5.6
>19951001			212	51.6	17.8		-10.6

٠

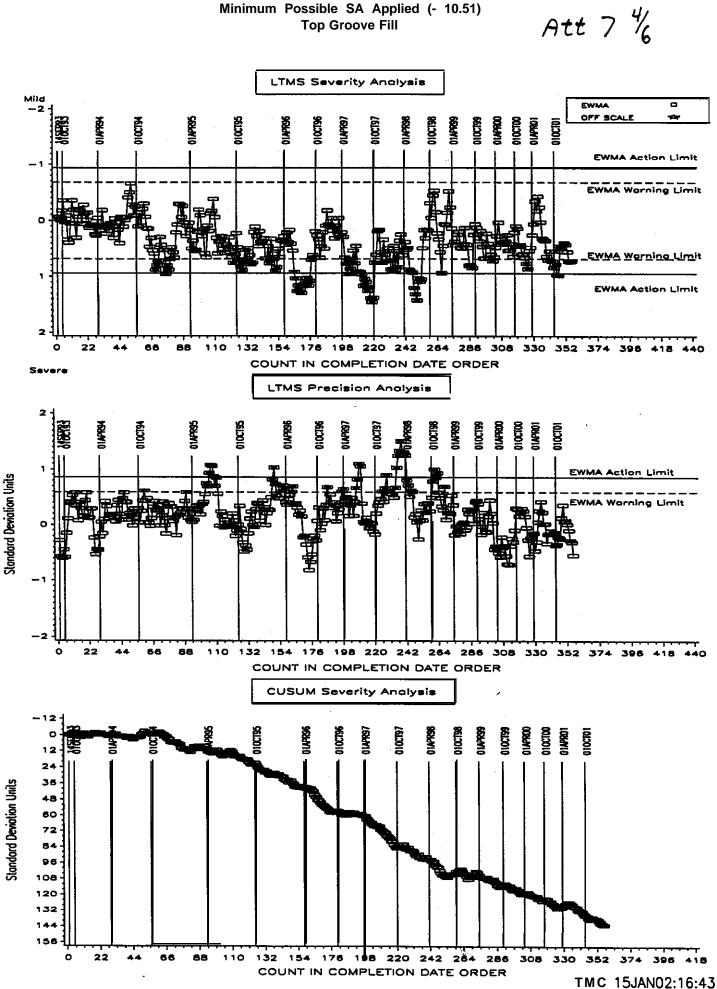
CATERPILLAR 1 M-PC INDUSTRY OPERATIONALLY VALID DATA

Top Groove Fill

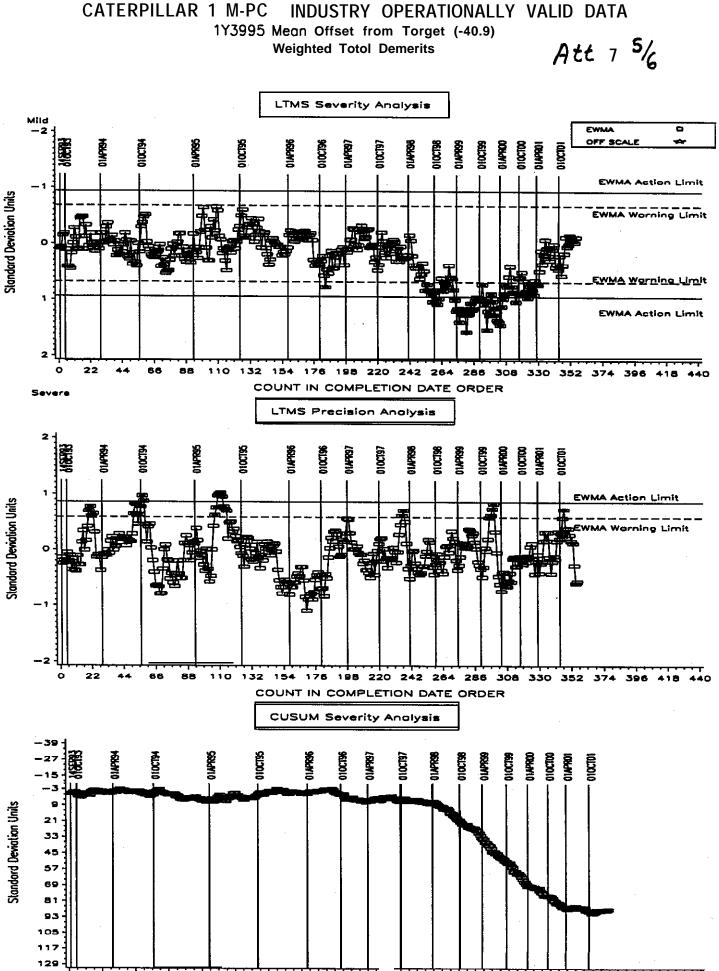

Att 7 %



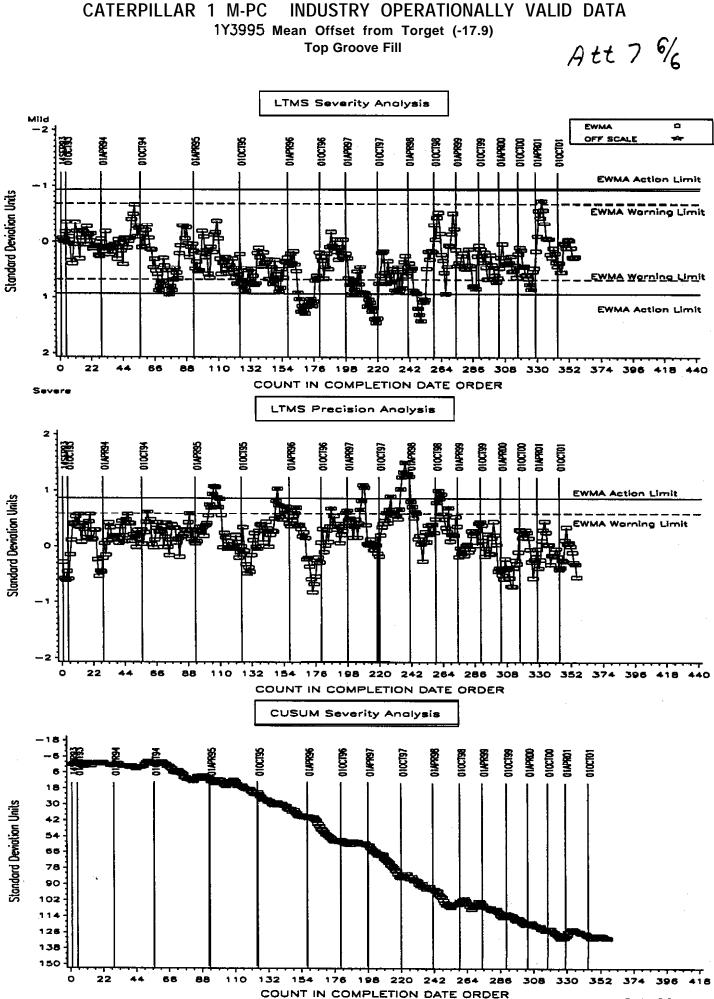
CATERPILLAR 1 M-PC INDUSTRY OPERATIONALLY VALID DATA

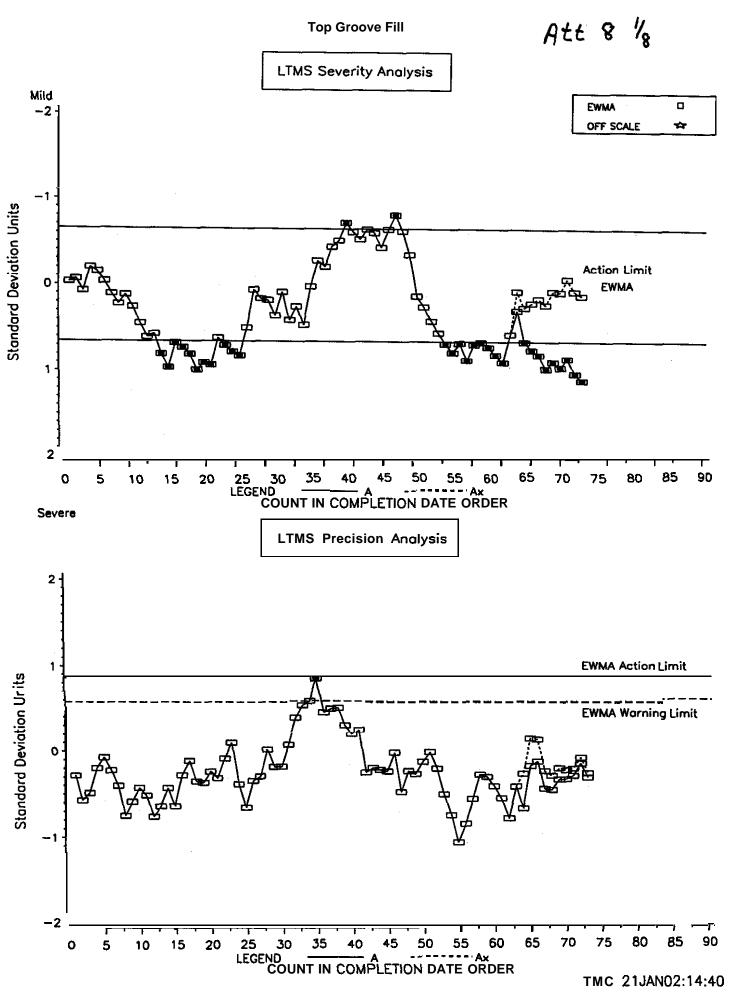

Weighted Total Demerits

Att 7 %



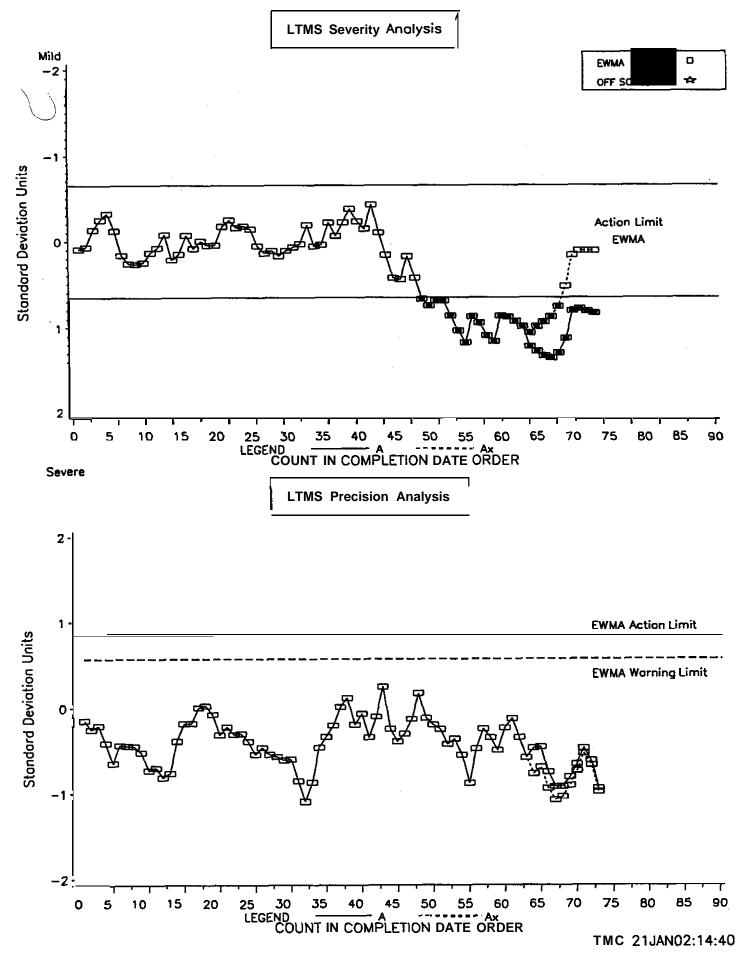
CATERPILLAR 1 M-PC INDUSTRY OPERATIONALLY VALID DATA Minimum Possible SA Applied (-32.99)


CATERPILLAR 1 M-PC INDUSTRY OPERATIONALLY VALID DATA Minimum Possible SA Applied (- 10.51)

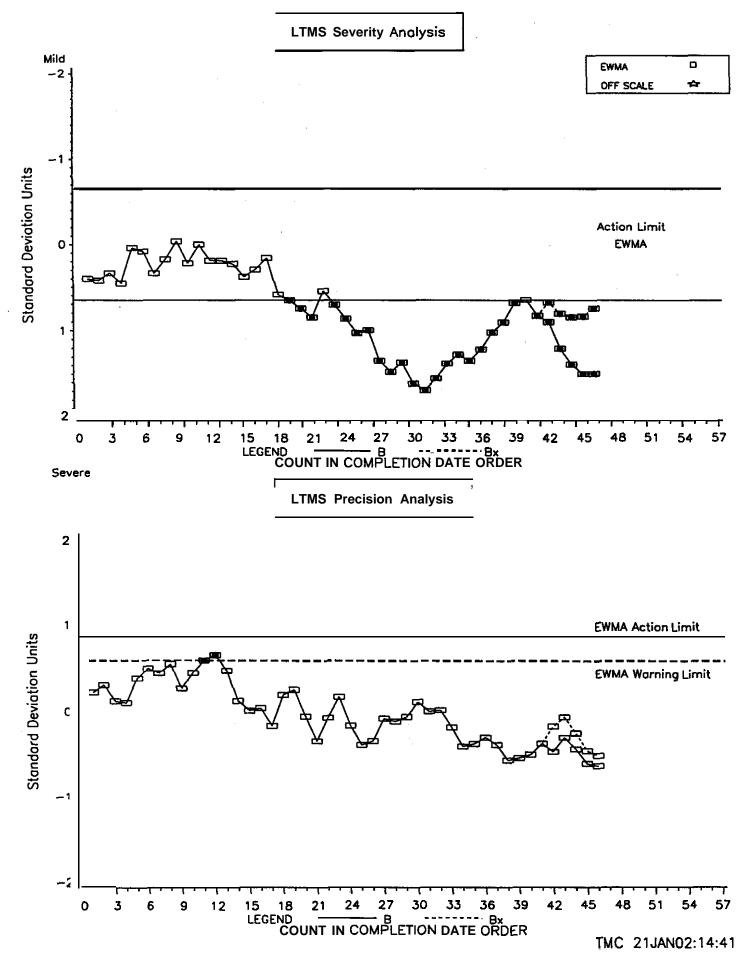

^{44 66 88 110 132 154 176 1982 20 242 264 286 308 330 352 374 396 418} COUNT IN COMPLETION DATE ORDER

22

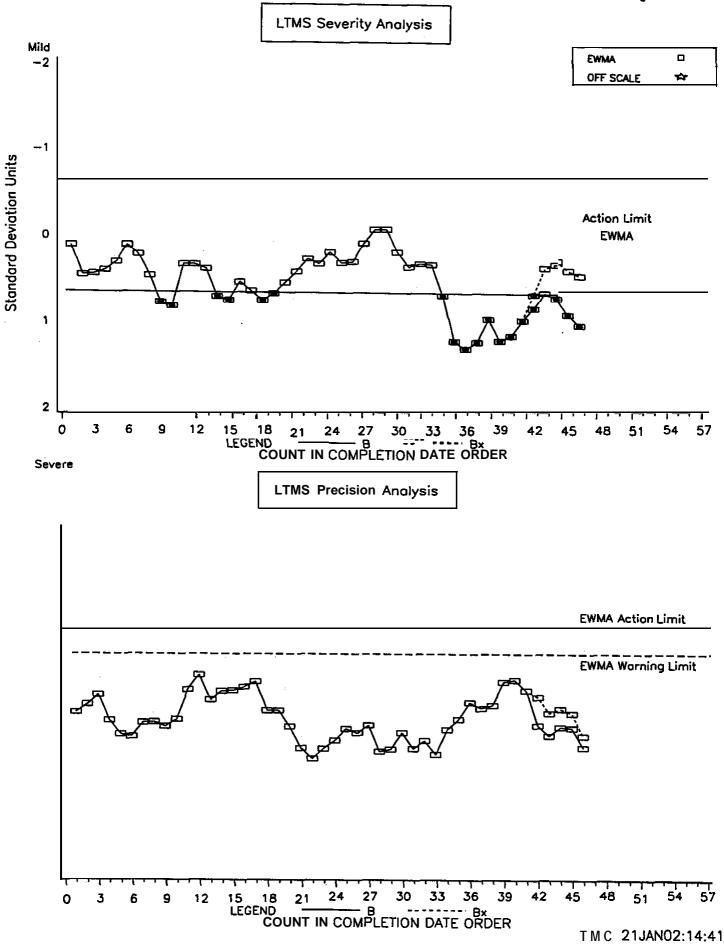
o

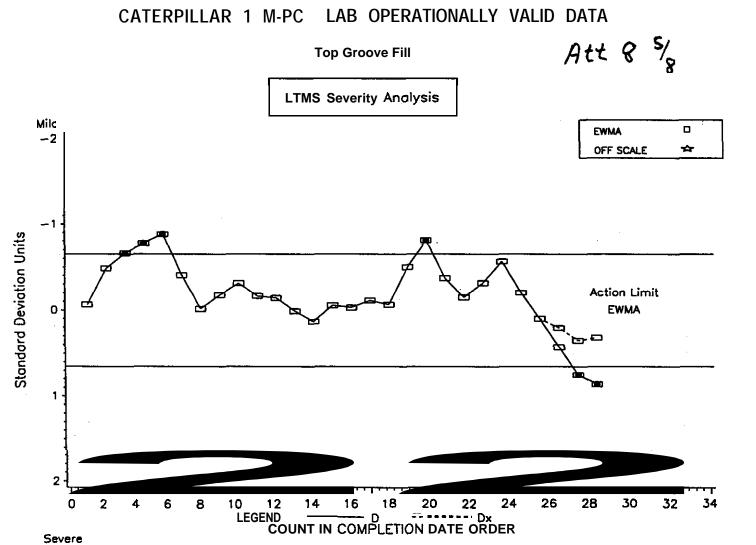


тмс 18JAN02:11:10


Weighted Total Demerits

Att 8 3/8


Top Groove Fill


Att 8 3/8

Weighted Total Demerits

Att 8 4/8

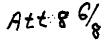
LTMS Precision Analysis

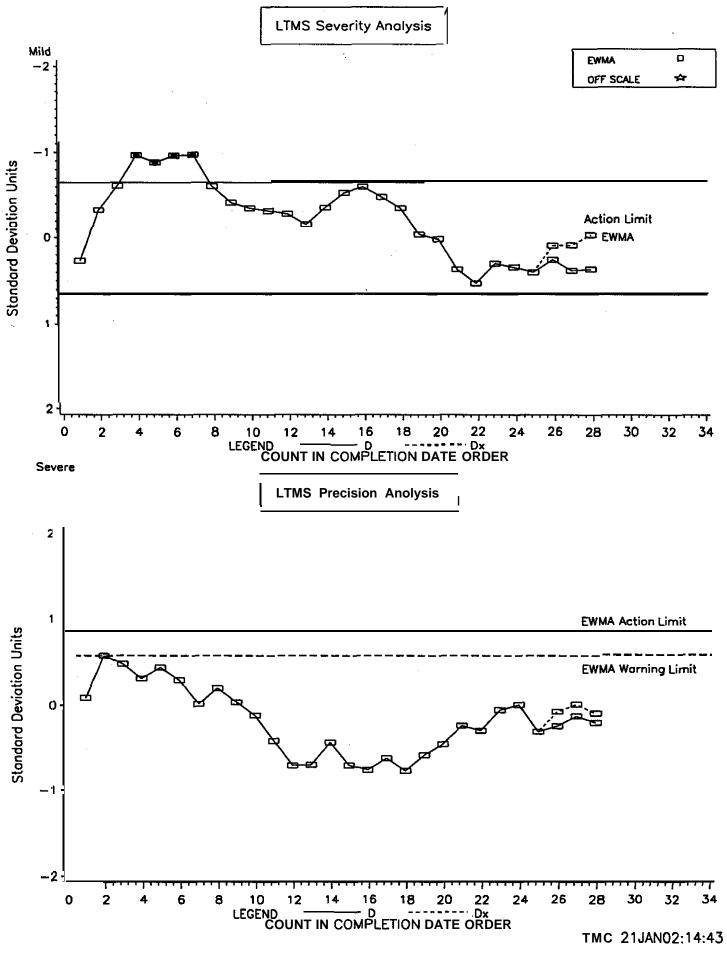
Units

Standard

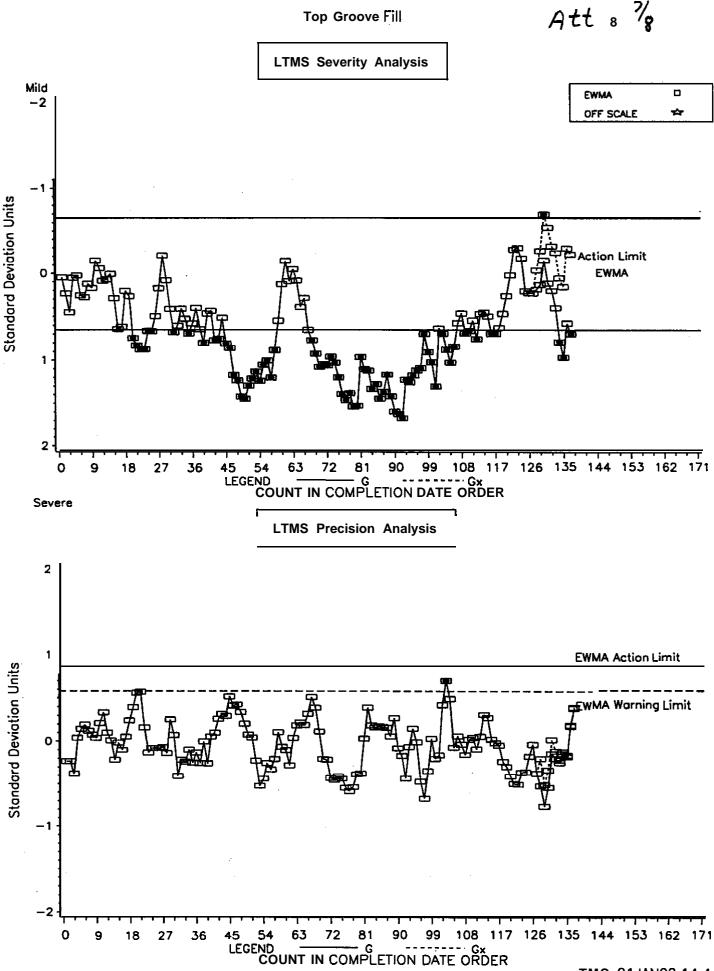
EWMA ActionLimit **EWMA Warning Limit** a-8 10 12 14 16 D LEGEND D COUNT IN COMPLETION DATE ORDER 28 0 26 2 4 6 8 24

C

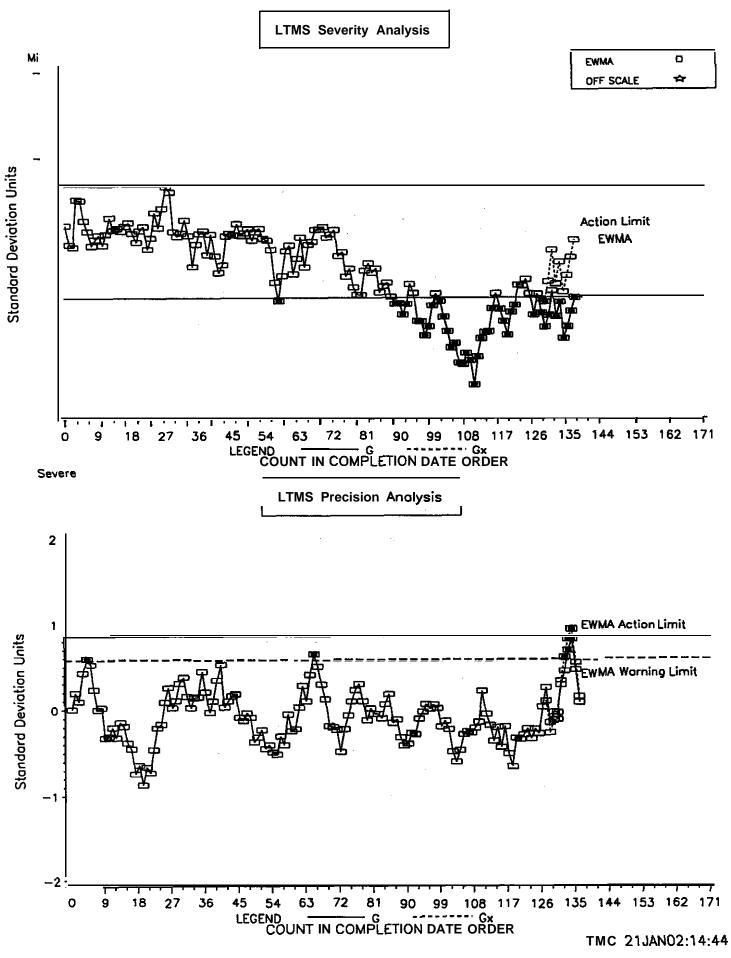

TMC 21JAN02:14:43


32

34


CATERPILLAR 1 M-PC LAB OPERATIONALLY VALID DATA

Weighted Total Demerits


CATERPILLAR 1 M-PC LAB OPERATIONALLY VALID DATA

CATERPILLAR 1 M-PC LAB OPERATIONALLY VALID DATA

Weighted Totol Demerits

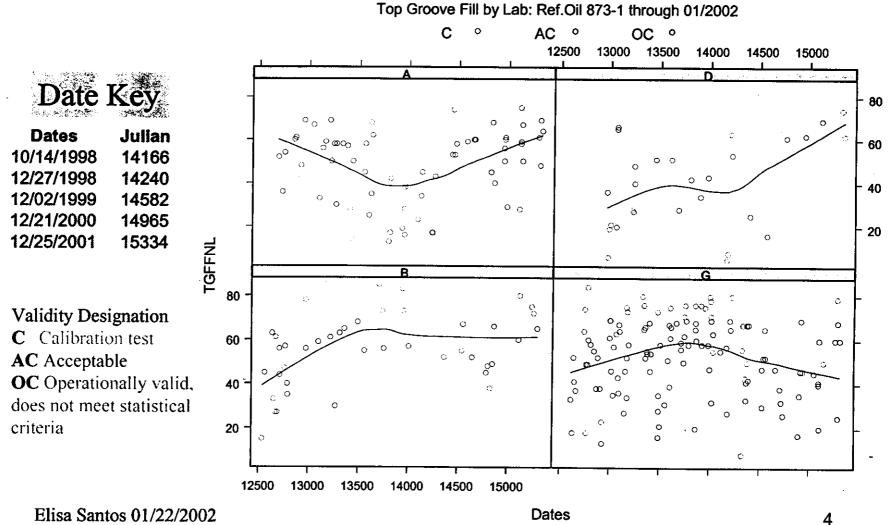
Att 8 %

CAT 1MPC Test Analysis

Preliminary Analysis To Be Presented at the SCOTE Surveillance Panel Meeting

> Elisa Santos Elisa.Santos@Infineum.com January 2002

Data

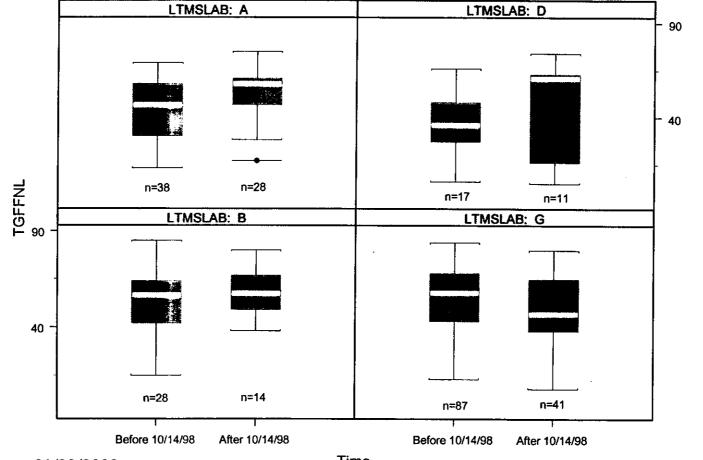

- Data Source: Data collected from the Test Monitoring Center web site on 01/15/2002 (Path: refdata/diesel/1m/data)
- The following filters were applied to the original file
 - LTMSLAB equal to "A", "B", "D", "G"
 - IND equal "873-1"
 - CHART equal to "Y"
 - VAL equal to "AC", "OC", "C"

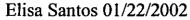
Att 9: s'r

Graphical Analysis of the reference data

Elisa Santos 01/22/2002

This TGF plot shows how this test has evolved with time and where the AC and OC points fall. It shows a lot of variability and an increase of TGF values for Labs A, D, and B. Lab G seems to show some decrease in the TGF values.


Elisa Santos 01/22/2002


Att 9

ม่าะ

Cut off for Time: 10/14/1998 Objective: show how test has evolved with time and by Lab. Note that Lab G shows a mild downward tendency while the others don't.

Top Groove Fill: Ref. Oil 873-1 through 01/2002

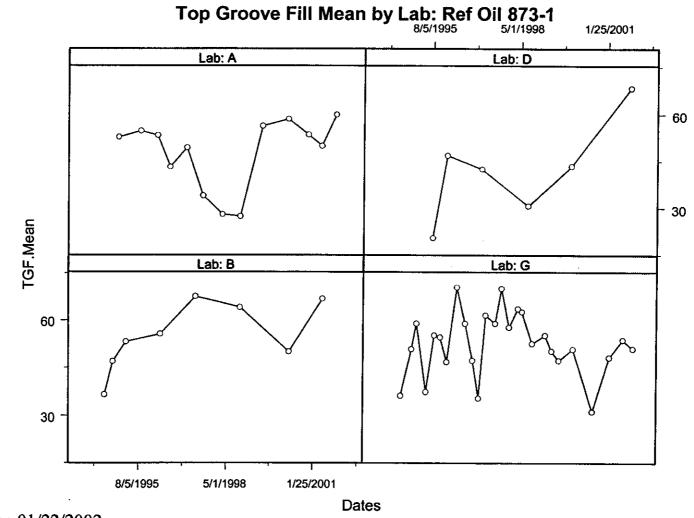
Time


5

0

2/10

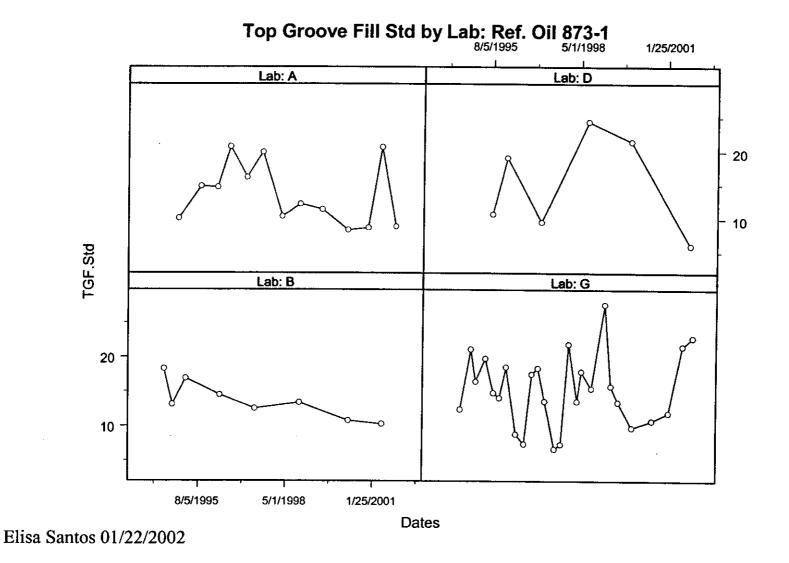
Introducing one more level for Time through "New Liner" New Liner seems to have an impact on TGF


Top Groove Fill: Ref. Oil 873-1 by Lab

6

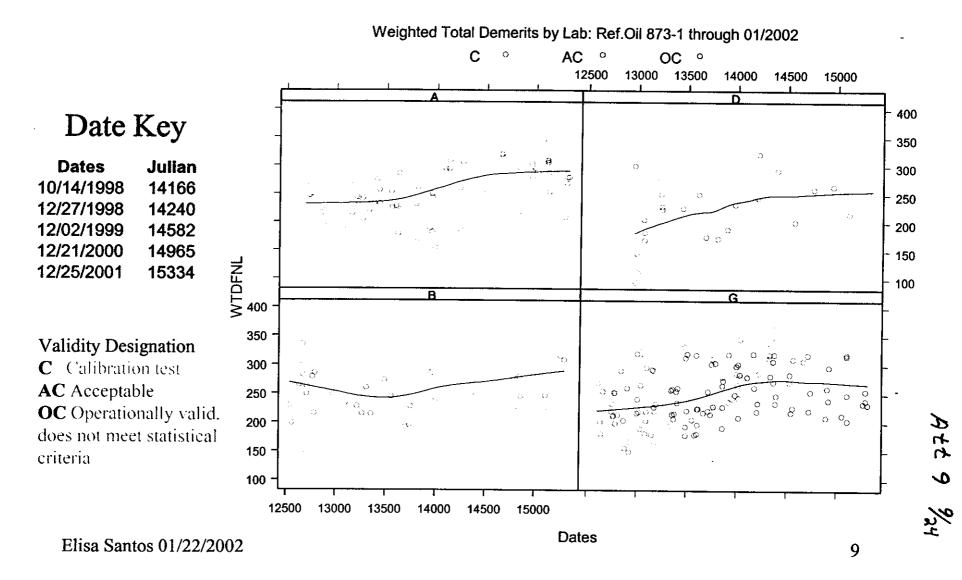
Att 9 6/24

This plot shows the average of every five data points for TGF across time for Ref. Oil 873-1 by Lab. It is just another way of describing the test behaviour along time.

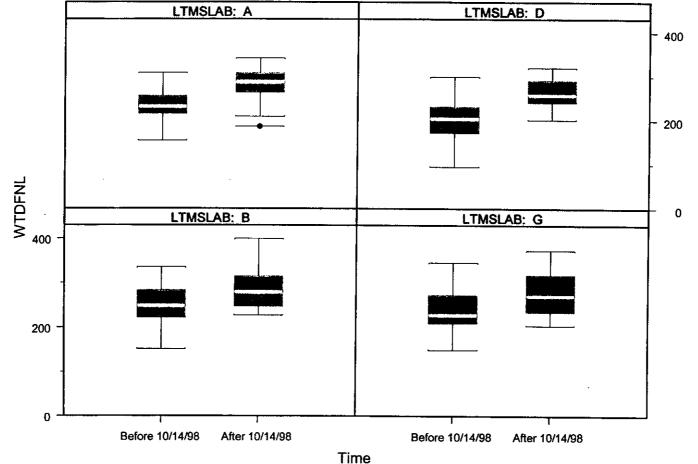

Elisa Santos 01/22/2002

Att

9


×4

This plot shows the standard deviation for every five data points for TGF across time Ref. Oil 873-1 by Lab. It is a way of describing the variability of the test along time.


Att 9 8/24

This plot of WDT shows how this test has evolved with time and where the AC and OC points fall. It shows that WTD is less variable than TGF and also an increase of WDT for all Labs.

Cut off for Time: 10/14/1998 Objective: Show how the test evolved with time and by Lab. Note that all labs show an increase for WDT values with time.

Weighted Total Demerits: Ref. Oil 873-1 through 01/2002

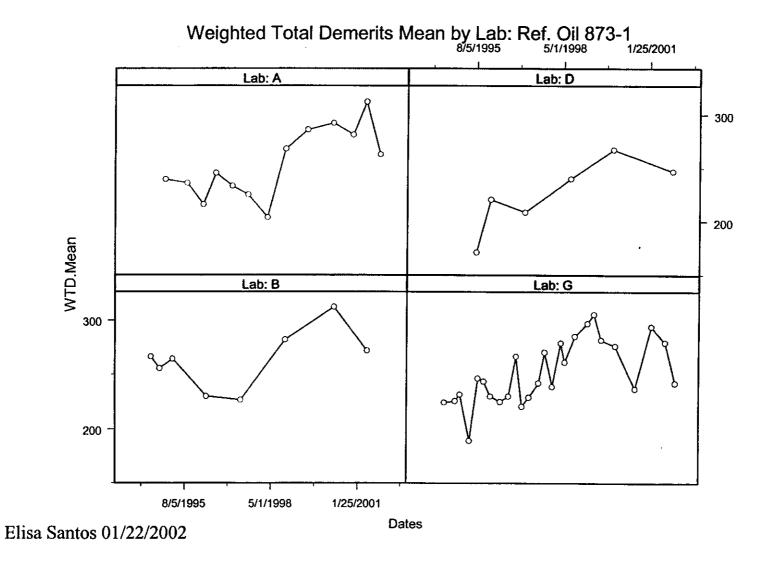
Elisa Santos 01/22/2002

10

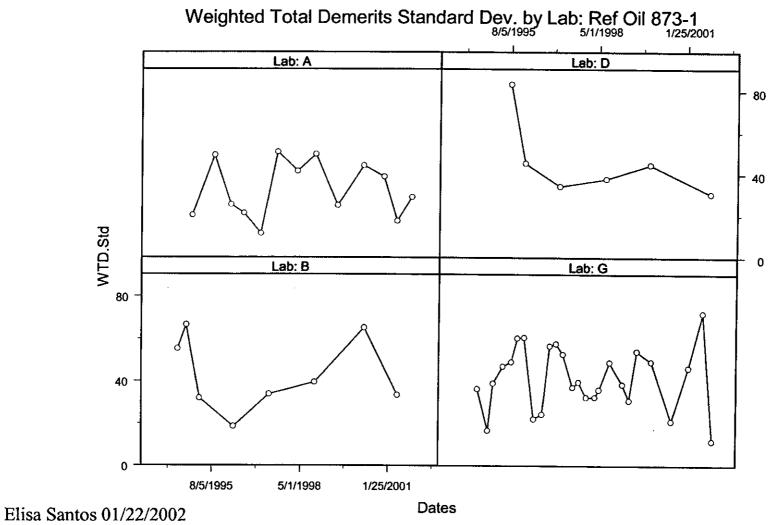
もた

9

ؠ؆


Introducing one more level for Time through "New Liner" New Liner does not seem to change WDT after 10/14/98

Weighted Total Demerits: Ref. Oil 873-1 by Lab

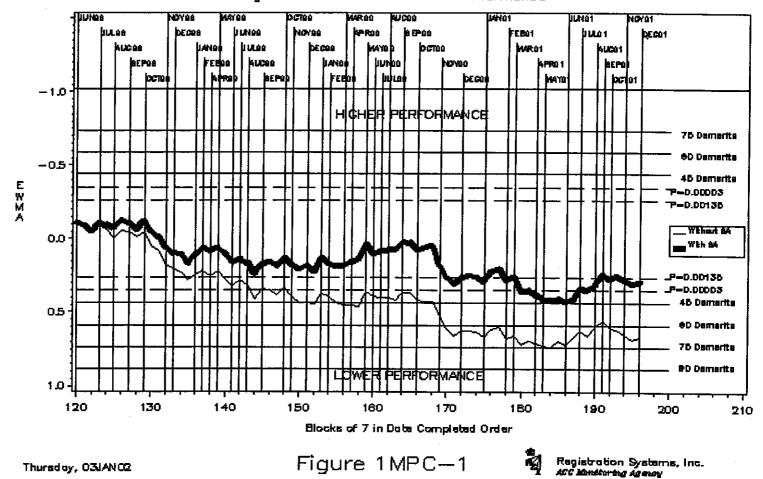

Att 9 1/24

This plot shows the average for every five data points for WDT across time Ref. Oil 873-1 by Lab. It is just another way of showing the growth of WDT values with time.

Att 9 12/24

This plot shows the standard deviation for every five data points for WDT across time for Ref. Oil 873-1 by Lab. It is a way to describe the variability of the test along time.

Att 9 13

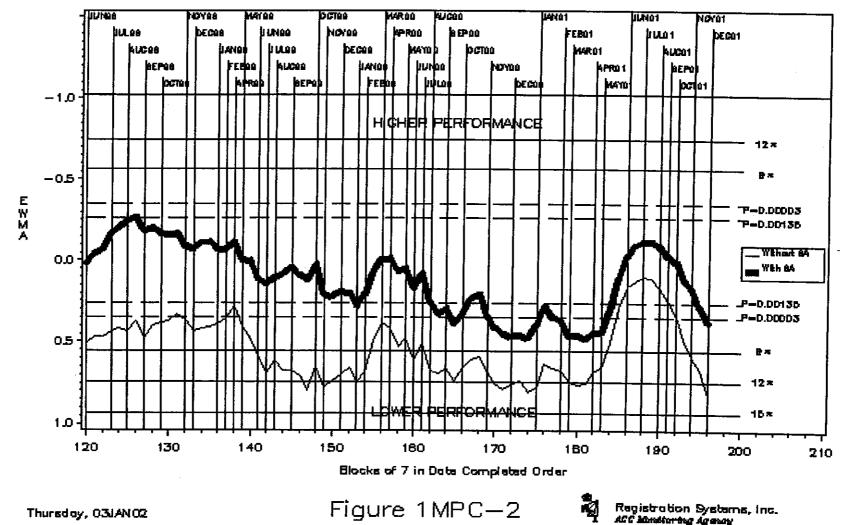

Candidate data

Elisa Santos 01/22/2002

Att 9

おって

Source: RSI web site

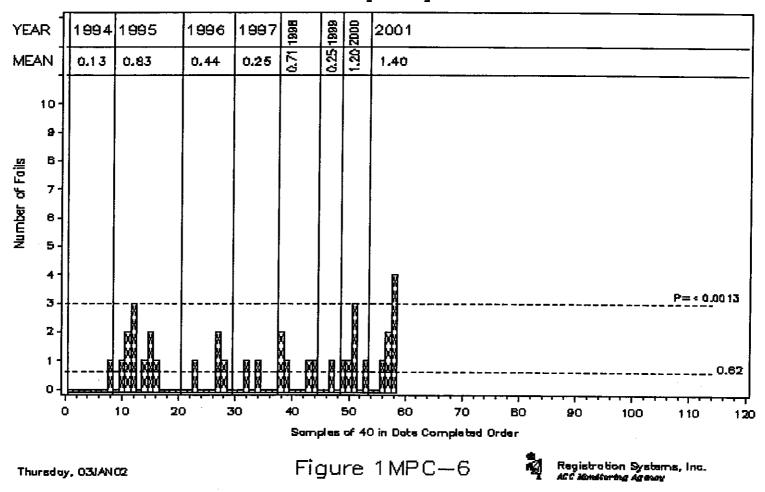


<u>1MPC Condidate Valid Data</u> Weighted Total Demerits Relative Performance

Elisa Santos 01/22/2002

Att <u></u>

Source: RSI web site



<u>1MPC Condidate Valid Data</u> Top Groove Fill Relative Performance

Thursdoy, 03JAN02 Elisa Santos 01/22/2002 Att

-0

Source: RSI web site

<u>1MPC Condidate Data</u> Ring Sticking

Elisa Santos 01/22/2002

Att 9

Modelling Reference Data

Elisa Santos 01/22/2002

18

Att

9

의노

Modelling reference data: WTD

Fit #1 WTDFNL explained as a function of Lab and Time

• Labs: A, B, D, and G.

• Time is analysed as having three levels:

- One to explain the period Before 10/14/98, one to explain the period between 10/14/98 and 05/08/2001 and the third level corresponding to the time after the New Liner is available.
- Point corresponding to CMIR 40539 from Lab G was eliminated from the modelling phase. This point corresponds to a special run involving a request for the use of the old liner after the new liners had been adopted by all labs. This was done to allow for "New Liner" to be considered as a level of Time
- The ANOVA table is presented below:

summary for Fit #1

 Df
 Sum of Sq
 Mean Sq
 F Value
 Pr(F)

 LAB
 3
 27976.2
 9325.41
 4.71947
 0.003

 Special Time scale
 2
 105968.5
 52984.23
 26.81462
 0.000

 Interaction of Lab and Time
 6
 5394.1
 899.01
 0.45498
 0.841

 Residuals
 251
 495962.3
 1975.95
 1975.95

• The table shows that the Labs differ among each other and that Time is also a relevant factor. For WTD the interaction of the two factors is not relevant.

Elisa Santos 01/22/2002

19

Att 9 1/24

Modelling reference data: WTD

• The coefficients of the fit considering Lab B as a reference Lab and the time between 10/14/98 and 05/08/2001 as the reference time (the goal is to detect the impact of Liner and for this the chosen reference time is appropriate) are presented next.

	Value	Std. Error	t value	Pr(> t)
(Intercept)	294.3194	8.4190	34.9589	0.0000
LAB G	-11.9997	7.8745	-1.5239	0.1288
LAB A	~14.0379	8.7339	-1.6073	0.1092
LAB D	-42.6634	10.7852	-3.9557	0.0001
Before 10/14/98	-43.9971	6.4189	-6.8543	0.0000
New Liner	-6.9392	10.1244	-0.6854	0.4937

Residual standard error: 44.17 on 257 degrees of freedom F-statistic: 13.73 on 5 and 257 degrees of freedom

• Observe the box plot on page 11 showing the behavior of Labs A, B, D and G over time to see that Labs D and A are the most different from B. The main finding here is that the significant growth of WDT is detected by going from Before 10/14/98 to After 10/14/98 but before the New Liner is available. The introduction of the new liner does not seem to impact WTD.

Elisa Santos 01/22/2002

20

Att 9 3/24

Modelling reference data: TGF

Fit # 2: TGFFNL explained as a function of Lab and Time

• This fit uses the same methodology for Total Groove Fill.

Summary for Fit #2:

Df S	um of Sq	Mean Sq	F Value	Pr(F)
LAB 3	5171.83	1723.944	5.944392	0.0006
Special Time scale 2	2560.36	1280.181	4.414235	0.0130
Interaction of Lab and Time 6	4075.76	679.294	2.342297	0.0322
Residuals 251	72792.99	290.012		

• The ANOVA table shows that the Labs differ among each other and that Time is also a relevant factor. For TGF the Time*Lab interaction seems to be relevant and the behaviour of Lab G could be causing the interaction to be detected (all labs seem to have TGF growing with Time and/or New Liner, but for G this trend is less noticeable). By definition, Time and New Liner are confounded with each other.

Elisa Santos 01/22/2002

21

Att

9

2/24

Modelling reference data: TGF

• The coefficients of the fit considering Lab B as a reference Lab and the time between 10/14/98 and 05/08/2001 as the reference time (the goal is to detect the impact of Liner and for this the chosen reference time is appropriate) are presented next.

Coefficients	Value	Std. Error	t value F	r(> t)
(Intercept)	52.4444	5.6766	9.2387	0.000
LAB G	-4.5090	6.4482	-0.6993	0.485
LAB A	-2.2778	6.9524	-0.3276	0.744
LAB D - 1	15.8194	8.2750	-1.9117	0.057
Before 10/14/98	1.5556	6.5254	0.2384	0.812
New Liner 1	L7.9556	9.4987	1.8903	0.060
Interaction of LAB G with Before 10/14/98	5.0262	7.4344	0.6761	0.500
Interaction of LAB A with Before 10/14/98 -	-7.6959	8.1440	-0.9450	0.346
Interaction of LAB D with Before 10/14/98 -	-1.4158	9.7925	-0.1446	0.885
Interaction of LAB G with New Liner -1	L5.5577	11.4806	-1.3551	0.177
Interaction of LAB A with New Liner -1	L0.2222	11.6335	-0.8787	0.380
Interaction of LAB D with New Liner 1	13.7528	14.9381	0.9206	0.358
Residual standard error: 17.03 on 251 degree	es of fre	eedom		
F-statistic: 3.701 on 11 and 251 degrees of	freedom	, the p-valu	le is 0.00	006704

Elisa Santos 01/22/2002

22

Att 9 23/24

Conclusions

- Problems with all p/f parameters on CAT 1MPC
 - Change in reference TGF severity correlated with new liners
 - Three labs have similar behaviour for TGF {A,B,D} while G is mildly different
 - TGF has been sever nearly all the time period RSI has been monitoring
 - Change in severity with WTD observed with both reference and candidates {RSI}.
 - Unadjusted candidate severity is nearly 4 stdev away from zero line. Lab severity adjustments do not seem to be correcting the problem.
 - No correlation between liner and WTD severity change.
 - RSI data indicates failure rate in ring sticking is at the highest level since they have been monitoring.
- Is it possible to correct these problems in a timely manner or should this test be declared out of control ?

Att 9

Appendix 1

Table 1: Average of every five datapoints for TGF and WTD across time873-1 ref. Oil by Lab

Oates	WID.Meen	WTO.6M	TGF.Mean	TOF.61d	661
7/14/1094	205.4	55.30	35.6	18 30	B
10/19/1804	255.6	66.56	47	13.10	<u>́</u> в
3/18/1995	254.5	31.98	53.2	16.90	
4/11/1998	230.2	18 66	66 6	14.48	. B]
6/10/1997	226.8	33 87	67.4	12.50	<u>் 8</u>
10/11/1998	262.1	39.66	64	13.36) 8
4/24/2000	312.8	85.22	60	10.79	e
6/11/2001	271.9	33.44	66.7	10.29	8
8/7/1994	224.5	36.43	36.2	12.40	0
12/5/1994	225 8	58 82	50.8	21.18	` G
2/2/1995	231.0	39.01	59	16.45	
5/24/1995	189.7	47.07	37.4	19 8 3	0
8/25/1995	245.6	49 27	55.2	14 BY	୍ଦ୍
11/1/1995	243.8	60.47	54 6	14.08	· a [
1/17/1995	230.2	80.74	40.6	18.67	0
5/10/1995	225.2	22.28	70.4	0.05	9
6/13/1995	230.2	24 61	69	7.42	Q I
11/6/1098	206.0	66.78	47.2	17.54	
1/15/1997	220.9	67 62	36.4	18.42	G
4/4/1997	229.1	62.90	61.6	13.59	9
7/25/1997	242.2	37.24	50	6.71	0
10/2/1997	270.6	39.77	70	7.38	6
12/28/1997	239.1	32.53	67.8	21.91	° 0
4/5/1998	279.2	32.64	63.6	13.56	0
5/22/1996	201.5	36.09	62.6	\$7.92	
9/17/1998	285.4	49,14	62.6	15.46	0
2/11/1999	297.3	38.64	65.2	27.74	
4/27/1999	306.9	31.08	50.2	15.79	0
7/19/1999	201.9	64.32	47.2	13.44	9
12/29/1999	276.3	49 35	50.8	9.78	9
e/14/2000	237.0	21.24	31.2	10.76	0
2/19/2001	294.4	46.49	48.2	11.00	G
7/27/2001	279.7	72.23	53.8	21.61	9
11/19/2001	242.2	11 91	51	22 67	G
12/21/1994	239.1	20,18	62.6	10.04	A
8/29/1995	235.8	48.92	64.6	14.77	. • •
36/1998	215.9	25.24	53.2	\$4.62) A [
7/29/1998	245.1	21.16	43	20.69	· • •
2/4/1997	233.0	11.41	49.2	16.08	
8/6/1997	225.0	60.45	33.6	19.67	j 🔺 🛔
3/10/1998	203.6	41.33	27.8	10.31	A .
10/11/1998	267.8	49.46	27.2	12.13	. A .
6/19/1999	205.8	24.07	55.2	11.34	A
4/9/2000	292.2	44.08	50.4	832	
11/24/2000	201.2	38.75	53.4	8 66	
4/26/2001	311.9	17.61	49.8	20.58	A
10/5/2001	262.6	28.99	59.8	8.84	A
8/2/1995	171.2	63.29	20.4	10.64	D
1/14/1995	220.4	46.24	40.8	19.02	0
2/11/1997	206.6	34.25	424	9.50	D
7/22/1998	239.9	37.91	30.6	24.40	` D
11/28/1998	287.3	44.62	43.4	21.43	D
10/11/2001	246.8	30.71	68.3	6 03	Ð

Table 2: Number of tests accordingto Year and Lab

Rhumber	હોઈ છે.
Year	Lab
1994	B G A D
1995	5 19 7 7 5 23 11 5
1997 1998	4 21 9 3 3 18 10 6
1999 Jan-Jun 2000	~ ~
Jul-Dec 2000 Jan-Jun 2001 Jul-Dec 2001	2671
2002	0001

Att 9 بد⁄*ل*د بد⁄لا

Elisa Santos 01/22/2002

Att 10 1/1

1MPC Industry Correction Factor Proposal

- ~ data below generated using operationally valid oil 873-1 data
- ~ pass/fail data for WTD and TGF generated using TMC validity codes

Pass Ratio	All Labs	Current Labs
Total Passing Tests on 873-1 (4/94 to 1/02/02)	77.7%	77.3%
Total Passing on old liners (4/94 - 5/01)	78.4%	78.0%
Total Passing since new liners (5/01 - 1/02/02)	71.4%	71.4%
Delta	7% fewer p	assing references

Percentage of "OC" tests failing by each parameter	All Labs	Current Labs
WTD on old liners (4/94 - 5/01)	25%	25%
WTD since new liners (5/01 - 1/02/02)	38%	38%
Delta	13% more fail on WTD	
TGF on old liners (4/94 - 5/01)	49%	51.9%
TGF since new liners (5/01 - 1/02/02)	75%	75.0%
Delta	26%	23%

Operationally Invalid Percentage (LC & RC TMC codes)	All Labs	Current Labs
Op. Invalid as a percent of Op. Valid on 873-1 (4/94 to 1/02/02)	10.7%	9.5%
Op. Invalid as percent of Op. Valid on old liners (4/94 - 5/01)	10.3%	8.9%
Op. Invalid as percent of Op. Valid on new liners (5/01 - 1/02/02)	14.3%	14.3%
Delta	4%	5.4%

	WTD	Std
Current Targets	232.5	50.5
Current Stats on new liners (n=28)	275.7	43.5
Delta new liners to old	43.2	severe

	TGF	Std
Current Targets	41	16.1
Current Stats on new liners (n=28)	59	16.4
Delta new liners to old	18	severe

Proposal:

Institute effective immediately an industry correction factor on WPD and TGF for all tests run on 1Y3995 liners. WTD correction factor - 43.2 demerits

TGF correction factor - 18%

1M-PC Lab Severity Adjustments

	·	Current	Corrected
	Lab	TGF = TGF	TGF = TGF 17.9
TGF	A	-18	0
	В	-24	-12
	D	-14	0
	G	-11	0
		WTD = WTD	WTD = WTD - 40.9
WTD	А	-42.0	0
	В	-51.3	0
	D	0.0	0
	G	-33.0	0

Att 11

~